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1 Introduction 
The iASL compiler/disassembler is a fully-featured translator for the ACPI Source Language (ASL) 
and ACPI binary data tables. As part of the Intel ACPI Component Architecture, the Intel ASL 
compiler implements translation for the ACPI Source Language (ASL) to the ACPI Machine 
Language (AML). The disassembler feature will disassemble compiled AML code back to (near-
original) ASL source code. 

The major features of the iASL compiler include: 

• Full support for the ACPI 5.1 Specification including ASL grammar elements and operators. 

• Extensive compiler syntax and semantic error checking, especially in the area of control 
methods. This reduces the number of errors that are not discovered until the AML code is 
actually interpreted (i.e., the compile-time error checking reduces the number of run-time 
errors.) 

• An integrated preprocessor provides C-compatible preprocessor directives and conditional 
compilation directives such as #define, #if, #ifdef, #else, etc. 

• Multiple types of output files. Besides binary ACPI tables, output options include formatted 
listing files with intermixed source, several types of AML files, and error messages. 

• Automatic detection and compilation of either ASL source code or ACPI data table source 
code. 

• Portable code (ANSI C) and source code availability allows the compiler to be easily ported 
and run on multiple execution platforms. 

• Support for integration with the Microsoft Visual C++ (or similar) development 
environments. 

• Disassembly of all ACPI tables, including tables that contain AML (DSDT, SSDT) as well as 
ACPI “data” tables such as the FADT, MADT, SRAT, etc. 

• Support for compilation of non-AML data tables such as the FADT, MADT, SRAT, etc. 

• Support for ASL language extensions that support symbolic math/logical operators and 
expressions. 
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1.1 Document Structure 
This document consists of these major sections: 

Introduction: Contains a brief overview of the iASL compiler/disassembler, document structure, 
related reference documents, and definition of terms used throughout the document 

Compile/Disassembler Overview: Compiler subsystems, inputs, outputs, and supported system 
environments. 

ASL-AML Subsystem: Describes the ASL compiler and the AML disassembler. 

ACPI Data Table Subsystem: Describes the Data Table compiler and the Data Table disassembler. 

Compiler/Disassembler Operation: Guide for compiler options and general operation, including 
output examples. 

Generating iASL from Source Code: Instructions for building the iASL compiler from the open-
source package. 

1.2 Reference Documents 
ACPI documents are available at: 
http://uefi.org/specifications/ 
 
Advanced Configuration and Power Interface Specification, Revision 1.0, December 1, 1996 
Advanced Configuration and Power Interface Specification, Revision 1.0a, July 1, 1998 
Advanced Configuration and Power Interface Specification, Revision 1.0b, February 8, 1999 
Advanced Configuration and Power Interface Specification, Revision 2.0, July 27, 2000 
Advanced Configuration and Power Interface Specification, Revision 2.0a, March 32, 2002 
Advanced Configuration and Power Interface Specification, Revision 2.0b, October 11, 2002 
Advanced Configuration and Power Interface Specification, Revision 2.0c, August 23, 2003 
Advanced Configuration and Power Interface Specification, Revision 3.0, September 2, 2004 
Advanced Configuration and Power Interface Specification, Revision 3.0a, December 30, 2005 
Advanced Configuration and Power Interface Specification, Revision 3.0b, October 10, 2006 
Advanced Configuration and Power Interface Specification, Revision 4.0, June 16, 2009 
Advanced Configuration and Power Interface Specification, Revision 4.0a, April 5, 2010 
Advanced Configuration and Power Interface Specification, Revision 5.0, December, 6, 2011 
Advanced Configuration and Power Interface Specification, Revision 5.0a, November, 13, 2013 
Advanced Configuration and Power Interface Specification, Revision 5.1, July 2014 
Advanced Configuration and Power Interface Specification, Revision 6.0, April 2015 
Advanced Configuration and Power Interface Specification, Revision 6.1, January 2016 
 

http://uefi.org/specifications/
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ACPICA documents are available at: 
https://www.acpica.org/documentation/ 

ACPI Component Architecture User Guide and Programmer Reference 
iASL: ACPI Source Language Optimizing Compiler and Disassembler User Guide 
 

ACPICA and iASL source code is available at: 
https://www.acpica.org/downloads/ 

 

iASL Windows binaries are available at: 
https://www.acpica.org/downloads/binary-tools 

1.3 Document History 
May 2012: Add preprocessor support. 

June 2012: Update command line options and descriptions. 

January 2013: Add –in flag to ignore ASL/AML NoOp operators/opcodes. 

August 2013: Add –fe option for the disassembler. 

December 2013: Add –ve option to display compilation errors only, no warnings or remarks. 

September 2014: Add –lm option to generate a hardware mapfile. 

November 2014: Add support for C-style math/logical operators and expressions. Added new debug 
option to prune ASL namespace hierarchy tree. 

May 2015: Add the #includebuffer preprocessor directive. 

May 2016: Add support for ASL-to-ASL+ converter. 

 

https://www.acpica.org/documentation/
https://www.acpica.org/downloads/
https://www.acpica.org/downloads/binary-tools
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1.4 Definition of Terms 
ACPI: Advanced Configuration and Power Interface. An open standard for device configuration and 
power management. 

ACPICA: ACPI Component Architecture. An open-source implementation of ACPI that is hosted 
on many different operating systems. 

ACPI Data Table: Any ACPI table that does not contain AML byte code but is instead simply a 
structure of static packed binary data. In practice, any ACPI table other than DSDTs or SSDTs. 

ACPI Table: Generic reference to any of the ACPI-related tables (both AML and Data Tables) that 
are presented by the BIOS for consumption by the host operating system. 

AML: ACPI Machine Language. A byte code language to be executed by an ACPI/AML interpreter 
within the host operating system. Created by translation of ASL code via an ASL compiler. Defined 
by the ACPI specification. 

ASL: ACPI Source Language. A higher level language that corresponds to the low level AML byte 
code language. ASL source code is translated into AML byte code by an ASL compiler. Defined by 
the ACPI specification 

Binary ACPI Table: An ACPI table that contains either raw AML byte code, or a packed ACPI 
Data Table 

Data Table Language: A simple language developed to describe the individual fields within an 
ACPI Data Table. It is used by both the compiler and disassembler portions of the iASL Data Table 
Subsystem. 

Disassembler: In the ACPI context, a tool that will either convert AML byte code back to the 
original ASL code, or will convert an ACPI Data Table into a format that is human-readable. 

Hex Table: A table containing data that is in a format suitable for translation via an Assembler, C 
compiler, or ASL compiler. 
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2 Compiler/Disassembler Overview 
The iASL compiler/disassembler consists of several distinct subsystems, as described below: 

• An integrated C-like preprocessor 

• An ASL-to-AML compiler that translates ASL code (ACPI Source Language) to AML byte 
code (ACPI Machine Language). 

• An ACPI Data Table compiler that translates Data Table definitions to binary ACPI tables. 
An ACPI Data Table is any ACPI table that contains only data, not AML byte code. 
Examples include the FADT, MADT, SRAT, etc. 

• An AML-to-ASL disassembler that translates compiled AML byte code back to the (nearly) 
original ASL source code. This disassembler is used on tables like the DSDT and SSDT. 

• An ACPI Data Table disassembler that formats binary ACPI data tables into a readable 
format. The output of this disassembler can be compiled with the ACPI data table compiler. 

• An ACPI table template generator that will emit examples of all known ACPI tables, in a 
format similar to the output of the data table disassembler. The output files from the template 
generator are intended to be used as the basis or starting point for the development of actual 
ACPI tables. 

2.1 Supported Execution Environments 
iASL runs on multiple platforms as a 32-bit or 64-bit application.  

Portable code – requires only ANSI C and a compiler generation package such as Bison/Flex or 
Yacc/Lex. 

Error and warning messages are compatible with Microsoft Visual C++, allowing for integration of 
the compiler into the development environment to simplify project building and debug. 

The iASL source code is distributed with the compiler binaries under the ACPICA source license. 

2.2 ASL Compiler 

2.2.1 Input Files 
Existing ACPI ASL source files are fully supported. Enhanced compiler error checking will often 
uncover unknown problems in these files. 

All ACPI 5.0 ASL additions and new ACPI tables are supported. The compiler fully supports ACPI 
5.0. 

2.2.2 Output File Options 
• Preprocessed source code file 
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• AML binary output file 

• AML code in C source code form for inclusion into a BIOS project 

• AML code in x86 assembly code form for inclusion into a BIOS project 

• AML Hex Table output file in either C, ASL, or x86 assembly code as a table initialization 
statement. 

• Listing file with source file line number, source statements, and intermixed generated AML 
code. Include files named in the original source ASL file are expanded within the listing file 

• Namespace output file — shows the ACPI namespace that corresponds to the input ASL file 
(and all include files.) 

• Debug parse trace output file — gives a trace of the parser and namespace during the compile. 
Used to debug problems in the compiler, or to help add new compiler features. 

2.3 AML Disassembler 
The AML Disassembler has the capability of reverse translating any binary AML table back to 
nearly the original ASL code. These are typically DSDTs and SSDTs. It can also disassemble and 
format all other known non-AML data tables. 

2.3.1 Input Files 
The AML Disassembler accepts binary ACPI tables that contain valid AML code. These tables are 
the DSDT and any SSDTs. 

These files may be obtained via the acpidump/acpixtract utilities, or some other host-specific tools. 

2.3.2 Output 
The output is disassembled (or de-compiled) ASL code. The file extension used for these output 
files is .DSL, meaning “disassembled ASL”. As opposed to original ASL source code files which 
typically have the extension .ASL. 

2.4 Data Table Compiler 
The Data Table compiler is used to compile the “non-ASL/AML” ACPI tables such as the FADT, 
MADT, SRAT, etc. These tables are not compiled to AML byte code, but are compiled to simple 
binary data, usually with the standard ACPI table header (signature, length, checksum, etc.) 

The intent of the Data Table Compiler is to simplify the generation of the many non-ASL ACPI data 
tables and to make the generation process less error-prone. The Data Table Compiler knows the 
required format for each recognized ACPI table, as well as the exact size and allowable values for 
each field within the tables. 
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2.4.1 Input Files 
The Data Table compiler accepts as input files that are in the same or simplified format as the files 
emitted by the data table disassembler. An existing ACPI binary data table may be disassembled, 
modified, and then recompiled. 

Also, the ACPI table template generator may be used to generate template ACPI data tables that can 
in turn be used for the basis for additional table development. This would be the preferred starting 
point for ACPI table development, since the ACPI table templates contain a valid example of each 
table header, table section, and table sub-table as applicable. 

2.4.2 Output 
• Binary output file 

• Hex Table output file in either C, ASL, or x86 assembly code as a table initialization 
statement for inclusion into a BIOS project. 

2.5 Data Table Disassembler 
This second part of the disassembler package will extract all data from a binary ACPI “data table” 
and format it into human readable form. The format of this output is compatible with the Data Table 
Compiler, meaning that such ACPI tables may be easily disassembled, modified, and recompiled. 

2.5.1 Input Files 
The Data Table Disassembler accepts binary ACPI tables that do not contain AML code. These 
tables include the FADT, MADT, SRAT, etc. 

2.5.2 Output 
The output is a disassembled and formatted ACPI table in human-readable format. The file 
extension used for these files is also .DSL, for consistency with the AML disassembler. 

