summaryrefslogtreecommitdiff
path: root/libnm-core/nm-utils.c
blob: d3c3bef1dc167f1aa1b5eccd7680a4da4a743948 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
/* -*- Mode: C; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*- */

/*
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the
 * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
 * Boston, MA 02110-1301 USA.
 *
 * Copyright 2005 - 2014 Red Hat, Inc.
 */

#include "config.h"

#include <string.h>
#include <stdlib.h>
#include <netinet/ether.h>
#include <uuid/uuid.h>
#include <gmodule.h>

#include "nm-utils.h"
#include "nm-utils-private.h"
#include "nm-glib-compat.h"
#include "nm-setting-private.h"
#include "crypto.h"

/**
 * SECTION:nm-utils
 * @short_description: Utility functions
 *
 * A collection of utility functions for working with SSIDs, IP addresses, Wi-Fi
 * access points and devices, among other things.
 */

struct EncodingTriplet
{
	const char *encoding1;
	const char *encoding2;
	const char *encoding3;
};

struct IsoLangToEncodings
{
	const char *	lang;
	struct EncodingTriplet encodings;
};

/* 5-letter language codes */
static const struct IsoLangToEncodings isoLangEntries5[] =
{
	/* Simplified Chinese */
	{ "zh_cn",	{"euc-cn",	"gb2312",			"gb18030"} },	/* PRC */
	{ "zh_sg",	{"euc-cn",	"gb2312",			"gb18030"} },	/* Singapore */

	/* Traditional Chinese */
	{ "zh_tw",	{"big5",		"euc-tw",			NULL} },		/* Taiwan */
	{ "zh_hk",	{"big5",		"euc-tw",			"big5-hkcs"} },/* Hong Kong */
	{ "zh_mo",	{"big5",		"euc-tw",			NULL} },		/* Macau */

	/* Table end */
	{ NULL, {NULL, NULL, NULL} }
};

/* 2-letter language codes; we don't care about the other 3 in this table */
static const struct IsoLangToEncodings isoLangEntries2[] =
{
	/* Japanese */
	{ "ja",		{"euc-jp",	"shift_jis",		"iso-2022-jp"} },

	/* Korean */
	{ "ko",		{"euc-kr",	"iso-2022-kr",		"johab"} },

	/* Thai */
	{ "th",		{"iso-8859-11","windows-874",		NULL} },

	/* Central European */
	{ "hu",		{"iso-8859-2",	"windows-1250",	NULL} },	/* Hungarian */
	{ "cs",		{"iso-8859-2",	"windows-1250",	NULL} },	/* Czech */
	{ "hr",		{"iso-8859-2",	"windows-1250",	NULL} },	/* Croatian */
	{ "pl",		{"iso-8859-2",	"windows-1250",	NULL} },	/* Polish */
	{ "ro",		{"iso-8859-2",	"windows-1250",	NULL} },	/* Romanian */
	{ "sk",		{"iso-8859-2",	"windows-1250",	NULL} },	/* Slovakian */
	{ "sl",		{"iso-8859-2",	"windows-1250",	NULL} },	/* Slovenian */
	{ "sh",		{"iso-8859-2",	"windows-1250",	NULL} },	/* Serbo-Croatian */

	/* Cyrillic */
	{ "ru",		{"koi8-r",	"windows-1251",	"iso-8859-5"} },	/* Russian */
	{ "be",		{"koi8-r",	"windows-1251",	"iso-8859-5"} },	/* Belorussian */
	{ "bg",		{"windows-1251","koi8-r",		"iso-8859-5"} },	/* Bulgarian */
	{ "mk",		{"koi8-r",	"windows-1251",	"iso-8859-5"} },	/* Macedonian */
	{ "sr",		{"koi8-r",	"windows-1251",	"iso-8859-5"} },	/* Serbian */
	{ "uk",		{"koi8-u",	"koi8-r",			"windows-1251"} },	/* Ukranian */

	/* Arabic */
	{ "ar",		{"iso-8859-6",	"windows-1256",	NULL} },

	/* Baltic */
	{ "et",		{"iso-8859-4",	"windows-1257",	NULL} },	/* Estonian */
	{ "lt",		{"iso-8859-4",	"windows-1257",	NULL} },	/* Lithuanian */
	{ "lv",		{"iso-8859-4",	"windows-1257",	NULL} },	/* Latvian */

	/* Greek */
	{ "el",		{"iso-8859-7",	"windows-1253",	NULL} },

	/* Hebrew */
	{ "he",		{"iso-8859-8",	"windows-1255",	NULL} },
	{ "iw",		{"iso-8859-8",	"windows-1255",	NULL} },

	/* Turkish */
	{ "tr",		{"iso-8859-9",	"windows-1254",	NULL} },

	/* Table end */
	{ NULL, {NULL, NULL, NULL} }
};


static GHashTable * langToEncodings5 = NULL;
static GHashTable * langToEncodings2 = NULL;

static void
init_lang_to_encodings_hash (void)
{
	struct IsoLangToEncodings *enc;

	if (G_UNLIKELY (langToEncodings5 == NULL)) {
		/* Five-letter codes */
		enc = (struct IsoLangToEncodings *) &isoLangEntries5[0];
		langToEncodings5 = g_hash_table_new (g_str_hash, g_str_equal);
		while (enc->lang) {
			g_hash_table_insert (langToEncodings5, (gpointer) enc->lang,
			                     (gpointer) &enc->encodings);
			enc++;
		}
	}

	if (G_UNLIKELY (langToEncodings2 == NULL)) {
		/* Two-letter codes */
		enc = (struct IsoLangToEncodings *) &isoLangEntries2[0];
		langToEncodings2 = g_hash_table_new (g_str_hash, g_str_equal);
		while (enc->lang) {
			g_hash_table_insert (langToEncodings2, (gpointer) enc->lang,
			                     (gpointer) &enc->encodings);
			enc++;
		}
	}
}


static gboolean
get_encodings_for_lang (const char *lang,
                        char **encoding1,
                        char **encoding2,
                        char **encoding3)
{
	struct EncodingTriplet *	encodings;
	gboolean				success = FALSE;
	char *				tmp_lang;

	g_return_val_if_fail (lang != NULL, FALSE);
	g_return_val_if_fail (encoding1 != NULL, FALSE);
	g_return_val_if_fail (encoding2 != NULL, FALSE);
	g_return_val_if_fail (encoding3 != NULL, FALSE);

	*encoding1 = "iso-8859-1";
	*encoding2 = "windows-1251";
	*encoding3 = NULL;

	init_lang_to_encodings_hash ();

	tmp_lang = g_strdup (lang);
	if ((encodings = g_hash_table_lookup (langToEncodings5, tmp_lang))) {
		*encoding1 = (char *) encodings->encoding1;
		*encoding2 = (char *) encodings->encoding2;
		*encoding3 = (char *) encodings->encoding3;
		success = TRUE;
	}

	/* Truncate tmp_lang to length of 2 */
	if (strlen (tmp_lang) > 2)
		tmp_lang[2] = '\0';
	if (!success && (encodings = g_hash_table_lookup (langToEncodings2, tmp_lang))) {
		*encoding1 = (char *) encodings->encoding1;
		*encoding2 = (char *) encodings->encoding2;
		*encoding3 = (char *) encodings->encoding3;
		success = TRUE;
	}

	g_free (tmp_lang);
	return success;
}

/* init, deinit for libnm_util */

static void __attribute__((constructor))
_check_symbols (void)
{
	GModule *self;
	gpointer func;

	self = g_module_open (NULL, 0);
	if (g_module_symbol (self, "nm_util_get_private", &func))
		g_error ("libnm-util symbols detected; Mixing libnm with libnm-util/libnm-glib is not supported");
	g_module_close (self);
}

static gboolean initialized = FALSE;

/**
 * nm_utils_init:
 * @error: location to store error, or %NULL
 *
 * Initializes libnm; should be called when starting and program that
 * uses libnm.  Sets up an atexit() handler to ensure de-initialization
 * is performed, but calling nm_utils_deinit() to explicitly deinitialize
 * libnm can also be done.  This function can be called more than once.
 *
 * Returns: %TRUE if the initialization was successful, %FALSE on failure.
 **/
gboolean
nm_utils_init (GError **error)
{
	if (!initialized) {
		initialized = TRUE;

		if (!crypto_init (error))
			return FALSE;

		_nm_dbus_errors_init ();
	}
	return TRUE;
}

/**
 * nm_utils_deinit:
 *
 * Frees all resources used internally by libnm.  This function is called
 * from an atexit() handler, set up by nm_utils_init(), but is safe to be called
 * more than once.  Subsequent calls have no effect until nm_utils_init() is
 * called again.
 **/
void
nm_utils_deinit (void)
{
	if (initialized) {
		crypto_deinit ();
		initialized = FALSE;
	}
}

/* ssid helpers */

/**
 * nm_utils_ssid_to_utf8:
 * @ssid: pointer to a buffer containing the SSID data
 * @len: length of the SSID data in @ssid
 *
 * Wi-Fi SSIDs are byte arrays, they are _not_ strings.  Thus, an SSID may
 * contain embedded NULLs and other unprintable characters.  Often it is
 * useful to print the SSID out for debugging purposes, but that should be the
 * _only_ use of this function.  Do not use this function for any persistent
 * storage of the SSID, since the printable SSID returned from this function
 * cannot be converted back into the real SSID of the access point.
 *
 * This function does almost everything humanly possible to convert the input
 * into a printable UTF-8 string, using roughly the following procedure:
 *
 * 1) if the input data is already UTF-8 safe, no conversion is performed
 * 2) attempts to get the current system language from the LANG environment
 *    variable, and depending on the language, uses a table of alternative
 *    encodings to try.  For example, if LANG=hu_HU, the table may first try
 *    the ISO-8859-2 encoding, and if that fails, try the Windows-1250 encoding.
 *    If all fallback encodings fail, replaces non-UTF-8 characters with '?'.
 * 3) If the system language was unable to be determined, falls back to the
 *    ISO-8859-1 encoding, then to the Windows-1251 encoding.
 * 4) If step 3 fails, replaces non-UTF-8 characters with '?'.
 *
 * Again, this function should be used for debugging and display purposes
 * _only_.
 *
 * Returns: (transfer full): an allocated string containing a UTF-8
 * representation of the SSID, which must be freed by the caller using g_free().
 * Returns %NULL on errors.
 **/
char *
nm_utils_ssid_to_utf8 (const guint8 *ssid, gsize len)
{
	char *converted = NULL;
	char *lang, *e1 = NULL, *e2 = NULL, *e3 = NULL;

	g_return_val_if_fail (ssid != NULL, NULL);

	if (g_utf8_validate ((const gchar *) ssid, len, NULL))
		return g_strndup ((const gchar *) ssid, len);

