/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include "apu.h" #include "apr_private.h" #include "apr_pools.h" #include "apr_dso.h" #include "apr_strings.h" #include "apr_hash.h" #include "apr_thread_mutex.h" #include "apr_lib.h" #if APU_HAVE_CRYPTO #include "apu_internal.h" #include "apr_crypto_internal.h" #include "apr_crypto.h" #include "apr_version.h" static apr_hash_t *drivers = NULL; #define ERROR_SIZE 1024 APR_TYPEDEF_STRUCT(apr_crypto_t, apr_pool_t *pool; apr_crypto_driver_t *provider; ) APR_TYPEDEF_STRUCT(apr_crypto_key_t, apr_pool_t *pool; apr_crypto_driver_t *provider; const apr_crypto_t *f; ) APR_TYPEDEF_STRUCT(apr_crypto_block_t, apr_pool_t *pool; apr_crypto_driver_t *provider; const apr_crypto_t *f; ) APR_TYPEDEF_STRUCT(apr_crypto_digest_t, apr_pool_t *pool; apr_crypto_driver_t *provider; const apr_crypto_t *f; ) typedef struct apr_crypto_clear_t { void *buffer; apr_size_t size; } apr_crypto_clear_t; #if !APR_HAVE_MODULAR_DSO #define DRIVER_LOAD(name,driver_name,pool,params,rv,result) \ { \ extern const apr_crypto_driver_t driver_name; \ apr_hash_set(drivers,name,APR_HASH_KEY_STRING,&driver_name); \ if (driver_name.init) { \ rv = driver_name.init(pool, params, result); \ } \ *driver = &driver_name; \ } #endif static apr_status_t apr_crypto_term(void *ptr) { /* set drivers to NULL so init can work again */ drivers = NULL; /* Everything else we need is handled by cleanups registered * when we created mutexes and loaded DSOs */ return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_crypto_init(apr_pool_t *pool) { apr_pool_t *rootp; if (drivers != NULL) { return APR_SUCCESS; } /* Top level pool scope, for drivers' process-scope lifetime */ rootp = pool; for (;;) { apr_pool_t *p = apr_pool_parent_get(rootp); if (!p || p == rootp) { break; } rootp = p; } #if APR_HAVE_MODULAR_DSO /* deprecate in 2.0 - permit implicit initialization */ apu_dso_init(rootp); #endif drivers = apr_hash_make(rootp); apr_pool_cleanup_register(rootp, NULL, apr_crypto_term, apr_pool_cleanup_null); return APR_SUCCESS; } static apr_status_t crypto_clear(void *ptr) { apr_crypto_clear_t *clear = (apr_crypto_clear_t *)ptr; apr_memzero_explicit(clear->buffer, clear->size); clear->buffer = NULL; clear->size = 0; return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_crypto_clear(apr_pool_t *pool, void *buffer, apr_size_t size) { apr_crypto_clear_t *clear = apr_palloc(pool, sizeof(apr_crypto_clear_t)); clear->buffer = buffer; clear->size = size; apr_pool_cleanup_register(pool, clear, crypto_clear, apr_pool_cleanup_null); return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_crypto_memzero(void *buffer, apr_size_t size) { return apr_memzero_explicit(buffer, size); } APR_DECLARE(int) apr_crypto_equals(const void *buf1, const void *buf2, apr_size_t size) { const unsigned char *p1 = buf1; const unsigned char *p2 = buf2; unsigned char diff = 0; apr_size_t i; for (i = 0; i < size; ++i) { diff |= p1[i] ^ p2[i]; } return 1 & ((diff - 1) >> 8); } APR_DECLARE(apr_crypto_key_rec_t *) apr_crypto_key_rec_make( apr_crypto_key_type ktype, apr_pool_t *p) { apr_crypto_key_rec_t *key = apr_pcalloc(p, sizeof(apr_crypto_key_rec_t)); key->ktype = ktype; return key; } APR_DECLARE(apr_crypto_digest_rec_t *) apr_crypto_digest_rec_make( apr_crypto_digest_type_e dtype, apr_pool_t *p) { apr_crypto_digest_rec_t *rec = apr_pcalloc(p, sizeof(apr_crypto_digest_rec_t)); if (rec) { rec->dtype = dtype; } return rec; } APR_DECLARE(apr_status_t) apr_crypto_get_driver( const apr_crypto_driver_t **driver, const char *name, const char *params, const apu_err_t **result, apr_pool_t *pool) { #if APR_HAVE_MODULAR_DSO char modname[32]; char symname[34]; apr_dso_handle_t *dso; apr_dso_handle_sym_t symbol; #endif apr_pool_t *rootp; apr_status_t rv; if (result) { *result = NULL; /* until further notice */ } #if APR_HAVE_MODULAR_DSO rv = apu_dso_mutex_lock(); if (rv) { return rv; } #endif *driver = apr_hash_get(drivers, name, APR_HASH_KEY_STRING); if (*driver) { #if APR_HAVE_MODULAR_DSO apu_dso_mutex_unlock(); #endif return APR_SUCCESS; } /* The driver must have exactly the same lifetime as the * drivers hash table; ignore the passed-in pool */ rootp = apr_hash_pool_get(drivers); #if APR_HAVE_MODULAR_DSO #if defined(NETWARE) apr_snprintf(modname, sizeof(modname), "crypto%s.nlm", name); #elif defined(WIN32) || defined(__CYGWIN__) apr_snprintf(modname, sizeof(modname), "apr_crypto_%s-" APR_STRINGIFY(APR_MAJOR_VERSION) ".dll", name); #else apr_snprintf(modname, sizeof(modname), "apr_crypto_%s-" APR_STRINGIFY(APR_MAJOR_VERSION) ".so", name); #endif apr_snprintf(symname, sizeof(symname), "apr_crypto_%s_driver", name); rv = apu_dso_load(&dso, &symbol, modname, symname, rootp); if (rv == APR_SUCCESS || rv == APR_EINIT) { /* previously loaded?!? */ apr_crypto_driver_t *d = symbol; rv = APR_SUCCESS; if (d->init) { rv = d->init(rootp, params, result); if (rv == APR_EREINIT) { rv = APR_SUCCESS; } } if (rv == APR_SUCCESS) { apr_hash_set(drivers, d->name, APR_HASH_KEY_STRING, d); *driver = d; } } apu_dso_mutex_unlock(); if (APR_SUCCESS != rv && result && !*result) { char *buffer = apr_pcalloc(pool, ERROR_SIZE); apu_err_t *err = apr_pcalloc(pool, sizeof(apu_err_t)); if (err && buffer) { apr_dso_error(dso, buffer, ERROR_SIZE - 1); err->msg = buffer; err->reason = apr_pstrdup(pool, modname); *result = err; } } #else /* not builtin and !APR_HAS_DSO => not implemented */ rv = APR_ENOTIMPL; pool = rootp; /* global lifetime (aligned to hash table) */ /* Load statically-linked drivers: */ #if APU_HAVE_OPENSSL if (!strcmp(name, "openssl")) { DRIVER_LOAD("openssl", apr_crypto_openssl_driver, pool, params, rv, result); } else #endif #if APU_HAVE_NSS if (!strcmp(name, "nss")) { DRIVER_LOAD("nss", apr_crypto_nss_driver, pool, params, rv, result); } else #endif #if APU_HAVE_COMMONCRYPTO if (!strcmp(name, "commoncrypto")) { DRIVER_LOAD("commoncrypto", apr_crypto_commoncrypto_driver, pool, params, rv, result); } else #endif #if APU_HAVE_MSCAPI if (!strcmp(name, "mscapi")) { DRIVER_LOAD("mscapi", apr_crypto_mscapi_driver, pool, params, rv, result); } else #endif #if APU_HAVE_MSCNG if (!strcmp(name, "mscng")) { DRIVER_LOAD("mscng", apr_crypto_mscng_driver, pool, params, rv, result); } else #endif ; #endif /* !APR_HAVE_MODULAR_DSO */ return rv; } struct crypto_lib { const char *name; apr_pool_t *pool; apr_status_t (*term)(void); struct crypto_lib *next; }; static apr_hash_t *active_libs = NULL; static struct crypto_lib *spare_libs = NULL; static apr_status_t crypto_libs_cleanup(void *nil) { active_libs = NULL; spare_libs = NULL; return APR_SUCCESS; } static void spare_lib_push(struct crypto_lib *lib) { lib->name = NULL; lib->pool = NULL; lib->term = NULL; lib->next = spare_libs; spare_libs = lib; } static struct crypto_lib *spare_lib_pop(void) { struct crypto_lib *lib; lib = spare_libs; if (lib) { spare_libs = lib->next; lib->next = NULL; } return lib; } static apr_status_t crypto_lib_free(struct crypto_lib *lib) { apr_status_t rv; apr_hash_set(active_libs, lib->name, APR_HASH_KEY_STRING, NULL); rv = lib->term(); spare_lib_push(lib); return rv; } static apr_status_t crypto_lib_cleanup(void *arg) { crypto_lib_free(arg); return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_crypto_lib_version(const char *name, const char **version) { apr_status_t rv = APR_ENOTIMPL; return rv; } APR_DECLARE(apr_status_t) apr_crypto_lib_init(const char *name, const char *params, const apu_err_t **result, apr_pool_t *pool) { apr_status_t rv; apr_pool_t *rootp; struct crypto_lib *lib; if (!name) { return APR_EINVAL; } if (apr_crypto_lib_is_active(name)) { return APR_EREINIT; } rootp = pool; for (;;) { apr_pool_t *p = apr_pool_parent_get(rootp); if (!p || p == rootp) { break; } rootp = p; } if (!active_libs) { active_libs = apr_hash_make(rootp); if (!active_libs) { return APR_ENOMEM; } apr_pool_cleanup_register(rootp, NULL, crypto_libs_cleanup, apr_pool_cleanup_null); } lib = spare_lib_pop(); if (!lib) { lib = apr_pcalloc(rootp, sizeof(*lib)); if (!lib) { return APR_ENOMEM; } } rv = APR_ENOTIMPL; ; if (rv == APR_SUCCESS) { lib->pool = pool; apr_hash_set(active_libs, lib->name, APR_HASH_KEY_STRING, lib); if (apr_pool_parent_get(pool)) { apr_pool_cleanup_register(pool, lib, crypto_lib_cleanup, apr_pool_cleanup_null); } } else { spare_lib_push(lib); } return rv; } static apr_status_t crypto_lib_term(const char *name) { apr_status_t rv; struct crypto_lib *lib; lib = apr_hash_get(active_libs, name, APR_HASH_KEY_STRING); if (!lib) { return APR_EINIT; } if (!apr_pool_parent_get(lib->pool)) { return APR_EBUSY; } rv = APR_ENOTIMPL; ; if (rv == APR_SUCCESS) { apr_pool_cleanup_kill(lib->pool, lib, crypto_lib_cleanup); rv = crypto_lib_free(lib); } return rv; } APR_DECLARE(apr_status_t) apr_crypto_lib_term(const char *name) { if (!active_libs) { return APR_EINIT; } if (!name) { apr_status_t rv = APR_SUCCESS; apr_hash_index_t *hi = apr_hash_first(NULL, active_libs); for (; hi; hi = apr_hash_next(hi)) { apr_status_t rt = crypto_lib_term(apr_hash_this_key(hi)); if (rt != APR_SUCCESS && (rv == APR_SUCCESS || rv == APR_EBUSY)) { rv = rt; } } return rv; } return crypto_lib_term(name); } APR_DECLARE(int) apr_crypto_lib_is_active(const char *name) { return active_libs && apr_hash_get(active_libs, name, APR_HASH_KEY_STRING); } /** * @brief Return the name of the driver. * * @param driver - The driver in use. * @return The name of the driver. */ APR_DECLARE(const char *)apr_crypto_driver_name( const apr_crypto_driver_t *driver) { return driver->name; } /** * @brief Get the result of the last operation on a context. If the result * is NULL, the operation was successful. * @param result - the result structure * @param f - context pointer * @return APR_SUCCESS for success */ APR_DECLARE(apr_status_t) apr_crypto_error(const apu_err_t **result, const apr_crypto_t *f) { return f->provider->error(result, f); } /** * @brief Create a context for supporting encryption. Keys, certificates, * algorithms and other parameters will be set per context. More than * one context can be created at one time. A cleanup will be automatically * registered with the given pool to guarantee a graceful shutdown. * @param f - context pointer will be written here * @param driver - driver to use * @param params - array of key parameters * @param pool - process pool * @return APR_ENOENGINE when the engine specified does not exist. APR_EINITENGINE * if the engine cannot be initialised. * @remarks NSS: currently no params are supported. * @remarks OpenSSL: the params can have "engine" as a key, followed by an equal * sign and a value. */ APR_DECLARE(apr_status_t) apr_crypto_make(apr_crypto_t **f, const apr_crypto_driver_t *driver, const char *params, apr_pool_t *pool) { return driver->make(f, driver, params, pool); } /** * @brief Get a hash table of digests, keyed by the name of the digest against * a pointer to apr_crypto_digest_t, which in turn begins with an * integer. * * @param digests - hashtable of digests keyed to constants. * @param f - encryption context * @return APR_SUCCESS for success */ APR_DECLARE(apr_status_t) apr_crypto_get_block_key_digests(apr_hash_t **digests, const apr_crypto_t *f) { return f->provider->get_block_key_digests(digests, f); } /** * @brief Get a hash table of key types, keyed by the name of the type against * a pointer to apr_crypto_block_key_type_t, which in turn begins with an * integer. * * @param types - hashtable of key types keyed to constants. * @param f - encryption context * @return APR_SUCCESS for success */ APR_DECLARE(apr_status_t) apr_crypto_get_block_key_types(apr_hash_t **types, const apr_crypto_t *f) { return