2.6 Template Generator 
The iASL Template Generator can be used to create ACPI tables from templates that are stored 
within the iASL image. These templates can be used as a starting point for the development of any 
ACPI table known to the compiler. 
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3 Preprocessor 
iASL contains an integrated preprocessor that is compatible with most C preprocessors, and 
implements a large subset of the standard C preprocessor directives 

3.1 Command Line Options 
These iASL command line options directly affect the operation of the preprocessor: 
 

  -D <symbol>       Define symbol for preprocessor use 

  -li               Create preprocessed output file (*.i) 

  -P                Preprocess only and create preprocessor output file (*.i) 

  -Pn               Disable preprocessor 

3.2 Integer Expressions 
Expressions are supported in all fields that require an integer value. 

Supported operators (Standard C meanings, in precedence order): 
 

! Logical NOT 
~ Bitwise ones compliment (NOT) 
* Multiply 
/ Divide 
% Modulo 
+ Add 
- Subtract 
<< Shift left 
>> Shift right 
< Less than 
> Greater than 
<= Less than or equal 
>= Greater than or equal 
== Equal 
!= Not Equal 
& Bitwise AND 
^ bitwise Exclusive OR 
| Bitwise OR 
&& Logical AND 
|| Logical OR 

3.3 Supported Directives 
The following directives are supported: 
 
#define 
#elif 
#else 
#endif 
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#error 
#if 
#ifdef 
#ifndef 
#include 
#includeBuffer 
#line 
#pragma 
#undef 
#warning 

3.3.1 Text Substitution and Macros 

3.3.1.1 #define 
Note: At this time, only text substitution #defines are supported. Full macros (with arguments) are 
not supported. 

Usage: 

#define name text_to_substitute 

Every instance of “name” is replaced by “text_to_substitue”. 

3.3.1.2 #undef 
Usage: 

#undef symbol 

Removes a previously defined symbol, either from a #define or from the –D command line option. 

3.3.2 Conditional Compilation 

3.3.2.1 #if    - 
Usage: 

#if expression 

Conditionally compile a block of text. The block is included in the compilation if the expression 
evaluates to a non-zero value. The standard C operators (+,-,/,*,==, etc.) may be used within the 
expression. 

3.3.2.2 #ifdef 
Usage: 

#ifdef symbol 

Conditionally compile a block of text. The block is included in the compilation if the symbol is 
defined, either from a #define or from the –D command line option. 
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3.3.2.3 #ifndef 
Usage: 

#ifndef symbol 

Conditionally compile a block of text. The block is included in the compilation if the symbol is not 
defined (opposite from #ifdef.) 

3.3.2.4 #else 
Usage: 

#else 

Conditionally compile a block of text. The block is included in the compilation if the result of a 
previous #if, #ifdef, #ifndef, or #elif was false. 

3.3.2.5 #elif 
Usage: 

#elif expression 

Combines #else and #if to conditionally compile a block of text. 

3.3.2.6 #endif 
Usage: 

#endif 

Indicates the completion of a #if…#else block. 

3.3.3 Include Files 

3.3.3.1 #include vs. ASL Include() 
The #include is a preprocessor directive. The included file can contain additional preprocessor 
directives. 

The ASL Include() operator includes a file during compile time, after the preprocessor has run. 
Therefore, it cannot contain any preprocessor directives. 

3.3.3.2 #include 
Usage: 

#include “filename” 

#include <filename> 
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Include an additional file for compilation. This file is subject to processing by the preprocessor, 
unlike the Include() ASL operator, which is only invoked after the preprocessor has completed 
operation. 

3.3.3.3 #includebuffer 
Usage: 

#includebuffer “binary_filename” BufferName 

#includebuffer <binary_filename> BufferName 

Where BufferName is a standard ACPI NamePath. An ACPI buffer object is created with this name 
and the named object can be created anywhere within the ACPI namespace. 

This directive allows for the inclusion of binary data into an ASL file. The binary data is converted 
into the ASL declaration of an ACPI Buffer object with the binary data as the buffer initialization 
data. 

Since #includebuffer is not a standard C or ASL preprocessor directive, the directive can be 
bypassed during this early preprocessing via the __IASL__ predefined name: 

#ifdef __IASL__ 

#includebuffer … 

#endif 

3.3.3.4 #line 
Usage: 

#line value 

Changes the internal line number that is used for compiler error and warning messages. 

3.3.4 Miscellaneous Directives 

3.3.4.1 #error 
Usage: 

#error error_message 

Generates a compiler error. 

3.3.4.2 #pragma 
Usage: 

#pragma operator 

Only “#pragma message” is suppported at this time. 

#pragma message “message”. 

Emits the message. 
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3.3.4.3 #warning 
Usage: 

#warning warning_message 

Generates a compiler warning. 
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4 ASL-AML Subsystem 
This subsystem consists of tools to compile ASL source code to AML byte code, and disassemble 
AML byte code back to the original ASL code. 

4.1 ASL Compiler 
The iASL compiler fully supports ACPI 5.1. The ASL and AML languages are defined within the 
ACPI specification. 

4.1.1 Support for Symbolic Operators and Expressions (ASL+) 
As an extension to the ASL language, iASL implements support for symbolic (C-style) operators for 
math and logical expressions. This can greatly simplify ASL code as well as improve readability 
and maintainability. These language extensions can exist concurrently with all legacy ASL code and 
expressions. ASL with these language extensions is called ASL+. 

The symbolic extensions are 100% compatible with existing AML interpreters, since no new AML 
opcodes are created. To implement the extensions, the iASL compiler transforms the symbolic 
expressions into the legacy ASL/AML equivalents at compile time. 

Full symbolic expressions are supported, along with the standard C precedence and associativity 
rules. 

Full disassembler support for the symbolic expressions is provided, and creates a migration path for 
existing ASL code via the disassembly process. 

Below is the full list of the currently supported symbolic operators with examples to follow. 

 
ASL+ Syntax Legacy ASL Equivalent 
 
    // Math operators 
 
Z = X + Y Add (X, Y, Z) 
Z = X - Y Subtract (X, Y, Z) 
Z = X * Y Multiply (X, Y, Z) 
Z = X / Y Divide (X, Y, , Z) 
Z = X % Y Mod (X, Y, Z) 
 
Z = X << Y ShiftLeft (X, Y, Z) 
Z = X >> Y ShiftRight (X, Y, Z) 
 
Z = X & Y And (X, Y, Z) 
Z = X | Y Or (X, Y, Z) 
Z = X ^ Y Xor (X, Y, Z) 
Z = ~X Not (X, Z) 
 
X++ Increment (X) 
X-- Decrement (X) 
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    // Logical operators 
 
(X == Y) LEqual (X, Y) 
(X != Y) LNotEqual (X, Y) 
(X < Y) LLess (X, Y) 
(X > Y) LGreater (X, Y) 
(X <= Y) LLessEqual (X, Y) 
(X >= Y) LGreaterEqual (X, Y) 
(X && Y) LAnd (X, Y) 
(X || Y) LOr (X, Y) 
(!X) LNot (X) 
 
    // Compound assignment operations 
 
X = Y Store (Y, X) 
X += Y Add (X, Y, X) 
X -= Y Subtract (X, Y, X) 
X *= Y Multiply (X, Y, X) 
X /= Y Divide (X, Y, , X) 
X %= Y Mod (X, Y, X) 
X <<= Y ShiftLeft (X, Y, X) 
X >>= Y ShiftRight (X, Y, X) 
X &= Y And (X, Y, X) 
X |= Y Or (X, Y, X) 
X ^= Y Xor (X, Y, X) 

 

Examples: 

 
If (LAnd (LAnd (LEqual (IID0, EID0), LEqual (IID1, EID1)), LAnd (LEqual 

(IID2, EID2), LEqual (IID3, EID3)))) 
 
    --->   if ((IID0 == EID0) && (IID1 == EID1) && 
               (IID2 == EID2) && (IID3 == EID3)) 
 
 
If (LAnd (LGreaterEqual (\_PR.CLVL, One), LLessEqual (\_PR.CLVL, 0x03))) 
 
    --->   if ((\_PR.CLVL >= 1) && (\_PR.CLVL <= 3)) 
 
 
If (LOr (LEqual (And (RF0H, 0xE0), 0x60), LEqual (And ( 
RF0H, 0xE0), 0x40))) 
 
    --->   if (((RF0H & 0xE0) == 0x60) || ((RF0H & 0xE0) == 0x40)) 
 
 
ShiftRight (And (\_SB.IAOE.ECTM, 0x00FF0000), 0x10) 
 
    --->   (\_SB.IAOE.ECTM & 0x00FF0000) >> 0x10 
 
 
If (LAnd (And (IUBE, One), LGreaterEqual (OSYS, 0x07DC))) 
 
    --->   if ((IUBE & 1) && (OSYS >= 0x07DC)) 
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4.1.1.1 Binary AML Considerations 
Typically, the iASL compiler will produce identical AML code for both symbolic expressions and 
the equivalent legacy ASL code. 

For example, consider these two sematically identical statements: 
 

        Add (Local0, ShiftLeft (Temp, 3), Local1) 
 
        Local1 = Local0 + (Temp << 3) 
 

Both of these statements compile to the identical AML code, as shown in the listing below: 
 

      11:          Add (Local0, ShiftLeft (Temp, 3), Local1) 
 
0000003A:  72 60 ..................    "r`" 
0000003C:  79 54 45 4D 50 0A 03 00     "yTEMP..." 
00000044:  61 .....................    "a" 
 
      13:          Local1 = Local0 + (Temp << 3) 
 
00000045:  72 60 ..................    "r`" 
00000047:  79 54 45 4D 50 0A 03 00     "yTEMP..." 
0000004F:  61 .....................    "a" 

 

4.1.1.2 AML Disassembler Notes 
The AML disassembler by default produces ASL+ code with symbolic operators and expressions. In 
fact, this is the quickest way to convert existing (legacy) ASL code to the ASL+ language. 

In general, a disassemble/recompile sequence will produce AML code that is identical to the 
original AML code. However, there are some cases where this is not true and the AML code 
becomes optimized during the process. For example: 
 

      14:          Store (Multiply (TEMP, 5), Local1) 
 
00000050:  70 .....................    "p" 
00000051:  77 54 45 4D 50 0A 05 00     "wTEMP..." 
00000059:  61 .....................    "a" 
 

This code will disassemble to equivalent ASL+ and and then recompile to slightly different AML:  
 

      14:          Local1 = TEMP * 5 
 
00000050:  77 54 45 4D 50 0A 05 61     "wTEMP..a" 
 

As shown above, the disassembly/recompile process has optimized the original statement to this 
legacy ASL equivalent: 
 

      18:          Multiply (TEMP, 5, Local1) 
 
00000062:  77 54 45 4D 50 0A 05 61     "wTEMP..a" 
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4.1.2 Built-in ASL Macros 
The iASL compiler implements several macros that are not part of the ACPI specification, but have 
been implemented for convenience. These macros are similar to their C equivalents: 

__FILE__ - Returns the current input (source) filename. 

__PATH__ - Returns the current full pathname of the input (source) file. 

__LINE__ - Returns the current line number within the input (source) file. 

__DATE__ - Returns the current date and time. 

__IASL__ - Always defined for the iASL compiler. Can be used to differentiate between ASL 
compilers and/or other preprocessors such as a C preprocessor. 

 

Example: 

 
DefinitionBlock ("dsdt.aml", "DSDT", 2, "Intel", "Template", 0x00000001) 
{ 
    Method (MAIN, 0, NotSerialized) 
    { 
        Store (__FILE__, Debug) 
        Store (__LINE__, Debug) 
        Store (__DATE__, Debug) 
    } 
} 
 
 
- execute main 
Executing \MAIN 
 
[ACPI Debug]  String [0x08] "dsdt.asl" 
[ACPI Debug]  Integer 0x0000000000000006 
[ACPI Debug]  String [0x18] "Thu Jan 13 12:29:44 2011" 
 

4.1.3 Compiler Analysis Phases 

4.1.3.1 General ASL Syntax Analysis 
Enhanced ASL syntax checking. Multiple errors and warnings are reported in one compile – the 
compiler recovers to the next ASL statement upon detection of a syntax error. 

Constants larger than the target data size are flagged as errors. For example, if the target data type is 
a BYTE, the compiler will reject any constants larger than 0xFF (255). The same error checking is 
performed for WORD and DWORD constants. 

4.1.3.2 General Semantic Analysis 
All named references to objects are checked for validity. All names (both full ACPI Namepaths and 
4-character Namesegs) must refer to valid declared objects. 
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All Fields created within Operation Regions and Buffers are checked for out-of-bounds offset and 
length. The minimum access width specified for the field is used when performing this check to 
ensure that the field can be properly accessed. 

4.1.3.3 Control Method Semantic Analysis 
Method local variables are checked for initialization before use. All locals (LOCAL0 – LOCAL7) 
must be initialized before use. This prevents fatal run-time errors for uninitialized ASL arguments. 

