
AsciiDoc User Guide i

AsciiDoc User Guide



AsciiDoc User Guide ii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

9.0.5 24 January 2021 SJR



AsciiDoc User Guide iii

Contents

1 Introduction 1

2 Getting Started 1

2.1 Installing AsciiDoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 Example AsciiDoc Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

3 AsciiDoc Document Types 2

3.1 article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.2 book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3.3 manpage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

4 AsciiDoc Backends 2

4.1 Backend Aliases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

4.2 Backend Plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5 DocBook 3

5.1 Converting DocBook to other file formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.2 a2x Toolchain Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.3 HTML generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.4 PDF generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

5.5 HTML Help generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.6 Toolchain components summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.7 AsciiDoc dblatex configuration files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

5.8 AsciiDoc DocBook XSL Stylesheets drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

6 Generating Plain Text Files 6

7 HTML5 and XHTML 1.1 7

7.1 Themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

8 Document Structure 8

8.1 Block Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

8.2 Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

8.2.1 Additional document header information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

8.3 Preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

8.4 Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

8.4.1 Section markup templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

8.4.2 Section IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

8.4.3 Special Section Titles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

8.5 Inline Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13



AsciiDoc User Guide iv

9 Document Processing 13

10 Text Formatting 14

10.1 Quoted Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

10.1.1 Quoted text attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

10.1.2 Constrained and Unconstrained Quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Constrained quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Unconstrained quotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

10.2 Superscripts and Subscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

10.3 Line Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

10.4 Page Breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

10.5 Rulers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

10.6 Tabs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

10.7 Replacements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

10.8 Special Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

11 Titles 17

11.1 Two line titles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

11.2 One line titles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

11.3 Floating titles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

12 Block Titles 19

13 BlockId Element 19

14 AttributeList Element 19

14.1 Attribute value substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

14.2 Common attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

15 Paragraphs 20

15.1 normal paragraph syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

15.2 literal paragraph syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

15.3 quote and verse paragraph styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

15.4 Admonition Paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

15.4.1 Admonition Icons and Captions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

16 Delimited Blocks 23

16.1 Predefined Delimited Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

16.2 Listing Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

16.3 Literal Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

16.4 Sidebar Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

16.5 Comment Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



AsciiDoc User Guide v

16.6 Passthrough Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

16.7 Quote Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

16.8 Example Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

16.9 Admonition Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

16.10Open Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

17 Lists 28

17.1 Bulleted Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

17.2 Numbered Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

17.3 Labeled Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

17.3.1 Horizontal labeled list style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

17.4 Question and Answer Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

17.5 Glossary Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

17.6 Bibliography Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

17.7 List Item Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

18 Footnotes 35

19 Indexes 35

20 Callouts 36

20.1 Implementation Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

20.2 Including callouts in included code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

21 Macros 38

21.1 Inline Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

21.1.1 URLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

21.1.2 Internal Cross References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

anchor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xref . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

21.1.3 Linking to Local Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

21.1.4 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

21.1.5 Comment Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

21.2 Block Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

21.2.1 Block Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

21.2.2 Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

21.2.3 Comment Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

21.3 System Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

21.3.1 Include Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

21.3.2 Conditional Inclusion Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

21.3.3 Executable system macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

21.3.4 Template System Macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

21.4 Passthrough macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

21.5 Macro Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



AsciiDoc User Guide vi

22 HTML 5 audio and video block macros 47

23 Tables 48

23.1 Example tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

23.2 Table input data formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

23.3 Table attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

23.4 Column Specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

23.5 Cell Specifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

23.6 Table styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

23.7 Markup attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

23.8 Nested tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

23.9 DocBook table limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

24 Manpage Documents 56

24.1 Document Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

24.2 The NAME Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

24.3 The SYNOPSIS Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

24.4 refmiscinfo attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

25 Mathematical Formulas 57

25.1 LaTeX Math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

25.2 MathJax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

25.3 LaTeXMathML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

25.4 ASCIIMathML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

25.5 MathML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

26 Configuration Files 58

26.1 Configuration File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

26.2 Miscellaneous section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

26.3 Titles section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

26.4 Tags section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

26.5 Attributes section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

26.6 Special Characters section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

26.7 Quoted Text section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

26.8 Special Words section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

26.9 Replacements section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

26.10Markup Template Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

26.11Configuration file names, precedence and locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

27 Document Attributes 65



AsciiDoc User Guide vii

28 Attribute Entries 66

28.1 Setting configuration entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

29 Attribute Lists 68

29.1 Options attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

29.2 Macro Attribute lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

30 Attribute References 69

30.1 Simple Attributes References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

30.2 Conditional Attribute References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

30.2.1 Conditional attribute examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

30.3 System Attribute References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

31 Intrinsic Attributes 72

32 Block Element Definitions 74

32.1 Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

32.2 Paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

32.3 Delimited Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

32.4 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

32.5 Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

33 Filters 78

33.1 Filter Search Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

33.2 Filter Configuration Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

33.3 Example Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

33.4 Built-in filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

33.5 Filter plugins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

34 Plugins 80

35 Help Commands 80

35.1 Customizing Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

36 Tips and Tricks 80

36.1 Know Your Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

36.2 Vim Commands for Formatting AsciiDoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

36.2.1 Text Wrap Paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

36.2.2 Format Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

36.2.3 Indent Paragraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

36.2.4 Example ~/.vimrc File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

36.3 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



AsciiDoc User Guide viii

36.4 Gotchas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

36.5 Combining separate documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

36.6 Processing document sections separately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

36.7 Processing document snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

36.8 Badges in HTML page footers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

36.9 Pretty printing AsciiDoc output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

36.10Supporting minor DocBook DTD variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

36.11Creating stand-alone HTML documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

36.12Shipping stand-alone AsciiDoc source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

36.13Inserting blank space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

36.14Closing open sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

36.15Validating output files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

37 Glossary 86

A Migration Notes 86

A.1 Version 7 to version 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B Packager Notes 87

C AsciiDoc Safe Mode 87

D Using AsciiDoc with non-English Languages 87

E Vim Syntax Highlighter 88

F Attribute Options 88

G Diagnostics 89

H Backend Attributes 90

I License 93



AsciiDoc User Guide 1 / 93

AsciiDoc is a text document format for writing notes, documentation, articles, books, ebooks, slideshows, web pages, blogs
and UNIX man pages. AsciiDoc files can be translated to many formats including HTML, PDF, EPUB, man page. AsciiDoc
is highly configurable: both the AsciiDoc source file syntax and the backend output markups (which can be almost any type of
SGML/XML markup) can be customized and extended by the user.

This document

This is an overly large document, it probably needs to be refactored into a Tutorial, Quick Reference and Formal Reference.

If you’re new to AsciiDoc read this section and the Getting Started section and take a look at the example AsciiDoc
(*.txt) source files in the distribution doc directory.

1 Introduction

AsciiDoc is a plain text human readable/writable document format that can be translated to DocBook or HTML using the
asciidoc(1) command. You can then either use asciidoc(1) generated HTML directly or run asciidoc(1) DocBook output through
your favorite DocBook toolchain or use the AsciiDoc a2x(1) toolchain wrapper to produce PDF, EPUB, DVI, LaTeX, PostScript,
man page, HTML and text formats.

The AsciiDoc format is a useful presentation format in its own right: AsciiDoc markup is simple, intuitive and as such is easily
proofed and edited.

AsciiDoc is light weight: it consists of a single Python script and a bunch of configuration files. Apart from asciidoc(1) and a
Python interpreter, no other programs are required to convert AsciiDoc text files to DocBook or HTML. See Example AsciiDoc
Documents below.

Text markup conventions tend to be a matter of (often strong) personal preference: if the default syntax is not to your liking you
can define your own by editing the text based asciidoc(1) configuration files. You can also create configuration files to translate
AsciiDoc documents to almost any SGML/XML markup.

asciidoc(1) comes with a set of configuration files to translate AsciiDoc articles, books and man pages to HTML or DocBook
backend formats.

My AsciiDoc Itch

DocBook has emerged as the de facto standard Open Source documentation format. But DocBook is a complex language,
the markup is difficult to read and even more difficult to write directly — I found I was spending more time typing markup
tags, consulting reference manuals and fixing syntax errors, than I was writing the documentation.

2 Getting Started

2.1 Installing AsciiDoc

See the README and INSTALL files for install prerequisites and procedures. Packagers take a look at Packager Notes.