	/* LANG may be a good encoding hint */
	g_get_charset ((const char **)(&e1));
	if ((lang = getenv ("LANG"))) {
		char * dot;

		lang = g_ascii_strdown (lang, -1);
		if ((dot = strchr (lang, '.')))
			*dot = '\0';

		get_encodings_for_lang (lang, &e1, &e2, &e3);
		g_free (lang);
	}

	converted = g_convert ((const gchar *) ssid, len, "UTF-8", e1, NULL, NULL, NULL);
	if (!converted && e2)
		converted = g_convert ((const gchar *) ssid, len, "UTF-8", e2, NULL, NULL, NULL);

	if (!converted && e3)
		converted = g_convert ((const gchar *) ssid, len, "UTF-8", e3, NULL, NULL, NULL);

	if (!converted) {
		converted = g_convert_with_fallback ((const gchar *) ssid, len,
		                                     "UTF-8", e1, "?", NULL, NULL, NULL);
	}

	return converted;
}

/* Shamelessly ripped from the Linux kernel ieee80211 stack */
/**
 * nm_utils_is_empty_ssid:
 * @ssid: pointer to a buffer containing the SSID data
 * @len: length of the SSID data in @ssid
 *
 * Different manufacturers use different mechanisms for not broadcasting the
 * AP's SSID.  This function attempts to detect blank/empty SSIDs using a
 * number of known SSID-cloaking methods.
 *
 * Returns: %TRUE if the SSID is "empty", %FALSE if it is not
 **/
gboolean
nm_utils_is_empty_ssid (const guint8 *ssid, gsize len)
{
	/* Single white space is for Linksys APs */
	if (len == 1 && ssid[0] == ' ')
		return TRUE;

	/* Otherwise, if the entire ssid is 0, we assume it is hidden */
	while (len--) {
		if (ssid[len] != '\0')
			return FALSE;
	}
	return TRUE;
}

#define ESSID_MAX_SIZE 32

/**
 * nm_utils_escape_ssid:
 * @ssid: pointer to a buffer containing the SSID data
 * @len: length of the SSID data in @ssid
 *
 * This function does a quick printable character conversion of the SSID, simply
 * replacing embedded NULLs and non-printable characters with the hexadecimal
 * representation of that character.  Intended for debugging only, should not
 * be used for display of SSIDs.
 *
 * Returns: pointer to the escaped SSID, which uses an internal static buffer
 * and will be overwritten by subsequent calls to this function
 **/
const char *
nm_utils_escape_ssid (const guint8 *ssid, gsize len)
{
	static char escaped[ESSID_MAX_SIZE * 2 + 1];
	const guint8 *s = ssid;
	char *d = escaped;

	if (nm_utils_is_empty_ssid (ssid, len)) {
		memcpy (escaped, "<hidden>", sizeof ("<hidden>"));
		return escaped;
	}

	len = MIN (len, (guint32) ESSID_MAX_SIZE);
	while (len--) {
		if (*s == '\0') {
			*d++ = '\\';
			*d++ = '0';
			s++;
		} else {
			*d++ = *s++;
		}
	}
	*d = '\0';
	return escaped;
}

/**
 * nm_utils_same_ssid:
 * @ssid1: the first SSID to compare
 * @len1: length of the SSID data in @ssid1
 * @ssid2: the second SSID to compare
 * @len2: length of the SSID data in @ssid2
 * @ignore_trailing_null: %TRUE to ignore one trailing NULL byte
 *
 * Earlier versions of the Linux kernel added a NULL byte to the end of the
 * SSID to enable easy printing of the SSID on the console or in a terminal,
 * but this behavior was problematic (SSIDs are simply byte arrays, not strings)
 * and thus was changed.  This function compensates for that behavior at the
 * cost of some compatibility with odd SSIDs that may legitimately have trailing
 * NULLs, even though that is functionally pointless.
 *
 * Returns: %TRUE if the SSIDs are the same, %FALSE if they are not
 **/
gboolean
nm_utils_same_ssid (const guint8 *ssid1, gsize len1,
                    const guint8 *ssid2, gsize len2,
                    gboolean ignore_trailing_null)
{
	g_return_val_if_fail (ssid1 != NULL || len1 == 0, FALSE);
	g_return_val_if_fail (ssid2 != NULL || len2 == 0, FALSE);

	if (ssid1 == ssid2 && len1 == len2)
		return TRUE;
	if (!ssid1 || !ssid2)
		return FALSE;

	if (ignore_trailing_null) {
		if (len1 && ssid1[len1 - 1] == '\0')
			len1--;
		if (len2 && ssid2[len2 - 1] == '\0')
			len2--;
	}

	if (len1 != len2)
		return FALSE;

	return memcmp (ssid1, ssid2, len1) == 0 ? TRUE : FALSE;
}

gboolean
_nm_utils_string_in_list (const char *str, const char **valid_strings)
{
	int i;

	for (i = 0; valid_strings[i]; i++)
		if (strcmp (str, valid_strings[i]) == 0)
			break;

	return valid_strings[i] != NULL;
}

gboolean
_nm_utils_string_slist_validate (GSList *list, const char **valid_values)
{
	GSList *iter;

	for (iter = list; iter; iter = iter->next) {
		if (!_nm_utils_string_in_list ((char *) iter->data, valid_values))
			return FALSE;
	}

	return TRUE;
}

/**
 * _nm_utils_hash_values_to_slist:
 * @hash: a #GHashTable
 *
 * Utility function to iterate over a hash table and return
 * it's values as a #GSList.
 *
 * Returns: (element-type gpointer) (transfer container): a newly allocated #GSList
 * containing the values of the hash table. The caller must free the
 * returned list with g_slist_free(). The hash values are not owned
 * by the returned list.
 **/
GSList *
_nm_utils_hash_values_to_slist (GHashTable *hash)
{
	GSList *list = NULL;
	GHashTableIter iter;
	void *value;

	g_return_val_if_fail (hash, NULL);

	g_hash_table_iter_init (&iter, hash);
	while (g_hash_table_iter_next (&iter, NULL, &value))
		 list = g_slist_prepend (list, value);

	return list;
}

GVariant *
_nm_utils_strdict_to_dbus (const GValue *prop_value)
{
	GHashTable *hash;
	GHashTableIter iter;
	gpointer key, value;
	GVariantBuilder builder;

	g_variant_builder_init (&builder, G_VARIANT_TYPE ("a{ss}"));
	hash = g_value_get_boxed (prop_value);
	if (hash) {
		g_hash_table_iter_init (&iter, hash);
		while (g_hash_table_iter_next (&iter, &key, &value))
			g_variant_builder_add (&builder, "{ss}", key, value);
	}

	return g_variant_builder_end (&builder);
}

void
_nm_utils_strdict_from_dbus (GVariant *dbus_value,
                             GValue *prop_value)
{
	GVariantIter iter;
	const char *key, *value;
	GHashTable *hash;

	hash = g_hash_table_new_full (g_str_hash, g_str_equal, g_free, g_free);
	g_variant_iter_init (&iter, dbus_value);
	while (g_variant_iter_next (&iter, "{&s&s}", &key, &value))
		g_hash_table_insert (hash, g_strdup (key), g_strdup (value));

	g_value_take_boxed (prop_value, hash);
}

GHashTable *
_nm_utils_copy_strdict (GHashTable *strdict)
{
	GHashTable *copy;
	GHashTableIter iter;
	gpointer key, value;

	copy = g_hash_table_new_full (g_str_hash, g_str_equal, g_free, g_free);
	if (strdict) {
		g_hash_table_iter_init (&iter, strdict);
		while (g_hash_table_iter_next (&iter, &key, &value))
			g_hash_table_insert (copy, g_strdup (key), g_strdup (value));
	}
	return copy;
}

GPtrArray *
_nm_utils_copy_slist_to_array (const GSList *list,
                               NMUtilsCopyFunc copy_func,
                               GDestroyNotify unref_func)
{
	const GSList *iter;
	GPtrArray *array;

	array = g_ptr_array_new_with_free_func (unref_func);
	for (iter = list; iter; iter = iter->next)
		g_ptr_array_add (array, copy_func ? copy_func (iter->data) : iter->data);
	return array;
}

GSList *
_nm_utils_copy_array_to_slist (const GPtrArray *array,
                               NMUtilsCopyFunc copy_func)
{
	GSList *slist = NULL;
	gpointer item;
	int i;

	if (!array)
		return NULL;

	for (i = 0; i < array->len; i++) {
		item = array->pdata[i];
		slist = g_slist_prepend (slist, copy_func (item));
	}

	return g_slist_reverse (slist);
}

GPtrArray *
_nm_utils_copy_array (const GPtrArray *array,
                      NMUtilsCopyFunc copy_func,
                      GDestroyNotify free_func)
{
	GPtrArray *copy;
	int i;

	if (!array)
		return g_ptr_array_new_with_free_func (free_func);

	copy = g_ptr_array_new_full (array->len, free_func);
	for (i = 0; i < array->len; i++)
		g_ptr_array_add (copy, copy_func (array->pdata[i]));
	return copy;
}

GPtrArray *
_nm_utils_copy_object_array (const GPtrArray *array)
{
	return _nm_utils_copy_array (array, g_object_ref, g_object_unref);
}

GVariant *
_nm_utils_bytes_to_dbus (const GValue *prop_value)
{
	GBytes *bytes = g_value_get_boxed (prop_value);

	if (bytes) {
		return g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
		                                  g_bytes_get_data (bytes, NULL),
		                                  g_bytes_get_size (bytes),
		                                  1);
	} else {
		return g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
		                                  NULL, 0,
		                                  1);
	}
}

void
_nm_utils_bytes_from_dbus (GVariant *dbus_value,
                           GValue *prop_value)
{
	GBytes *bytes;

	if (g_variant_n_children (dbus_value)) {
		gconstpointer data;
		gsize length;

		data = g_variant_get_fixed_array (dbus_value, &length, 1);
		bytes = g_bytes_new (data, length);
	} else
		bytes = NULL;
	g_value_take_boxed (prop_value, bytes);
}

GSList *
_nm_utils_strv_to_slist (char **strv)
{
	int i;
	GSList *list = NULL;

	if (strv) {
		for (i = 0; strv[i]; i++)
			list = g_slist_prepend (list, g_strdup (strv[i]));
	}

	return g_slist_reverse (list);
}

char **
_nm_utils_slist_to_strv (GSList *slist)
{
	GSList *iter;
	char **strv;
	int len, i = 0;

	len = g_slist_length (slist);
	strv = g_new (char *, len + 1);

	for (i = 0, iter = slist; iter; iter = iter->next, i++)
		strv[i] = g_strdup (iter->data);
	strv[i] = NULL;

	return strv;
}

/**
 * _nm_utils_strsplit_set:
 * @str: string to split
 * @delimiters: string of delimiter characters
 * @max_tokens: the maximum number of tokens to split string into. When it is
 * less than 1, the @str is split completely.
 *
 * Utility function for splitting string into a string array. It is a wrapper
 * for g_strsplit_set(), but it also removes empty strings from the vector as
 * they are not useful in most cases.
 *
 * Returns: (transfer full): a newly allocated NULL-terminated array of strings.
 * The caller must free the returned array with g_strfreev().
 **/
char **
_nm_utils_strsplit_set (const char *str, const char *delimiters, int max_tokens)
{
	char **result;
	uint i;
	uint j;

	result = g_strsplit_set (str, delimiters, max_tokens);

	/* remove empty strings */
	for (i = 0; result && result[i]; i++) {
		if (*result[i] == '\0') {
			g_free (result[i]);
			for (j = i; result[j]; j++)
				result[j] = result[j + 1];
			i--;
		}
	}
	return result;
}

static gboolean
device_supports_ap_ciphers (guint32 dev_caps,
                            guint32 ap_flags,
                            gboolean static_wep)
{
	gboolean have_pair = FALSE;
	gboolean have_group = FALSE;
	/* Device needs to support at least one pairwise and one group cipher */

