/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * FILE: sha2.c * AUTHOR: Aaron D. Gifford * * A licence was granted to the ASF by Aaron on 4 November 2003. */ #include /* memcpy()/memset() or bcopy()/bzero() */ #include /* assert() */ #include "sha2.h" /* * ASSERT NOTE: * Some sanity checking code is included using assert(). On my FreeBSD * system, this additional code can be removed by compiling with NDEBUG * defined. Check your own systems manpage on assert() to see how to * compile WITHOUT the sanity checking code on your system. * * UNROLLED TRANSFORM LOOP NOTE: * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform * loop version for the hash transform rounds (defined using macros * later in this file). Either define on the command line, for example: * * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c * * or define below: * * #define SHA2_UNROLL_TRANSFORM * */ /*** SHA-256/384/512 Machine Architecture Definitions *****************/ typedef apr_byte_t sha2_byte; /* Exactly 1 byte */ typedef apr_uint32_t sha2_word32; /* Exactly 4 bytes */ typedef apr_uint64_t sha2_word64; /* Exactly 8 bytes */ /*** SHA-256/384/512 Various Length Definitions ***********************/ /* NOTE: Most of these are in sha2.h */ #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) /*** ENDIAN REVERSAL MACROS *******************************************/ #if !APR_IS_BIGENDIAN #define REVERSE32(w,x) { \ sha2_word32 tmp = (w); \ tmp = (tmp >> 16) | (tmp << 16); \ (x) = ((tmp & 0xff00ff00UL) >> 8) | ((tmp & 0x00ff00ffUL) << 8); \ } #define REVERSE64(w,x) { \ sha2_word64 tmp = (w); \ tmp = (tmp >> 32) | (tmp << 32); \ tmp = ((tmp & APR_UINT64_C(0xff00ff00ff00ff00)) >> 8) | \ ((tmp & APR_UINT64_C(0x00ff00ff00ff00ff)) << 8); \ (x) = ((tmp & APR_UINT64_C(0xffff0000ffff0000)) >> 16) | \ ((tmp & APR_UINT64_C(0x0000ffff0000ffff)) << 16); \ } #endif /* !APR_IS_BIGENDIAN */ /* * Macro for incrementally adding the unsigned 64-bit integer n to the * unsigned 128-bit integer (represented using a two-element array of * 64-bit words): */ #define ADDINC128(w,n) { \ (w)[0] += (sha2_word64)(n); \ if ((w)[0] < (n)) { \ (w)[1]++; \ } \ } /* * Macros for copying blocks of memory and for zeroing out ranges * of memory. Using these macros makes it easy to switch from * using memset()/memcpy() and using bzero()/bcopy(). * * Please define either SHA2_USE_MEMSET_MEMCPY or define * SHA2_USE_BZERO_BCOPY depending on which function set you * choose to use: */ #if !defined(SHA2_USE_MEMSET_MEMCPY) && !defined(SHA2_USE_BZERO_BCOPY) /* Default to memset()/memcpy() if no option is specified */ #define SHA2_USE_MEMSET_MEMCPY 1 #endif #if defined(SHA2_USE_MEMSET_MEMCPY) && defined(SHA2_USE_BZERO_BCOPY) /* Abort with an error if BOTH options are defined */ #error Define either SHA2_USE_MEMSET_MEMCPY or SHA2_USE_BZERO_BCOPY, not both! #endif #ifdef SHA2_USE_MEMSET_MEMCPY #define MEMSET_BZERO(p,l) memset((p), 0, (l)) #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) #endif #ifdef SHA2_USE_BZERO_BCOPY #define MEMSET_BZERO(p,l) bzero((p), (l)) #define MEMCPY_BCOPY(d,s,l) bcopy((s), (d), (l)) #endif /*** THE SIX LOGICAL FUNCTIONS ****************************************/ /* * Bit shifting and rotation (used by the six SHA-XYZ logical functions: * * NOTE: The naming of R and S appears backwards here (R is a SHIFT and * S is a ROTATION) because the SHA-256/384/512 description document * (see http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf) uses this * same "backwards" definition. */ /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ #define R(b,x) ((x) >> (b)) /* 32-bit Rotate-right (used in SHA-256): */ #define S32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ #define S64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) /* Two of six logical functions used in SHA-256, SHA-384, and SHA-512: */ #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) /* Four of six logical functions used in SHA-256: */ #define Sigma0_256(x) (S32(2, (x)) ^ S32(13, (x)) ^ S32(22, (x))) #define Sigma1_256(x) (S32(6, (x)) ^ S32(11, (x)) ^ S32(25, (x))) #define sigma0_256(x) (S32(7, (x)) ^ S32(18, (x)) ^ R(3 , (x))) #define sigma1_256(x) (S32(17, (x)) ^ S32(19, (x)) ^ R(10, (x))) /* Four of six logical functions used in SHA-384 and SHA-512: */ #define Sigma0_512(x) (S64(28, (x)) ^ S64(34, (x)) ^ S64(39, (x))) #define Sigma1_512(x) (S64(14, (x)) ^ S64(18, (x)) ^ S64(41, (x))) #define sigma0_512(x) (S64( 1, (x)) ^ S64( 8, (x)) ^ R( 7, (x))) #define sigma1_512(x) (S64(19, (x)) ^ S64(61, (x)) ^ R( 6, (x))) /*** INTERNAL FUNCTION PROTOTYPES *************************************/ /* NOTE: These should not be accessed directly from outside this * library -- they are intended for private internal visibility/use * only. */ void apr__SHA256_Transform(SHA256_CTX*, const sha2_word32*); /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ /* Hash constant words K for SHA-256: */ static const sha2_word32 K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Initial hash value H for SHA-256: */ static const sha2_word32 sha256_initial_hash_value[8] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; /* * Constant used by SHA256/384/512_End() functions for converting the * digest to a readable hexadecimal character string: */ static const char *sha2_hex_digits = "0123456789abcdef"; /*** SHA-256: *********************************************************/ void apr__SHA256_Init(SHA256_CTX* context) { if (context == (SHA256_CTX*)0) { return; } MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); MEMSET_BZERO(context->buffer, SHA256_BLOCK_LENGTH); context->bitcount = 0; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-256 round macros: */ #if !APR_IS_BIGENDIAN #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ REVERSE32(*data++, W256[j]); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ K256[j] + W256[j]; \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ #else /* APR_IS_BIGENDIAN */ #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ K256[j] + (W256[j] = *data++); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ #endif /* APR_IS_BIGENDIAN */ #define ROUND256(a,b,c,d,e,f,g,h) \ s0 = W256[(j+1)&0x0f]; \ s0 = sigma0_256(s0); \ s1 = W256[(j+14)&0x0f]; \ s1 = sigma1_256(s1); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { sha2_word32 a, b, c, d, e, f, g, h, s0, s1; sha2_word32 T1, *W256; int j; W256 = (sha2_word32*)context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { /* Rounds 0 to 15 (unrolled): */ ROUND256_0_TO_15(a,b,c,d,e,f,g,h); ROUND256_0_TO_15(h,a,b,c,d,e,f,g); ROUND256_0_TO_15(g,h,a,b,c,d,e,f); ROUND256_0_TO_15(f,g,h,a,b,c,d,e); ROUND256_0_TO_15(e,f,g,h,a,b,c,d); ROUND256_0_TO_15(d,e,f,g,h,a,b,c); ROUND256_0_TO_15(c,d,e,f,g,h,a,b); ROUND256_0_TO_15(b,c,d,e,f,g,h,a); } while (j < 16); /* Now for the remaining rounds to 64: */ do { ROUND256(a,b,c,d,e,f,g,h); ROUND256(h,a,b,c,d,e,f,g); ROUND256(g,h,a,b,c,d,e,f); ROUND256(f,g,h,a,b,c,d,e); ROUND256(e,f,g,h,a,b,c,d); ROUND256(d,e,f,g,h,a,b,c); ROUND256(c,d,e,f,g,h,a,b); ROUND256(b,c,d,e,f,g,h,a); } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ void apr__SHA256_Transform(SHA256_CTX* context, const sha2_word32* data) { sha2_word32 a, b, c, d, e, f, g, h, s0, s1; sha2_word32 T1, T2, *W256; int j; W256 = (sha2_word32*)context->buffer; /* Initialize registers with the prev. intermediate value */ a = context->state[0]; b = context->state[1]; c = context->state[2]; d = context->state[3]; e = context->state[4]; f = context->state[5]; g = context->state[6]; h = context->state[7]; j = 0; do { #if !APR_IS_BIGENDIAN /* Copy data while converting to host byte order */ REVERSE32(*data++,W256[j]); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + W256[j]; #else /* APR_IS_BIGENDIAN */ /* Apply the SHA-256 compression function to update a..h with copy */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); #endif /* APR_IS_BIGENDIAN */ T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W256[(j+1)&0x0f]; s0 = sigma0_256(s0); s1 = W256[(j+14)&0x0f]; s1 = sigma1_256(s1); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 