summaryrefslogtreecommitdiff
path: root/lib/avtp_pipeline/avtp/openavb_avtp_time.c
blob: 495812890349a44d29bc3bd5f7e5cb548741affb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
/*************************************************************************************************************
Copyright (c) 2012-2015, Symphony Teleca Corporation, a Harman International Industries, Incorporated company
All rights reserved.
 
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
 
1. Redistributions of source code must retain the above copyright notice, this
   list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.
 
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS LISTED "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS LISTED BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
Attributions: The inih library portion of the source code is licensed from 
Brush Technology and Ben Hoyt - Copyright (c) 2009, Brush Technology and Copyright (c) 2009, Ben Hoyt. 
Complete license and copyright information can be found at 
https://github.com/benhoyt/inih/commit/74d2ca064fb293bc60a77b0bd068075b293cf175.
*************************************************************************************************************/

/*
* MODULE SUMMARY : Avtp Time implementation
*/

#include "openavb_platform.h"
#include <stdlib.h>

#include "openavb_types.h"
#include "openavb_trace.h"
#include "openavb_avtp_time_pub.h"

#define	AVB_LOG_COMPONENT	"AVTP"
#include "openavb_log.h"

#define OPENAVB_AVTP_TIME_MAX_TS_DIFF (0x7FFFFFFF)

#include "openavb_avtp_time_osal.c"

static U64 x_getNsTime(timespec_t *tmTime)
{
	return ((U64)tmTime->tv_sec * (U64)NANOSECONDS_PER_SECOND) + (U64)tmTime->tv_nsec;
}

static U32 x_getTimestamp(U64 timeNsec)
{
	return (U32)(timeNsec & 0x00000000FFFFFFFFL);
}

avtp_time_t* openavbAvtpTimeCreate(U32 maxLatencyUsec)
{
	AVB_TRACE_ENTRY(AVB_TRACE_AVTP_TIME);

	avtp_time_t *pAvtpTime = calloc(1, sizeof(avtp_time_t));

	if (pAvtpTime) {
		pAvtpTime->maxLatencyNsec = maxLatencyUsec * NANOSECONDS_PER_USEC;
	}

	AVB_TRACE_EXIT(AVB_TRACE_AVTP_TIME);
	return pAvtpTime;
}

void openavbAvtpTimeDelete(avtp_time_t *pAvtpTime)
{
	AVB_TRACE_ENTRY(AVB_TRACE_AVTP_TIME);

	if (pAvtpTime) {
		free(pAvtpTime);
		pAvtpTime = NULL;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}

	AVB_TRACE_EXIT(AVB_TRACE_AVTP_TIME);
}

void openavbAvtpTimeAddUSec(avtp_time_t *pAvtpTime, long uSec)
{
	if (pAvtpTime) {
		pAvtpTime->timeNsec += uSec * NANOSECONDS_PER_USEC;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}
}

void openavbAvtpTimeAddNSec(avtp_time_t *pAvtpTime, long nSec)
{
	if (pAvtpTime) {
		pAvtpTime->timeNsec += nSec;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}
}

void openavbAvtpTimeSubUSec(avtp_time_t *pAvtpTime, long uSec)
{
	if (pAvtpTime) {
		pAvtpTime->timeNsec -= uSec * NANOSECONDS_PER_USEC;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}
}

void openavbAvtpTimeSubNSec(avtp_time_t *pAvtpTime, long nSec)
{
	if (pAvtpTime) {
		pAvtpTime->timeNsec -= nSec;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}
}


void openavbAvtpTimeSetToWallTime(avtp_time_t *pAvtpTime)
{
	if (pAvtpTime) {
		timespec_t tmNow;
		if (CLOCK_GETTIME(OPENAVB_CLOCK_WALLTIME, &tmNow)) {
			pAvtpTime->timeNsec = x_getNsTime(&tmNow);
			pAvtpTime->bTimestampValid = TRUE;
			pAvtpTime->bTimestampUncertain = FALSE;
		}
		else {
			pAvtpTime->bTimestampValid = FALSE;
			pAvtpTime->bTimestampUncertain = FALSE;
		}
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}
}

void openavbAvtpTimeSetToSystemTime(avtp_time_t *pAvtpTime)
{
	if (pAvtpTime) {
		timespec_t tmNow = {0, 0};
		CLOCK_GETTIME(OPENAVB_CLOCK_REALTIME, &tmNow);
		pAvtpTime->timeNsec = x_getNsTime(&tmNow);
		pAvtpTime->bTimestampValid = tmNow.tv_sec || tmNow.tv_nsec;
		pAvtpTime->bTimestampUncertain = FALSE;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}
}