2.2 Example AsciiDoc Documents

The best way to quickly get a feel for AsciiDoc is to view the AsciiDoc web site and/or distributed examples:

• Take a look at the linked examples on the AsciiDoc web site home page https://asciidoc.org/. Press the Page Source sidebar
menu item to view corresponding AsciiDoc source.

• Read the *.txt source files in the distribution ./doc directory along with the corresponding HTML and DocBook XML
files.

https://asciidoc.org/


AsciiDoc User Guide 2 / 93

3 AsciiDoc Document Types

There are three types of AsciiDoc documents: article, book and manpage. All document types share the same AsciiDoc format
with some minor variations. If you are familiar with DocBook you will have noticed that AsciiDoc document types correspond
to the same-named DocBook document types.

Use the asciidoc(1) -d (--doctype) option to specify the AsciiDoc document type — the default document type is article.

By convention the .txt file extension is used for AsciiDoc document source files.

3.1 article

Used for short documents, articles and general documentation. See the AsciiDoc distribution ./doc/article.txt example.

AsciiDoc defines standard DocBook article frontmatter and backmatter section markup templates (appendix, abstract, bibliogra-
phy, glossary, index).

3.2 book

Books share the same format as articles, with the following differences:

• The part titles in multi-part books are top level titles (same level as book title).

• Some sections are book specific e.g. preface and colophon.

Book documents will normally be used to produce DocBook output since DocBook processors can automatically generate foot-
notes, table of contents, list of tables, list of figures, list of examples and indexes.

AsciiDoc defines standard DocBook book frontmatter and backmatter section markup templates (appendix, dedication, preface,
bibliography, glossary, index, colophon).

EXAMPLE BOOK DOCUMENTS

Book
The ./doc/book.txt file in the AsciiDoc distribution.

Multi-part book
The ./doc/book-multi.txt file in the AsciiDoc distribution.

3.3 manpage

Used to generate roff format UNIX manual pages. AsciiDoc manpage documents observe special header title and section naming
conventions — see the Manpage Documents section for details.

AsciiDoc defines the synopsis section markup template to generate the DocBook refsynopsisdiv section.

See also the asciidoc(1) man page source (./doc/asciidoc.1.txt) from the AsciiDoc distribution.

4 AsciiDoc Backends

The asciidoc(1) command translates an AsciiDoc formatted file to the backend format specified by the -b (--backend)
command-line option. asciidoc(1) itself has little intrinsic knowledge of backend formats, all translation rules are contained
in customizable cascading configuration files. Backend specific attributes are listed in the Backend Attributes section.

docbook45
Outputs DocBook XML 4.5 markup.



AsciiDoc User Guide 3 / 93

docbook5
Outputs DocBook XML 5.0 markup.

html4
This backend generates plain HTML 4.01 Transitional markup.

xhtml11
This backend generates XHTML 1.1 markup styled with CSS2. Output files have an .html extension.

html5
This backend generates HTML 5 markup, apart from the inclusion of audio and video block macros it is functionally
identical to the xhtml11 backend.

slidy
Use this backend to generate self-contained Slidy HTML slideshows for your web browser from AsciiDoc documents. The
Slidy backend is documented in the distribution doc/slidy.txt file and online.

wordpress
A minor variant of the html4 backend to support blogpost.

latex
Experimental LaTeX backend.

4.1 Backend Aliases

Backend aliases are alternative names for AsciiDoc backends. AsciiDoc comes with two backend aliases: html (aliased to
xhtml11) and docbook (aliased to docbook45).

You can assign (or reassign) backend aliases by setting an AsciiDoc attribute named like backend-alias-<alias> to an
AsciiDoc backend name. For example, the following backend alias attribute definitions appear in the [attributes] section
of the global asciidoc.conf configuration file:

backend-alias-html=xhtml11
backend-alias-docbook=docbook45

4.2 Backend Plugins

The asciidoc(1) --backend option is also used to install and manage backend plugins.

• A backend plugin is used just like the built-in backends.

• Backend plugins take precedence over built-in backends with the same name.

• You can use the {asciidoc-confdir} intrinsic attribute to refer to the built-in backend configuration file location from
backend plugin configuration files.

• You can use the {backend-confdir} intrinsic attribute to refer to the backend plugin configuration file location.

• By default backends plugins are installed in $HOME/.asciidoc/backends/<backend> where <backend> is the
backend name.

5 DocBook

AsciiDoc generates article, book and refentry DocBook documents (corresponding to the AsciiDoc article, book and manpage
document types).

Most Linux distributions come with conversion tools (collectively called a toolchain) for converting DocBook files to presenta-
tion formats such as Postscript, HTML, PDF, EPUB, DVI, PostScript, LaTeX, roff (the native man page format), HTMLHelp,
JavaHelp and text. There are also programs that allow you to view DocBook files directly, for example Yelp (the GNOME help
viewer).

http://www.w3.org/Talks/Tools/Slidy2/
https://asciidoc.org/slidy.html
http://srackham.wordpress.com/blogpost1/
http://www.docbook.org/
http://live.gnome.org/Yelp


AsciiDoc User Guide 4 / 93

5.1 Converting DocBook to other file formats

DocBook files are validated, parsed and translated various presentation file formats using a combination of applications collec-
tively called a DocBook tool chain. The function of a tool chain is to read the DocBook markup (produced by AsciiDoc) and
transform it to a presentation format (for example HTML, PDF, HTML Help, EPUB, DVI, PostScript, LaTeX).

A wide range of user output format requirements coupled with a choice of available tools and stylesheets results in many valid
tool chain combinations.

5.2 a2x Toolchain Wrapper

One of the biggest hurdles for new users is installing, configuring and using a DocBook XML toolchain. a2x(1) can help — it’s
a toolchain wrapper command that will generate XHTML (chunked and unchunked), PDF, EPUB, DVI, PS, LaTeX, man page,
HTML Help and text file outputs from an AsciiDoc text file. a2x(1) does all the grunt work associated with generating and
sequencing the toolchain commands and managing intermediate and output files. a2x(1) also optionally deploys admonition
and navigation icons and a CSS stylesheet. See the a2x(1) man page for more details. In addition to asciidoc(1) you
also need xsltproc(1), DocBook XSL Stylesheets and optionally: dblatex or FOP (to generate PDF); w3m(1) or lynx(1) (to
generate text).

The following examples generate doc/source-highlight-filter.pdf from the AsciiDoc doc/source-highlight-filter.txt
source file. The first example uses dblatex(1) (the default PDF generator) the second example forces FOP to be used:

$ a2x -f pdf doc/source-highlight-filter.txt
$ a2x -f pdf --fop doc/source-highlight-filter.txt

See the a2x(1) man page for details.

Tip
Use the --verbose command-line option to view executed toolchain commands.

5.3 HTML generation

AsciiDoc produces nicely styled HTML directly without requiring a DocBook toolchain but there are also advantages in going
the DocBook route:

• HTML from DocBook can optionally include automatically generated indexes, tables of contents, footnotes, lists of figures
and tables.

• DocBook toolchains can also (optionally) generate separate (chunked) linked HTML pages for each document section.

• Toolchain processing performs link and document validity checks.

• If the DocBook lang attribute is set then things like table of contents, figure and table captions and admonition captions will
be output in the specified language (setting the AsciiDoc lang attribute sets the DocBook lang attribute).

On the other hand, HTML output directly from AsciiDoc is much faster, is easily customized and can be used in situations where
there is no suitable DocBook toolchain (for example, see the AsciiDoc website).

5.4 PDF generation

There are two commonly used tools to generate PDFs from DocBook, dblatex and FOP.

DBLATEX OR FOP?

https://asciidoc.org/


AsciiDoc User Guide 5 / 93

• dblatex is easier to install, there’s zero configuration required and no Java VM to install — it just works out of the box.

• dblatex source code highlighting and numbering is superb.

• dblatex is easier to use as it converts DocBook directly to PDF whereas before using FOP you have to convert DocBook to
XML-FO using DocBook XSL Stylesheets.

• FOP is more feature complete (for example, callouts are processed inside literal layouts) and arguably produces nicer looking
output.

5.5 HTML Help generation

1. Convert DocBook XML documents to HTML Help compiler source files using DocBook XSL Stylesheets and xsltproc(1).

2. Convert the HTML Help source (.hhp and .html) files to HTML Help (.chm) files using the Microsoft HTML Help
Compiler.

5.6 Toolchain components summary

AsciiDoc
Converts AsciiDoc (.txt) files to DocBook XML (.xml) files.