	/* Pairwise */
	if (static_wep) {
		/* Static WEP only uses group ciphers */
		have_pair = TRUE;
	} else {
		if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_WEP40)
			if (ap_flags & NM_802_11_AP_SEC_PAIR_WEP40)
				have_pair = TRUE;
		if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_WEP104)
			if (ap_flags & NM_802_11_AP_SEC_PAIR_WEP104)
				have_pair = TRUE;
		if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_TKIP)
			if (ap_flags & NM_802_11_AP_SEC_PAIR_TKIP)
				have_pair = TRUE;
		if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP)
			if (ap_flags & NM_802_11_AP_SEC_PAIR_CCMP)
				have_pair = TRUE;
	}

	/* Group */
	if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_WEP40)
		if (ap_flags & NM_802_11_AP_SEC_GROUP_WEP40)
			have_group = TRUE;
	if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_WEP104)
		if (ap_flags & NM_802_11_AP_SEC_GROUP_WEP104)
			have_group = TRUE;
	if (!static_wep) {
		if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_TKIP)
			if (ap_flags & NM_802_11_AP_SEC_GROUP_TKIP)
				have_group = TRUE;
		if (dev_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP)
			if (ap_flags & NM_802_11_AP_SEC_GROUP_CCMP)
				have_group = TRUE;
	}

	return (have_pair && have_group);
}

/**
 * nm_utils_ap_mode_security_valid:
 * @type: the security type to check device capabilties against,
 * e.g. #NMU_SEC_STATIC_WEP
 * @wifi_caps: bitfield of the capabilities of the specific Wi-Fi device, e.g.
 * #NM_WIFI_DEVICE_CAP_CIPHER_WEP40
 *
 * Given a set of device capabilities, and a desired security type to check
 * against, determines whether the combination of device capabilities and
 * desired security type are valid for AP/Hotspot connections.
 *
 * Returns: %TRUE if the device capabilities are compatible with the desired
 * @type, %FALSE if they are not.
 **/
gboolean
nm_utils_ap_mode_security_valid (NMUtilsSecurityType type,
                                 NMDeviceWifiCapabilities wifi_caps)
{
	if (!(wifi_caps & NM_WIFI_DEVICE_CAP_AP))
		return FALSE;

	/* Return TRUE for any security that wpa_supplicant's lightweight AP
	 * mode can handle: which is open, WEP, and WPA/WPA2 PSK.
	 */
	switch (type) {
	case NMU_SEC_NONE:
	case NMU_SEC_STATIC_WEP:
	case NMU_SEC_WPA_PSK:
	case NMU_SEC_WPA2_PSK:
		return TRUE;
	default:
		break;
	}
	return FALSE;
}

/**
 * nm_utils_security_valid:
 * @type: the security type to check AP flags and device capabilties against,
 * e.g. #NMU_SEC_STATIC_WEP
 * @wifi_caps: bitfield of the capabilities of the specific Wi-Fi device, e.g.
 * #NM_WIFI_DEVICE_CAP_CIPHER_WEP40
 * @have_ap: whether the @ap_flags, @ap_wpa, and @ap_rsn arguments are valid
 * @adhoc: whether the capabilities being tested are from an Ad-Hoc AP (IBSS)
 * @ap_flags: bitfield of AP capabilities, e.g. #NM_802_11_AP_FLAGS_PRIVACY
 * @ap_wpa: bitfield of AP capabilties derived from the AP's WPA beacon,
 * e.g. (#NM_802_11_AP_SEC_PAIR_TKIP | #NM_802_11_AP_SEC_KEY_MGMT_PSK)
 * @ap_rsn: bitfield of AP capabilties derived from the AP's RSN/WPA2 beacon,
 * e.g. (#NM_802_11_AP_SEC_PAIR_CCMP | #NM_802_11_AP_SEC_PAIR_TKIP)
 *
 * Given a set of device capabilities, and a desired security type to check
 * against, determines whether the combination of device, desired security
 * type, and AP capabilities intersect.
 *
 * NOTE: this function cannot handle checking security for AP/Hotspot mode;
 * use nm_utils_ap_mode_security_valid() instead.
 *
 * Returns: %TRUE if the device capabilities and AP capabilties intersect and are
 * compatible with the desired @type, %FALSE if they are not
 **/
gboolean
nm_utils_security_valid (NMUtilsSecurityType type,
                         NMDeviceWifiCapabilities wifi_caps,
                         gboolean have_ap,
                         gboolean adhoc,
                         NM80211ApFlags ap_flags,
                         NM80211ApSecurityFlags ap_wpa,
                         NM80211ApSecurityFlags ap_rsn)
{
	gboolean good = TRUE;

	if (!have_ap) {
		if (type == NMU_SEC_NONE)
			return TRUE;
		if (   (type == NMU_SEC_STATIC_WEP)
		    || ((type == NMU_SEC_DYNAMIC_WEP) && !adhoc)
		    || ((type == NMU_SEC_LEAP) && !adhoc)) {
			if (wifi_caps & (NM_WIFI_DEVICE_CAP_CIPHER_WEP40 | NM_WIFI_DEVICE_CAP_CIPHER_WEP104))
				return TRUE;
			else
				return FALSE;
		}
	}

	switch (type) {
	case NMU_SEC_NONE:
		g_assert (have_ap);
		if (ap_flags & NM_802_11_AP_FLAGS_PRIVACY)
			return FALSE;
		if (ap_wpa || ap_rsn)
			return FALSE;
		break;
	case NMU_SEC_LEAP: /* require PRIVACY bit for LEAP? */
		if (adhoc)
			return FALSE;
		/* Fall through */
	case NMU_SEC_STATIC_WEP:
		g_assert (have_ap);
		if (!(ap_flags & NM_802_11_AP_FLAGS_PRIVACY))
			return FALSE;
		if (ap_wpa || ap_rsn) {
			if (!device_supports_ap_ciphers (wifi_caps, ap_wpa, TRUE))
				if (!device_supports_ap_ciphers (wifi_caps, ap_rsn, TRUE))
					return FALSE;
		}
		break;
	case NMU_SEC_DYNAMIC_WEP:
		if (adhoc)
			return FALSE;
		g_assert (have_ap);
		if (ap_rsn || !(ap_flags & NM_802_11_AP_FLAGS_PRIVACY))
			return FALSE;
		/* Some APs broadcast minimal WPA-enabled beacons that must be handled */
		if (ap_wpa) {
			if (!(ap_wpa & NM_802_11_AP_SEC_KEY_MGMT_802_1X))
				return FALSE;
			if (!device_supports_ap_ciphers (wifi_caps, ap_wpa, FALSE))
				return FALSE;
		}
		break;
	case NMU_SEC_WPA_PSK:
		if (adhoc)
			return FALSE;  /* FIXME: Kernel WPA Ad-Hoc support is buggy */
		if (!(wifi_caps & NM_WIFI_DEVICE_CAP_WPA))
			return FALSE;
		if (have_ap) {
			/* Ad-Hoc WPA APs won't necessarily have the PSK flag set, and
			 * they don't have any pairwise ciphers. */
			if (adhoc) {
				/* coverity[dead_error_line] */
				if (   (ap_wpa & NM_802_11_AP_SEC_GROUP_TKIP)
				    && (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_TKIP))
					return TRUE;
				if (   (ap_wpa & NM_802_11_AP_SEC_GROUP_CCMP)
				    && (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP))
					return TRUE;
			} else {
				if (ap_wpa & NM_802_11_AP_SEC_KEY_MGMT_PSK) {
					if (   (ap_wpa & NM_802_11_AP_SEC_PAIR_TKIP)
					    && (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_TKIP))
						return TRUE;
					if (   (ap_wpa & NM_802_11_AP_SEC_PAIR_CCMP)
					    && (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP))
						return TRUE;
				}
			}
			return FALSE;
		}
		break;
	case NMU_SEC_WPA2_PSK:
		if (adhoc)
			return FALSE;  /* FIXME: Kernel WPA Ad-Hoc support is buggy */
		if (!(wifi_caps & NM_WIFI_DEVICE_CAP_RSN))
			return FALSE;
		if (have_ap) {
			/* Ad-Hoc WPA APs won't necessarily have the PSK flag set, and
			 * they don't have any pairwise ciphers, nor any RSA flags yet. */
			if (adhoc) {
				/* coverity[dead_error_line] */
				if (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_TKIP)
					return TRUE;
				if (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP)
					return TRUE;
			} else {
				if (ap_rsn & NM_802_11_AP_SEC_KEY_MGMT_PSK) {
					if (   (ap_rsn & NM_802_11_AP_SEC_PAIR_TKIP)
					    && (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_TKIP))
						return TRUE;
					if (   (ap_rsn & NM_802_11_AP_SEC_PAIR_CCMP)
					    && (wifi_caps & NM_WIFI_DEVICE_CAP_CIPHER_CCMP))
						return TRUE;
				}
			}
			return FALSE;
		}
		break;
	case NMU_SEC_WPA_ENTERPRISE:
		if (adhoc)
			return FALSE;
		if (!(wifi_caps & NM_WIFI_DEVICE_CAP_WPA))
			return FALSE;
		if (have_ap) {
			if (!(ap_wpa & NM_802_11_AP_SEC_KEY_MGMT_802_1X))
				return FALSE;
			/* Ensure at least one WPA cipher is supported */
			if (!device_supports_ap_ciphers (wifi_caps, ap_wpa, FALSE))
				return FALSE;
		}
		break;
	case NMU_SEC_WPA2_ENTERPRISE:
		if (adhoc)
			return FALSE;
		if (!(wifi_caps & NM_WIFI_DEVICE_CAP_RSN))
			return FALSE;
		if (have_ap) {
			if (!(ap_rsn & NM_802_11_AP_SEC_KEY_MGMT_802_1X))
				return FALSE;
			/* Ensure at least one WPA cipher is supported */
			if (!device_supports_ap_ciphers (wifi_caps, ap_rsn, FALSE))
				return FALSE;
		}
		break;
	default:
		good = FALSE;
		break;
	}

	return good;
}

/**
 * nm_utils_wep_key_valid:
 * @key: a string that might be a WEP key
 * @wep_type: the #NMWepKeyType type of the WEP key
 *
 * Checks if @key is a valid WEP key
 *
 * Returns: %TRUE if @key is a WEP key, %FALSE if not
 */
gboolean
nm_utils_wep_key_valid (const char *key, NMWepKeyType wep_type)
{
	int keylen, i;

	if (!key)
		return FALSE;

	keylen = strlen (key);
	if (   wep_type == NM_WEP_KEY_TYPE_KEY
	    || wep_type == NM_WEP_KEY_TYPE_UNKNOWN) {
		if (keylen == 10 || keylen == 26) {
			/* Hex key */
			for (i = 0; i < keylen; i++) {
				if (!g_ascii_isxdigit (key[i]))
					return FALSE;
			}
		} else if (keylen == 5 || keylen == 13) {
			/* ASCII key */
			for (i = 0; i < keylen; i++) {
				if (!g_ascii_isprint (key[i]))
					return FALSE;
			}
		} else
			return FALSE;