64); /* Compute the current intermediate hash value */ context->state[0] += a; context->state[1] += b; context->state[2] += c; context->state[3] += d; context->state[4] += e; context->state[5] += f; context->state[6] += g; context->state[7] += h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ void apr__SHA256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) { unsigned int freespace, usedspace; if (len == 0) { /* Calling with no data is valid - we do nothing */ return; } /* Sanity check: */ assert(context != (SHA256_CTX*)0 && data != (sha2_byte*)0); usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH); if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA256_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ MEMCPY_BCOPY(&context->buffer[usedspace], data, freespace); context->bitcount += freespace << 3; len -= freespace; data += freespace; apr__SHA256_Transform(context, (sha2_word32*)context->buffer); } else { /* The buffer is not yet full */ MEMCPY_BCOPY(&context->buffer[usedspace], data, len); context->bitcount += len << 3; /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= SHA256_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ apr__SHA256_Transform(context, (sha2_word32*)data); context->bitcount += SHA256_BLOCK_LENGTH << 3; len -= SHA256_BLOCK_LENGTH; data += SHA256_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ MEMCPY_BCOPY(context->buffer, data, len); context->bitcount += len << 3; } /* Clean up: */ usedspace = freespace = 0; } void apr__SHA256_Final(sha2_byte digest[SHA256_DIGEST_LENGTH], SHA256_CTX* context) { sha2_word32 *d = (sha2_word32*)digest; unsigned int usedspace; /* Sanity check: */ assert(context != (SHA256_CTX*)0); /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (sha2_byte*)0) { usedspace = (unsigned int)((context->bitcount >> 3) % SHA256_BLOCK_LENGTH); #if !APR_IS_BIGENDIAN /* Convert FROM host byte order */ REVERSE64(context->bitcount,context->bitcount); #endif if (usedspace > 0) { /* Begin padding with a 1 bit: */ context->buffer[usedspace++] = 0x80; if (usedspace <= SHA256_SHORT_BLOCK_LENGTH) { /* Set-up for the last transform: */ MEMSET_BZERO(&context->buffer[usedspace], SHA256_SHORT_BLOCK_LENGTH - usedspace); } else { if (usedspace < SHA256_BLOCK_LENGTH) { MEMSET_BZERO(&context->buffer[usedspace], SHA256_BLOCK_LENGTH - usedspace); } /* Do second-to-last transform: */ apr__SHA256_Transform(context, (sha2_word32*)context->buffer); /* And set-up for the last transform: */ MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH); } } else { /* Set-up for the last transform: */ MEMSET_BZERO(context->buffer, SHA256_SHORT_BLOCK_LENGTH); /* Begin padding with a 1 bit: */ *context->buffer = 0x80; } /* Set the bit count: */ { union dummy { apr_uint64_t bitcount; apr_byte_t bytes[8]; } bitcount; bitcount.bitcount = context->bitcount; MEMCPY_BCOPY(&context->buffer[SHA256_SHORT_BLOCK_LENGTH], bitcount.bytes, 8); } /* Final transform: */ apr__SHA256_Transform(context, (sha2_word32*)context->buffer); #if !APR_IS_BIGENDIAN { /* Convert TO host byte order */ int j; for (j = 0; j < 8; j++) { REVERSE32(context->state[j],context->state[j]); *d++ = context->state[j]; } } #else MEMCPY_BCOPY(d, context->state, SHA256_DIGEST_LENGTH); #endif } /* Clean up state data: */ MEMSET_BZERO(context, sizeof(*context)); usedspace = 0; } char *apr__SHA256_End(SHA256_CTX* context, char buffer[SHA256_DIGEST_STRING_LENGTH]) { sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest; int i; /* Sanity check: */ assert(context != (SHA256_CTX*)0); if (buffer != (char*)0) { apr__SHA256_Final(digest, context); for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; *buffer++ = sha2_hex_digits[*d & 0x0f]; d++; } *buffer = (char)0; } else { MEMSET_BZERO(context, sizeof(*context)); } MEMSET_BZERO(digest, SHA256_DIGEST_LENGTH); return buffer; } char* apr__SHA256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) { SHA256_CTX context; apr__SHA256_Init(&context); apr__SHA256_Update(&context, data, len); return apr__SHA256_End(&context, digest); }