DocBook XSLT Stylesheets
These are a set of XSL stylesheets containing rules for converting DocBook XML documents to HTML, XSL-FO, manpage
and HTML Help files. The stylesheets are used in conjunction with an XML parser such as xsltproc(1).

xsltproc
An XML parser for applying XSLT stylesheets (in our case the DocBook XSL Stylesheets) to XML documents.

dblatex
Generates PDF, DVI, PostScript and LaTeX formats directly from DocBook source via the intermediate LaTeX typesetting
language — uses DocBook XSL Stylesheets, xsltproc(1) and latex(1).

FOP
The Apache Formatting Objects Processor converts XSL-FO (.fo) files to PDF files. The XSL-FO files are generated
from DocBook source files using DocBook XSL Stylesheets and xsltproc(1).

Microsoft Help Compiler
The Microsoft HTML Help Compiler (hhc.exe) is a command-line tool that converts HTML Help source files to a single
HTML Help (.chm) file. It runs on MS Windows platforms and can be downloaded from http://www.microsoft.com.

5.7 AsciiDoc dblatex configuration files

The AsciiDoc distribution ./dblatex directory contains asciidoc-dblatex.xsl (customized XSL parameter settings)
and asciidoc-dblatex.sty (customized LaTeX settings). These are examples of optional dblatex output customization
and are used by a2x(1).

5.8 AsciiDoc DocBook XSL Stylesheets drivers

You will have noticed that the distributed HTML and HTML Help documentation files (for example ./doc/asciidoc.html)
are not the plain outputs produced using the default DocBook XSL Stylesheets configuration. This is because they have been pro-
cessed using customized DocBook XSL Stylesheets along with (in the case of HTML outputs) the custom ./stylesheets/docbook-xsl.css
CSS stylesheet.

You’ll find the customized DocBook XSL drivers along with additional documentation in the distribution ./docbook-xsl
directory. The examples that follow are executed from the distribution documentation (./doc) directory. These drivers are also
used by a2x(1).

https://github.com/docbook/xslt10-stylesheets
http://www.xmlsoft.org
http://dblatex.sourceforge.net/
http://xmlgraphics.apache.org/fop/
http://www.microsoft.com


AsciiDoc User Guide 6 / 93

common.xsl
Shared driver parameters. This file is not used directly but is included in all the following drivers.

chunked.xsl
Generate chunked XHTML (separate HTML pages for each document section) in the ./doc/chunked directory. For
example:

$ python ../asciidoc.py -b docbook asciidoc.txt
$ xsltproc --nonet ../docbook-xsl/chunked.xsl asciidoc.xml

epub.xsl
Used by a2x(1) to generate EPUB formatted documents.

fo.xsl
Generate XSL Formatting Object (.fo) files for subsequent PDF file generation using FOP. For example:

$ python ../asciidoc.py -b docbook article.txt
$ xsltproc --nonet ../docbook-xsl/fo.xsl article.xml > article.fo
$ fop article.fo article.pdf

htmlhelp.xsl
Generate Microsoft HTML Help source files for the MS HTML Help Compiler in the ./doc/htmlhelp directory. This
example is run on MS Windows from a Cygwin shell prompt:

$ python ../asciidoc.py -b docbook asciidoc.txt
$ xsltproc --nonet ../docbook-xsl/htmlhelp.xsl asciidoc.xml
$ c:/Program\ Files/HTML\ Help\ Workshop/hhc.exe htmlhelp.hhp

manpage.xsl
Generate a roff(1) format UNIX man page from a DocBook XML refentry document. This example generates an
asciidoc.1 man page file:

$ python ../asciidoc.py -d manpage -b docbook asciidoc.1.txt
$ xsltproc --nonet ../docbook-xsl/manpage.xsl asciidoc.1.xml

xhtml.xsl
Convert a DocBook XML file to a single XHTML file. For example:

$ python ../asciidoc.py -b docbook asciidoc.txt
$ xsltproc --nonet ../docbook-xsl/xhtml.xsl asciidoc.xml > asciidoc.html

If you want to see how the complete documentation set is processed take a look at the A-A-P script ./doc/main.aap.

6 Generating Plain Text Files

AsciiDoc does not have a text backend (for most purposes AsciiDoc source text is fine), however you can convert AsciiDoc text
files to formatted text using the AsciiDoc a2x(1) toolchain wrapper utility.



AsciiDoc User Guide 7 / 93

7 HTML5 and XHTML 1.1

The xhtml11 and html5 backends embed or link CSS and JavaScript files in their outputs, there is also a themes plugin framework.

• If the AsciiDoc linkcss attribute is defined then CSS and JavaScript files are linked to the output document, otherwise they are
embedded (the default behavior).

• The default locations for CSS and JavaScript files can be changed by setting the AsciiDoc stylesdir and scriptsdir attributes
respectively.

• The default locations for embedded and linked files differ and are calculated at different times — embedded files are loaded
when asciidoc(1) generates the output document, linked files are loaded by the browser when the user views the output docu-
ment.

• Embedded files are automatically inserted in the output files but you need to manually copy linked CSS and Javascript files
from AsciiDoc configuration directories to the correct location relative to the output document.

Table 1: Stylesheet file locations

stylesdir attribute Linked location (linkcss attribute
defined)

Embedded location (linkcss
attribute undefined)

Undefined (default). Same directory as the output
document.

stylesheets subdirectory in the
AsciiDoc configuration directory (the
directory containing the backend conf
file).

Absolute or relative directory name. Absolute or relative to the output
document.

Absolute or relative to the AsciiDoc
configuration directory (the directory
containing the backend conf file).

Table 2: JavaScript file locations

scriptsdir attribute Linked location (linkcss attribute
defined)

Embedded location (linkcss
attribute undefined)

Undefined (default). Same directory as the output
document.

javascripts subdirectory in the
AsciiDoc configuration directory (the
directory containing the backend conf
file).

Absolute or relative directory name. Absolute or relative to the output
document.

Absolute or relative to the AsciiDoc
configuration directory (the directory
containing the backend conf file).

7.1 Themes

The AsciiDoc theme attribute is used to select an alternative CSS stylesheet and to optionally include additional JavaScript code.

• Theme files reside in an AsciiDoc configuration directory named themes/<theme>/ (where <theme> is the the theme
name set by the theme attribute). asciidoc(1) sets the themedir attribute to the theme directory path name.

• The theme attribute can also be set using the asciidoc(1) --theme option, the --theme option can also be used to manage
theme plugins.



AsciiDoc User Guide 8 / 93

• AsciiDoc ships with two themes: flask and volnitsky.

• The <theme>.css file replaces the default asciidoc.css CSS file.

• The <theme>.js file is included in addition to the default asciidoc.js JavaScript file.

• If the data-uri attribute is defined then icons are loaded from the theme icons sub-directory if it exists (i.e. the iconsdir
attribute is set to theme icons sub-directory path).

• Embedded theme files are automatically inserted in the output files but you need to manually copy linked CSS and Javascript
files to the location of the output documents.

• Linked CSS and JavaScript theme files are linked to the same linked locations as other CSS and JavaScript files.

For example, the command-line option --theme foo (or --attribute theme=foo) will cause asciidoc(1) to search
configuration file locations 1 for a sub-directory called themes/foo containing the stylesheet foo.css and optionally a
JavaScript file name foo.js.

8 Document Structure

An AsciiDoc document consists of a series of block elements starting with an optional document Header, followed by an optional
Preamble, followed by zero or more document Sections.

Almost any combination of zero or more elements constitutes a valid AsciiDoc document: documents can range from a single
sentence to a multi-part book.

8.1 Block Elements

Block elements consist of one or more lines of text and may contain other block elements.

The AsciiDoc block structure can be informally summarized as follows 1:

Document ::= (Header?,Preamble?,Section*)
Header ::= (Title,(AuthorInfo,RevisionInfo?)?)
AuthorInfo ::= (FirstName,(MiddleName?,LastName)?,EmailAddress?)
RevisionInfo ::= (RevisionNumber?,RevisionDate,RevisionRemark?)
Preamble ::= (SectionBody)
Section ::= (Title,SectionBody?,(Section)*)
SectionBody ::= ((BlockTitle?,Block)|BlockMacro)+
Block ::= (Paragraph|DelimitedBlock|List|Table)
List ::= (BulletedList|NumberedList|LabeledList|CalloutList)
BulletedList ::= (ListItem)+
NumberedList ::= (ListItem)+
CalloutList ::= (ListItem)+
LabeledList ::= (ListEntry)+
ListEntry ::= (ListLabel,ListItem)
ListLabel ::= (ListTerm+)
ListItem ::= (ItemText,(List|ListParagraph|ListContinuation)*)

Where:

• ? implies zero or one occurrence, + implies one or more occurrences, * implies zero or more occurrences.