Method arguments are checked for validity. For example, a control method defined with 1 argument 
can’t use ARG4. Again, this prevents fatal run-time errors for uninitialized ASL arguments. 

Control method execution paths are analyzed to determine if all return statements are of the same 
type — to ensure that either all return statements return a value, or all do not. This includes an 
analysis to determine if execution can possibly fall through to the default implicit return (which does 
not return a value) at the end of the method. A warning is issued if some method control paths return 
a value and others do not 

4.1.3.4 Control Method Invocation Analysis 
All control method invocations (method calls) are checked for the correct number of arguments in 
all cases, regardless of whether the method is invoked with argument parentheses or not (e.g. both 
ABCD() and ABCD). Prevents run-time errors caused by non-existent arguments. 

All control methods and invocations are checked to ensure that if a return value is expected and used 
by the method caller, the target method actually returns a value. 

4.1.3.5 Predefined ACPI Names 
For all ACPI reserved control methods (such as _STA, _TMP, etc.), both the number of arguments 
and return types (whether the method must return a value or not) are checked. This prevents missing 
operand run-time errors that may not be detected until after the product is shipped. 

Predefined names that are defined with arguments or return no value must be implemented as 
control methods and are flagged if they are not. Predefined names that may be implemented as static 
objects via the ASL Name() operator are typechecked. 

Reserved names (all names that begin with an underscore are reserved) that are not currently defined 
by ACPI are flagged with a warning. 

4.1.3.6 Resource Descriptors 
Validation of values for Resource Descriptors is performed wherever possible. 

Address Descriptors: Values for AddressMin, AddressMax, Length, and Granularity are validated: 

AddressMax must be greater than or equal to AddressMin 

Length must be less than or equal to (Max-Min+1) 

If Granularity is non-zero, it must be a power-of-two minus one. 

The IsMinFixed and IsMaxFixed parameters are validated against the values given for the 
AddressMin, AddressMax, Length, and Granularity. This implements the rules given in Table 6-179 
of the ACPI 5.0 specification. 
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4.1.4 Compiler Optimizations 
The compiler implements several optimizations whose primary intent is to reduce the size of the 
resulting AML output. 

4.1.4.1 Named References 
Namepaths within the ASL can often be optimized to shorter strings than specified by the ASL 
programmer. For example, a full pathname can be optimized to a single 4-character ACPI name if 
the final name in the path is within the local scope or is along the upward search path to the root 
from the local scope. In addition, the carat (^) operator can often be used to optimize Namepaths. 

4.1.4.2 Integers 
Certain integers can be optimized to single-byte AML opcodes. These are: 0, 1, and -1. The opcodes 
used are Zero, One, and Ones. All other integers are described in AML code using the smallest 
representation necessary – either Byte, Word, DWord, or QWord. 

4.1.4.3 Constant Folding 
All expressions that can be evaluated at compile-time rather than run time are executed and reduced 
to the simplified value. The ASL operators that are supported in this manner are the Type3, Type4, 
and Type5 operators defined in the ACPI specification. 

The iASL compiler contains the ACPICA AML interpreter which is used to evaluate these 
expressions at compile time. 

4.2 ASL-to-AML Disassembler 
The AML disassembler is used to regenerate the original ASL code from a binary ACPI AML table. 
Tables that contain AML are typically the DSDT and any SSDTs. 

The disassembler is invoked by using the –d option of iASL. 

Because the AML contains all of the original symbols from the ASL, the AML byte code of a binary 
ACPI table can be disassembled back to nearly the original ASL code with only a few caveats. 

4.2.1 Multiple Table Disassembly 
There is a known difficulty in disassembling control method invocations for methods that are 
external to the table being disassembled. This is because there is often insufficient information 
within the AML to properly disassemble these method invocations.  

Therefore, whenever possible, all DSDTs and SSDTs for a given machine should be disassembled 
together using the –da or –e option. If all SSDTs are included this way, the necessary information 
will be available to fully and correctly disassemble the target table. 
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For example, to disassemble the DSDT on a machine with multiple SSDTs: 
 
$ iasl -essdt1.dat,ssdt2.dat,ssdt3.dat -d dsdt.dat 

 
Intel ACPI Component Architecture 
AML Disassembler version 20100528 [May 28 2010] 
Copyright (c) 2000 - 2010 Intel Corporation 
Supports ACPI Specification Revision 5.0 
 
Loading Acpi table from file DSDT.dat 
Acpi table [DSDT] successfully installed and loaded 
Loading Acpi table from file ssdt1.dat 
Acpi table [SSDT] successfully installed and loaded 
Pass 1 parse of [SSDT] 
Pass 2 parse of [SSDT] 
Loading Acpi table from file ssdt2.dat 
Acpi table [SSDT] successfully installed and loaded 
Pass 1 parse of [SSDT] 
Pass 2 parse of [SSDT] 
Loading Acpi table from file ssdt3.dat 
Acpi table [SSDT] successfully installed and loaded 
Pass 1 parse of [SSDT] 
Pass 2 parse of [SSDT] 
Pass 1 parse of [DSDT] 
Pass 2 parse of [DSDT] 
Parsing Deferred Opcodes (Methods/Buffers/Packages/Regions) 
.................................................................................. 
Parsing completed 
Disassembly completed, written to "DSDT.dsl" 

4.2.2 External Declarations 
During disassembly, any ACPI names that cannot be found or resolved within the table under 
disassembly are added to a list of externals that are emitted at the start of the table definition block, 
as shown below: 
 
DefinitionBlock ("DSDT.aml", "DSDT", 1, "INTEL ", "EXAMPLE", 0x06040000) 
{ 
    External (Z003) 
    External (\_SB_.PCI0.LNKH) 

If the object type that is associated with the name can be resolved during the disassembly, this type 
is emitted with the external statement also: 
 
    External (PETE, IntObj)  
    External (HDOS, MethodObj)    // 0 Arguments 
    External (ECST, MethodObj)    // 1 Arguments 
    External (PSEN, FieldUnitObj) 
    External (C7EN, FieldUnitObj) 
    External (\_PR_.CPU1, DeviceObj) 
    External (\_PR_.CPU0, DeviceObj) 

4.2.2.1 The External AML Opcode 
In ACPI 6.1, a new AML opcode (0x15) was defined to allow the compiler to insert external 
declarations within the AML code itself. This allows the disassembler to easily and deterministically 
construct the original External() statements in the source ASL code. 
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4.2.2.2 Generation of ASL External() Statements 
There are two ways that external declarations can be emitted by the disassembler: external opcodes 
within the AML and ACPI names that cannot be found within the table. External opcodes encode 
names that should be declared as external named objects. This facilitates disassembly of external 
control method objects because the external opcode contains the object’s type as well as the number 
of parameters for external control methods. These externals are emitted at the start of the table 
definition block shown below: 

However, not all AML contain external opcodes. During disassembly, any ACPI names that cannot 
be found or resolved within the table under disassembly are added to a list of externals that are 
emitted at the start of the table definition block, as shown above. 

4.3 ASL to ASL+ Converter 
Legacy ASL (also known as ASL) does not support symbolic operators such as arithmetic and 
logical operators. This often results in code that looks cluttered and therefore difficult to read and 
maintain. The ASL/ASL+ Converter can be used to translate legacy ASL to ASL+ by compiling and 
disassembling an input ASL file while retaining comments. Since ASL+ has support for symbolic 
operators, the ASL/ASL+ Converter can be used to increase redability and maintainability. 

4.3.1 Using the ASL/ASL+ Converter 
To run the converter, use the –ca flag along with a targetASL filename. 
 
 iasl –ca ssdt.asl 

 
This produces translated dsl files for ssdt.asl as well as all files that sstd.asl includes via the ASL 
include. A sample file is located at acpica/tests/misc/converterSample.asl 

4.3.2 Example: ASL/ASL+ Converter and Disassembler 
AML files resulting from compiling the converted file should be an exact binary match as a 
normally compiled ASL file. This is true for files that have been compiled with externals in place, 
disassembled with externals, and recompiled. Figure 1 illustrates a portion of the ASL test suite 
architecture that exercise the ideas described above. Note that all AML files generated from this 
process should all have matching binary comparisons. 
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Figure 1. ASL Test Suite Architecture 

 

 

4.3.3 Items currently not supported 
The following ASL constructs are currently not supported within the ASL/ASL+ converter: 

1. Pre-processor directives such as #include and macros are not supported. 

2. Comments within buffer and resource template declarations will not be kept. 

3. Using the –f option in conjunction with –ca does not guarantee a correct conversion. 
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5 ACPI Data Table Subsystem 
This subsystem consists of tools to compile ACPI Data Tables such as the FADT, MADT, SRAT, 
etc., to binary ACPI tables, and to disassemble binary ACPI data tables to formatted and structured 
tables in the data table language. 

5.1 Data Table Compiler 
The iASL Data Table Compiler is intended to compile ACPI data tables (FADT, MADT, etc) to 
binary data, to be integrated into a BIOS project. 

Data Tables are described in a simple language that is directly compatible with the output of the data 
table disassembler. The two goals for this language are simplicity and compatibility with the 
disassembler. 

Data Table input files are automatically detected and differentiated from ASL files, therefore no 
special iASL option is required to invoke the data table compiler. 

The default output is a binary ACPI data table. Use one of the iASL options –ta, –tc, or –ts, in order 
to create the binary output in an ASCII hex table that is suitable for direct inclusion into a BIOS 
project. 

On some host operating systems, the iASL data table disassembler and compiler may be used to 
disassemble a data table, modify it, then recompile it to a binary file that can be used to override the 
original table. This override support depends upon features supported by the host operating system. 
This feature would be useful, for example, to repair invalid or incorrect values in an important table 
such as the FADT. 

5.1.1 Input Format 
The format of the input file is a series of fields, each of which represents a field in the target ACPI 
table. Each field is comprised of a field name and a field value, separated by a colon. The fields 
must appear in the exact order in which they are defined for the target ACPI table. 
 

<FieldName> : <Field Value> 
<FieldName> : <Field Value> 
 . 
 . 
 . 
<FieldName> : <Field Value> 

Both slash-asterisk and slash-slash comments are supported. Blank lines are ignored. 

The language itself is defined in the next section. The Field Names (AcpiTableFieldName) that are 
available for any given ACPI table can be obtained from the template file generated by the iASL 
Template Generator: 

iASL –T <ACPI Table Signature>  // Obtain one template 

iASL –T all    // Obtain templates for all ACPI tables 
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5.1.1.1 Ignored Fields/Comments 
Comments can be either traditional /* .. */ style or // style. 

Additional fields that are ignored (and are essentially comments) are fields surrounded by brackets – 
[..]. This allows automatic compatibility with the output of the AML disassembler. 