	} else if (wep_type == NM_WEP_KEY_TYPE_PASSPHRASE) {
		if (!keylen || keylen > 64)
			return FALSE;
	}

	return TRUE;
}

/**
 * nm_utils_wpa_psk_valid:
 * @psk: a string that might be a WPA PSK
 *
 * Checks if @psk is a valid WPA PSK
 *
 * Returns: %TRUE if @psk is a WPA PSK, %FALSE if not
 */
gboolean
nm_utils_wpa_psk_valid (const char *psk)
{
	int psklen, i;

	if (!psk)
		return FALSE;

	psklen = strlen (psk);
	if (psklen < 8 || psklen > 64)
		return FALSE;

	if (psklen == 64) {
		/* Hex PSK */
		for (i = 0; i < psklen; i++) {
			if (!g_ascii_isxdigit (psk[i]))
				return FALSE;
		}
	}

	return TRUE;
}

/**
 * nm_utils_ip4_dns_to_variant:
 * @dns: (type utf8): an array of IP address strings
 *
 * Utility function to convert an array of IP address strings int a #GVariant of
 * type 'au' representing an array of IPv4 addresses.
 *
 * Returns: (transfer none): a new floating #GVariant representing @dns.
 **/
GVariant *
nm_utils_ip4_dns_to_variant (char **dns)
{
	GVariantBuilder builder;
	int i;

	g_variant_builder_init (&builder, G_VARIANT_TYPE ("au"));

	if (dns) {
		for (i = 0; dns[i]; i++) {
			guint32 ip = 0;

			inet_pton (AF_INET, dns[i], &ip);
			g_variant_builder_add (&builder, "u", ip);
		}
	}

	return g_variant_builder_end (&builder);
}

/**
 * nm_utils_ip4_dns_from_variant:
 * @value: a #GVariant of type 'au'
 *
 * Utility function to convert a #GVariant of type 'au' representing a list of
 * IPv4 addresses into an array of IP address strings.
 *
 * Returns: (transfer full) (type utf8): a %NULL-terminated array of IP address strings.
 **/
char **
nm_utils_ip4_dns_from_variant (GVariant *value)
{
	const guint32 *array;
	gsize length;
	char **dns;
	int i;

	g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("au")), NULL);

	array = g_variant_get_fixed_array (value, &length, sizeof (guint32));
	dns = g_new (char *, length + 1);

	for (i = 0; i < length; i++)
		dns[i] = g_strdup (nm_utils_inet4_ntop (array[i], NULL));
	dns[i] = NULL;

	return dns;
}

/**
 * nm_utils_ip4_addresses_to_variant:
 * @addresses: (element-type NMIP4Address): an array of #NMIP4Address objects
 *
 * Utility function to convert a #GPtrArray of #NMIP4Address objects into a
 * #GVariant of type 'aau' representing an array of NetworkManager IPv4
 * addresses (which are tuples of address, prefix, and gateway).
 *
 * Returns: (transfer none): a new floating #GVariant representing @addresses.
 **/
GVariant *
nm_utils_ip4_addresses_to_variant (GPtrArray *addresses)
{
	GVariantBuilder builder;
	int i;

	g_variant_builder_init (&builder, G_VARIANT_TYPE ("aau"));

	if (addresses) {
		for (i = 0; i < addresses->len; i++) {
			NMIP4Address *addr = addresses->pdata[i];
			guint32 array[3];

			array[0] = nm_ip4_address_get_address (addr);
			array[1] = nm_ip4_address_get_prefix (addr);
			array[2] = nm_ip4_address_get_gateway (addr);

			g_variant_builder_add (&builder, "@au",
			                       g_variant_new_fixed_array (G_VARIANT_TYPE_UINT32,
			                                                  array, 3, sizeof (guint32)));
		}
	}

	return g_variant_builder_end (&builder);
}

/**
 * nm_utils_ip4_addresses_from_variant:
 * @value: a #GVariant of type 'aau'
 *
 * Utility function to convert a #GVariant of type 'aau' representing a list of
 * NetworkManager IPv4 addresses (which are tuples of address, prefix, and
 * gateway) into a #GPtrArray of #NMIP4Address objects.
 *
 * Returns: (transfer full) (element-type NMIP4Address): a newly allocated
 *   #GPtrArray of #NMIP4Address objects
 **/
GPtrArray *
nm_utils_ip4_addresses_from_variant (GVariant *value)
{
	GPtrArray *addresses;
	GVariantIter iter;
	GVariant *addr_var;

	g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("aau")), NULL);

	g_variant_iter_init (&iter, value);
	addresses = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_ip4_address_unref);

	while (g_variant_iter_next (&iter, "@au", &addr_var)) {
		const guint32 *addr_array;
		gsize length;
		NMIP4Address *addr;

		addr_array = g_variant_get_fixed_array (addr_var, &length, sizeof (guint32));
		if (length < 3) {
			g_warning ("Ignoring invalid IP4 address");
			g_variant_unref (addr_var);
			continue;
		}

		addr = nm_ip4_address_new ();
		nm_ip4_address_set_address (addr, addr_array[0]);
		nm_ip4_address_set_prefix (addr, addr_array[1]);
		nm_ip4_address_set_gateway (addr, addr_array[2]);

		g_ptr_array_add (addresses, addr);
		g_variant_unref (addr_var);
	}

	return addresses;
}

/**
 * nm_utils_ip4_routes_to_variant:
 * @routes: (element-type NMIP4Route): an array of #NMIP4Route objects
 *
 * Utility function to convert a #GPtrArray of #NMIP4Route objects into a
 * #GVariant of type 'aau' representing an array of NetworkManager IPv4 routes
 * (which are tuples of route, prefix, next hop, and metric).
 *
 * Returns: (transfer none): a new floating #GVariant representing @routes.
 **/
GVariant *
nm_utils_ip4_routes_to_variant (GPtrArray *routes)
{
	GVariantBuilder builder;
	int i;

	g_variant_builder_init (&builder, G_VARIANT_TYPE ("aau"));

	if (routes) {
		for (i = 0; i < routes->len; i++) {
			NMIP4Route *route = routes->pdata[i];
			guint32 array[4];

			array[0] = nm_ip4_route_get_dest (route);
			array[1] = nm_ip4_route_get_prefix (route);
			array[2] = nm_ip4_route_get_next_hop (route);
			array[3] = nm_ip4_route_get_metric (route);

			g_variant_builder_add (&builder, "@au",
			                       g_variant_new_fixed_array (G_VARIANT_TYPE_UINT32,
			                                                  array, 4, sizeof (guint32)));
		}
	}

	return g_variant_builder_end (&builder);
}

/**
 * nm_utils_ip4_routes_from_variant:
 * @value: #GVariant of type 'aau'
 *
 * Utility function to convert a #GVariant of type 'aau' representing an array
 * of NetworkManager IPv4 routes (which are tuples of route, prefix, next hop,
 * and metric) into a #GPtrArray of #NMIP4Route objects.
 *
 * Returns: (transfer full) (element-type NMIP4Route): a newly allocated
 *   #GPtrArray of #NMIP4Route objects
 **/
GPtrArray *
nm_utils_ip4_routes_from_variant (GVariant *value)
{
	GVariantIter iter;
	GVariant *route_var;
	GPtrArray *routes;

	g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("aau")), NULL);

	g_variant_iter_init (&iter, value);
	routes = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_ip4_route_unref);

	while (g_variant_iter_next (&iter, "@au", &route_var)) {
		const guint32 *route_array;
		gsize length;
		NMIP4Route *route;

		route_array = g_variant_get_fixed_array (route_var, &length, sizeof (guint32));
		if (length < 4) {
			g_warning ("Ignoring invalid IP4 route");
			g_variant_unref (route_var);
			continue;
		}

		route = nm_ip4_route_new ();
		nm_ip4_route_set_dest (route, route_array[0]);
		nm_ip4_route_set_prefix (route, route_array[1]);
		nm_ip4_route_set_next_hop (route, route_array[2]);
		nm_ip4_route_set_metric (route, route_array[3]);

		g_ptr_array_add (routes, route);
		g_variant_unref (route_var);
	}

	return routes;
}

/**
 * nm_utils_ip4_netmask_to_prefix:
 * @netmask: an IPv4 netmask in network byte order
 *
 * Returns: the CIDR prefix represented by the netmask
 **/
guint32
nm_utils_ip4_netmask_to_prefix (guint32 netmask)
{
	guint32 prefix;
	guint8 v;
	const guint8 *p = (guint8 *) &netmask;

	if (p[3]) {
		prefix = 24;
		v = p[3];
	} else if (p[2]) {
		prefix = 16;
		v = p[2];
	} else if (p[1]) {
		prefix = 8;
		v = p[1];
	} else {
		prefix = 0;
		v = p[0];
	}

	while (v) {
		prefix++;
		v <<= 1;
	}

	return prefix;
}

/**
 * nm_utils_ip4_prefix_to_netmask:
 * @prefix: a CIDR prefix
 *
 * Returns: the netmask represented by the prefix, in network byte order
 **/
guint32
nm_utils_ip4_prefix_to_netmask (guint32 prefix)
{
	return prefix < 32 ? ~htonl(0xFFFFFFFF >> prefix) : 0xFFFFFFFF;
}


/**
 * nm_utils_ip4_get_default_prefix:
 * @ip: an IPv4 address (in network byte order)
 *
 * When the Internet was originally set up, various ranges of IP addresses were
 * segmented into three network classes: A, B, and C.  This function will return
 * a prefix that is associated with the IP address specified defining where it
 * falls in the predefined classes.
 *
 * Returns: the default class prefix for the given IP
 **/
/* The function is originally from ipcalc.c of Red Hat's initscripts. */
guint32
nm_utils_ip4_get_default_prefix (guint32 ip)
{
	if (((ntohl (ip) & 0xFF000000) >> 24) <= 127)
		return 8;  /* Class A - 255.0.0.0 */
	else if (((ntohl (ip) & 0xFF000000) >> 24) <= 191)
		return 16;  /* Class B - 255.255.0.0 */

	return 24;  /* Class C - 255.255.255.0 */
}

/**
 * nm_utils_ip6_dns_to_variant:
 * @dns: (type utf8): an array of IP address strings
 *
 * Utility function to convert an array of IP address strings int a #GVariant of
 * type 'aay' representing an array of IPv6 addresses.
 *
 * Returns: (transfer none): a new floating #GVariant representing @dns.
 **/
GVariant *
nm_utils_ip6_dns_to_variant (char **dns)
{
	GVariantBuilder builder;
	int i;

	g_variant_builder_init (&builder, G_VARIANT_TYPE ("aay"));

	if (dns) {
		for (i = 0; dns[i]; i++) {
			struct in6_addr ip;

			inet_pton (AF_INET6, dns[i], &ip);
			g_variant_builder_add (&builder, "@ay",
			                       g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
			                                                  &ip, sizeof (ip), 1));
		}
	}

	return g_variant_builder_end (&builder);
}

/**
 * nm_utils_ip6_dns_from_variant:
 * @value: a #GVariant of type 'aay'
 *
 * Utility function to convert a #GVariant of type 'aay' representing a list of
 * IPv6 addresses into an array of IP address strings.
 *
 * Returns: (transfer full) (type utf8): a %NULL-terminated array of IP address strings.
 **/
char **
nm_utils_ip6_dns_from_variant (GVariant *value)
{
	GVariantIter iter;
	GVariant *ip_var;
	char **dns;
	int i;

	g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("aay")), NULL);

	dns = g_new (char *, g_variant_n_children (value) + 1);

	g_variant_iter_init (&iter, value);
	i = 0;
	while (g_variant_iter_next (&iter, "@ay", &ip_var)) {
		gsize length;
		const struct in6_addr *ip = g_variant_get_fixed_array (ip_var, &length, 1);