• All block elements are separated by line boundaries.

1This is a rough structural guide, not a rigorous syntax definition



AsciiDoc User Guide 9 / 93

• BlockId, AttributeEntry and AttributeList block elements (not shown) can occur almost anywhere.

• There are a number of document type and backend specific restrictions imposed on the block syntax.

• The following elements cannot contain blank lines: Header, Title, Paragraph, ItemText.

• A ListParagraph is a Paragraph with its listelement option set.

• A ListContinuation is a list continuation element.

8.2 Header

The Header contains document meta-data, typically title plus optional authorship and revision information:

• The Header is optional, but if it is used it must start with a document title.

• Optional Author and Revision information immediately follows the header title.

• The document header must be separated from the remainder of the document by one or more blank lines and cannot contain
blank lines.

• The header can include comments.

• The header can include attribute entries, typically doctype, lang, encoding, icons, data-uri, toc, numbered.

• Header attributes are overridden by command-line attributes.

• If the header contains non-UTF-8 characters then the encoding must precede the header (either in the document or on the
command-line).

Here’s an example AsciiDoc document header:

Writing Documentation using AsciiDoc
====================================
Joe Bloggs <jbloggs@mymail.com>
v2.0, February 2003:
Rewritten for version 2 release.

The author information line contains the author’s name optionally followed by the author’s email address. The author’s name is
formatted like:

firstname[ [middlename ]lastname][ <email>]]

i.e. a first name followed by optional middle and last names followed by an email address in that order. Multi-word first, middle
and last names can be entered using the underscore as a word separator. The email address comes last and must be enclosed in
angle <> brackets. Here a some examples of author information lines:

Joe Bloggs <jbloggs@mymail.com>
Joe Bloggs
Vincent Willem van_Gogh

If the author line does not match the above specification then the entire author line is treated as the first name.

The optional revision information line follows the author information line. The revision information can be one of two formats:

1. An optional document revision number followed by an optional revision date followed by an optional revision remark:



AsciiDoc User Guide 10 / 93

• If the revision number is specified it must be followed by a comma.

• The revision number must contain at least one numeric character.

• Any non-numeric characters preceding the first numeric character will be dropped.

• If a revision remark is specified it must be preceded by a colon. The revision remark extends from the colon up to the
next blank line, attribute entry or comment and is subject to normal text substitutions.

• If a revision number or remark has been set but the revision date has not been set then the revision date is set to the value
of the docdate attribute.

Examples:

v2.0, February 2003
February 2003
v2.0,
v2.0, February 2003: Rewritten for version 2 release.
February 2003: Rewritten for version 2 release.
v2.0,: Rewritten for version 2 release.
:Rewritten for version 2 release.

2. The revision information line can also be an RCS/CVS/SVN $Id$ marker:

• AsciiDoc extracts the revnumber, revdate, and author attributes from the $Id$ revision marker and displays them in the
document header.

• If an $Id$ revision marker is used the header author line can be omitted.

Example:

$Id: mydoc.txt,v 1.5 2009/05/17 17:58:44 jbloggs Exp $

You can override or set header parameters by passing revnumber, revremark, revdate, email, author, authorinitials, firstname and
lastname attributes using the asciidoc(1) -a (--attribute) command-line option. For example:

$ asciidoc -a revdate=2004/07/27 article.txt

Attribute entries can also be added to the header for substitution in the header template with Attribute Entry elements.

The title element in HTML outputs is set to the AsciiDoc document title, you can set it to a different value by including a title
attribute entry in the document header.

8.2.1 Additional document header information

AsciiDoc has two mechanisms for optionally including additional meta-data in the header of the output document:

docinfo configuration file sections
If a configuration file section named docinfo has been loaded then it will be included in the document header. Typically
the docinfo section name will be prefixed with a + character so that it is appended to (rather than replace) other docinfo
sections.

docinfo files
Two docinfo files are recognized: one named docinfo and a second named like the AsciiDoc source file with a
-docinfo suffix. For example, if the source document is called mydoc.txt then the document information files would
be docinfo.xml and mydoc-docinfo.xml (for DocBook outputs) and docinfo.html and mydoc-docinfo.html
(for HTML outputs). The docinfo attributes control which docinfo files are included in the output files.



AsciiDoc User Guide 11 / 93

The contents docinfo templates and files is dependent on the type of output:

HTML
Valid head child elements. Typically style and script elements for CSS and JavaScript inclusion.

DocBook
Valid articleinfo or bookinfo child elements. DocBook defines numerous elements for document meta-data, for example:
copyrights, document history and authorship information. See the DocBook ./doc/article-docinfo.xml example
that comes with the AsciiDoc distribution. The rendering of meta-data elements (or not) is DocBook processor dependent.

8.3 Preamble

The Preamble is an optional untitled section body between the document Header and the first Section title.

8.4 Sections

In addition to the document title (level 0), AsciiDoc supports four section levels: 1 (top) to 4 (bottom). Section levels are
delimited by section titles. Sections are translated using configuration file section markup templates. AsciiDoc generates the
following intrinsic attributes specifically for use in section markup templates:

level
The level attribute is the section level number, it is normally just the title level number (1..4). However, if the
leveloffset attribute is defined it will be added to the level attribute. The leveloffset attribute is useful
for combining documents.

sectnum
The -n (--section-numbers) command-line option generates the sectnum (section number) attribute. The sectnum
attribute is used for section numbers in HTML outputs (DocBook section numbering are handled automatically by the Doc-
Book toolchain commands).

8.4.1 Section markup templates

Section markup templates specify output markup and are defined in AsciiDoc configuration files. Section markup template names
are derived as follows (in order of precedence):

1. From the title’s first positional attribute or template attribute. For example, the following three section titles are functionally
equivalent:

[[terms]]
[glossary]
List of Terms
-------------

["glossary",id="terms"]
List of Terms
-------------

[template="glossary",id="terms"]
List of Terms
-------------

2. When the title text matches a configuration file [specialsections] entry.

3. If neither of the above the default sect<level> template is used (where <level> is a number from 1 to 4).



AsciiDoc User Guide 12 / 93

In addition to the normal section template names (sect1, sect2, sect3, sect4) AsciiDoc has the following templates for frontmatter,
backmatter and other special sections: abstract, preface, colophon, dedication, glossary, bibliography, synopsis, appendix, index.
These special section templates generate the corresponding Docbook elements; for HTML outputs they default to the sect1
section template.

8.4.2 Section IDs

If no explicit section ID is specified an ID will be synthesised from the section title. The primary purpose of this feature is to
ensure persistence of table of contents links (permalinks): the missing section IDs are generated dynamically by the JavaScript
TOC generator after the page is loaded. If you link to a dynamically generated TOC address the page will load but the browser
will ignore the (as yet ungenerated) section ID.

The IDs are generated by the following algorithm:

• Replace all non-alphanumeric title characters with underscores.

• Strip leading or trailing underscores.

• Convert to lowercase.

• Prepend the idprefix attribute (so there’s no possibility of name clashes with existing document IDs). Prepend an under-
score if the idprefix attribute is not defined.

• A numbered suffix (_2, _3 . . . ) is added if a same named auto-generated section ID exists.

• If the ascii-ids attribute is defined then non-ASCII characters are replaced with ASCII equivalents. This attribute should
be should be avoided if possible as its sole purpose is to accommodate deficient downstream applications that cannot process
non-ASCII ID attributes. If available, it will use the trans python module, otherwise it will fallback to using NFKD algorithm,
which cannot handle all unicode characters. For example, Wstęp żółtej łąki will be translated to Wstep zoltej laki under trans
and Wstep zotej aki under NFKD.

Example: the title Jim’s House would generate the ID _jim_s_house.

Section ID synthesis can be disabled by undefining the sectids attribute.