5.1.2 Data Table Definition Language 
 

// 
// Root Term 
// 
DataTable := 

FieldList 
 
// 
// Field Terms 
// 
FieldList := 

Field | 
<Field FieldList> 

 
Field := 

<FieldDefinition OptionalFieldComment> | 
CommentField 

 
FieldDefinition := 
 
 // Fields for predefined (known) ACPI tables 
 

<OptionalFieldName ‘:’ FieldValue> | 
 
// Generic data types (used for custom or undefined ACPI tables) 
 
<‘UINT8’   ‘:’ IntegerExpression> |   // 8-bit unsigned integer 
<‘UINT16’  ‘:’ IntegerExpression> |   // 16-bit unsigned integer 
<‘UINT24’  ‘:’ IntegerExpression> |   // 24-bit unsigned integer 
<‘UINT32’  ‘:’ IntegerExpression> |   // 32-bit unsigned integer 
<‘UINT40’  ‘:’ IntegerExpression> |   // 40-bit unsigned integer 
<‘UINT48’  ‘:’ IntegerExpression> |   // 48-bit unsigned integer 
<‘UINT56’  ‘:’ IntegerExpression> |   // 56-bit unsigned integer 
<‘UINT64’  ‘:’ IntegerExpression> |   // 64-bit unsigned integer 
<‘String’  ‘:’ String>            |   // Quoted ASCII string 
<‘Unicode’ ‘:’ String>            |   // Quoted ASCII string -> Unicode string 
<‘Buffer’  ‘:’ ByteConstList>     |   // Raw buffer of 8-bit unsigned integers 
<‘GUID’    ‘:’ Guid>              |   // In GUID format 
<‘Label’   ‘:’ Label>                 // ASCII label – unquoted string 

 
OptionalFieldName := 

Nothing | 
AsciiCharList                         // Optional field name/description 

 
FieldValue := 

IntegerExpression | String | Buffer | Flags | Label 
 
OptionalFieldComment := 

Nothing | 
<‘[’ AsciiCharList ‘]’> 

 
CommentField := 

<‘//’ AsciiCharList NewLine> | 
<‘/*’ AsciiCharList ‘*/’>    | 
<‘[’ AsciiCharList ‘]’> 
 

 
// 
// Data Expressions 
// 
IntegerExpression := 

Integer | 
<IntegerExpression IntegerOperator IntegerExpression> | 
<‘(’ IntegerExpression ‘)’> 
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// 
// Operators below are shown in precedence order. The meanings and precedence rules 
// are the same as the C language. Parentheses have precedence over 
// all operators. 
// 
IntegerOperator := 

‘!’  | ‘~’ | ‘*’  | ‘/’  | ‘%’  | ‘+’  | ‘-’ | ‘<<’ | ‘>>’ |  
‘<’  | ‘>’ | ‘<=’ | ‘>=’ | ‘==’ | ‘!=’ | ‘&’ | ‘^’  | ‘|’  |  
‘&&’ |‘||’ | 

 
// 
// Data Types 
// 
String := 

<‘”’ AsciiCharList ‘”’> 
Buffer := 

ByteConstList 
Guid := 

<DWordConst ‘-’ WordConst ‘-’ WordConst ‘-’ WordConst ‘-’ Const48> 
Label := 

AsciiCharList 
 
// 
// Data Terms 
// 
Integer := 

ByteConst | WordConst | Const24 | DWordConst | Const40 | Const48 | Const56 | 
QWordConst | LabelReference 

 
LabelReference := 

<‘$’ Label> 
 
Flags := 

OneBit | TwoBits 
 
ByteConstList := 

ByteConst | 
<Byte Const ‘ ’ ByteConstList> 

 
AsciiCharList := 

Nothing | 
PrintableAsciiChar | 
<PrintableAsciiChar AsciiCharList> 

 
// 
// Terminals 
// 
ByteConst := 

0x00-0xFF 
WordConst := 

0x0000 - 0xFFFF 
Const24 := 

0x000000 - 0xFFFFFF 
DWordConst := 

0x00000000 - 0xFFFFFFFF 
Const40 := 

0x0000000000 – 0xFFFFFFFFFF 
Const48 := 

0x000000000000 – 0xFFFFFFFFFFFF 
Const56 := 

0x00000000000000 - 0xFFFFFFFFFFFFFF 
QWordConst :- 

0x0000000000000000 - 0xFFFFFFFFFFFFFFFF 
 
OneBit := 

0 - 1 
TwoBits := 

0 - 3 
 
PrintableAsciiChar := 

0x20 – 0x7E 
NewLine := 

‘\n’ 
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5.1.3 Input Example 
Input is similar to the output of the Data Table disassembler. The example below shows a portion of 
input describing a FADT. 
 
/* 
 * Intel ACPI Component Architecture 
 * iASL Compiler/Disassembler version 20100528 
 * 
 * Template for [FACP] ACPI Table 
 * Format: [ByteLength]  FieldName : HexFieldValue 
 */ 
 
[004]                          Signature : "FACP" // Fixed ACPI Description Table 
[004]                       Table Length : 000000F4 
[001]                           Revision : 04 
[001]                           Checksum : 4E 
[006]                             Oem ID : "INTEL " 
[008]                       Oem Table ID : "TEMPLATE" 
[004]                       Oem Revision : 00000000 
[004]                    Asl Compiler ID : "INTL" 
[004]              Asl Compiler Revision : 20100528 
 
[004]                       FACS Address : 00000001 

Each valid, non-comment line in the input file represents a field within the target ACPI table. The 
value in brackets (e.g., “[004]”) is the required length (in bytes) of the field described on the line. It 
is essentially a comment and is not required; this value is created by the iASL template generator for 
reference purposes only. 

5.1.4 Data Types for User-Entered Fields 
The following data types are supported: 

5.1.4.1 Integers 
All integers in ACPI are unsigned. Four major types of unsigned integers are supported by the 
compiler: Bytes, Words, DWords and QWords. In addition, for special cases, there are some odd 
sized integers such as 24-bit and 56-bit. The actual required width of an integer is defined by the 
ACPI table. If an integer is specified that is numerically larger than the width of the target field 
within the input source, an error is issued by the compiler. Integers are expected by the data table 
compiler to be entered in hexadecimal with no “hex” prefix. 

Examples: 
 
[001]                           Revision : 04   // Byte (8-bit) 
[002]                         C2 Latency : 0000  // Word (16-bit) 
[004]                       DSDT Address : 00000001  // DWord (32-bit) 
[008]                            Address : 0000000000000001 // QWord (64-bit) 

Length of non-power-of-two examples: 
 
[003]                           Reserved : 000000  // 24 bits 
[007]                       Capabilities : 00000000000000  // 56 bits 

5.1.4.2 Integer Expressions 
Expressions are supported in all fields that require an integer value. 

Supported operators (Standard C meanings, in precedence order): 
 

! Logical NOT 
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~ Bitwise ones compliment (NOT) 
* Multiply 
/ Divide 
% Modulo 
+ Add 
- Subtract 
<< Shift left 
>> Shift right 
< Less than 
> Greater than 
<= Less than or equal 
>= Greater than or equal 
== Equal 
!= Not Equal 
& Bitwise AND 
^ bitwise Exclusive OR 
| Bitwise OR 
&& Logical AND 
|| Logical OR 
 

Examples: 
 
[001]                           Revision : 04 * 4  // Byte (8-bit) 
[002]                         C2 Latency : 0032 + 8  // Word (16-bit) 
[004]                       DSDT Address : 00000001  // DWord (32-bit) 
[008]                            Address : 0000000000000001 // QWord (64-bit) 

5.1.4.3 Flags 
Many ACPI tables contain flag fields. For these fields, only the individual flag bits need to be 
specified to the compiler. The individual bits are aggregated into a single integer of the proper size 
by the compiler. 

Examples: 
 
[002]              Flags (decoded below) : 0005 
                                Polarity : 1 
                            Trigger Mode : 1 

In this example, only the Polarity and Trigger Mode fields need to be specified to the compiler (as 
either zero or one). The compiler then creates the final 16-bit Flags field for the ACPI table. 

5.1.4.4 Strings 
Strings must always be surrounded by quotes. The actual string that is generated by the compiler 
may or may not be null-terminated, depending on the table definition in the ACPI specification. For 
example, the OEM ID and OEM Table ID in the common ACPI table header (shown above) are 
fixed at six and eight characters, respectively. They are not necessarily null terminated. Most other 
strings, however, are of variable-length and are automatically null terminated by the compiler. If a 
string is specified that is too long for a fixed-length string field, an error is issued. String lengths are 
specified in the definition for each relevant ACPI table. 

Escape sequences within a quoted string are not allowed. The backslash character ‘\’ refers to the 
root of the ACPI namespace. 

Examples: 
 
[008]                       Oem Table ID : "TEMPLATE"  // Fixed length 
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[006]               Processor UID String : "\CPU0"  // Variable length 

5.1.4.5 Buffers 
A buffer is typically used whenever the required binary data is larger than a QWord, or the data does 
not fit exactly into one of the standard integer widths. Examples include UUIDs and byte data 
defined by the SLIT table. 

Examples: 
 
// SLIT entry 
 
[032]              Locality   0 : 0A 10 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 \  
                                  04 25 26 27 28 29 2A 2B 2C 2D 2E 2F 30 31 32 33 
 
// DMAR entry 
 
[002]                  PCI Path : 1F 07 
 

Each hexadecimal byte should be entered separately, separated by a space. Additional lines may be 
specified with the continuation character (‘\’). 

5.1.5 Fields Set Automatically 
There are several types of ACPI table fields that are set automatically by the compiler. This 
simplifies the process of ACPI table development by relieving the programmer from these tasks. 

Checksums: All ACPI table checksums are computed and inserted automatically. This includes the 
main checksum that appears in the standard ACPI table header, as well as any additional checksum 
fields such as the extended checksum that appears in the ACPI 2.0 RSDP. 

Table Lengths: All ACPI table lengths are computed and inserted automatically. This includes the 
master table length that appears in the common ACPI table header, and the length of any internal 
subtables as applicable. 

Examples: 
 
[004]                       Table Length : 000000F4 
 
[001]                      Subtable Type : 08 <Platform Interrupt Sources> 
[001]                             Length : 10 
 
[001]                      Subtable Type : 01 <Memory Affinity> 
[001]                             Length : 28 
 

Flags: As described in the previous section, individual flags are aggregated automatically by the 
compiler and inserted into the ACPI table as the correctly sized and valued integer. 

Compiler IDs: The data table compiler automatically inserts the ID and current revision for iASL 
into the common ACPI table header for each table during compilation. 

5.1.6 Special Fields 
Reserved Fields: All fields that are declared as Reserved by the table definition within the ACPI (or 
other) specification should be set to zero. 
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Table Revision: This field in the common ACPI table header is often very important and defines 
the structure of the remaining table. The developer should take care to ensure that this value is 
correct and current. This field is not set automatically. 

The iASL table template generator emits tables with a TableRevision that is the latest known value. 

Table Signature: There are several table signatures within ACPI that are either different from the 
table name, or have unusual length: 
 
FADT – signature is "FACP". 
MADT – signature is "APIC". 
RSDP – signature is "RSD PTR " (with trailing space) 

5.1.7 Generic Fields / Generic Data Types 
The following “generic” data types/field names are provided to support tables like the UEFI, which 
mostly consist of platform-defined data. 
 

UINT8 Generates an 8-bit unsigned integer 
UINT16 Generates a 16-bit unsigned integer 
UINT24 Generates a 24-bit unsigned integer 
UINT32 Generates a 32-bit unsigned integer 
UINT40 Generates a 40-bit unsigned integer 
UINT48 Generates a 48-bit unsigned integer 
UINT56 Generates a 56-bit unsigned integer 
UINT64 Generates a 64-bit unsigned integer 
String Generates a null-terminated ASCII string (ASCIIZ) 
Unicode Generates a null terminated Unicode (UTF-16) string 
Buffer Generates a buffer of 8-bit unsigned integers 
GUID Generates an encoded GUID in a 16-byte buffer 
Label Generates a Label at the current location (offset) within the table. This label can 

be referenced within integer expressions by prepending the label with a ‘$’ sign. 