		if (length != sizeof (struct in6_addr)) {
			g_warning ("%s: ignoring invalid IP6 address of length %d",
			           __func__, (int) length);
			g_variant_unref (ip_var);
			continue;
		}

		dns[i++] = g_strdup (nm_utils_inet6_ntop (ip, NULL));
		g_variant_unref (ip_var);
	}
	dns[i] = NULL;

	return dns;
}

/**
 * nm_utils_ip6_addresses_to_variant:
 * @addresses: (element-type NMIP6Address): an array of #NMIP6Address objects
 *
 * Utility function to convert a #GPtrArray of #NMIP6Address objects into a
 * #GVariant of type 'a(ayuay)' representing an array of NetworkManager IPv6
 * addresses (which are tuples of address, prefix, and gateway).
 *
 * Returns: (transfer none): a new floating #GVariant representing @addresses.
 **/
GVariant *
nm_utils_ip6_addresses_to_variant (GPtrArray *addresses)
{
	GVariantBuilder builder;
	int i;

	g_variant_builder_init (&builder, G_VARIANT_TYPE ("a(ayuay)"));

	if (addresses) {
		for (i = 0; i < addresses->len; i++) {
			NMIP6Address *addr = addresses->pdata[i];
			GVariant *ip, *gateway;
			guint32 prefix;

			ip = g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
			                                nm_ip6_address_get_address (addr),
			                                16, 1);
			prefix = nm_ip6_address_get_prefix (addr);
			gateway = g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
			                                     nm_ip6_address_get_gateway (addr),
			                                     16, 1);

			g_variant_builder_add (&builder, "(@ayu@ay)", ip, prefix, gateway);
		}
	}

	return g_variant_builder_end (&builder);
}

/**
 * nm_utils_ip6_addresses_from_variant:
 * @value: a #GVariant of type 'a(ayuay)'
 *
 * Utility function to convert a #GVariant of type 'a(ayuay)' representing a
 * list of NetworkManager IPv6 addresses (which are tuples of address, prefix,
 * and gateway) into a #GPtrArray of #NMIP6Address objects.
 *
 * Returns: (transfer full) (element-type NMIP6Address): a newly allocated
 *   #GPtrArray of #NMIP6Address objects
 **/
GPtrArray *
nm_utils_ip6_addresses_from_variant (GVariant *value)
{
	GVariantIter iter;
	GVariant *addr_var, *gateway_var;
	guint32 prefix;
	GPtrArray *addresses;

	g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("a(ayuay)")), NULL);

	g_variant_iter_init (&iter, value);
	addresses = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_ip6_address_unref);

	while (g_variant_iter_next (&iter, "(@ayu@ay)", &addr_var, &prefix, &gateway_var)) {
		NMIP6Address *addr;
		const struct in6_addr *addr_bytes, *gateway_bytes;
		gsize addr_len, gateway_len;

		if (   !g_variant_is_of_type (addr_var, G_VARIANT_TYPE_BYTESTRING)
		    || !g_variant_is_of_type (gateway_var, G_VARIANT_TYPE_BYTESTRING)) {
			g_warning ("%s: ignoring invalid IP6 address structure", __func__);
			goto next;
		}

		addr_bytes = g_variant_get_fixed_array (addr_var, &addr_len, 1);
		if (addr_len != 16) {
			g_warning ("%s: ignoring invalid IP6 address of length %d",
			           __func__, (int) addr_len);
			goto next;
		}
		if (prefix > 128) {
			g_warning ("%s: ignoring invalid IP6 prefix %d",
			           __func__, prefix);
			goto next;
		}
		gateway_bytes = g_variant_get_fixed_array (gateway_var, &gateway_len, 1);
		if (gateway_len != 16) {
			g_warning ("%s: ignoring invalid IP6 address of length %d",
			           __func__, (int) gateway_len);
			goto next;
		}

		addr = nm_ip6_address_new ();
		nm_ip6_address_set_address (addr, addr_bytes);
		nm_ip6_address_set_prefix (addr, prefix);
		nm_ip6_address_set_gateway (addr, gateway_bytes);
		g_ptr_array_add (addresses, addr);

	next:
		g_variant_unref (addr_var);
		g_variant_unref (gateway_var);
	}

	return addresses;
}

/**
 * nm_utils_ip6_routes_to_variant:
 * @routes: (element-type NMIP6Route): an array of #NMIP6Route objects
 *
 * Utility function to convert a #GPtrArray of #NMIP6Route objects into a
 * #GVariant of type 'a(ayuayu)' representing an array of NetworkManager IPv6
 * routes (which are tuples of route, prefix, next hop, and metric).
 *
 * Returns: (transfer none): a new floating #GVariant representing @routes.
 **/
GVariant *
nm_utils_ip6_routes_to_variant (GPtrArray *routes)
{
	GVariantBuilder builder;
	int i;

	g_variant_builder_init (&builder, G_VARIANT_TYPE ("a(ayuayu)"));

	if (routes) {
		for (i = 0; i < routes->len; i++) {
			NMIP6Route *route = routes->pdata[i];
			GVariant *dest, *next_hop;
			guint32 prefix, metric;

			dest = g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
			                                  nm_ip6_route_get_dest (route),
			                                  16, 1);
			prefix = nm_ip6_route_get_prefix (route);
			next_hop = g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE,
			                                      nm_ip6_route_get_next_hop (route),
			                                      16, 1);
			metric = nm_ip6_route_get_metric (route);

			g_variant_builder_add (&builder, "(@ayu@ayu)", dest, prefix, next_hop, metric);
		}
	}

	return g_variant_builder_end (&builder);
}

/**
 * nm_utils_ip6_routes_from_variant:
 * @value: #GVariant of type 'a(ayuayu)'
 *
 * Utility function to convert a #GVariant of type 'a(ayuayu)' representing an
 * array of NetworkManager IPv6 routes (which are tuples of route, prefix, next
 * hop, and metric) into a #GPtrArray of #NMIP6Route objects.
 *
 * Returns: (transfer full) (element-type NMIP6Route): a newly allocated
 *   #GPtrArray of #NMIP6Route objects
 **/
GPtrArray *
nm_utils_ip6_routes_from_variant (GVariant *value)
{
	GPtrArray *routes;
	GVariantIter iter;
	GVariant *dest_var, *next_hop_var;
	const struct in6_addr *dest, *next_hop;
	gsize dest_len, next_hop_len;
	guint32 prefix, metric;

	g_return_val_if_fail (g_variant_is_of_type (value, G_VARIANT_TYPE ("a(ayuayu)")), NULL);

	routes = g_ptr_array_new_with_free_func ((GDestroyNotify) nm_ip6_route_unref);

	g_variant_iter_init (&iter, value);
	while (g_variant_iter_next (&iter, "(@ayu@ayu)", &dest_var, &prefix, &next_hop_var, &metric)) {
		NMIP6Route *route;

		if (   !g_variant_is_of_type (dest_var, G_VARIANT_TYPE_BYTESTRING)
		    || !g_variant_is_of_type (next_hop_var, G_VARIANT_TYPE_BYTESTRING)) {
			g_warning ("%s: ignoring invalid IP6 address structure", __func__);
			goto next;
		}

		dest = g_variant_get_fixed_array (dest_var, &dest_len, 1);
		if (dest_len != 16) {
			g_warning ("%s: ignoring invalid IP6 address of length %d",
			           __func__, (int) dest_len);
			goto next;
		}
		next_hop = g_variant_get_fixed_array (next_hop_var, &next_hop_len, 1);
		if (next_hop_len != 16) {
			g_warning ("%s: ignoring invalid IP6 address of length %d",
			           __func__, (int) next_hop_len);
			goto next;
		}

		route = nm_ip6_route_new ();
		nm_ip6_route_set_dest (route, dest);
		nm_ip6_route_set_prefix (route, prefix);
		nm_ip6_route_set_next_hop (route, next_hop);
		nm_ip6_route_set_metric (route, metric);
		g_ptr_array_add (routes, route);

	next:
		g_variant_unref (dest_var);
		g_variant_unref (next_hop_var);
	}

	return routes;
}

/**
 * nm_utils_uuid_generate:
 *
 * Returns: a newly allocated UUID suitable for use as the #NMSettingConnection
 * object's #NMSettingConnection:id: property.  Should be freed with g_free()
 **/
char *
nm_utils_uuid_generate (void)
{
	uuid_t uuid;
	char *buf;

	buf = g_malloc0 (37);
	uuid_generate_random (uuid);
	uuid_unparse_lower (uuid, &buf[0]);
	return buf;
}

/**
 * nm_utils_uuid_generate_from_string:
 * @s: a string to use as the seed for the UUID
 *
 * For a given @s, this function will always return the same UUID.
 *
 * Returns: a newly allocated UUID suitable for use as the #NMSettingConnection
 * object's #NMSettingConnection:id: property
 **/
char *
nm_utils_uuid_generate_from_string (const char *s)
{
	GError *error = NULL;
	uuid_t *uuid;
	char *buf = NULL;

	if (!nm_utils_init (&error)) {
		g_warning ("error initializing crypto: (%d) %s",
		           error ? error->code : 0,
		           error ? error->message : "unknown");
		if (error)
			g_error_free (error);
		return NULL;
	}

	uuid = g_malloc0 (sizeof (*uuid));
	if (!crypto_md5_hash (NULL, 0, s, strlen (s), (char *) uuid, sizeof (*uuid), &error)) {
		g_warning ("error generating UUID: (%d) %s",
		           error ? error->code : 0,
		           error ? error->message : "unknown");
		if (error)
			g_error_free (error);
		goto out;
	}

	buf = g_malloc0 (37);
	uuid_unparse_lower (*uuid, &buf[0]);

out:
	g_free (uuid);
	return buf;
}

static char *
make_key (const char *cipher,
          const char *salt,
          const gsize salt_len,
          const char *password,
          gsize *out_len,
          GError **error)
{
	char *key;
	guint32 digest_len = 24; /* DES-EDE3-CBC */

	g_return_val_if_fail (salt != NULL, NULL);
	g_return_val_if_fail (salt_len >= 8, NULL);
	g_return_val_if_fail (password != NULL, NULL);
	g_return_val_if_fail (out_len != NULL, NULL);

	if (!strcmp (cipher, "DES-EDE3-CBC"))
		digest_len = 24;
	else if (!strcmp (cipher, "AES-128-CBC"))
		digest_len = 16;

	key = g_malloc0 (digest_len + 1);

	if (!crypto_md5_hash (salt, salt_len, password, strlen (password), key, digest_len, error)) {
		*out_len = 0;
		memset (key, 0, digest_len);
		g_free (key);
		key = NULL;
	} else
		*out_len = digest_len;

	return key;
}

/**
 * nm_utils_rsa_key_encrypt_helper:
 * @cipher: cipher to use for encryption ("DES-EDE3-CBC" or "AES-128-CBC")
 * @data: RSA private key data to be encrypted
 * @len: length of @data
 * @in_password: (allow-none): existing password to use, if any
 * @out_password: (out) (allow-none): if @in_password was %NULL, a random password will be generated
 *  and returned in this argument
 * @error: detailed error information on return, if an error occurred
 *
 * Encrypts the given RSA private key data with the given password (or generates
 * a password if no password was given) and converts the data to PEM format
 * suitable for writing to a file.
 *
 * Returns: (transfer full): on success, PEM-formatted data suitable for writing to a PEM-formatted
 * certificate/private key file.
 **/
static GByteArray *
nm_utils_rsa_key_encrypt_helper (const char *cipher,
                                 const guint8 *data,
                                 gsize len,
                                 const char *in_password,
                                 char **out_password,
                                 GError **error)
{
	char salt[16];
	int salt_len;
	char *key = NULL, *enc = NULL, *pw_buf[32];
	gsize key_len = 0, enc_len = 0;
	GString *pem = NULL;
	char *tmp, *tmp_password = NULL;
	int left;
	const char *p;
	GByteArray *ret = NULL;

	g_return_val_if_fail (!g_strcmp0 (cipher, CIPHER_DES_EDE3_CBC) || !g_strcmp0 (cipher, CIPHER_AES_CBC), NULL);
	g_return_val_if_fail (data != NULL, NULL);
	g_return_val_if_fail (len > 0, NULL);
	if (out_password)
		g_return_val_if_fail (*out_password == NULL, NULL);

