/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * This is derived from material copyright RSA Data Security, Inc. * Their notice is reproduced below in its entirety. * * Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All * rights reserved. * * License to copy and use this software is granted provided that it * is identified as the "RSA Data Security, Inc. MD4 Message-Digest * Algorithm" in all material mentioning or referencing this software * or this function. * * License is also granted to make and use derivative works provided * that such works are identified as "derived from the RSA Data * Security, Inc. MD4 Message-Digest Algorithm" in all material * mentioning or referencing the derived work. * * RSA Data Security, Inc. makes no representations concerning either * the merchantability of this software or the suitability of this * software for any particular purpose. It is provided "as is" * without express or implied warranty of any kind. * * These notices must be retained in any copies of any part of this * documentation and/or software. */ #include "apr_strings.h" #include "apr_md4.h" #include "apr_lib.h" #if APR_HAVE_STRING_H #include #endif #if APR_HAVE_UNISTD_H #include #endif /* Constants for MD4Transform routine. */ #define S11 3 #define S12 7 #define S13 11 #define S14 19 #define S21 3 #define S22 5 #define S23 9 #define S24 13 #define S31 3 #define S32 9 #define S33 11 #define S34 15 static void MD4Transform(apr_uint32_t state[4], const unsigned char block[64]); static void Encode(unsigned char *output, const apr_uint32_t *input, unsigned int len); static void Decode(apr_uint32_t *output, const unsigned char *input, unsigned int len); static unsigned char PADDING[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; #if APR_CHARSET_EBCDIC static apr_xlate_t *xlate_ebcdic_to_ascii; /* used in apr_md4_encode() */ #endif /* F, G and I are basic MD4 functions. */ #define F(x, y, z) (((x) & (y)) | ((~x) & (z))) #define G(x, y, z) (((x) & (y)) | ((x) & (z)) | ((y) & (z))) #define H(x, y, z) ((x) ^ (y) ^ (z)) /* ROTATE_LEFT rotates x left n bits. */ #define ROTATE_LEFT(x, n) (((x) << (n)) | ((x) >> (32-(n)))) /* FF, GG and HH are transformations for rounds 1, 2 and 3 */ /* Rotation is separate from addition to prevent recomputation */ #define FF(a, b, c, d, x, s) { \ (a) += F ((b), (c), (d)) + (x); \ (a) = ROTATE_LEFT ((a), (s)); \ } #define GG(a, b, c, d, x, s) { \ (a) += G ((b), (c), (d)) + (x) + (apr_uint32_t)0x5a827999; \ (a) = ROTATE_LEFT ((a), (s)); \ } #define HH(a, b, c, d, x, s) { \ (a) += H ((b), (c), (d)) + (x) + (apr_uint32_t)0x6ed9eba1; \ (a) = ROTATE_LEFT ((a), (s)); \ } /* MD4 initialization. Begins an MD4 operation, writing a new context. */ APR_DECLARE(apr_status_t) apr_md4_init(apr_md4_ctx_t *context) { context->count[0] = context->count[1] = 0; /* Load magic initialization constants. */ context->state[0] = 0x67452301; context->state[1] = 0xefcdab89; context->state[2] = 0x98badcfe; context->state[3] = 0x10325476; #if APR_HAS_XLATE context->xlate = NULL; #endif return APR_SUCCESS; } #if APR_HAS_XLATE /* MD4 translation setup. Provides the APR translation handle * to be used for translating the content before calculating the * digest. */ APR_DECLARE(apr_status_t) apr_md4_set_xlate(apr_md4_ctx_t *context, apr_xlate_t *xlate) { apr_status_t rv; int is_sb; /* TODO: remove the single-byte-only restriction