8.4.3 Special Section Titles

AsciiDoc has a mechanism for mapping predefined section titles auto-magically to specific markup templates. For example a title
Appendix A: Code Reference will automatically use the appendix section markup template. The mappings from title to template
name are specified in [specialsections] sections in the Asciidoc language configuration files (lang-*.conf). Section
entries are formatted like:

<title>=<template>

<title> is a Python regular expression and <template> is the name of a configuration file markup template section. If the
<title> matches an AsciiDoc document section title then the backend output is marked up using the <template> markup
template (instead of the default sect<level> section template). The {title} attribute value is set to the value of the
matched regular expression group named title, if there is no title group {title} defaults to the whole of the AsciiDoc section
title. If <template> is blank then any existing entry with the same <title> will be deleted.

https://pypi.org/project/trans/


AsciiDoc User Guide 13 / 93

Special section titles vs. explicit template names

AsciiDoc has two mechanisms for specifying non-default section markup templates: you can specify the template name
explicitly (using the template attribute) or indirectly (using special section titles). Specifying a section template attribute
explicitly is preferred. Auto-magical special section titles have the following drawbacks:

• They are non-obvious, you have to know the exact matching title for each special section on a language by language
basis.

• Section titles are predefined and can only be customised with a configuration change.

• The implementation is complicated by multiple languages: every special section title has to be defined for each language
(in each of the lang-*.conf files).

Specifying special section template names explicitly does add more noise to the source document (the template attribute
declaration), but the intention is obvious and the syntax is consistent with other AsciiDoc elements c.f. bibliographic,
Q&A and glossary lists.

Special section titles have been deprecated but are retained for backward compatibility.

8.5 Inline Elements

Inline document elements are used to format text and to perform various types of text substitution. Inline elements and inline
element syntax is defined in the asciidoc(1) configuration files.

Here is a list of AsciiDoc inline elements in the (default) order in which they are processed:

Special characters
These character sequences escape special characters used by the backend markup (typically <, >, and & characters). See
[specialcharacters] configuration file sections.

Quotes
Elements that markup words and phrases; usually for character formatting. See [quotes] configuration file sections.

Special Words
Word or word phrase patterns singled out for markup without the need for further annotation. See [specialwords]
configuration file sections.

Replacements
Each replacement defines a word or word phrase pattern to search for along with corresponding replacement text. See
[replacements] configuration file sections.

Attribute references
Document attribute names enclosed in braces are replaced by the corresponding attribute value.

Inline Macros
Inline macros are replaced by the contents of parametrized configuration file sections.

9 Document Processing

The AsciiDoc source document is read and processed as follows:

1. The document Header is parsed, header parameter values are substituted into the configuration file [header] template
section which is then written to the output file.

2. Each document Section is processed and its constituent elements translated to the output file.



AsciiDoc User Guide 14 / 93

3. The configuration file [footer] template section is substituted and written to the output file.

When a block element is encountered asciidoc(1) determines the type of block by checking in the following order (first to last):
(section) Titles, BlockMacros, Lists, DelimitedBlocks, Tables, AttributeEntrys, AttributeLists, BlockTitles, Paragraphs.

The default paragraph definition [paradef-default] is last element to be checked.

Knowing the parsing order will help you devise unambiguous macro, list and block syntax rules.

Inline substitutions within block elements are performed in the following default order:

1. Special characters

2. Quotes

3. Special words

4. Replacements

5. Attributes

6. Inline Macros

7. Replacements2

The substitutions and substitution order performed on Title, Paragraph and DelimitedBlock elements is determined by configu-
ration file parameters.

10 Text Formatting

10.1 Quoted Text

Words and phrases can be formatted by enclosing inline text with quote characters:

Emphasized text
Word phrases ’enclosed in single quote characters’ (acute accents) or _underline characters_ are emphasized.

Strong text
Word phrases *enclosed in asterisk characters* are rendered in a strong font (usually bold).

Monospaced text
Word phrases +enclosed in plus characters+ are rendered in a monospaced font. Word phrases `enclosed in backtick
characters` (grave accents) are also rendered in a monospaced font but in this case the enclosed text is rendered literally
and is not subject to further expansion (see inline literal passthrough).

‘Single quoted text’
Phrases enclosed with a `single grave accent to the left and a single acute accent to the right’ are rendered in single quotation
marks.

“Double quoted text”
Phrases enclosed with ``two grave accents to the left and two acute accents to the right” are rendered in quotation marks.

Unquoted text
Placing #hashes around text# does nothing, it is a mechanism to allow inline attributes to be applied to otherwise unfor-
matted text.

New quote types can be defined by editing asciidoc(1) configuration files. See the Configuration Files section for details.

QUOTED TEXT BEHAVIOR



AsciiDoc User Guide 15 / 93

• Quoting cannot be overlapped.

• Different quoting types can be nested.

• To suppress quoted text formatting place a backslash character immediately in front of the leading quote character(s). In the
case of ambiguity between escaped and non-escaped text you will need to escape both leading and trailing quotes, in the case
of multi-character quotes you may even need to escape individual characters.

10.1.1 Quoted text attributes

Quoted text can be prefixed with an attribute list. The first positional attribute (role attribute) is translated by AsciiDoc to an
HTML span element class attribute or a DocBook phrase element role attribute.

DocBook XSL Stylesheets translate DocBook phrase elements with role attributes to corresponding HTML span elements with
the same class attributes; CSS can then be used to style the generated HTML. Thus CSS styling can be applied to both DocBook
and AsciiDoc generated HTML outputs. You can also specify multiple class names separated by spaces.

CSS rules for text color, text background color, text size and text decorators are included in the distributed AsciiDoc CSS files
and are used in conjunction with AsciiDoc xhtml11, html5 and docbook outputs. The CSS class names are:

• <color> (text foreground color).

• <color>-background (text background color).

• big and small (text size).

• underline, overline and line-through (strike through) text decorators.

Where <color> can be any of the sixteen HTML color names. Examples:

[red]#Obvious# and [big red yellow-background]*very obvious*.

[underline]#Underline text#, [overline]#overline text# and
[blue line-through]*bold blue and line-through*.

is rendered as:

Obvious and very obvious.

Underline text, overline text and bold blue and line-through.

Note
Color and text decorator attributes are rendered for XHTML and HTML 5 outputs using CSS stylesheets. The mechanism to
implement color and text decorator attributes is provided for DocBook toolchains via the DocBook phrase element role attribute,
but the actual rendering is toolchain specific and is not part of the AsciiDoc distribution.

10.1.2 Constrained and Unconstrained Quotes

There are actually two types of quotes:

Constrained quotes

Quoted must be bounded by white space or commonly adjoining punctuation characters. These are the most commonly used
type of quote.

http://www.sagehill.net/docbookxsl/UsingCSS.html
http://en.wikipedia.org/wiki/Web_colors#HTML_color_names


AsciiDoc User Guide 16 / 93

Unconstrained quotes

Unconstrained quotes have no boundary constraints and can be placed anywhere within inline text. For consistency and to make
them easier to remember unconstrained quotes are double-ups of the _, *, + and # constrained quotes:

__unconstrained emphasized text__

**unconstrained strong text**
++unconstrained monospaced text++
##unconstrained unquoted text##

The following example emboldens the letter F:

**F**ile Open...

10.2 Superscripts and Subscripts

Put ˆcarets on eitherˆ side of the text to be superscripted, put ~tildes on either side~ of text to be subscripted. For example, the
following line:

e^&#960;i^+1 = 0. H~2~O and x^10^. Some ^super text^
and ~some sub text~

Is rendered like:

eπi+1 = 0. H2O and x10. Some super text and some sub text

Superscripts and subscripts are implemented as unconstrained quotes and they can be escaped with a leading backslash and
prefixed with with an attribute list.

10.3 Line Breaks

A plus character preceded by at least one space character at the end of a non-blank line forces a line break. It generates a
line break (br) tag for HTML outputs and a custom XML asciidoc-br processing instruction for DocBook outputs. The
asciidoc-br processing instruction is handled by a2x(1).

10.4 Page Breaks

A line of three or more less-than (<<<) characters will generate a hard page break in DocBook and printed HTML outputs. It
uses the CSS page-break-after property for HTML outputs and a custom XML asciidoc-pagebreak processing
instruction for DocBook outputs. The asciidoc-pagebreak processing instruction is handled by a2x(1). Hard page breaks
are sometimes handy but as a general rule you should let your page processor generate page breaks for you.