	/* Make the password if needed */
	if (!in_password) {
		if (!crypto_randomize (pw_buf, sizeof (pw_buf), error))
			return NULL;
		in_password = tmp_password = nm_utils_bin2hexstr ((const char *) pw_buf, sizeof (pw_buf), -1);
	}

	if (g_strcmp0 (cipher, CIPHER_AES_CBC) == 0)
		salt_len = 16;
	else
		salt_len = 8;

	if (!crypto_randomize (salt, salt_len, error))
		goto out;

	key = make_key (cipher, &salt[0], salt_len, in_password, &key_len, error);
	if (!key)
		goto out;

	enc = crypto_encrypt (cipher, data, len, salt, salt_len, key, key_len, &enc_len, error);
	if (!enc)
		goto out;

	pem = g_string_sized_new (enc_len * 2 + 100);
	g_string_append (pem, "-----BEGIN RSA PRIVATE KEY-----\n");
	g_string_append (pem, "Proc-Type: 4,ENCRYPTED\n");

	/* Convert the salt to a hex string */
	tmp = nm_utils_bin2hexstr ((const char *) salt, salt_len, salt_len * 2);
	g_string_append_printf (pem, "DEK-Info: %s,%s\n\n", cipher, tmp);
	g_free (tmp);

	/* Convert the encrypted key to a base64 string */
	p = tmp = g_base64_encode ((const guchar *) enc, enc_len);
	left = strlen (tmp);
	while (left > 0) {
		g_string_append_len (pem, p, (left < 64) ? left : 64);
		g_string_append_c (pem, '\n');
		left -= 64;
		p += 64;
	}
	g_free (tmp);

	g_string_append (pem, "-----END RSA PRIVATE KEY-----\n");

	ret = g_byte_array_sized_new (pem->len);
	g_byte_array_append (ret, (const unsigned char *) pem->str, pem->len);
	if (tmp_password && out_password)
		*out_password = g_strdup (tmp_password);

out:
	if (key) {
		memset (key, 0, key_len);
		g_free (key);
	}
	if (enc) {
		memset (enc, 0, enc_len);
		g_free (enc);
	}
	if (pem)
		g_string_free (pem, TRUE);

	if (tmp_password) {
		memset (tmp_password, 0, strlen (tmp_password));
		g_free (tmp_password);
	}

	return ret;
}

/**
 * nm_utils_rsa_key_encrypt:
 * @data: RSA private key data to be encrypted
 * @len: length of @data
 * @in_password: (allow-none): existing password to use, if any
 * @out_password: (out) (allow-none): if @in_password was %NULL, a random password will be generated
 *  and returned in this argument
 * @error: detailed error information on return, if an error occurred
 *
 * Encrypts the given RSA private key data with the given password (or generates
 * a password if no password was given) and converts the data to PEM format
 * suitable for writing to a file. It uses Triple DES cipher for the encryption.
 *
 * Returns: (transfer full): on success, PEM-formatted data suitable for writing to a PEM-formatted
 * certificate/private key file.
 **/
GByteArray *
nm_utils_rsa_key_encrypt (const guint8 *data,
                          gsize len,
                          const char *in_password,
                          char **out_password,
                          GError **error)
{


	return nm_utils_rsa_key_encrypt_helper (CIPHER_DES_EDE3_CBC,
	                                        data, len,
	                                        in_password,
	                                        out_password,
	                                        error);
}

/**
 * nm_utils_rsa_key_encrypt_aes:
 * @data: RSA private key data to be encrypted
 * @len: length of @data
 * @in_password: (allow-none): existing password to use, if any
 * @out_password: (out) (allow-none): if @in_password was %NULL, a random password will be generated
 *  and returned in this argument
 * @error: detailed error information on return, if an error occurred
 *
 * Encrypts the given RSA private key data with the given password (or generates
 * a password if no password was given) and converts the data to PEM format
 * suitable for writing to a file.  It uses AES cipher for the encryption.
 *
 * Returns: (transfer full): on success, PEM-formatted data suitable for writing to a PEM-formatted
 * certificate/private key file.
 **/
GByteArray *
nm_utils_rsa_key_encrypt_aes (const guint8 *data,
                              gsize len,
                              const char *in_password,
                              char **out_password,
                              GError **error)
{

	return nm_utils_rsa_key_encrypt_helper (CIPHER_AES_CBC,
	                                        data, len,
	                                        in_password,
	                                        out_password,
	                                        error);
}

/**
 * nm_utils_file_is_pkcs12:
 * @filename: name of the file to test
 *
 * Utility function to find out if the @filename is in PKCS#12 format.
 *
 * Returns: %TRUE if the file is PKCS#12, %FALSE if it is not
 **/
gboolean
nm_utils_file_is_pkcs12 (const char *filename)
{
	return crypto_is_pkcs12_file (filename, NULL);
}

/* Band, channel/frequency stuff for wireless */
struct cf_pair {
	guint32 chan;
	guint32 freq;
};

static struct cf_pair a_table[] = {
	/* A band */
	{  7, 5035 },
	{  8, 5040 },
	{  9, 5045 },
	{ 11, 5055 },
	{ 12, 5060 },
	{ 16, 5080 },
	{ 34, 5170 },
	{ 36, 5180 },
	{ 38, 5190 },
	{ 40, 5200 },
	{ 42, 5210 },
	{ 44, 5220 },
	{ 46, 5230 },
	{ 48, 5240 },
	{ 50, 5250 },
	{ 52, 5260 },
	{ 56, 5280 },
	{ 58, 5290 },
	{ 60, 5300 },
	{ 64, 5320 },
	{ 100, 5500 },
	{ 104, 5520 },
	{ 108, 5540 },
	{ 112, 5560 },
	{ 116, 5580 },
	{ 120, 5600 },
	{ 124, 5620 },
	{ 128, 5640 },
	{ 132, 5660 },
	{ 136, 5680 },
	{ 140, 5700 },
	{ 149, 5745 },
	{ 152, 5760 },
	{ 153, 5765 },
	{ 157, 5785 },
	{ 160, 5800 },
	{ 161, 5805 },
	{ 165, 5825 },
	{ 183, 4915 },
	{ 184, 4920 },
	{ 185, 4925 },
	{ 187, 4935 },
	{ 188, 4945 },
	{ 192, 4960 },
	{ 196, 4980 },
	{ 0, -1 }
};

static struct cf_pair bg_table[] = {
	/* B/G band */
	{ 1, 2412 },
	{ 2, 2417 },
	{ 3, 2422 },
	{ 4, 2427 },
	{ 5, 2432 },
	{ 6, 2437 },
	{ 7, 2442 },
	{ 8, 2447 },
	{ 9, 2452 },
	{ 10, 2457 },
	{ 11, 2462 },
	{ 12, 2467 },
	{ 13, 2472 },
	{ 14, 2484 },
	{ 0, -1 }
};

/**
 * nm_utils_wifi_freq_to_channel:
 * @freq: frequency
 *
 * Utility function to translate a Wi-Fi frequency to its corresponding channel.
 *
 * Returns: the channel represented by the frequency or 0
 **/
guint32
nm_utils_wifi_freq_to_channel (guint32 freq)
{
	int i = 0;

	if (freq > 4900) {
		while (a_table[i].chan && (a_table[i].freq != freq))
			i++;
		return a_table[i].chan;
	} else {
		while (bg_table[i].chan && (bg_table[i].freq != freq))
			i++;
		return bg_table[i].chan;
	}

	return 0;
}

/**
 * nm_utils_wifi_channel_to_freq:
 * @channel: channel
 * @band: frequency band for wireless ("a" or "bg")
 *
 * Utility function to translate a Wi-Fi channel to its corresponding frequency.
 *
 * Returns: the frequency represented by the channel of the band,
 *          or -1 when the freq is invalid, or 0 when the band
 *          is invalid
 **/
guint32
nm_utils_wifi_channel_to_freq (guint32 channel, const char *band)
{
	int i = 0;

	if (!strcmp (band, "a")) {
		while (a_table[i].chan && (a_table[i].chan != channel))
			i++;
		return a_table[i].freq;
	} else if (!strcmp (band, "bg")) {
		while (bg_table[i].chan && (bg_table[i].chan != channel))
			i++;
		return bg_table[i].freq;
	}

	return 0;
}

/**
 * nm_utils_wifi_find_next_channel:
 * @channel: current channel
 * @direction: whether going downward (0 or less) or upward (1 or more)
 * @band: frequency band for wireless ("a" or "bg")
 *
 * Utility function to find out next/previous Wi-Fi channel for a channel.
 *
 * Returns: the next channel in the specified direction or 0
 **/
guint32
nm_utils_wifi_find_next_channel (guint32 channel, int direction, char *band)
{
	size_t a_size = sizeof (a_table) / sizeof (struct cf_pair);
	size_t bg_size = sizeof (bg_table) / sizeof (struct cf_pair);
	struct cf_pair *pair = NULL;

	if (!strcmp (band, "a")) {
		if (channel < a_table[0].chan)
			return a_table[0].chan;
		if (channel > a_table[a_size - 2].chan)
			return a_table[a_size - 2].chan;
		pair = &a_table[0];
	} else if (!strcmp (band, "bg")) {
		if (channel < bg_table[0].chan)
			return bg_table[0].chan;
		if (channel > bg_table[bg_size - 2].chan)
			return bg_table[bg_size - 2].chan;
		pair = &bg_table[0];
	} else {
		g_assert_not_reached ();
		return 0;
	}

	while (pair->chan) {
		if (channel == pair->chan)
			return channel;
		if ((channel < (pair+1)->chan) && (channel > pair->chan)) {
			if (direction > 0)
				return (pair+1)->chan;
			else
				return pair->chan;
		}
		pair++;
	}
	return 0;
}