from this code */ rv = apr_xlate_sb_get(xlate, &is_sb); if (rv != APR_SUCCESS) { return rv; } if (!is_sb) { return APR_EINVAL; } context->xlate = xlate; return APR_SUCCESS; } #endif /* APR_HAS_XLATE */ /* MD4 block update operation. Continues an MD4 message-digest * operation, processing another message block, and updating the * context. */ APR_DECLARE(apr_status_t) apr_md4_update(apr_md4_ctx_t *context, const unsigned char *input, apr_size_t inputLen) { unsigned int i, idx, partLen; #if APR_HAS_XLATE apr_size_t inbytes_left, outbytes_left; #endif /* Compute number of bytes mod 64 */ idx = (unsigned int)((context->count[0] >> 3) & 0x3F); /* Update number of bits */ if ((context->count[0] += ((apr_uint32_t)inputLen << 3)) < ((apr_uint32_t)inputLen << 3)) context->count[1]++; context->count[1] += (apr_uint32_t)inputLen >> 29; partLen = 64 - idx; /* Transform as many times as possible. */ #if !APR_HAS_XLATE if (inputLen >= partLen) { memcpy(&context->buffer[idx], input, partLen); MD4Transform(context->state, context->buffer); for (i = partLen; i + 63 < inputLen; i += 64) MD4Transform(context->state, &input[i]); idx = 0; } else i = 0; /* Buffer remaining input */ memcpy(&context->buffer[idx], &input[i], inputLen - i); #else /*APR_HAS_XLATE*/ if (inputLen >= partLen) { if (context->xlate) { inbytes_left = outbytes_left = partLen; apr_xlate_conv_buffer(context->xlate, (const char *)input, &inbytes_left, (char *)&context->buffer[idx], &outbytes_left); } else { memcpy(&context->buffer[idx], input, partLen); } MD4Transform(context->state, context->buffer); for (i = partLen; i + 63 < inputLen; i += 64) { if (context->xlate) { unsigned char inp_tmp[64]; inbytes_left = outbytes_left = 64; apr_xlate_conv_buffer(context->xlate, (const char *)&input[i], &inbytes_left, (char *)inp_tmp, &outbytes_left); MD4Transform(context->state, inp_tmp); } else { MD4Transform(context->state, &input[i]); } } idx = 0; } else i = 0; /* Buffer remaining input */ if (context->xlate) { inbytes_left = outbytes_left = inputLen - i; apr_xlate_conv_buffer(context->xlate, (const char *)&input[i], &inbytes_left, (char *)&context->buffer[idx], &outbytes_left); } else { memcpy(&context->buffer[idx], &input[i], inputLen - i); } #endif /*APR_HAS_XLATE*/ return APR_SUCCESS; } /* MD4 finalization. Ends an MD4 message-digest operation, writing the * the message digest and zeroizing the context. */ APR_DECLARE(apr_status_t) apr_md4_final( unsigned char digest[APR_MD4_DIGESTSIZE], apr_md4_ctx_t *context) { unsigned char bits[8]; unsigned int idx, padLen; /* Save number of bits */ Encode(bits, context->count, 8); #if APR_HAS_XLATE /* apr_md4_update() should not translate for this final round. */ context->xlate = NULL; #endif /*APR_HAS_XLATE*/ /* Pad out to 56 mod 64. */ idx = (unsigned int) ((context->count[0] >> 3) & 0x3f); padLen = (idx < 56) ? (56 - idx) : (120 - idx); apr_md4_update(context, PADDING, padLen); /* Append length (before padding) */ apr_md4_update(context, bits, 8); /* Store state in digest */ Encode(digest, context->state, APR_MD4_DIGESTSIZE); /* Zeroize sensitive information. */ memset(context, 0, sizeof(*context)); return APR_SUCCESS; } /* MD4 computation in one step (init, update, final) */ APR_DECLARE(apr_status_t) apr_md4(unsigned char digest[APR_MD4_DIGESTSIZE], const unsigned char *input, apr_size_t inputLen) { apr_md4_ctx_t ctx; apr_status_t