10.5 Rulers

A line of three or more apostrophe characters will generate a ruler line. It generates a ruler (hr) tag for HTML outputs and
a custom XML asciidoc-hr processing instruction for DocBook outputs. The asciidoc-hr processing instruction is
handled by a2x(1).



AsciiDoc User Guide 17 / 93

10.6 Tabs

By default tab characters input files will translated to 8 spaces. Tab expansion is set with the tabsize entry in the configuration
file [miscellaneous] section and can be overridden in included files by setting a tabsize attribute in the include macro’s
attribute list. For example:

include::addendum.txt[tabsize=2]

The tab size can also be set using the attribute command-line option, for example --attribute tabsize=4

10.7 Replacements

The following replacements are defined in the default AsciiDoc configuration:

(C) copyright, (TM) trademark, (R) registered trademark,
-- em dash, ... ellipsis, -> right arrow, <- left arrow, => right
double arrow, <= left double arrow.

Which are rendered as:

© copyright, ™ trademark, ® registered trademark, — em dash, . . . ellipsis,→ right arrow,← left arrow,⇒ right double arrow,
⇐ left double arrow.

You can also include arbitrary entity references in the AsciiDoc source. Examples:

&#x278a; &#182;

renders:

Ê ¶

To render a replacement literally escape it with a leading back-slash.

The Configuration Files section explains how to configure your own replacements.

10.8 Special Words

Words defined in [specialwords] configuration file sections are automatically marked up without having to be explicitly
notated.

The Configuration Files section explains how to add and replace special words.

11 Titles

Document and section titles can be in either of two formats:

11.1 Two line titles

A two line title consists of a title line, starting hard against the left margin, and an underline. Section underlines consist a repeated
character pairs spanning the width of the preceding title (give or take up to two characters):

The default title underlines for each of the document levels are:



AsciiDoc User Guide 18 / 93

Level 0 (top level): ======================
Level 1: ----------------------
Level 2: ~~~~~~~~~~~~~~~~~~~~~~
Level 3: ^^^^^^^^^^^^^^^^^^^^^^
Level 4 (bottom level): ++++++++++++++++++++++

Examples:

Level One Section Title
-----------------------

Level 2 Subsection Title
~~~~~~~~~~~~~~~~~~~~~~~~

11.2 One line titles

One line titles consist of a single line delimited on either side by one or more equals characters (the number of equals characters
corresponds to the section level minus one). Here are some examples:

= Document Title (level 0) =
== Section title (level 1) ==
=== Section title (level 2) ===
==== Section title (level 3) ====
===== Section title (level 4) =====

Note

• One or more spaces must fall between the title and the delimiters.

• The trailing title delimiter is optional.

• The one-line title syntax can be changed by editing the configuration file [titles] section sect0. . .sect4 entries.

11.3 Floating titles

Setting the title’s first positional attribute or style attribute to float generates a free-floating title. A free-floating title is rendered
just like a normal section title but is not formally associated with a text body and is not part of the regular section hierarchy so
the normal ordering rules do not apply. Floating titles can also be used in contexts where section titles are illegal: for example
sidebar and admonition blocks. Example:

[float]
The second day
~~~~~~~~~~~~~~

Floating titles do not appear in a document’s table of contents.



AsciiDoc User Guide 19 / 93

12 Block Titles

A BlockTitle element is a single line beginning with a period followed by the title text. A BlockTitle is applied to the immediately
following Paragraph, DelimitedBlock, List, Table or BlockMacro. For example:

.Notes
- Note 1.
- Note 2.

is rendered as:

NOTES

• Note 1.

• Note 2.

13 BlockId Element

A BlockId is a single line block element containing a unique identifier enclosed in double square brackets. It is used to assign an
identifier to the ensuing block element. For example:

[[chapter-titles]]
Chapter titles can be ...

The preceding example identifies the ensuing paragraph so it can be referenced from other locations, for example with <<chapter-titles,chapter
titles>>.

BlockId elements can be applied to Title, Paragraph, List, DelimitedBlock, Table and BlockMacro elements. The BlockId element
sets the {id} attribute for substitution in the subsequent block’s markup template. If a second positional argument is supplied it
sets the {reftext} attribute which is used to set the DocBook xreflabel attribute.

The BlockId element has the same syntax and serves the same function to the anchor inline macro.

14 AttributeList Element

An AttributeList block element is an attribute list on a line by itself:

• AttributeList attributes are only applied to the immediately following block element — the attributes are made available to the
block’s markup template.

• Multiple contiguous AttributeList elements are additively combined in the order they appear.

• The first positional attribute in the list is often used to specify the ensuing element’s style.

14.1 Attribute value substitution

By default, only substitutions that take place inside attribute list values are attribute references, this is because not all attributes are
destined to be marked up and rendered as text (for example the table cols attribute). To perform normal inline text substitutions
(special characters, quotes, macros, replacements) on an attribute value you need to enclose it in single quotes. In the following
quote block the second attribute value in the AttributeList is quoted to ensure the http macro is expanded to a hyperlink.



AsciiDoc User Guide 20 / 93

[quote,'http://en.wikipedia.org/wiki/Samuel_Johnson[Samuel Johnson]']
_____________________________________________________________________
Sir, a woman's preaching is like a dog's walking on his hind legs. It
is not done well; but you are surprised to find it done at all.
_____________________________________________________________________

14.2 Common attributes

Most block elements support the following attributes:

Name Backends Description
id html4, html5,

xhtml11,
docbook

Unique identifier typically serve as link targets. Can also be set by the BlockId
element.

role html4, html5,
xhtml11,
docbook

Role contains a string used to classify or subclassify an element and can be applied
to AsciiDoc block elements. The AsciiDoc role attribute is translated to the role
attribute in DocBook outputs and is included in the class attribute in HTML
outputs, in this respect it behaves like the quoted text role attribute.
DocBook XSL Stylesheets translate DocBook role attributes to HTML class
attributes; CSS can then be used to style the generated HTML.

reftext docbook reftext is used to set the DocBook xreflabel attribute. The reftext attribute can an
also be set by the BlockId element.

floatstyle docbook floatstyle is used to specify the floatstyle attribute for the titled table, example,
image and equation blocks. This is useful when used in conjuction with the dblatex
toolchain. A typical example would be to specify the value as floatstyle="[htbp]".

15 Paragraphs

Paragraphs are blocks of text terminated by a blank line, the end of file, or the start of a delimited block or a list. There are three
paragraph syntaxes: normal, indented (literal) and admonition which are rendered, by default, with the corresponding paragraph
style.

Each syntax has a default style, but you can explicitly apply any paragraph style to any paragraph syntax. You can also apply
delimited block styles to single paragraphs.

The built-in paragraph styles are: normal, literal, verse, quote, listing, TIP, NOTE, IMPORTANT, WARNING, CAUTION, ab-
stract, partintro, comment, example, sidebar, source, music, latex, graphviz.

15.1 normal paragraph syntax

Normal paragraph syntax consists of one or more non-blank lines of text. The first line must start hard against the left margin (no
intervening white space). The default processing expectation is that of a normal paragraph of text.

15.2 literal paragraph syntax

Literal paragraphs are rendered verbatim in a monospaced font without any distinguishing background or border. By default
there is no text formatting or substitutions within Literal paragraphs apart from Special Characters and Callouts.

The literal style is applied implicitly to indented paragraphs i.e. where the first line of the paragraph is indented by one or more
space or tab characters. For example:

http://www.sagehill.net/docbookxsl/UsingCSS.html


AsciiDoc User Guide 21 / 93

Consul *necessitatibus* per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.

Renders:

Consul *necessitatibus* per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.

Note
Because lists can be indented it’s possible for your indented paragraph to be misinterpreted as a list — in situations like this
apply the literal style to a normal paragraph.

Instead of using a paragraph indent you could apply the literal style explicitly, for example:

[literal]
Consul *necessitatibus* per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.

Renders:

Consul *necessitatibus* per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.

15.3 quote and verse paragraph styles

The optional attribution and citetitle attributes (positional attributes 2 and 3) specify the author and source respectively.

The verse style retains the line breaks, for example:

[verse, William Blake, from Auguries of Innocence]
To see a world in a grain of sand,
And a heaven in a wild flower,
Hold infinity in the palm of your hand,
And eternity in an hour.

Which is rendered as:

To see a world in a grain of sand,
And a heaven in a wild flower,
Hold infinity in the palm of your hand,
And eternity in an hour.