 

Examples: 
 
        Label : StartRecord 
        UINT8 : 11 
       UINT16 : $EndRecord - $StartRecord    // Record length 
       UINT24 : 112233 
       UINT32 : 11223344 
       UINT56 : 11223344556677 
       UINT64 : 1122334455667788 
 
       String : "This is a string" 
   DevicePath : "\PciRoot(0)\Pci(0x1f,1)\Usb(0,0)" 
      Unicode : "This string will be encoded to Unicode" 
 
       Buffer : AA 01 32 4C 77 
         GUID : 11223344-5566-7788-99aa-bbccddeeff00 
        Label : EndRecord 
 
 

Example UEFI table with generic data types: 
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/* 
 * Intel ACPI Component Architecture 
 * iASL Compiler/Disassembler version 20101209-32 [Jan  6 2011] 
 * Copyright (c) 2000 - 2011 Intel Corporation 
 *  
 * Template for [UEFI] ACPI Table 
 * Format: [ByteLength]  FieldName : HexFieldValue 
 */ 
 
[004]                      Signature : "UEFI"    /* UEFI Boot Optimization Table */ 
[004]                   Table Length : 00000036 
[001]                       Revision : 01 
[001]                       Checksum : 9B 
[006]                         Oem ID : "INTEL " 
[008]                   Oem Table ID : "TEMPLATE" 
[004]                   Oem Revision : 00000001 
[004]                Asl Compiler ID : "INTL" 
[004]          Asl Compiler Revision : 20100528 
 
[016]                UUID Identifier : 03020100-0504-0706-0809-0A0B0C0D0E0F 
[002]                    Data Offset : 0000 
 
                           Label : StartRecord 
                               UINT8 : ab 
                              UINT16 : $EndRecord - $StartRecord  // length 
                              UINT24 : 123456 
                              UINT32 : 01020304 
                              UINT56 : 11223344556677 
                              UINT64 : 0102030405060708 
 
                              String : "This is a string" 
                          DevicePath : "\PCI0\ABCD" 
                             Unicode : "Unicode String" 
 
                              Buffer : 41 42 43 44 45 
                              String : "" 
                                GUID : 03020100-0504-0706-0809-0A0B0C0D0E0F 
                           Label : EndRecord 
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5.2 Data Table Disassembler 
The Data Table Disassembler will disassemble and format any ACPI data table (non-AML table) 
that is supported. The current set of ACPI Data Tables that are supported by the Data Table 
disassembler and Data Table compiler are shown below: 
 
APIC (MADT)  Multiple APIC Description Table 
ASF!   Alert Standard Format table 
BOOT   Simple Boot Flag Table 
BERT   Boot Error Record Table 
BGRT   Boot Graphics Resource Table 
CPEP   Corrected Platform Error Polling table 
DBGP   Debug Port table 
DMAR   DMA Remapping table 
DRTM   Dynamic Root of Trust for Measurement table 
ECDT   Embedded Controller Boot Resources Table 
EINJ   Error Injection table 
ERST   Error Record Serialization Table 
FACP (FADT)  Fixed ACPI Description Table 
FACS   Firmware ACPI Control Structure 
FPDT   Firmware Performance Data Table 
GTDT   Generic Timer Description Table 
HEST   Hardware Error Source Table 
HPET   High Precision Event Timer table 
MPST   Memory Power State Table 
IVRS   I/O Virtualization Reporting Structure 
MCFG   PCI Memory Mapped Configuration table 
MCHI   Management Controller Host Interface table 
MSCT   Maximum System Characteristics Table 
PCCT   Platform Communications Channel Table 
PMTT   Platform Memory Topology Table 
RASF   RAS Feature table 
RSDP   Root System Description Pointer 
RSDT   Root System Description Table 
SBST   Smart Battery Specification Table 
SLIC   Software Licensing Description Table 
SLIT   System Locality Distance Information Table 
SPCR   Serial Port Console Redirection table 
SPMI   Server Platform Management Interface table 
SRAT   System Resource Affinity Table 
TCPA   Trusted Computing Platform Alliance table 
UEFI   Uefi Boot Optimization Table 
WAET   Windows ACPI Emulated devices Table 
WDAT   Watchdog Action Table 
WDDT   Watchdog Timer Description Table 
WDRT   Watchdog Resource Table 
XSDT   Extended System Description Table 

These non-AML ACPI data tables can be “disassembled”, meaning that they are formatted with the 
individual fields and data.  While most ACPI tables found in the field are supported, there may exist 
a few additional ACPI tables that are not defined in the ACPI specification and are not supported by 
the disassembler (or compiler.) 

5.2.1 Example Output 
Example disassembly of an FADT. This example contains a revision 4 FADT, which contains both 
32-bit and 64-bit addresses for the ACPI registers. 
 
/* 
 * Intel ACPI Component Architecture 
 * AML Disassembler version 20100528 
 * 
 * Disassembly of FACP.aml, Thu Jun 17 13:18:03 2010 
 * 
 * ACPI Data Table [FACP] 
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 * 
 * Format: [HexOffset DecimalOffset ByteLength]  FieldName : FieldValue 
 */  
 
[000h 0000  4]                    Signature : "FACP" 
[004h 0004  4]                 Table Length : 000000F4 
[008h 0008  1]                     Revision : 04 
[009h 0009  1]                     Checksum : 9F 
[00Ah 0010  6]                       Oem ID : "INTEL" 
[010h 0016  8]                 Oem Table ID : "EXAMPLE" 
[018h 0024  4]                 Oem Revision : 00000002 
[01Ch 0028  4]              Asl Compiler ID : "INTL" 
[020h 0032  4]        Asl Compiler Revision : 20100528 
 
[024h 0036  4]                 FACS Address : 78D22000 
[028h 0040  4]                 DSDT Address : 71F61000 
[02Ch 0044  1]                        Model : 00 
[02Dh 0045  1]                   PM Profile : 04 (Enterprise Server) 
[02Eh 0046  2]                SCI Interrupt : 0009 
[030h 0048  4]             SMI Command Port : 000000B2 
[034h 0052  1]            ACPI Enable Value : A0 
[035h 0053  1]           ACPI Disable Value : A1 
[036h 0054  1]               S4BIOS Command : 00 
[037h 0055  1]              P-State Control : 00 
[038h 0056  4]     PM1A Event Block Address : 00000400 
[03Ch 0060  4]     PM1B Event Block Address : 00000000 
[040h 0064  4]   PM1A Control Block Address : 00000404 
[044h 0068  4]   PM1B Control Block Address : 00000000 
[048h 0072  4]    PM2 Control Block Address : 00000450 
[04Ch 0076  4]       PM Timer Block Address : 00000408 
[050h 0080  4]           GPE0 Block Address : 00000420 
[054h 0084  4]           GPE1 Block Address : 00000000 
[058h 0088  1]       PM1 Event Block Length : 04 
[059h 0089  1]     PM1 Control Block Length : 02 
[05Ah 0090  1]     PM2 Control Block Length : 01 
[05Bh 0091  1]        PM Timer Block Length : 04 
[05Ch 0092  1]            GPE0 Block Length : 10 
[05Dh 0093  1]            GPE1 Block Length : 00 
[05Eh 0094  1]             GPE1 Base Offset : 00 
[05Fh 0095  1]                 _CST Support : 00 
[060h 0096  2]                   C2 Latency : 0065 
[062h 0098  2]                   C3 Latency : 03E9 
[064h 0100  2]               CPU Cache Size : 0000 
[066h 0102  2]           Cache Flush Stride : 0000 
[068h 0104  1]            Duty Cycle Offset : 01 
[069h 0105  1]             Duty Cycle Width : 00 
[06Ah 0106  1]          RTC Day Alarm Index : 0D 
[06Bh 0107  1]        RTC Month Alarm Index : 00 
[06Ch 0108  1]            RTC Century Index : 32 
[06Dh 0109  2]   Boot Flags (decoded below) : 0001 
              Legacy Devices Supported (V2) : 1 
           8042 Present on ports 60/64 (V2) : 0 
                       VGA Not Present (V4) : 0 
                     MSI Not Supported (V4) : 0 
               PCIe ASPM Not Supported (V4) : 0 
[06Fh 0111  1]                     Reserved : 00 
[070h 0112  4]        Flags (decoded below) : 000004A5 
     WBINVD instruction is operational (V1) : 1 
             WBINVD flushes all caches (V1) : 0 
                   All CPUs support C1 (V1) : 1 
                 C2 works on MP system (V1) : 0 
           Control Method Power Button (V1) : 0 
           Control Method Sleep Button (V1) : 1 
       RTC wake not in fixed reg space (V1) : 0 
           RTC can wake system from S4 (V1) : 1 
                       32-bit PM Timer (V1) : 0 
                     Docking Supported (V1) : 0 
              Reset Register Supported (V2) : 1 
                           Sealed Case (V3) : 0 
                   Headless - No Video (V3) : 0 
       Use native instr after SLP_TYPx (V3) : 0 
             PCIEXP_WAK Bits Supported (V4) : 0 
                    Use Platform Timer (V4) : 0 
              RTC_STS valid on S4 wake (V4) : 0 
               Remote Power-on capable (V4) : 0 
                Use APIC Cluster Model (V4) : 0 
    Use APIC Physical Destination Mode (V4) : 0 
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[074h 0116 12]               Reset Register : <Generic Address Structure> 
[074h 0116  1]                     Space ID : 01 (SystemIO) 
[075h 0117  1]                    Bit Width : 08 
[076h 0118  1]                   Bit Offset : 00 
[077h 0119  1]                 Access Width : 01 
[078h 0120  8]                      Address : 0000000000000CF9 
 
[080h 0128  1]         Value to cause reset : 06 
[081h 0129  3]                     Reserved : 000000 
[084h 0132  8]                 FACS Address : 0000000078D22000 
[08Ch 0140  8]                 DSDT Address : 0000000071F61000 
[094h 0148 12]             PM1A Event Block : <Generic Address Structure> 
[094h 0148  1]                     Space ID : 01 (SystemIO) 
[095h 0149  1]                    Bit Width : 20 
[096h 0150  1]                   Bit Offset : 00 
[097h 0151  1]                 Access Width : 02 
[098h 0152  8]                      Address : 0000000000000400 
 
[0A0h 0160 12]             PM1B Event Block : <Generic Address Structure> 
[0A0h 0160  1]                     Space ID : 01 (SystemIO) 
[0A1h 0161  1]                    Bit Width : 00 
[0A2h 0162  1]                   Bit Offset : 00 
[0A3h 0163  1]                 Access Width : 00 
[0A4h 0164  8]                      Address : 0000000000000000 
 
[0ACh 0172 12]           PM1A Control Block : <Generic Address Structure> 
[0ACh 0172  1]                     Space ID : 01 (SystemIO) 
[0ADh 0173  1]                    Bit Width : 10 
[0AEh 0174  1]                   Bit Offset : 00 
[0AFh 0175  1]                 Access Width : 02 
[0B0h 0176  8]                      Address : 0000000000000404 
 
[0B8h 0184 12]           PM1B Control Block : <Generic Address Structure> 
[0B8h 0184  1]                     Space ID : 01 (SystemIO) 
[0B9h 0185  1]                    Bit Width : 00 
[0BAh 0186  1]                   Bit Offset : 00 
[0BBh 0187  1]                 Access Width : 00 
[0BCh 0188  8]                      Address : 0000000000000000 
 
[0C4h 0196 12]            PM2 Control Block : <Generic Address Structure> 
[0C4h 0196  1]                     Space ID : 01 (SystemIO) 
[0C5h 0197  1]                    Bit Width : 08 
[0C6h 0198  1]                   Bit Offset : 00 
[0C7h 0199  1]                 Access Width : 00 
[0C8h 0200  8]                      Address : 0000000000000450 
 
[0D0h 0208 12]               PM Timer Block : <Generic Address Structure> 
[0D0h 0208  1]                     Space ID : 01 (SystemIO) 
[0D1h 0209  1]                    Bit Width : 20 
[0D2h 0210  1]                   Bit Offset : 00 
[0D3h 0211  1]                 Access Width : 03 
[0D4h 0212  8]                      Address : 0000000000000408 
 
[0DCh 0220 12]                   GPE0 Block : <Generic Address Structure> 
[0DCh 0220  1]                     Space ID : 01 (SystemIO) 
[0DDh 0221  1]                    Bit Width : 80 
[0DEh 0222  1]                   Bit Offset : 00 
[0DFh 0223  1]                 Access Width : 01 
[0E0h 0224  8]                      Address : 0000000000000420 
 
[0E8h 0232 12]                   GPE1 Block : <Generic Address Structure> 
[0E8h 0232  1]                     Space ID : 01 (SystemIO) 
[0E9h 0233  1]                    Bit Width : 00 
[0EAh 0234  1]                   Bit Offset : 00 
[0EBh 0235  1]                 Access Width : 00 
[0ECh 0236  8]                      Address : 0000000000000000 
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5.3 ACPI Table Template Generator 
The Table Template Generator is used to create examples for each of the supported ACPI tables. It 
emits code in a format similar to the ACPI data table disassembler, and can compiled directly via 
the ACPI data table compiler. 

These templates contain examples of each possible subtable as applicable to the particular table. The 
template can be used as a starting point for actual ACPI table development. 