f->provider->get_block_key_types(types, f); } /** * @brief Get a hash table of key modes, keyed by the name of the mode against * a pointer to apr_crypto_block_key_mode_t, which in turn begins with an * integer. * * @param modes - hashtable of key modes keyed to constants. * @param f - encryption context * @return APR_SUCCESS for success */ APR_DECLARE(apr_status_t) apr_crypto_get_block_key_modes(apr_hash_t **modes, const apr_crypto_t *f) { return f->provider->get_block_key_modes(modes, f); } /** * @brief Create a key from the provided secret or passphrase. The key is cleaned * up when the context is cleaned, and may be reused with multiple encryption * or decryption operations. * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If * *key is not NULL, *key must point at a previously created structure. * @param key The key returned, see note. * @param rec The key record, from which the key will be derived. * @param f The context to use. * @param p The pool to use. * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend * error occurred while generating the key. APR_ENOCIPHER if the type or mode * is not supported by the particular backend. APR_EKEYTYPE if the key type is * not known. APR_EPADDING if padding was requested but is not supported. * APR_ENOTIMPL if not implemented. */ APR_DECLARE(apr_status_t) apr_crypto_key(apr_crypto_key_t **key, const apr_crypto_key_rec_t *rec, const apr_crypto_t *f, apr_pool_t *p) { return f->provider->key(key, rec, f, p); } /** * @brief Create a key from the given passphrase. By default, the PBKDF2 * algorithm is used to generate the key from the passphrase. It is expected * that the same pass phrase will generate the same key, regardless of the * backend crypto platform used. The key is cleaned up when the context * is cleaned, and may be reused with multiple encryption or decryption * operations. * @note If *key is NULL, a apr_crypto_key_t will be created from a pool. If * *key is not NULL, *key must point at a previously created structure. * @param key The key returned, see note. * @param ivSize The size of the initialisation vector will be returned, based * on whether an IV is relevant for this type of crypto. * @param pass The passphrase to use. * @param passLen The passphrase length in bytes * @param salt The salt to use. * @param saltLen The salt length in bytes * @param type 3DES_192, AES_128, AES_192, AES_256. * @param mode Electronic Code Book / Cipher Block Chaining. * @param doPad Pad if necessary. * @param iterations Number of iterations to use in algorithm * @param f The context to use. * @param p The pool to use. * @return Returns APR_ENOKEY if the pass phrase is missing or empty, or if a backend * error occurred while generating the key. APR_ENOCIPHER if the type or mode * is not supported by the particular backend. APR_EKEYTYPE if the key type is * not known. APR_EPADDING if padding was requested but is not supported. * APR_ENOTIMPL if not implemented. */ APR_DECLARE(apr_status_t) apr_crypto_passphrase(apr_crypto_key_t **key, apr_size_t *ivSize, const char *pass, apr_size_t passLen, const unsigned char * salt, apr_size_t saltLen, const apr_crypto_block_key_type_e type, const apr_crypto_block_key_mode_e mode, const int doPad, const int iterations, const apr_crypto_t *f, apr_pool_t *p) { return f->provider->passphrase(key, ivSize, pass, passLen, salt, saltLen, type, mode, doPad, iterations, f, p); } /** * @brief Initialise a context for encrypting arbitrary data using the given key. * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If * *ctx is not NULL, *ctx must point at a previously created structure. * @param ctx The block context returned, see note. * @param iv Optional initialisation vector. If the buffer pointed to is NULL, * an IV will be created at random, in space allocated from the pool. * If the buffer pointed to is not NULL, the IV in