/**
 * nm_utils_wifi_is_channel_valid:
 * @channel: channel
 * @band: frequency band for wireless ("a" or "bg")
 *
 * Utility function to verify Wi-Fi channel validity.
 *
 * Returns: %TRUE or %FALSE
 **/
gboolean
nm_utils_wifi_is_channel_valid (guint32 channel, const char *band)
{
	struct cf_pair *table = NULL;
	int i = 0;

	if (!strcmp (band, "a"))
		table = a_table;
	else if (!strcmp (band, "bg"))
		table = bg_table;
	else
		return FALSE;

	while (table[i].chan && (table[i].chan != channel))
		i++;

	if (table[i].chan != 0)
		return TRUE;
	else
		return FALSE;
}

/**
 * nm_utils_wifi_strength_bars:
 * @strength: the access point strength, from 0 to 100
 *
 * Converts @strength into a 4-character-wide graphical representation of
 * strength suitable for printing to stdout. If the current locale and terminal
 * support it, this will use unicode graphics characters to represent
 * "bars". Otherwise it will use 0 to 4 asterisks.
 *
 * Returns: the graphical representation of the access point strength
 */
const char *
nm_utils_wifi_strength_bars (guint8 strength)
{
	static const char *strength_full, *strength_high, *strength_med, *strength_low, *strength_none;

	if (G_UNLIKELY (strength_full == NULL)) {
		gboolean can_show_graphics = TRUE;
		char *locale_str;

		if (!g_get_charset (NULL)) {
			/* Non-UTF-8 locale */
			locale_str = g_locale_from_utf8 ("\342\226\202\342\226\204\342\226\206\342\226\210", -1, NULL, NULL, NULL);
			if (locale_str)
				g_free (locale_str);
			else
				can_show_graphics = FALSE;
		}

		/* The linux console font doesn't have these characters */
		if (g_strcmp0 (g_getenv ("TERM"), "linux") == 0)
			can_show_graphics = FALSE;

		if (can_show_graphics) {
			strength_full = /* ▂▄▆█ */ "\342\226\202\342\226\204\342\226\206\342\226\210";
			strength_high = /* ▂▄▆_ */ "\342\226\202\342\226\204\342\226\206_";
			strength_med  = /* ▂▄__ */ "\342\226\202\342\226\204__";
			strength_low  = /* ▂___ */ "\342\226\202___";
			strength_none = /* ____ */ "____";
		} else {
			strength_full = "****";
			strength_high = "*** ";
			strength_med  = "**  ";
			strength_low  = "*   ";
			strength_none = "    ";
		}
	}

	if (strength > 80)
		return strength_full;
	else if (strength > 55)
		return strength_high;
	else if (strength > 30)
		return strength_med;
	else if (strength > 5)
		return strength_low;
	else
		return strength_none;
}

/**
 * nm_utils_hwaddr_len:
 * @type: the type of address; either %ARPHRD_ETHER or %ARPHRD_INFINIBAND
 *
 * Returns the length in octets of a hardware address of type @type.
 *
 * It is an error to call this function with any value other than %ARPHRD_ETHER
 * or %ARPHRD_INFINIBAND.
 *
 * Return value: the length.
 */
gsize
nm_utils_hwaddr_len (int type)
{
	g_return_val_if_fail (type == ARPHRD_ETHER || type == ARPHRD_INFINIBAND, 0);

	if (type == ARPHRD_ETHER)
		return ETH_ALEN;
	else if (type == ARPHRD_INFINIBAND)
		return INFINIBAND_ALEN;

	g_assert_not_reached ();
}

#define HEXVAL(c) ((c) <= '9' ? (c) - '0' : ((c) & 0x4F) - 'A' + 10)

/**
 * nm_utils_hwaddr_atoba:
 * @asc: the ASCII representation of a hardware address
 * @length: the expected length in bytes of the result
 *
 * Parses @asc and converts it to binary form in a #GByteArray. See
 * nm_utils_hwaddr_aton() if you don't want a #GByteArray.
 *
 * Return value: (transfer full): a new #GByteArray, or %NULL if @asc couldn't
 * be parsed
 */
GByteArray *
nm_utils_hwaddr_atoba (const char *asc, gsize length)
{
	GByteArray *ba;

	g_return_val_if_fail (asc != NULL, NULL);
	g_return_val_if_fail (length > 0 && length <= NM_UTILS_HWADDR_LEN_MAX, NULL);

	ba = g_byte_array_sized_new (length);
	g_byte_array_set_size (ba, length);
	if (!nm_utils_hwaddr_aton (asc, ba->data, length)) {
		g_byte_array_unref (ba);
		return NULL;
	}

	return ba;
}

/**
 * nm_utils_hwaddr_aton:
 * @asc: the ASCII representation of a hardware address
 * @buffer: buffer to store the result into
 * @length: the expected length in bytes of the result and
 * the size of the buffer in bytes.
 *
 * Parses @asc and converts it to binary form in @buffer.
 * Bytes in @asc can be sepatared by colons (:), or hyphens (-), but not mixed.
 *
 * Return value: @buffer, or %NULL if @asc couldn't be parsed
 *   or would be shorter or longer than @length.
 */
guint8 *
nm_utils_hwaddr_aton (const char *asc, gpointer buffer, gsize length)
{
	const char *in = asc;
	guint8 *out = (guint8 *)buffer;
	char delimiter = '\0';

	g_return_val_if_fail (asc != NULL, NULL);
	g_return_val_if_fail (buffer != NULL, NULL);
	g_return_val_if_fail (length > 0 && length <= NM_UTILS_HWADDR_LEN_MAX, NULL);

	while (length && *in) {
		guint8 d1 = in[0], d2 = in[1];

		if (!g_ascii_isxdigit (d1))
			return NULL;

		/* If there's no leading zero (ie "aa:b:cc") then fake it */
		if (d2 && g_ascii_isxdigit (d2)) {
			*out++ = (HEXVAL (d1) << 4) + HEXVAL (d2);
			in += 2;
		} else {
			/* Fake leading zero */
			*out++ = (HEXVAL ('0') << 4) + HEXVAL (d1);
			in += 1;
		}

		length--;
		if (*in) {
			if (delimiter == '\0') {
				if (*in == ':' || *in == '-')
					delimiter = *in;
				else
					return NULL;
			} else {
				if (*in != delimiter)
					return NULL;
			}
			in++;
		}
	}

	if (length == 0 && !*in)
		return buffer;
	else
		return NULL;
}

/**
 * nm_utils_hwaddr_ntoa:
 * @addr: a binary hardware address
 * @length: the length of @addr
 *
 * Converts @addr to textual form.
 *
 * Return value: (transfer full): the textual form of @addr
 */
char *
nm_utils_hwaddr_ntoa (gconstpointer addr, gsize length)
{
	const guint8 *in = addr;
	char *out, *result;
	const char *LOOKUP = "0123456789ABCDEF";

	g_return_val_if_fail (addr != NULL, g_strdup (""));
	g_return_val_if_fail (length > 0 && length <= NM_UTILS_HWADDR_LEN_MAX, g_strdup (""));

	result = out = g_malloc (length * 3);
	while (length--) {
		guint8 v = *in++;

		*out++ = LOOKUP[v >> 4];
		*out++ = LOOKUP[v & 0x0F];
		if (length)
			*out++ = ':';
	}

	*out = 0;
	return result;
}

static int
hwaddr_binary_len (const char *asc)
{
	int octets = 1;

	for (; *asc; asc++) {
		if (*asc == ':' || *asc == '-')
			octets++;
	}
	return octets;
}

/**
 * nm_utils_hwaddr_valid:
 * @asc: the ASCII representation of a hardware address
 * @length: the length of address that @asc is expected to convert to
 *   (or -1 to accept any length up to %NM_UTILS_HWADDR_LEN_MAX)
 *
 * Parses @asc to see if it is a valid hardware address of the given
 * length.
 *
 * Return value: %TRUE if @asc appears to be a valid hardware address
 *   of the indicated length, %FALSE if not.
 */
gboolean
nm_utils_hwaddr_valid (const char *asc, gssize length)
{
	guint8 buf[NM_UTILS_HWADDR_LEN_MAX];

	g_return_val_if_fail (asc != NULL, FALSE);
	g_return_val_if_fail (length == -1 || (length > 0 && length <= NM_UTILS_HWADDR_LEN_MAX), FALSE);

	if (length == -1) {
		length = hwaddr_binary_len (asc);
		if (length == 0 || length > NM_UTILS_HWADDR_LEN_MAX)
			return FALSE;
	}

	return nm_utils_hwaddr_aton (asc, buf, length) != NULL;
}

/**
 * nm_utils_hwaddr_matches:
 * @hwaddr1: pointer to a binary or ASCII hardware address, or %NULL
 * @hwaddr1_len: size of @hwaddr1, or -1 if @hwaddr1 is ASCII
 * @hwaddr2: pointer to a binary or ASCII hardware address, or %NULL
 * @hwaddr2_len: size of @hwaddr2, or -1 if @hwaddr2 is ASCII
 *
 * Generalized hardware address comparison function. Tests if @hwaddr1 and
 * @hwaddr2 "equal" (or more precisely, "equivalent"), with several advantages
 * over a simple memcmp():
 *
 *   1. If @hwaddr1_len or @hwaddr2_len is -1, then the corresponding address is
 *      assumed to be ASCII rather than binary, and will be converted to binary
 *      before being compared.
 *
 *   2. If @hwaddr1 or @hwaddr2 is %NULL, it is treated instead as though it was
 *      a zero-filled buffer @hwaddr1_len or @hwaddr2_len bytes long.
 *
 *   3. If @hwaddr1 and @hwaddr2 are InfiniBand hardware addresses (that is, if
 *      they are %INFINIBAND_ALEN bytes long in binary form) then only the last
 *      8 bytes are compared, since those are the only bytes that actually
 *      identify the hardware. (The other 12 bytes will change depending on the
 *      configuration of the InfiniBand fabric that the device is connected to.)
 *
 * If a passed-in ASCII hardware address cannot be parsed, or would parse to an
 * address larger than %NM_UTILS_HWADDR_LEN_MAX, then it will silently fail to
 * match. (This means that externally-provided address strings do not need to be
 * sanity-checked before comparing them against known good addresses; they are
 * guaranteed to not match if they are invalid.)
 *
 * Return value: %TRUE if @hwaddr1 and @hwaddr2 are equivalent, %FALSE if they are
 *   different (or either of them is invalid).
 */
gboolean
nm_utils_hwaddr_matches (gconstpointer hwaddr1,
                         gssize        hwaddr1_len,
                         gconstpointer hwaddr2,
                         gssize        hwaddr2_len)
{
	guint8 buf1[NM_UTILS_HWADDR_LEN_MAX], buf2[NM_UTILS_HWADDR_LEN_MAX];

	if (hwaddr1_len == -1) {
		g_return_val_if_fail (hwaddr1 != NULL, FALSE);

		hwaddr1_len = hwaddr_binary_len (hwaddr1);
		if (hwaddr1_len > NM_UTILS_HWADDR_LEN_MAX)
			return FALSE;
		if (!nm_utils_hwaddr_aton (hwaddr1, buf1, hwaddr1_len))
			return FALSE;

		hwaddr1 = buf1;
	} else {
		g_return_val_if_fail (hwaddr1_len > 0 && hwaddr1_len <= NM_UTILS_HWADDR_LEN_MAX, FALSE);

		if (!hwaddr1) {
			memset (buf1, 0, hwaddr1_len);
			hwaddr1 = buf1;
		}
	}

	if (hwaddr2_len == -1) {
		g_return_val_if_fail (hwaddr2 != NULL, FALSE);

		if (!nm_utils_hwaddr_aton (hwaddr2, buf2, hwaddr1_len))
			return FALSE;

		hwaddr2 = buf2;
		hwaddr2_len = hwaddr1_len;
	} else {
		g_return_val_if_fail (hwaddr2_len > 0 && hwaddr2_len <= NM_UTILS_HWADDR_LEN_MAX, FALSE);

		if (!hwaddr2) {
			memset (buf2, 0, hwaddr2_len);
			hwaddr2 = buf2;
		}
	}

	if (hwaddr1_len != hwaddr2_len)
		return FALSE;

	if (hwaddr1_len == INFINIBAND_ALEN) {
		hwaddr1 = (guint8 *)hwaddr1 + INFINIBAND_ALEN - 8;
		hwaddr2 = (guint8 *)hwaddr2 + INFINIBAND_ALEN - 8;
		hwaddr1_len = hwaddr2_len = 8;
	}

	return !memcmp (hwaddr1, hwaddr2, hwaddr1_len);
}

GVariant *
_nm_utils_hwaddr_to_dbus (const GValue *prop_value)
{
	const char *str = g_value_get_string (prop_value);
	guint8 buf[NM_UTILS_HWADDR_LEN_MAX];
	int len;

	if (str) {
		len = hwaddr_binary_len (str);
		g_return_val_if_fail (len <= NM_UTILS_HWADDR_LEN_MAX, NULL);
		if (!nm_utils_hwaddr_aton (str, buf, len))
			len = 0;
	} else
		len = 0;

	return g_variant_new_fixed_array (G_VARIANT_TYPE_BYTE, buf, len, 1);
}

void
_nm_utils_hwaddr_from_dbus (GVariant *dbus_value,
                            GValue *prop_value)
{
	gsize length = 0;
	const guint8 *array = g_variant_get_fixed_array (dbus_value, &length, 1);
	char *str;

	str = length ? nm_utils_hwaddr_ntoa (array, length) : NULL;
	g_value_take_string (prop_value, str);
}