Use "iasl –T all" to generate a template for every supported table 

Example Template file for ECDT: 
 
/* 
 * Intel ACPI Component Architecture 
 * iASL Compiler/Disassembler version 20100528 
 * 
 * Template for [ECDT] ACPI Table 
 * Format: [ByteLength]  FieldName : HexFieldValue 
 */ 
 
[004]                          Signature : "ECDT" 
[004]                       Table Length : 00000042 
[001]                           Revision : 01 
[001]                           Checksum : 2D 
[006]                             Oem ID : "INTEL " 
[008]                       Oem Table ID : "TEMPLATE" 
[004]                       Oem Revision : 00000001 
[004]                    Asl Compiler ID : "INTL" 
[004]              Asl Compiler Revision : 20100528 

 
[012]            Command/Status Register : <Generic Address Structure> 
[001]                           Space ID : 01 (SystemIO) 
[001]                          Bit Width : 08 
[001]                         Bit Offset : 00 
[001]                       Access Width : 00 
[008]                            Address : 0000000000000066 
 
[012]                      Data Register : <Generic Address Structure> 
[001]                           Space ID : 01 (SystemIO) 
[001]                          Bit Width : 08 
[001]                         Bit Offset : 00 
[001]                       Access Width : 00 
[008]                            Address : 0000000000000062 
 
[004]                                UID : 00000000 
[001]                         GPE Number : 09 
[001]                           Namepath : "" 
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6 Compiler/Disassembler Operation 
The iASL compiler is a command line utility that is invoked to translate one or more ASL source 
files to corresponding AML binary files or the reverse. The syntax of the various command line 
options is identical across all platforms. 

6.1 Command Line Invocation 
The general command line syntax is as follows: 

iasl [options] file1, file2, … fileN 

6.2 Wildcard Support 
Wildcards are supported on all platforms. 

On Windows, wildcard support is implemented within the compiler. For other platforms, it is 
expected that the shell or command line interpreter will automatically expand wildcards into the 
argv array that is passed to the compiler main(). 
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6.3 Command Line Options 
All compiler options are specified using the single ‘-‘ (minus) prefix, regardless of the platform of 
operation. These options are summarized below, and described in detail after. 
 
 
General: 
  -@  <file>          Specify command file 
  -I  <dir>           Specify additional include directory 
  -p  <prefix>        Specify path/filename prefix for all output files 
  -v                  Display compiler version 
  -vd                 Display compiler build date and time 
  -vo                 Enable optimization comments 
  -vs                 Disable signon 
 
Help: 
  -h                  This message 
  -hc                 Display operators allowed in constant expressions 
  -hd                 Info for obtaining and disassembling binary ACPI tables 
  -hf                 Display help for output filename generation 
  -hr                 Display ACPI reserved method names 
  -ht                 Display currently supported ACPI table names 
 
Preprocessor: 
  -D <symbol>         Define symbol for preprocessor use 
  -li                 Create preprocessed output file (*.i) 
  -P                  Preprocess only and create preprocessor output file (*.i) 
  -Pn                 Disable preprocessor 
 
Errors, Warnings, and Remarks: 
  -va                 Disable all errors/warnings/remarks 
  -ve                 Report only errors (ignore warnings and remarks) 
  -vi                 Less verbose errors and warnings for use with IDEs 
  -vr                 Disable remarks 
  -vw <messageid>     Disable specific warning or remark 
  -w <1|2|3>          Set warning reporting level 
  -we                 Report warnings as errors 
 
AML Bytecode Generation (*.aml): 
  -oa                 Disable all optimizations (compatibility mode) 
  -of                 Disable constant folding 
  -oi                 Disable integer optimization to Zero/One/Ones 
  -on                 Disable named reference string optimization 
  -ot                 Disable typechecking 
  -cr                 Disable Resource Descriptor error checking 
  -in                 Ignore NoOp operators 
  -r <revision>       Override table header Revision (1-255) 
 
Listings: 
  -l                  Create mixed listing file (ASL source and AML) (*.lst) 
  -lm                 Create hardware summary map file (*.map) 
  -ln                 Create namespace file (*.nsp) 
  -ls                 Create combined source file (expanded includes) (*.src) 
  -lx                 Create cross-reference file (*.xrf) 
 
Firmware Support - C Text Output: 
  -tc                 Create hex AML table in C (*.hex) 
  -sc                 Create named hex AML arrays in C (*.c) 
  -ic                 Create include file in C for -sc symbols (*.h) 
  -so                 Create namespace AML offset table in C (*.offset.h) 
 
Firmware Support - Assembler Text Output: 
  -ta                 Create hex AML table in assembler (*.hex) 
  -sa                 Create named hex AML arrays in assembler (*.asm) 
  -ia                 Create include file in assembler for -sa symbols (*.inc) 
 
Firmware Support - ASL Text Output: 
  -ts                 Create hex AML table in ASL (Buffer object) (*.hex) 
 
Legacy-ASL to ASL+ Converter: 
  -ca <file>          Convert legacy-ASL source file to new ASL+ file 
                        (Original comments are passed through to ASL+ file) 
 
Data Table Compiler: 
  -G                  Compile custom table that contains generic operators 
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  -T <sig list>|ALL   Create ACPI table template/example files 
  -T <count>          Emit DSDT and <count> SSDTs to same file 
  -vt                 Create verbose template files (full disassembly) 
 
AML Disassembler: 
  -d  <f1 f2 ...>     Disassemble or decode binary ACPI tables to file (*.dsl) 
                        (Optional, file type is automatically detected) 
  -da <f1 f2 ...>     Disassemble multiple tables from single namespace 
  -db                 Do not translate Buffers to Resource Templates 
  -dc <f1 f2 ...>     Disassemble AML and immediately compile it 
                        (Obtain DSDT from current system if no input file) 
  -df                 Force disassembler to assume table contains valid AML 
  -dl                 Emit legacy ASL code only (no C-style operators) 
  -e  <f1 f2 ...>     Include ACPI table(s) for external symbol resolution 
  -fe <file>          Specify external symbol declaration file 
  -in                 Ignore NoOp opcodes 
  -l                  Disassemble to mixed ASL and AML code 
  -vt                 Dump binary table data in hex format within output file 
 
Debug Options: 
  -bc                 Create converter debug file (*.cdb) 
  -bf                 Create debug file (full output) (*.txt) 
  -bs                 Create debug file (parse tree only) (*.txt) 
  -bp <depth>         Prune ASL parse tree 
  -bt <type>          Object type to be pruned from the parse tree 
  -f                  Ignore errors, force creation of AML output file(s) 
  -m <size>           Set internal line buffer size (in Kbytes) 
  -n                  Parse only, no output generation 
  -oc                 Display compile times and statistics 
  -x <level>          Set debug level for trace output 
  -z                  Do not insert new compiler ID for DataTables 
 

6.3.1 General Options 
These options affect the compiler globally. 

-@<file> Read additional command line options from a command file. The format of this text 
file is one complete option per line. 

-I<dir> Specify an additional directory for include files. The directory that contains the 
source ASL file is searched first. Then, any additional directories specified via this 
option are searched. This option may be invoked an unlimited number of times. 
Directories are searched in the order they appear on the command line. 

-p<prefix> Specify the filename prefix used for all output files, including the .AML file. (This 
option overrides the output filename specified in the DefinitionBlock of the ASL.) 

-v Display compiler version in the format <version_number>-<build_bit_width> 

Where: 

 Version_number is in the format YYYYMMDD 

 Build_bit_width is either 32 or 64 and represents the bit width used to generate 
the compiler. 

-vd Display the compiler build date and time. 

-vo Enable optimization comments in the listing file. A remark/comment is made 
wherever an optimization has been performed. 

-vs Disable the compiler signon. 
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6.3.2 Help 
-h Help screen 

-hc Display a complete list of all ASL operators that are allowed in constant expressions 
that can be evaluated at compile time. (This is a list of the Type 3, 4, and 5 
operators.) 

-hd An info help screen describing the toolchain to obtain and disassemble AML tables. 

-hf Display help for AML output file name generation. 

-hr Display a list of the ACPI predefined names (reserved names.) 

-ht Display a list of all supported ACPI tables, both AML and data table. 

6.3.3 Preprocessor 
These options affect the integrated preprocessor. 

-D <symbol> Define symbol for use by the preprocessor. 

-li Save the preprocessor output file (*.i) This file contains the output of the 
preprocessor and is used as input to the main compiler. 

-P Preprocess only. Create the preprocessor output file (*.i), but do not invoke the main 
compiler. 

-Pn Disable the preprocessor completely. The input source file is passed directly to the 
main compiler. 

6.3.4 Errors, Warnings, and Remarks 
These options affect the output of errors and warnings. 

-va Disable all errors/warnings/remarks. The compiler signon and compilation summary 
information are the only messages. 

-ve Report errors only. This option ignores warnings and remarks, and is useful for 
recompiling disassembled ASL code to quickly determine the actual errors in the 
code. 

-vi Provide less verbose errors and warnings in the format required by the MS VC++ 
environment. This allows the automatic mapping of errors and warnings to the line 
of ASL source code that caused the message. 

-vr Disable all remark messages. 

-vw <id> Disable a specific warning or remark. The <id> is emitted with the message. 

-w<1|2|3> Set the warning reporting level. 

-we Report all warnings as errors. 
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6.3.5 AML Bytecode Generation 
These options affect the actual AML code that is generated by the compiler. 

-oa Disable all optimizations. 

-of Disable the constant folding feature. 

-oi Disable integer optimizations to the Zero/One/Ones AML opcodes. 

-on Disable named reference string optimizations. 

-ot Disable compiler typechecking. 

-cr Disable Resource Descriptor error checking. 

-in Ignore ASL NoOp operators during compilation. –in. Ignorethe  NoOp operator 
within the ASL source code. Often, the NoOp operator is used as padding for 
packages that are changed dynamically by the BIOS. When disassembled and 
recompiled, these NoOps will cause syntax errors. This option causes the compiler to 
ignore all NoOp statements. 

-r<Rev> Set the revision number of the table header, overriding the existing revision. 

6.3.6 Listings 
These options control the listings that are produced by the compiler (as the result of the compilation 
of an ASL file) 

-l Create a listing file with the extension .LST. This file contains intermixed ASL 
source code and AML byte code so that the AML corresponding to each ASL 
statement can be examined. 

-lm Create a mapping file with a map of the GPIO/I2C/SPI/UART hardware connections 
and the extension .MAP 

-ln Create a namespace file with a dump of the ACPI namespace and the extension .NSP 

-ls Create a combined source file with the extension .SRC. This file combines all 
include files into a single, large source file. 

-lx Create a cross-reference file – declared namespace objects with all references to each 
object (*.XRF) 

6.3.7 Firmware Support – C Text Output 
These options create files that contain the AML in hex format, with a unique label for each line of 
the original ASL code. This allows the BIOS to easily dynamically access/modify the ACPI table. 

-tc Create a hex table file with the extension .HEX. This file contains raw AML byte 
data in hex table format suitable for inclusion into a C file.  

-sc Create AML in a C source code file with the extension .C. This option creates a file 
with a unique label on the AML code for each line of ASL code. 
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-ic Create a C header file (.H) that contains external declarations for the symbols 
produced by the –sc option above.  

-so This option creates a table of offsets within the output AML table/file for use by the 
BIOS in order to implement run-time table modification. 

6.3.8 Firmware Support – Assembler Text Output 
These options create files that contain external declarations for the symbols created by the options in 
the previous section. 

-ta Create a hex table file with the extension .HEX. This file contains raw AML byte 
data in hex table format suitable for inclusion into an ASM file.  

-sa Create AML in an x86 assembly source code file with the extension .ASM. This 
option creates a file with a unique label on the AML code for each line of ASL code. 

-ia  Create an ASM include file (.INC) that contains external declarations for the 
symbols produced by the –sa option above. 

6.3.9 Firmware Support – ASL Text Output 
These options create files that contain the AML code in hex format, in a single array. 

-ts Create a hex table file with the extension .HEX. This file contains raw AML byte 
data in an ASL Buffer object format suitable for inclusion into a ASL file.  

6.3.10 Legacy-ASL to ASL+ Converter 
-ca <file> Converts a legacy ASL source code file to the ASL+ equivalent. Comments in the 

original ASL source code are passed through to the new ASL+ file. This feature 
greatly simplifies the ASL-to-ASL+ conversion process.  