— William Blake from Auguries of Innocence



AsciiDoc User Guide 22 / 93

The quote style flows the text at left and right margins, for example:

[quote, Bertrand Russell, The World of Mathematics (1956)]
A good notation has subtlety and suggestiveness which at times makes
it almost seem like a live teacher.

Which is rendered as:

A good notation has subtlety and suggestiveness which at times makes it almost seem like a live teacher.

— Bertrand Russell The World of Mathematics (1956)

15.4 Admonition Paragraphs

TIP, NOTE, IMPORTANT, WARNING and CAUTION admonishment paragraph styles are generated by placing NOTE:, TIP:,
IMPORTANT:, WARNING: or CAUTION: as the first word of the paragraph. For example:

NOTE: This is an example note.

Alternatively, you can specify the paragraph admonition style explicitly using an AttributeList element. For example:

[NOTE]
This is an example note.

Renders:

Note
This is an example note.

Tip
If your admonition requires more than a single paragraph use an admonition block instead.

15.4.1 Admonition Icons and Captions

Note
Admonition customization with icons, iconsdir, icon and caption attributes does not apply when generating DocBook
output. If you are going the DocBook route then the a2x(1) --no-icons and --icons-dir options can be used to set the
appropriate XSL Stylesheets parameters.

By default the asciidoc(1) HTML backends generate text captions instead of admonition icon image links. To generate links to
icon images define the icons attribute, for example using the -a icons command-line option.

The iconsdir attribute sets the location of linked icon images.

You can override the default icon image using the icon attribute to specify the path of the linked image. For example:

[icon="./images/icons/wink.png"]
NOTE: What lovely war.



AsciiDoc User Guide 23 / 93

Use the caption attribute to customize the admonition captions (not applicable to docbook backend). The following ex-
ample suppresses the icon image and customizes the caption of a NOTE admonition (undefining the icons attribute with
icons=None is only necessary if admonition icons have been enabled):

[icons=None, caption="My Special Note"]
NOTE: This is my special note.

This subsection also applies to Admonition Blocks.

16 Delimited Blocks

Delimited blocks are blocks of text enveloped by leading and trailing delimiter lines (normally a series of four or more repeated
characters). The behavior of Delimited Blocks is specified by entries in configuration file [blockdef-*] sections.

16.1 Predefined Delimited Blocks

AsciiDoc ships with a number of predefined DelimitedBlocks (see the asciidoc.conf configuration file in the asciidoc(1)
program directory):

Predefined delimited block underlines:

CommentBlock: //////////////////////////
PassthroughBlock: ++++++++++++++++++++++++++
ListingBlock: --------------------------
LiteralBlock: ..........................
SidebarBlock: **************************
QuoteBlock: __________________________
ExampleBlock: ==========================
OpenBlock: --

Table 3: Default DelimitedBlock substitutions

Attributes Callouts Macros Quotes Replacements Special
chars

Special
words

PassthroughBlock Yes No Yes No No No No
ListingBlock No Yes No No No Yes No
LiteralBlock No Yes No No No Yes No
SidebarBlock Yes No Yes Yes Yes Yes Yes
QuoteBlock Yes No Yes Yes Yes Yes Yes
ExampleBlock Yes No Yes Yes Yes Yes Yes
OpenBlock Yes No Yes Yes Yes Yes Yes

16.2 Listing Blocks

ListingBlocks are rendered verbatim in a monospaced font, they retain line and whitespace formatting and are often distinguished
by a background or border. There is no text formatting or substitutions within Listing blocks apart from Special Characters and
Callouts. Listing blocks are often used for computer output and file listings.



AsciiDoc User Guide 24 / 93

Here’s an example:

--------------------------------------
#include <stdio.h>

int main() {
printf("Hello World!\n");
exit(0);

}
--------------------------------------

Which will be rendered like:

#include <stdio.h>

int main() {
printf("Hello World!\n");
exit(0);

}

By convention filter blocks use the listing block syntax and are implemented as distinct listing block styles.

16.3 Literal Blocks

LiteralBlocks are rendered just like literal paragraphs. Example:

...................................
Consul *necessitatibus* per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.
...................................

Renders:

Consul *necessitatibus* per id,
consetetur, eu pro everti postulant
homero verear ea mea, qui.

If the listing style is applied to a LiteralBlock it will be rendered as a ListingBlock (this is handy if you have a listing containing
a ListingBlock).

16.4 Sidebar Blocks

A sidebar is a short piece of text presented outside the narrative flow of the main text. The sidebar is normally presented inside a
bordered box to set it apart from the main text.

The sidebar body is treated like a normal section body.

Here’s an example:



AsciiDoc User Guide 25 / 93

.An Example Sidebar

************************************************
Any AsciiDoc SectionBody element (apart from
SidebarBlocks) can be placed inside a sidebar.

************************************************

Which will be rendered like:

An Example Sidebar

Any AsciiDoc SectionBody element (apart from SidebarBlocks) can be placed inside a sidebar.

16.5 Comment Blocks

The contents of CommentBlocks are not processed; they are useful for annotations and for excluding new or outdated content that
you don’t want displayed. CommentBlocks are never written to output files. Example:

//////////////////////////////////////////
CommentBlock contents are not processed by
asciidoc(1).
//////////////////////////////////////////

See also Comment Lines.

Note
System macros are executed inside comment blocks.

16.6 Passthrough Blocks

By default the block contents is subject only to attributes and macros substitutions (use an explicit subs attribute to apply different
substitutions). PassthroughBlock content will often be backend specific. Here’s an example:

[subs="quotes"]
++++++++++++++++++++++++++++++++++++++
<table border="1"><tr>

<td>*Cell 1*</td>
<td>*Cell 2*</td>

</tr></table>
++++++++++++++++++++++++++++++++++++++

The following styles can be applied to passthrough blocks:

pass
No substitutions are performed. This is equivalent to subs="none".

asciimath, latexmath
By default no substitutions are performed, the contents are rendered as mathematical formulas.



AsciiDoc User Guide 26 / 93

16.7 Quote Blocks

QuoteBlocks are used for quoted passages of text. There are two styles: quote and verse. The style behavior is identical to
quote and verse paragraphs except that blocks can contain multiple paragraphs and, in the case of the quote style, other section
elements. The first positional attribute sets the style, if no attributes are specified the quote style is used. The optional attribution
and citetitle attributes (positional attributes 2 and 3) specify the quote’s author and source. For example:

[quote, Sir Arthur Conan Doyle, The Adventures of Sherlock Holmes]
____________________________________________________________________
As he spoke there was the sharp sound of horses' hoofs and
grating wheels against the curb, followed by a sharp pull at the
bell. Holmes whistled.

"A pair, by the sound," said he. "Yes," he continued, glancing
out of the window. "A nice little brougham and a pair of
beauties. A hundred and fifty guineas apiece. There's money in
this case, Watson, if there is nothing else."
____________________________________________________________________

Which is rendered as:

As he spoke there was the sharp sound of horses’ hoofs and grating wheels against the curb, followed by a sharp pull
at the bell. Holmes whistled.

"A pair, by the sound," said he. "Yes," he continued, glancing out of the window. "A nice little brougham and a pair
of beauties. A hundred and fifty guineas apiece. There’s money in this case, Watson, if there is nothing else."

— Sir Arthur Conan Doyle The Adventures of Sherlock Holmes

16.8 Example Blocks

ExampleBlocks encapsulate the DocBook Example element and are used for, well, examples. Example blocks can be titled by
preceding them with a BlockTitle. DocBook toolchains will normally automatically number examples and generate a List of
Examples backmatter section.

Example blocks are delimited by lines of equals characters and can contain any block elements apart from Titles, BlockTitles
and Sidebars) inside an example block. For example:

.An example
=====================================================================
Qui in magna commodo, est labitur dolorum an. Est ne magna primis
adolescens.
=====================================================================

Renders:

Example 16.1 An example
Qui in magna commodo, est labitur dolorum an. Est ne magna primis adolescens.