the buffer will be * used. * @param key The key structure to use. * @param blockSize The block size of the cipher. * @param p The pool to use. * @return Returns APR_ENOIV if an initialisation vector is required but not specified. * Returns APR_EINIT if the backend failed to initialise the context. Returns * APR_ENOTIMPL if not implemented. */ APR_DECLARE(apr_status_t) apr_crypto_block_encrypt_init( apr_crypto_block_t **ctx, const unsigned char **iv, const apr_crypto_key_t *key, apr_size_t *blockSize, apr_pool_t *p) { return key->provider->block_encrypt_init(ctx, iv, key, blockSize, p); } /** * @brief Encrypt data provided by in, write it to out. * @note The number of bytes written will be written to outlen. If * out is NULL, outlen will contain the maximum size of the * buffer needed to hold the data, including any data * generated by apr_crypto_block_encrypt_finish below. If *out points * to NULL, a buffer sufficiently large will be created from * the pool provided. If *out points to a not-NULL value, this * value will be used as a buffer instead. * @param out Address of a buffer to which data will be written, * see note. * @param outlen Length of the output will be written here. * @param in Address of the buffer to read. * @param inlen Length of the buffer to read. * @param ctx The block context to use. * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if * not implemented. */ APR_DECLARE(apr_status_t) apr_crypto_block_encrypt(unsigned char **out, apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, apr_crypto_block_t *ctx) { return ctx->provider->block_encrypt(out, outlen, in, inlen, ctx); } /** * @brief Encrypt final data block, write it to out. * @note If necessary the final block will be written out after being * padded. Typically the final block will be written to the * same buffer used by apr_crypto_block_encrypt, offset by the * number of bytes returned as actually written by the * apr_crypto_block_encrypt() call. After this call, the context * is cleaned and can be reused by apr_crypto_block_encrypt_init(). * @param out Address of a buffer to which data will be written. This * buffer must already exist, and is usually the same * buffer used by apr_evp_crypt(). See note. * @param outlen Length of the output will be written here. * @param ctx The block context to use. * @return APR_ECRYPT if an error occurred. * @return APR_EPADDING if padding was enabled and the block was incorrectly * formatted. * @return APR_ENOTIMPL if not implemented. */ APR_DECLARE(apr_status_t) apr_crypto_block_encrypt_finish(unsigned char *out, apr_size_t *outlen, apr_crypto_block_t *ctx) { return ctx->provider->block_encrypt_finish(out, outlen, ctx); } /** * @brief Initialise a context for decrypting arbitrary data using the given key. * @note If *ctx is NULL, a apr_crypto_block_t will be created from a pool. If * *ctx is not NULL, *ctx must point at a previously created structure. * @param ctx The block context returned, see note. * @param blockSize The block size of the cipher. * @param iv Optional initialisation vector. * @param key The key structure to use. * @param p The pool to use. * @return Returns APR_ENOIV if an initialisation vector is required but not specified. * Returns APR_EINIT if the backend failed to initialise the context. Returns * APR_ENOTIMPL if not implemented. */ APR_DECLARE(apr_status_t) apr_crypto_block_decrypt_init( apr_crypto_block_t **ctx, apr_size_t *blockSize, const unsigned char *iv, const apr_crypto_key_t *key, apr_pool_t *p) { return key->provider->block_decrypt_init(ctx, blockSize, iv, key, p); } /** * @brief Decrypt data provided by in, write it to out. * @note The number of bytes written will be written to outlen. If * out is NULL, outlen will contain the maximum size of the * buffer needed to hold the data, including any data * generated by apr_crypto_block_decrypt_finish