6.3.11 Data Table Compiler 
-G Compile a custom table containing “generic” operators. The table is assumed to 

contain a standard ACPI table header at the start. 

-T <Sig> Create an ACPI Data Table template file. Use “ALL” for the signature to create 
templates for all ACPI tables known by iASL. 

-T <Count> Create a DSDT and multiple SSDTs in a single file. All elements of ACPICA 
support multiple definition blocks in the input and output files. 

-vt Create verbose template file(s). This option creates the template file(s) with the full 
output of the disassembler, include file offsets and summary raw data. 
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6.3.12 AML Disassembler 
These options are used to invoke and control the behavior of the AML disassembler. 

-d <f1 f2…> Disassemble or decode a binary ACPI to a file (.DSL). Tables that contain AML 
code are disassembled back to ASL code. Tables that do not contain AML code are 
decoded and displayed with a description of each field within the table. Wildcards 
are supported. 

-da <f1 f2…> Disassemble All. Load all files into a single common namespace, then disassemble 
each. Similar to –e option, but disassembles all of the input files. Convenient for 
disassembling all AML files for a given machine (DSDT plus all SSDTs.) 

-db During disassembly, do not disassemble ResourceTemplates. Instead, leave them as 
disassembled Buffer objects (hex output). 

-dc <f1 f2…> Disassemble a binary AML file and immediately compile it. 

-df Force the disassembler to assume that the input table contains valid AML. Useful for 
tables that have a signature other than DSDT or SSDT 

-dl Emit legacy AML code only. No ASL+ symbolic operators and expressions will be 
emitted. 

-e <f1 f2…> Include these extra binary AML tables to assist with external symbol resolution. This 
option is very useful when attempting to disassemble a table that contains cross-table 
control method invocations. In these cases, it is difficult or impossible to properly 
disassemble the method invocation without having the definition of the method 
present (the important missing data is the number of arguments). Wildcards are 
supported. 

-fe <file> Import an external declaration file that defines the external control methods and their 
required argument counts. This assists the disassembler in producing correct ASL 
code. This is a workaround for a limitation of AML code where the disassembler 
often cannot determine the number of arguments required for an external control 
method and generates incorrect ASL code. Can be used in conjunction with the –e 
option. 

-in Ignore NoOp opcodes (0xA3) within the AML code being disassembled. Often, the 
NoOp opcode is used as padding for packages that are changed dynamically by the 
BIOS. When disassembled and recompiled, these NoOps will cause syntax errors. 
This option causes the disassembler to ignore all NoOp opcodes. 

-l Disassemble to mixed ASL and corresponding AML. 

-vt Dump the full binary table data in hex format within the output file. 

6.3.13 Compiler Debug Options 
These options are typically only used to debug the compiler/disassembler itself. 
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-bc For code converter, create a debug file (*.cdb) 

-bf Generate a full debug output file with parser state tracing and parse tree dump. This 
option can create large amounts of data. (*.txt) 

-bs Generate a debug output file that includes only a parse tree dump (*.txt) 

-bp <depth> Prune <depth> levels from the ASL parse tree. Serious ASL debugging only, used to 
remove ASL code block in order to locate problem code. 

-bt<type> Object types to be removed from the ASL parse tree. Default is Device. 

-f Ignore errors, force creation of AML output file(s). Use this option with caution. 

-m <size> Set the initial internal line buffer size (in Kbytes). The buffer is automatically 
expanded as necessary, however. 

-n Only parse the ASL file, do not generate an AML output file. 

-oc Display compile times and miscellaneous statistics. 

-x<level> Set the ACPICA debug level for trace output. 

-z For Data Table compilation, do not insert the compiler ID, simply pass through the 
ID in the original Data Table source code. 

6.4 Compiler Output Examples 

6.4.1 Input ASL 
Example input ASL that is used for the output examples below. 

 
DefinitionBlock ("", "DSDT", 2, "Intel", "EXAMPLE", 1) 
{ 
    Name (BSTP, Package() {0,1,2,3}) 
 
    Method (_BST) 
    { 
        Store (BSTP, Debug) 
        Return (BSTP) 
    } 
} 
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6.4.2 Output of –tc (make C hex table) Option 
This is the output of the –tc option. The entire table is emitted in a single C array. 

 
/* 
 *  
 * Intel ACPI Component Architecture 
 * ASL Optimizing Compiler version 20100331 [Mar 31 2010] 
 * Copyright (c) 2000 - 2010 Intel Corporation 
 * Supports ACPI Specification Revision 4.0 
 *  
 * Compilation of "dsdt.asl" - Tue Apr 27 14:20:41 2010 
 *  
 * C source code output 
 * AML code block contains 0x45 bytes 
 * 
 */ 
unsigned char AmlCode[] = 
{ 
    0x44,0x53,0x44,0x54,0x45,0x00,0x00,0x00,  /* 00000000    "DSDTE..." */ 
    0x02,0xED,0x49,0x6E,0x74,0x65,0x6C,0x00,  /* 00000008    "..Intel." */ 
    0x45,0x58,0x41,0x4D,0x50,0x4C,0x45,0x00,  /* 00000010    "EXAMPLE." */ 
    0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C,  /* 00000018    "....INTL" */ 
    0x31,0x03,0x10,0x20,0x08,0x42,0x53,0x54,  /* 00000020    "1.. .BST" */ 
    0x50,0x12,0x08,0x04,0x00,0x01,0x0A,0x02,  /* 00000028    "P......." */ 
    0x0A,0x03,0x14,0x12,0x5F,0x42,0x53,0x54,  /* 00000030    "...._BST" */ 
    0x00,0x70,0x42,0x53,0x54,0x50,0x5B,0x31,  /* 00000038    ".pBSTP[1" */ 
    0xA4,0x42,0x53,0x54,0x50                  /* 00000040    ".BSTP"    */ 
}; 
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6.4.3 Output of –sc (make C source) Option 
This is the output of the –sc option. The table is emitted in multiple C arrays, approximatly one 
array per “block” of ASL code. For example, one array is emitted per control method. 

 
/* 
 *  
 * Intel ACPI Component Architecture 
 * ASL Optimizing Compiler version 20090730 [Aug 14 2009] 
 * Copyright (C) 2000 - 2009 Intel Corporation 
 * Supports ACPI Specification Revision 4.0 
 *  
 * Compilation of "dsdt.asl" - Fri Aug 14 14:59:46 2009 
 *  
 */ 
    /* 
     *       1.... 
     *       2....DefinitionBlock ("", "DSDT", 2, "Intel", "EXAMPLE", 1) 
     */ 
    unsigned char    DSDT_EXAMPLE_Header [] = 
    { 
        0x44,0x53,0x44,0x54,0x45,0x00,0x00,0x00, /* 00000000    "DSDTE..." */ 
        0x02,0xF1,0x49,0x6E,0x74,0x65,0x6C,0x00, /* 00000008    "..Intel." */ 
        0x45,0x58,0x41,0x4D,0x50,0x4C,0x45,0x00, /* 00000010    "EXAMPLE." */ 
        0x01,0x00,0x00,0x00,0x49,0x4E,0x54,0x4C, /* 00000018    "....INTL" */ 
        0x30,0x07,0x09,0x20,                     /* 0000001C    "0.. " */ 
    }; 
 
    /* 
     *       3....{ 
     *       4....    Name (BSTP, Package() {0,1,2,3}) 
     */ 
    unsigned char    DSDT_EXAMPLE_BSTP [] = 
    { 
        0x08,0x42,0x53,0x54,0x50,                /* 00000021    ".BSTP" */ 
        0x12,0x08,0x04,0x00,0x01,0x0A,0x02,0x0A, /* 00000029    "........" */ 
        0x03,                                    /* 0000002A    "." */ 
    }; 
 
    /* 
     *       5.... 
     *       6....    Method (_BST) 
     */ 
    unsigned char    DSDT_EXAMPLE__BST [] = 
    { 
        0x14,0x12,0x5F,0x42,0x53,0x54,0x00,      /* 00000031    ".._BST." */ 
 
    /* 
     *       7....    { 
     *       8....        Store (BSTP, Debug) 
     */ 
        0x70,0x42,0x53,0x54,0x50,0x5B,0x31,      /* 00000038    "pBSTP[1" */ 
 
    /* 
     *       9....        Return (BSTP) 
     */ 
        0xA4,0x42,0x53,0x54,0x50,                /* 0000003D    ".BSTP" */ 
    /* 
     *      10....    } 
     *      11....} 
     *      12.... 
     */ 
    }; 
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6.4.4 Output of –ic (make include file) Option 
This is the output of the –ic option. It creates external declarations for all of the arrays created by the 
–sc option above. 

 
/* 
 *  
 * Intel ACPI Component Architecture 
 * ASL Optimizing Compiler version 20090730 [Aug 14 2009] 
 * Copyright (C) 2000 - 2009 Intel Corporation 
 * Supports ACPI Specification Revision 4.0 
 *  
 * Compilation of "dsdt.asl" - Fri Aug 14 15:05:34 2009 
 *  
 */ 
extern unsigned char    DSDT_EXAMPLE_Header []; 
extern unsigned char    DSDT_EXAMPLE_BSTP []; 
extern unsigned char    DSDT_EXAMPLE__BST []; 
 

6.4.5 Output of –l (Listing) Option 
This is a standard listing file with intermixed ASL and AML code. 

 
 
Intel ACPI Component Architecture 
ASL Optimizing Compiler version 20090730 [Aug 14 2009] 
Copyright (C) 2000 - 2009 Intel Corporation 
Supports ACPI Specification Revision 4.0 
 
Compilation of "dsdt.asl" - Fri Aug 14 15:08:30 2009 
 
       1.... 
       2....DefinitionBlock ("", "DSDT", 2, "Intel", "EXAMPLE", 1) 
 
00000000....44 53 44 54 45 00 00 00     "DSDTE..." 
00000008....02 F1 49 6E 74 65 6C 00     "..Intel." 
00000010....45 58 41 4D 50 4C 45 00     "EXAMPLE." 
00000018....01 00 00 00 49 4E 54 4C     "....INTL" 
00000020....30 07 09 20 ............    "0.. " 
 
       3....{ 
       4....    Name (BSTP, Package() {0,1,2,3}) 
 
[****iasl****] 
dsdt.asl     4:     Name (BSTP, Package() {0,1,2,3}) 
Optimize 6033 -                            ^ Integer optimized to single-byte AML 
opcode (Zero) 
 
 [****iasl****] 
dsdt.asl     4:     Name (BSTP, Package() {0,1,2,3}) 
Optimize 6033 -                              ^ Integer optimized to single-byte AML 
opcode (One) 
 
00000024....08 42 53 54 50 .........    ".BSTP" 
00000029....12 08 04 00 01 0A 02 0A     "........" 
00000031....03 .....................    "." 
 
       5.... 
       6....    Method (_BST) 
 
00000032....14 12 5F 42 53 54 00 ...    ".._BST." 
 
       7....    { 
       8....        Store (BSTP, Debug) 
 
00000039....70 42 53 54 50 5B 31 ...    "pBSTP[1" 
 
       9....        Return (BSTP) 
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00000040....A4 42 53 54 50 .........    ".BSTP" 
      10....    } 
      11....} 
      12.... 
 