/**
 * nm_utils_bin2hexstr:
 * @bytes: an array of bytes
 * @len: the length of the @bytes array
 * @final_len: an index where to cut off the returned string, or -1
 *
 * Converts a byte-array @bytes into a hexadecimal string.
 * If @final_len is greater than -1, the returned string is terminated at
 * that index (returned_string[final_len] == '\0'),
 *
 * Return value: (transfer full): the textual form of @bytes
 */
/*
 * Code originally by Alex Larsson <alexl@redhat.com> and
 *  copyright Red Hat, Inc. under terms of the LGPL.
 */
char *
nm_utils_bin2hexstr (const char *bytes, int len, int final_len)
{
	static char hex_digits[] = "0123456789abcdef";
	char *result;
	int i;
	gsize buflen = (len * 2) + 1;

	g_return_val_if_fail (bytes != NULL, NULL);
	g_return_val_if_fail (len > 0, NULL);
	g_return_val_if_fail (len < 4096, NULL);   /* Arbitrary limit */
	if (final_len > -1)
		g_return_val_if_fail (final_len < buflen, NULL);

	result = g_malloc0 (buflen);
	for (i = 0; i < len; i++) {
		result[2*i] = hex_digits[(bytes[i] >> 4) & 0xf];
		result[2*i+1] = hex_digits[bytes[i] & 0xf];
	}
	/* Cut converted key off at the correct length for this cipher type */
	if (final_len > -1)
		result[final_len] = '\0';
	else
		result[buflen - 1] = '\0';

	return result;
}

/* From hostap, Copyright (c) 2002-2005, Jouni Malinen <jkmaline@cc.hut.fi> */
/**
 * nm_utils_hex2byte:
 * @hex: a string representing a hex byte
 *
 * Converts a hex string (2 characters) into its byte representation.
 *
 * Return value: a byte, or -1 if @hex doesn't represent a hex byte
 */
int
nm_utils_hex2byte (const char *hex)
{
	int a, b;
	a = g_ascii_xdigit_value (*hex++);
	if (a < 0)
		return -1;
	b = g_ascii_xdigit_value (*hex++);
	if (b < 0)
		return -1;
	return (a << 4) | b;
}

/**
 * nm_utils_hexstr2bin:
 * @hex: an hex string
 * @len: the length of the @hex string (it has to be even)
 *
 * Converts a hexadecimal string @hex into a byte-array. The returned array
 * length is @len/2.
 *
 * Return value: (transfer full): a array of bytes, or %NULL on error
 */
char *
nm_utils_hexstr2bin (const char *hex, size_t len)
{
	size_t       i;
	int          a;
	const char * ipos = hex;
	char *       buf = NULL;
	char *       opos;

	/* Length must be a multiple of 2 */
	if ((len % 2) != 0)
		return NULL;

	opos = buf = g_malloc0 ((len / 2) + 1);
	for (i = 0; i < len; i += 2) {
		a = nm_utils_hex2byte (ipos);
		if (a < 0) {
			g_free (buf);
			return NULL;
		}
		*opos++ = a;
		ipos += 2;
	}
	return buf;
}
/* End from hostap */

/**
 * nm_utils_iface_valid_name:
 * @name: Name of interface
 *
 * This function is a 1:1 copy of the kernel's interface validation
 * function in net/core/dev.c.
 *
 * Returns: %TRUE if interface name is valid, otherwise %FALSE is returned.
 */
gboolean
nm_utils_iface_valid_name (const char *name)
{
	g_return_val_if_fail (name != NULL, FALSE);

	if (*name == '\0')
		return FALSE;

	if (strlen (name) >= 16)
		return FALSE;

	if (!strcmp (name, ".") || !strcmp (name, ".."))
		return FALSE;

	while (*name) {
		if (*name == '/' || g_ascii_isspace (*name))
			return FALSE;
		name++;
	}

	return TRUE;
}

/**
 * nm_utils_is_uuid:
 * @str: a string that might be a UUID
 *
 * Checks if @str is a UUID
 *
 * Returns: %TRUE if @str is a UUID, %FALSE if not
 */
gboolean
nm_utils_is_uuid (const char *str)
{
	const char *p = str;
	int num_dashes = 0;

	while (*p) {
		if (*p == '-')
			num_dashes++;
		else if (!g_ascii_isxdigit (*p))
			return FALSE;
		p++;
	}

	if ((num_dashes == 4) && (p - str == 36))
		return TRUE;

	/* Backwards compat for older configurations */
	if ((num_dashes == 0) && (p - str == 40))
		return TRUE;

	return FALSE;
}

static char _nm_utils_inet_ntop_buffer[NM_UTILS_INET_ADDRSTRLEN];

/**
 * nm_utils_inet4_ntop: (skip)
 * @inaddr: the address that should be converted to string.
 * @dst: the destination buffer, it must contain at least %INET_ADDRSTRLEN
 *  or %NM_UTILS_INET_ADDRSTRLEN characters. If set to %NULL, it will return
 *  a pointer to an internal, static buffer (shared with nm_utils_inet6_ntop()).
 *  Beware, that the internal buffer will be overwritten with ever new call
 *  of nm_utils_inet4_ntop() or nm_utils_inet6_ntop() that does not provied it's
 *  own @dst buffer. Also, using the internal buffer is not thread safe. When
 *  in doubt, pass your own @dst buffer to avoid these issues.
 *
 * Wrapper for inet_ntop.
 *
 * Returns: the input buffer @dst, or a pointer to an
 *  internal, static buffer. This function cannot fail.
 **/
const char *
nm_utils_inet4_ntop (in_addr_t inaddr, char *dst)
{
	return inet_ntop (AF_INET, &inaddr, dst ? dst : _nm_utils_inet_ntop_buffer,
	                  INET_ADDRSTRLEN);
}

/**
 * nm_utils_inet6_ntop: (skip)
 * @in6addr: the address that should be converted to string.
 * @dst: the destination buffer, it must contain at least %INET6_ADDRSTRLEN
 *  or %NM_UTILS_INET_ADDRSTRLEN characters. If set to %NULL, it will return
 *  a pointer to an internal, static buffer (shared with nm_utils_inet4_ntop()).
 *  Beware, that the internal buffer will be overwritten with ever new call
 *  of nm_utils_inet4_ntop() or nm_utils_inet6_ntop() that does not provied it's
 *  own @dst buffer. Also, using the internal buffer is not thread safe. When
 *  in doubt, pass your own @dst buffer to avoid these issues.
 *
 * Wrapper for inet_ntop.
 *
 * Returns: the input buffer @dst, or a pointer to an
 *  internal, static buffer. %NULL is not allowed as @in6addr,
 *  otherwise, this function cannot fail.
 **/
const char *
nm_utils_inet6_ntop (const struct in6_addr *in6addr, char *dst)
{
	g_return_val_if_fail (in6addr, NULL);
	return inet_ntop (AF_INET6, in6addr, dst ? dst : _nm_utils_inet_ntop_buffer,
	                  INET6_ADDRSTRLEN);
}

/**
 * nm_utils_check_virtual_device_compatibility:
 * @virtual_type: a virtual connection type
 * @other_type: a connection type to test against @virtual_type
 *
 * Determines if a connection of type @virtual_type can (in the
 * general case) work with connections of type @other_type.
 *
 * If @virtual_type is %NM_TYPE_SETTING_VLAN, then this checks if
 * @other_type is a valid type for the parent of a VLAN.
 *
 * If @virtual_type is a "master" type (eg, %NM_TYPE_SETTING_BRIDGE),
 * then this checks if @other_type is a valid type for a slave of that
 * master.
 *
 * Note that even if this returns %TRUE it is not guaranteed that
 * <emphasis>every</emphasis> connection of type @other_type is
 * compatible with @virtual_type; it may depend on the exact
 * configuration of the two connections, or on the capabilities of an
 * underlying device driver.
 *
 * Returns: %TRUE or %FALSE
 */
gboolean
nm_utils_check_virtual_device_compatibility (GType virtual_type, GType other_type)
{
	g_return_val_if_fail (_nm_setting_type_is_base_type (virtual_type), FALSE);
	g_return_val_if_fail (_nm_setting_type_is_base_type (other_type), FALSE);

	if (virtual_type == NM_TYPE_SETTING_BOND) {
		return (   other_type == NM_TYPE_SETTING_INFINIBAND
		        || other_type == NM_TYPE_SETTING_WIRED
		        || other_type == NM_TYPE_SETTING_BRIDGE
		        || other_type == NM_TYPE_SETTING_BOND
		        || other_type == NM_TYPE_SETTING_TEAM
		        || other_type == NM_TYPE_SETTING_VLAN);
	} else if (virtual_type == NM_TYPE_SETTING_BRIDGE) {
		return (   other_type == NM_TYPE_SETTING_WIRED
		        || other_type == NM_TYPE_SETTING_BOND
		        || other_type == NM_TYPE_SETTING_TEAM
		        || other_type == NM_TYPE_SETTING_VLAN);
	} else if (virtual_type == NM_TYPE_SETTING_TEAM) {
		return (   other_type == NM_TYPE_SETTING_WIRED
		        || other_type == NM_TYPE_SETTING_BRIDGE
		        || other_type == NM_TYPE_SETTING_BOND
		        || other_type == NM_TYPE_SETTING_TEAM
		        || other_type == NM_TYPE_SETTING_VLAN);
	} else if (virtual_type == NM_TYPE_SETTING_VLAN) {
		return (   other_type == NM_TYPE_SETTING_WIRED
		        || other_type == NM_TYPE_SETTING_WIRELESS
		        || other_type == NM_TYPE_SETTING_BRIDGE
		        || other_type == NM_TYPE_SETTING_BOND
		        || other_type == NM_TYPE_SETTING_TEAM
		        || other_type == NM_TYPE_SETTING_VLAN);
	} else {
		g_warn_if_reached ();
		return FALSE;
	}
}