rv; apr_md4_init(&ctx); if ((rv = apr_md4_update(&ctx, input, inputLen)) != APR_SUCCESS) return rv; return apr_md4_final(digest, &ctx); } /* MD4 basic transformation. Transforms state based on block. */ static void MD4Transform(apr_uint32_t state[4], const unsigned char block[64]) { apr_uint32_t a = state[0], b = state[1], c = state[2], d = state[3], x[APR_MD4_DIGESTSIZE]; Decode(x, block, 64); /* Round 1 */ FF (a, b, c, d, x[ 0], S11); /* 1 */ FF (d, a, b, c, x[ 1], S12); /* 2 */ FF (c, d, a, b, x[ 2], S13); /* 3 */ FF (b, c, d, a, x[ 3], S14); /* 4 */ FF (a, b, c, d, x[ 4], S11); /* 5 */ FF (d, a, b, c, x[ 5], S12); /* 6 */ FF (c, d, a, b, x[ 6], S13); /* 7 */ FF (b, c, d, a, x[ 7], S14); /* 8 */ FF (a, b, c, d, x[ 8], S11); /* 9 */ FF (d, a, b, c, x[ 9], S12); /* 10 */ FF (c, d, a, b, x[10], S13); /* 11 */ FF (b, c, d, a, x[11], S14); /* 12 */ FF (a, b, c, d, x[12], S11); /* 13 */ FF (d, a, b, c, x[13], S12); /* 14 */ FF (c, d, a, b, x[14], S13); /* 15 */ FF (b, c, d, a, x[15], S14); /* 16 */ /* Round 2 */ GG (a, b, c, d, x[ 0], S21); /* 17 */ GG (d, a, b, c, x[ 4], S22); /* 18 */ GG (c, d, a, b, x[ 8], S23); /* 19 */ GG (b, c, d, a, x[12], S24); /* 20 */ GG (a, b, c, d, x[ 1], S21); /* 21 */ GG (d, a, b, c, x[ 5], S22); /* 22 */ GG (c, d, a, b, x[ 9], S23); /* 23 */ GG (b, c, d, a, x[13], S24); /* 24 */ GG (a, b, c, d, x[ 2], S21); /* 25 */ GG (d, a, b, c, x[ 6], S22); /* 26 */ GG (c, d, a, b, x[10], S23); /* 27 */ GG (b, c, d, a, x[14], S24); /* 28 */ GG (a, b, c, d, x[ 3], S21); /* 29 */ GG (d, a, b, c, x[ 7], S22); /* 30 */ GG (c, d, a, b, x[11], S23); /* 31 */ GG (b, c, d, a, x[15], S24); /* 32 */ /* Round 3 */ HH (a, b, c, d, x[ 0], S31); /* 33 */ HH (d, a, b, c, x[ 8], S32); /* 34 */ HH (c, d, a, b, x[ 4], S33); /* 35 */ HH (b, c, d, a, x[12], S34); /* 36 */ HH (a, b, c, d, x[ 2], S31); /* 37 */ HH (d, a, b, c, x[10], S32); /* 38 */ HH (c, d, a, b, x[ 6], S33); /* 39 */ HH (b, c, d, a, x[14], S34); /* 40 */ HH (a, b, c, d, x[ 1], S31); /* 41 */ HH (d, a, b, c, x[ 9], S32); /* 42 */ HH (c, d, a, b, x[ 5], S33); /* 43 */ HH (b, c, d, a, x[13], S34); /* 44 */ HH (a, b, c, d, x[ 3], S31); /* 45 */ HH (d, a, b, c, x[11], S32); /* 46 */ HH (c, d, a, b, x[ 7], S33); /* 47 */ HH (b, c, d, a, x[15], S34); /* 48 */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; /* Zeroize sensitive information. */ apr_memzero_explicit(x, sizeof(x)); } /* Encodes input (apr_uint32_t) into output (unsigned char). Assumes len is * a multiple of 4. */ static void Encode(unsigned char *output, const apr_uint32_t *input, unsigned int len) { unsigned int i, j; apr_uint32_t k; for (i = 0, j = 0; j < len; i++, j += 4) { k = input[i]; output[j] = (unsigned char)(k & 0xff); output[j + 1] = (unsigned char)((k >> 8) & 0xff); output[j + 2] = (unsigned char)((k >> 16) & 0xff); output[j + 3] = (unsigned char)((k >> 24) & 0xff); } } /* Decodes input (unsigned char) into output (apr_uint32_t). Assumes len is * a multiple of 4. */ static void Decode(apr_uint32_t *output, const unsigned char *input, unsigned int len) { unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) output[i] = ((apr_uint32_t)input[j]) | (((apr_uint32_t)input[j + 1]) << 8) | (((apr_uint32_t)input[j + 2]) << 16) | (((apr_uint32_t)input[j + 3]) << 24); } #if APR_CHARSET_EBCDIC APR_DECLARE(apr_status_t) apr_MD4InitEBCDIC(apr_xlate_t *xlate) { xlate_ebcdic_to_ascii = xlate; return APR_SUCCESS; } #endif