below. If *out points * to NULL, a buffer sufficiently large will be created from * the pool provided. If *out points to a not-NULL value, this * value will be used as a buffer instead. * @param out Address of a buffer to which data will be written, * see note. * @param outlen Length of the output will be written here. * @param in Address of the buffer to read. * @param inlen Length of the buffer to read. * @param ctx The block context to use. * @return APR_ECRYPT if an error occurred. Returns APR_ENOTIMPL if * not implemented. */ APR_DECLARE(apr_status_t) apr_crypto_block_decrypt(unsigned char **out, apr_size_t *outlen, const unsigned char *in, apr_size_t inlen, apr_crypto_block_t *ctx) { return ctx->provider->block_decrypt(out, outlen, in, inlen, ctx); } /** * @brief Decrypt final data block, write it to out. * @note If necessary the final block will be written out after being * padded. Typically the final block will be written to the * same buffer used by apr_crypto_block_decrypt, offset by the * number of bytes returned as actually written by the * apr_crypto_block_decrypt() call. After this call, the context * is cleaned and can be reused by apr_crypto_block_decrypt_init(). * @param out Address of a buffer to which data will be written. This * buffer must already exist, and is usually the same * buffer used by apr_evp_crypt(). See note. * @param outlen Length of the output will be written here. * @param ctx The block context to use. * @return APR_ECRYPT if an error occurred. * @return APR_EPADDING if padding was enabled and the block was incorrectly * formatted. * @return APR_ENOTIMPL if not implemented. */ APR_DECLARE(apr_status_t) apr_crypto_block_decrypt_finish(unsigned char *out, apr_size_t *outlen, apr_crypto_block_t *ctx) { return ctx->provider->block_decrypt_finish(out, outlen, ctx); } APR_DECLARE(apr_status_t) apr_crypto_digest_init(apr_crypto_digest_t **d, const apr_crypto_key_t *key, apr_crypto_digest_rec_t *rec, apr_pool_t *p) { return key->provider->digest_init(d, key, rec, p); } APR_DECLARE(apr_status_t) apr_crypto_digest_update(apr_crypto_digest_t *digest, const unsigned char *in, apr_size_t inlen) { return digest->provider->digest_update(digest, in, inlen); } APR_DECLARE(apr_status_t) apr_crypto_digest_final(apr_crypto_digest_t *digest) { return digest->provider->digest_final(digest); } APR_DECLARE(apr_status_t) apr_crypto_digest(const apr_crypto_key_t *key, apr_crypto_digest_rec_t *rec, const unsigned char *in, apr_size_t inlen, apr_pool_t *p) { return key->provider->digest(key, rec, in, inlen, p); } /** * @brief Clean encryption / decryption context. * @note After cleanup, a context is free to be reused if necessary. * @param ctx The block context to use. * @return Returns APR_ENOTIMPL if not supported. */ APR_DECLARE(apr_status_t) apr_crypto_block_cleanup(apr_crypto_block_t *ctx) { return ctx->provider->block_cleanup(ctx); } /** * @brief Clean sign / verify context. * @note After cleanup, a context is free to be reused if necessary. * @param ctx The digest context to use. * @return Returns APR_ENOTIMPL if not supported. */ APR_DECLARE(apr_status_t) apr_crypto_digest_cleanup(apr_crypto_digest_t *ctx) { return ctx->provider->digest_cleanup(ctx); } /** * @brief Clean encryption / decryption context. * @note After cleanup, a context is free to be reused if necessary. * @param f The context to use. * @return Returns APR_ENOTIMPL if not supported. */ APR_DECLARE(apr_status_t) apr_crypto_cleanup(apr_crypto_t *f) { return f->provider->cleanup(f); } /** * @brief Shutdown the crypto library. * @note After shutdown, it is expected that the init function can be called again. * @param driver - driver to use * @return Returns APR_ENOTIMPL if not supported. */ APR_DECLARE(apr_status_t) apr_crypto_shutdown(const apr_crypto_driver_t *driver) { return driver->shutdown(); } #endif /* APU_HAVE_CRYPTO */