// This function will take a AVTP timestamp and set the local AvtpTime values for it.
// Commonly this is used in the RX mapping callbacks, to take the AVTP timestamp received
// on the listener and place it into the AvtpTime so that the media queue and determine
// the correct time to release the media queue item for presentation.
void openavbAvtpTimeSetToTimestamp(avtp_time_t *pAvtpTime, U32 timestamp)
{
	if (pAvtpTime) {
		timespec_t tmNow;
		if (CLOCK_GETTIME(OPENAVB_CLOCK_WALLTIME, &tmNow)) {
			U64 nsNow = x_getNsTime(&tmNow);
			U32 tsNow = x_getTimestamp(nsNow);

			U32 delta;
			if (tsNow < timestamp) {
				delta = timestamp - tsNow;
			}  
			else if (tsNow > timestamp) {
				delta = timestamp + (0x100000000ULL - tsNow);
			}
			else {
				delta = 0;
			}

			if (delta < OPENAVB_AVTP_TIME_MAX_TS_DIFF) {
			  	// Normal case, timestamp is upcoming
				pAvtpTime->timeNsec = nsNow + delta;
			}
			else {
			  	// Timestamp is past
				pAvtpTime->timeNsec = nsNow - (0x100000000ULL - delta);
			}

			pAvtpTime->bTimestampValid = TRUE;
			pAvtpTime->bTimestampUncertain = FALSE;
		}
		else {
			pAvtpTime->bTimestampValid = FALSE;
			pAvtpTime->bTimestampUncertain = TRUE;
		}
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}
}

void openavbAvtpTimeSetToTimestampNS(avtp_time_t *pAvtpTime, U64 timeNS)
{
	if (pAvtpTime) {
		pAvtpTime->timeNsec = timeNS;
		pAvtpTime->bTimestampValid = TRUE;
		pAvtpTime->bTimestampUncertain = FALSE;
	}  
}

void openavbAvtpTimeSetToTimespec(avtp_time_t *pAvtpTime, timespec_t* timestamp)
{
	if (pAvtpTime)
	{
		if ((timestamp->tv_sec == 0) && (timestamp->tv_nsec == 0))
		{
			pAvtpTime->bTimestampValid = FALSE;
			pAvtpTime->bTimestampUncertain = TRUE;
		}
		else
		{
			U64 nsec = x_getNsTime(timestamp);
			pAvtpTime->timeNsec = nsec;
			pAvtpTime->bTimestampValid = TRUE;
			pAvtpTime->bTimestampUncertain = FALSE;
		}
	}
	else
	{
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}
}

void openavbAvtpTimePushMCR(avtp_time_t *pAvtpTime, U32 timestamp)
{
	if (pAvtpTime)
	{
		if ( HAL_PUSH_MCR(&timestamp) == FALSE) {
			AVB_LOG_ERROR("Pushing MCR timestamp");
		}
	}
}


void openavbAvtpTimeSetTimestampValid(avtp_time_t *pAvtpTime, bool validFlag)
{
	if (pAvtpTime) {
		pAvtpTime->bTimestampValid = validFlag;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}
}

void openavbAvtpTimeSetTimestampUncertain(avtp_time_t *pAvtpTime, bool uncertainFlag)
{
	if (pAvtpTime) {
		pAvtpTime->bTimestampUncertain = uncertainFlag;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}
}

U32 openavbAvtpTimeGetAvtpTimestamp(avtp_time_t *pAvtpTime)
{
	if (pAvtpTime) {
		return x_getTimestamp(pAvtpTime->timeNsec);
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
		return 0;
	}
}

U64 openavbAvtpTimeGetAvtpTimeNS(avtp_time_t *pAvtpTime)
{
	if (pAvtpTime) {
		return pAvtpTime->timeNsec;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
		return 0;
	}
}

bool openavbAvtpTimeTimestampIsValid(avtp_time_t *pAvtpTime)
{
	if (pAvtpTime) {
		return pAvtpTime->bTimestampValid;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
		return FALSE;
	}
}

bool openavbAvtpTimeTimestampIsUncertain(avtp_time_t *pAvtpTime)
{
	if (pAvtpTime) {
		return pAvtpTime->bTimestampUncertain;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
		return TRUE;
	}
}