Summary of errors and warnings 
 
ASL Optimizing Compiler version 20090730 [Aug 14 2009] 
ASL Input:  dsdt.asl - 13 lines, 178 bytes, 4 keywords 
AML Output: dsdt.aml - 69 bytes, 2 named objects, 2 executable opcodes 
 
Compilation complete. 0 Errors, 0 Warnings, 0 Remarks, 2 Optimizations 
 
 

6.4.6 Output of –lm (Hardware Mapfile) Option 
 

Intel ACPI Component Architecture 
ASL Optimizing Compiler version 20140828-32 [Sep 19 2014] 
Copyright (c) 2000 - 2014 Intel Corporation 
 
Compilation of "dsdt.dsl" - Fri Sep 19 09:43:52 2014 
 
 
Resource Descriptor Connectivity Map 
------------------------------------ 
 
GPIO Controller:  INT33FC   \_SB.GPO0                     // Intel Baytrail GPIO Controller 
 
Pin   Type     Direction    Polarity    Dest _HID  Destination 
 
0000  GpioInt  -Interrupt-  ActiveBoth   INTCFD9   \_SB_. 
0000  GpioInt  -Interrupt-  ActiveBoth   INTCFD9   \_SB_.TBAD 
0001  GpioInt  -Interrupt-  ActiveBoth   INTCFD9   \_SB_.TBAD 
0002  GpioIo   OutputOnly                -Field-   \_SB_.GPO0.CCU2 
0003  GpioIo   OutputOnly                -Field-   \_SB_.GPO0.CCU3 
0026  GpioIo   InputOnly                80860F14   \_SB_.SDHC 
0026  GpioInt  -Interrupt-  ActiveBoth  80860F14   \_SB_.SDHC 
0028  GpioIo   OutputOnly               80860F14   \_SB_.SDHC 
0029  GpioIo   OutputOnly               80860F14   \_SB_.SDHC 
0036  GpioIo   OutputOnly               -No HID-   \_SB_.PCI0.OTG1  
0041  GpioIo   OutputOnly               10EC5640   \_SB_.I2C2.RTEK 
005F  GpioIo   OutputOnly                -Field-   \_SB_.GPO0.TCON 
0060  GpioInt  -Interrupt-  ActiveBoth   INTCFD9   \_SB_.TBAD 
0064  GpioIo   OutputOnly                MCD0001   \MDM_  
 
I2C  Controller:  80860F41  \_SB.I2C2                     // Intel Baytrail I2C Host Controller 
 
Type  Address   Speed      Dest _HID  Destination 
I2C    0010    00061A80     INT33BE   \_SB_.I2C2.CAM1               // Camera Sensor OV5693 
I2C    001C    00061A80    10EC5640   \_SB_.I2C2.RTEK               // Realtek I2S Audio Codec 
I2C    0048    00061A80     INT33F0   \_SB_.I2C2.CAMB               // Camera Sensor MT9M114 
 
SPI  Controller:  80860F0E  \_SB.SPI1                     // Intel SPI Controller 
 
Type  Address   Speed      Dest _HID  Destination 
SPI    0001    007A1200    AUTH2750   \_SB_.SPI1.FPNT               // AuthenTec AES2750 
 
UART Controller:  80860F0A  \_SB.URT1                     // Intel Atom UART Controller 
 
Type  Address   Speed      Dest _HID  Destination 
UART   0000    0001C200     UTK0001   \_SB_.URT1.UART              
UART   0000    0001C200    OBDA8723   \_SB_.URT1.BTH1              
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6.4.7 Output of –ln (Namespace Listing) Option 
This is a namespace listing file. 
 
Intel ACPI Component Architecture 
ASL Optimizing Compiler version 20090730 [Aug 14 2009] 
Copyright (C) 2000 - 2009 Intel Corporation 
Supports ACPI Specification Revision 4.0 
 
Compilation of "dsdt.asl" - Fri Aug 14 15:08:30 2009 
 
Contents of ACPI Namespace 
 
Count  Depth    Name - Type 
 
    1  [1]      _GPE - Scope 
    2  [1]      _PR_ - Scope 
    3  [1]      _SB_ - Device 
    4  [1]      _SI_ - Scope 
    5  [1]      _TZ_ - Thermal 
    6  [1]      _REV - Integer 
    7  [1]      _OS_ - String 
    8  [1]      _GL_ - Mutex 
    9  [1]      _OSI - Method 
   10  [1]      BSTP - Package       [Initial Length  0x04 elements] 
   11  [1]      _BST - Method        [Code Length     0x0011 bytes] 
 
Namespace pathnames 
 
\_GPE 
\_PR_ 
\_SB_ 
\_SI_ 
\_TZ_ 
\_REV 
\_OS_ 
\_GL_ 
\_OSI 
\BSTP 
\_BST 
 

6.5 Using the Disassembler 

6.5.1 Resolving External Control Methods 
Once compiled, AML code does not contain specific information for the number of arguments that a 
control method requires. This limitation means that the disassembler often cannot determine the 
number of arguments to parse for externally-defined control methods. The end result of this can be 
incorrectly generated ASL code that will not compile. 

The iASL disassembler provides two mechanisms to workaround this problem: 

1) The –e option allows additional AML tables (typically SSDTs) to be specified in order to 
resolve control methods. 

2) The –fe option allows an external declaration file to be imported into the disassembly. This file 
contains the definitions (with argument counts) for the external control methods. 

In the example that follows, we show the disassembly of a DSDT that has an associated SSDT. The 
original ASL code is shown below: 
 
 
DefinitionBlock ("dsdt.aml", "DSDT", 2, "Intel", "Template", 0x00000001) 
{ 
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    External (EXTS, MethodObj) 
    External (MTH1, MethodObj) 
 
    Method (MAIN, 0, NotSerialized) 
    { 
        MTH1 (1, 2, 3, 4) 
        EXTS (1, 2, 3) 
        Return (Zero) 
    } 
} 

 
DefinitionBlock ("ssdt.aml", "SSDT", 2, "Intel", "Template", 0x00000001) 
{ 
    Method (EXTS, 3, NotSerialized) 
    { 
        Return (Zero) 
    } 
} 
 

Note that the DSDT invokes two external control methods. MTH1 has 4 arguments and EXTS has 3 
arguments. EXTS is defined in the SSDT, but we don’t know where MTH1 is defined. 
 

6.5.1.1 Standard Disassembly 
In this example, we attempt a simple disassembly of the DSDT. Note that the disassembler cannot 
resolve the MTH1 and EXTS methods correctly and issues a warning. 
 
 
 iasl -d dsdt.aml 

 
 
DefinitionBlock ("dsdt.aml", "DSDT", 2, "Intel", "Template", 0x00000001) 
{ 
    /* 
     * iASL Warning: There were 2 external control methods found during 
     * disassembly, but additional ACPI tables to resolve these externals 
     * were not specified. This resulting disassembler output file may not 
     * compile because the disassembler did not know how many arguments 
     * to assign to these methods. To specify the tables needed to resolve 
     * external control method references, use the one of the following 
     * example iASL invocations: 
     *     iasl -e <ssdt1.aml ssdt2.aml...> -d <dsdt.aml> 
     *     iasl -e <dsdt.aml ssdt2.aml...> -d <ssdt1.aml> 
     */ 
    External (EXTS, MethodObj)    // Warning: Unresolved Method, guessing 3 
arguments (may be incorrect, see warning above) 
    External (MTH1, MethodObj)    // Warning: Unresolved Method, guessing 7 
arguments (may be incorrect, see warning above) 
 
 
    Method (MAIN, 0, NotSerialized) 
    { 
        MTH1 (One, 0x02, 0x03, 0x04, EXTS (One, 0x02, 0x03), Return ( 
            Zero)) 
    } 
} 

Both the invocation of MTH1 and EXTS have been disassembled incorrectly, because the 
disassembler does not know the proper number of arguments to parse for either one. 
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6.5.1.2 Disassembly with –e option 
In this example, we attempt to use the –e option to include the SSDT AML file into the disassembly.  
The disassembler finds the method EXTS and disassembles it correctly. However, the MTH1 
method is still unresolved and is not disassembled correctly. An appropriate warning is issued. 
 
 
 iasl –e ssdt.aml-d dsdt.aml 

 
 
DefinitionBlock ("dsdt.aml", "DSDT", 2, "Intel", "Template", 0x00000001) 
{ 
    /* 
     * iASL Warning: There were 2 external control methods found during 
     * disassembly, but only 1 was resolved (1 unresolved). Additional 
     * ACPI tables are required to properly disassemble the code. This 
     * resulting disassembler output file may not compile because the 
     * disassembler did not know how many arguments to assign to the 
     * unresolved methods. 
     */ 
    External (MTH1, MethodObj)    // Warning: Unresolved Method, guessing 5 
arguments (may be incorrect, see warning above) 
 
    External (EXTS, MethodObj)    // 3 Arguments 
 
    Method (MAIN, 0, NotSerialized) 
    { 
        MTH1 (One, 0x02, 0x03, 0x04, EXTS (One, 0x02, 0x03)) 
        Return (Zero) 
    } 
} 

The number of arguments for method MTH1 is still incorrect as it was not found in the SSDT. 
 

6.5.1.3 Disassembly with both –e and –fe options 
In this example, we will attempt to use the –fe option to fully resolve all external control methods. 
First, we create a file named “external.asl” that contains a single line as below: 
 
    External (MTH1, MethodObj, 4) 

Note: To generate this file, simply copy the list of unresolved externals from the disassembler 
output, and add the number of arguments to the end of the External() statement for each method. 

Now, we will invoke the disassembler using the –fe option and specifying “external.asl” as the 
external declaration import file: 
 
 
 iasl –e ssdt.aml –fe external.asl -d dsdt.aml 

 

Note that now, all control methods have been resolved and the correct number of arguments for each 
are known. The DSDT is now disassembled correctly back to the original ASL code: 
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DefinitionBlock ("dsdt.aml", "DSDT", 2, "Intel", "Template", 0x00000001) 
{ 
    /* 
     * External declarations that were imported from 
     * the reference file [externals.asl] 
     */ 
    External (MTH1, MethodObj)    // 4 Arguments 
 
    External (EXTS, MethodObj)    // 3 Arguments 
 
    Method (MAIN, 0, NotSerialized) 
    { 
        MTH1 (One, 0x02, 0x03, 0x04) 
        EXTS (One, 0x02, 0x03) 
        Return (Zero) 
    } 
} 
 
 
 

 
 
 

6.6 Integration Into MS VC++ Environment 
This section contains instructions for integrating the iASL compiler into MS VC++ 6.0 development 
environment. 

6.6.1 Integration as a Custom Tool 
This procedure adds the iASL compiler as a custom tool that can be used to compile ASL source 
files. The output is sent to the VC output window. 

a) Select Tools->Customize. 

b) Select the "Tools" tab. 

c) Scroll down to the bottom of the "Menu Contents" window. There you will see an empty 
rectangle. Click in the rectangle to enter a name for this tool. 

d) Type "iASL Compiler" in the box and hit enter. You can now edit the other fields for this new 
custom tool. 

e) Enter the following into the fields: 

   Command:  C:\Acpi\iasl.exe 

   Arguments:            -e "$(FilePath)" 

   Initial Directory:     "$(FileDir)" 

   Use Output Window:     <Check this option> 

 

   "Command" must be the path to wherever you copied the compiler. 

   "-e" instructs the compiler to produce messages appropriate for VC. 
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   Quotes around FilePath and FileDir enable spaces in filenames. 

f) Select "Close". 

These steps will add the compiler to the tools menu as a custom tool. By enabling "Use Output 
Window", you can click on error messages in the output window and the source file and source line 
will be automatically displayed by VC. Also, you can use F4 to step through the messages and the 
corresponding source line(s). 

6.6.2 Integration into a Project Build 
The compiler can be integrated into a project build by using it in the “custom build” step of the 
project generation. The commands and arguments should be similar to those described above. 
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7 Generating iASL from Source Code 
Generation of the ASL compiler from source code requires these items: 

7.1 Required Tools 
The flex (or Lex) lexical analyzer generator 

The Bison (Yacc replacement)  (or Yacc itself) parser generator 

An ANSI C compiler 

7.2 Required Source Code 
There are three major source code components that are required to generate the compiler 

The iASL compiler source  

The ACPICA Subsystem source. In particular, the Namespace Manager component is used to create 
an internal ACPI namespace and symbol table.), and the AML Interpreter is used to evaluate 
constant expressions. 

The Common source for all ACPI components 

 

ACPICA and iASL source code is available at https://www.acpica.org/downloads/ 

iASL Windows binary is available at https://www.acpica.org/downloads/binary_tools.php 

 

The source files appear in these directories by default: 

Compiler Source:     Acpica/Source/Compiler 

Common Source:     Acpica/Source//Common 

Subsystem Source:     Acpica/Source/Components/ 

 

 

 

https://www.acpica.org/downloads/
https://www.acpica.org/downloads/binary_tools.php
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