// Check if the AvtpTime is past now. If something goes wrong return true to allow 
//  data to continue to flow. 
bool openavbAvtpTimeIsPast(avtp_time_t *pAvtpTime)
{
	if (pAvtpTime) {
		timespec_t tmNow;

		if (!pAvtpTime->bTimestampValid || pAvtpTime->bTimestampUncertain) {
			return TRUE;    // If timestamp can't be trusted assume time is past.
		}

		if (CLOCK_GETTIME(OPENAVB_CLOCK_WALLTIME, &tmNow)) {
			U64 nsNow = x_getNsTime(&tmNow);

			if (nsNow >= pAvtpTime->timeNsec) {
				return TRUE;    // Normal timestamp time reached.
			}

			if (nsNow + pAvtpTime->maxLatencyNsec < pAvtpTime->timeNsec) {
				IF_LOG_INTERVAL(100) {
					AVB_LOGF_INFO("Timestamp out of range: Now:%" PRIu64 " TSTime%" PRIu64 " MaxLatency:%" PRIu64 "ns Delta:%" PRIu64 "ns", nsNow, pAvtpTime->timeNsec, pAvtpTime->maxLatencyNsec, pAvtpTime->timeNsec - nsNow);
				}
				return TRUE;
			}

			return FALSE;
		}
		else {
			return TRUE;    // If timestamp can't be retrieved assume time is past to keep data flowing. 
		}
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
		return TRUE;
	}
}

bool openavbAvtpTimeIsPastTime(avtp_time_t *pAvtpTime, U64 nSecTime)
{
	if (pAvtpTime) {

		if (!pAvtpTime->bTimestampValid || pAvtpTime->bTimestampUncertain) {
			return TRUE;    // If timestamp can't be trusted assume time is past.
		}

		if (nSecTime >= pAvtpTime->timeNsec) {
			return TRUE;    // Normal timestamp time reached.
		}

		if (nSecTime + pAvtpTime->maxLatencyNsec < pAvtpTime->timeNsec) {
			IF_LOG_INTERVAL(100) {
				AVB_LOGF_INFO("Timestamp out of range: Now:%" PRIu64 "TSTime%" PRIu64 " MaxLatency:%" PRIu64 " ns Delta:%" PRIu64 "ns", nSecTime, pAvtpTime->timeNsec, pAvtpTime->maxLatencyNsec, pAvtpTime->timeNsec - nSecTime);
			}
			return TRUE;
		}

		return FALSE;
}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
		return TRUE;
	}
}



bool openavbAvtpTimeUsecTill(avtp_time_t *pAvtpTime, U32 *pUsecTill)
{
	if (pAvtpTime) {
		if (pAvtpTime->bTimestampValid && !pAvtpTime->bTimestampUncertain) {

			timespec_t tmNow;

			if (CLOCK_GETTIME(OPENAVB_CLOCK_WALLTIME, &tmNow)) {
				U64 nsNow = x_getNsTime(&tmNow);

				if (pAvtpTime->timeNsec >= nsNow) {
					U32 usecTill = (pAvtpTime->timeNsec - nsNow) / NANOSECONDS_PER_USEC;

					if (usecTill <= MICROSECONDS_PER_SECOND * 5) {
						*pUsecTill = usecTill;
						return TRUE;
					}
					else {
						return FALSE;
					}
				}
				else {
					*pUsecTill = 0;
					return TRUE;
				}
			}
		}

		// When the timestamp is invalid or uncertain assume timestamp is now.
		*pUsecTill = 0;
		return TRUE;
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
		return FALSE;
	}
}

S32 openavbAvtpTimeUsecDelta(avtp_time_t *pAvtpTime)
{
	S32 delta = 0;
	if (pAvtpTime) {
		if (pAvtpTime->bTimestampValid && !pAvtpTime->bTimestampUncertain) {
			timespec_t tmNow;

			if (CLOCK_GETTIME(OPENAVB_CLOCK_WALLTIME, &tmNow)) {
				U64 nsNow = x_getNsTime(&tmNow);

				delta = (S64)(pAvtpTime->timeNsec - nsNow) / NANOSECONDS_PER_USEC;
			}
		}
	}
	else {
		AVB_RC_LOG(AVB_RC(OPENAVB_AVTP_TIME_FAILURE | OPENAVBAVTPTIME_RC_INVALID_PTP_TIME));
	}
	return delta;
}