A title prefix that can be inserted with the caption attribute (HTML backends). For example:

[caption="Example 1: "]
.An example with a custom caption
=====================================================================
Qui in magna commodo, est labitur dolorum an. Est ne magna primis
adolescens.
=====================================================================



AsciiDoc User Guide 27 / 93

16.9 Admonition Blocks

The ExampleBlock definition includes a set of admonition styles (NOTE, TIP, IMPORTANT, WARNING, CAUTION) for gener-
ating admonition blocks (admonitions containing more than a single paragraph). Just precede the ExampleBlock with an attribute
list specifying the admonition style name. For example:

[NOTE]
.A NOTE admonition block
=====================================================================
Qui in magna commodo, est labitur dolorum an. Est ne magna primis
adolescens.

. Fusce euismod commodo velit.

. Vivamus fringilla mi eu lacus.
.. Fusce euismod commodo velit.
.. Vivamus fringilla mi eu lacus.

. Donec eget arcu bibendum
nunc consequat lobortis.

=====================================================================

Renders:

A NOTE admonition block
Qui in magna commodo, est labitur dolorum an. Est ne magna primis adolescens.

1. Fusce euismod commodo velit.

2. Vivamus fringilla mi eu lacus.

a. Fusce euismod commodo velit.

b. Vivamus fringilla mi eu lacus.

3. Donec eget arcu bibendum nunc consequat lobortis.

See also Admonition Icons and Captions.

16.10 Open Blocks

Open blocks are special:

• The open block delimiter is line containing two hyphen characters (instead of four or more repeated characters).

• They can be used to group block elements for List item continuation.

• Open blocks can be styled to behave like any other type of delimited block. The following built-in styles can be applied to open
blocks: literal, verse, quote, listing, TIP, NOTE, IMPORTANT, WARNING, CAUTION, abstract, partintro, comment, example,
sidebar, source, music, latex, graphviz. For example, the following open block and listing block are functionally identical:

[listing]
--
Lorum ipsum ...
--



AsciiDoc User Guide 28 / 93

---------------
Lorum ipsum ...
---------------

• An unstyled open block groups section elements but otherwise does nothing.

Open blocks are used to generate document abstracts and book part introductions:

• Apply the abstract style to generate an abstract, for example:

[abstract]
--
In this paper we will ...
--

1. Apply the partintro style to generate a book part introduction for a multi-part book, for example:

[partintro]
.Optional part introduction title
--
Optional part introduction goes here.
--

17 Lists

LIST TYPES

• Bulleted lists. Also known as itemized or unordered lists.

• Numbered lists. Also called ordered lists.

• Labeled lists. Sometimes called variable or definition lists.

• Callout lists (a list of callout annotations).

LIST BEHAVIOR

• List item indentation is optional and does not determine nesting, indentation does however make the source more readable.

• Another list or a literal paragraph immediately following a list item will be implicitly included in the list item; use list item
continuation to explicitly append other block elements to a list item.

• A comment block or a comment line block macro element will terminate a list — use inline comment lines to put comments
inside lists.

• The listindex intrinsic attribute is the current list item index (1..). If this attribute is used outside a list then it’s value is the
number of items in the most recently closed list. Useful for displaying the number of items in a list.



AsciiDoc User Guide 29 / 93

17.1 Bulleted Lists

Bulleted list items start with a single dash or one to five asterisks followed by some white space then some text. Bulleted list
syntaxes are:

- List item.

* List item.

** List item.

*** List item.

**** List item.

***** List item.

17.2 Numbered Lists

List item numbers are explicit or implicit.

Explicit numbering List items begin with a number followed by some white space then the item text. The numbers can be
decimal (arabic), roman (upper or lower case) or alpha (upper or lower case). Decimal and alpha numbers are terminated with
a period, roman numbers are terminated with a closing parenthesis. The different terminators are necessary to ensure i, v and x
roman numbers are are distinguishable from x, v and x alpha numbers. Examples:

1. Arabic (decimal) numbered list item.
a. Lower case alpha (letter) numbered list item.
F. Upper case alpha (letter) numbered list item.
iii) Lower case roman numbered list item.
IX) Upper case roman numbered list item.

Implicit numbering List items begin one to five period characters, followed by some white space then the item text. Examples:

. Arabic (decimal) numbered list item.

.. Lower case alpha (letter) numbered list item.

... Lower case roman numbered list item.

.... Upper case alpha (letter) numbered list item.

..... Upper case roman numbered list item.

You can use the style attribute (also the first positional attribute) to specify an alternative numbering style. The numbered list
style can be one of the following values: arabic, loweralpha, upperalpha, lowerroman, upperroman.

Here are some examples of bulleted and numbered lists:

- Praesent eget purus quis magna eleifend eleifend.
1. Fusce euismod commodo velit.
a. Fusce euismod commodo velit.
b. Vivamus fringilla mi eu lacus.
c. Donec eget arcu bibendum nunc consequat lobortis.

2. Vivamus fringilla mi eu lacus.
i) Fusce euismod commodo velit.
ii) Vivamus fringilla mi eu lacus.

3. Donec eget arcu bibendum nunc consequat lobortis.
4. Nam fermentum mattis ante.

- Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

* Fusce euismod commodo velit.

** Qui in magna commodo, est labitur dolorum an. Est ne magna primis



AsciiDoc User Guide 30 / 93

adolescens. Sit munere ponderum dignissim et. Minim luptatum et
vel.

** Vivamus fringilla mi eu lacus.

* Donec eget arcu bibendum nunc consequat lobortis.
- Nulla porttitor vulputate libero.

. Fusce euismod commodo velit.

. Vivamus fringilla mi eu lacus.
[upperroman]

.. Fusce euismod commodo velit.

.. Vivamus fringilla mi eu lacus.
. Donec eget arcu bibendum nunc consequat lobortis.

Which render as:

• Praesent eget purus quis magna eleifend eleifend.

1. Fusce euismod commodo velit.

a. Fusce euismod commodo velit.
b. Vivamus fringilla mi eu lacus.
c. Donec eget arcu bibendum nunc consequat lobortis.

2. Vivamus fringilla mi eu lacus.

i. Fusce euismod commodo velit.
ii. Vivamus fringilla mi eu lacus.

3. Donec eget arcu bibendum nunc consequat lobortis.

4. Nam fermentum mattis ante.

• Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

– Fusce euismod commodo velit.

* Qui in magna commodo, est labitur dolorum an. Est ne magna primis adolescens. Sit munere ponderum dignissim et.
Minim luptatum et vel.

* Vivamus fringilla mi eu lacus.

– Donec eget arcu bibendum nunc consequat lobortis.

• Nulla porttitor vulputate libero.

1. Fusce euismod commodo velit.

2. Vivamus fringilla mi eu lacus.

I. Fusce euismod commodo velit.
II. Vivamus fringilla mi eu lacus.

3. Donec eget arcu bibendum nunc consequat lobortis.

A predefined compact option is available to bulleted and numbered lists — this translates to the DocBook spacing="compact"
lists attribute which may or may not be processed by the DocBook toolchain. Example:

[options="compact"]
- Compact list item.
- Another compact list item.

Tip
To apply the compact option globally define a document-wide compact-option attribute, e.g. using the -a compact-option
command-line option.



AsciiDoc User Guide 31 / 93

You can set the list start number using the start attribute (works for HTML outputs and DocBook outputs processed by DocBook
XSL Stylesheets). Example:

[start=7]
. List item 7.
. List item 8.

17.3 Labeled Lists

Labeled list items consist of one or more text labels followed by the text of the list item.

An item label begins a line with an alphanumeric character hard against the left margin and ends with two, three or four colons
or two semi-colons. A list item can have multiple labels, one per line.

The list item text consists of one or more lines of text starting after the last label (either on the same line or a new line) and can
be followed by nested List or ListParagraph elements. Item text can be optionally indented.

Here are some examples:

In::
Lorem::

Fusce euismod commodo velit.

Fusce euismod commodo velit.

Ipsum:: Vivamus fringilla mi eu lacus.

* Vivamus fringilla mi eu lacus.

* Donec eget arcu bibendum nunc consequat lobortis.
Dolor::

Donec eget arcu bibendum nunc consequat lobortis.
Suspendisse;;
A massa id sem aliquam auctor.

Morbi;;
Pretium nulla vel lorem.

In;;
Dictum mauris in urna.
Vivamus::: Fringilla mi eu lacus.
Donec::: Eget arcu bibendum nunc consequat lobortis.

Which render as:

In , Lorem
Fusce euismod commodo velit.

Fusce euismod commodo velit.

Ipsum
Vivamus fringilla mi eu lacus.

• Vivamus fringilla mi eu lacus.

• Donec eget arcu bibendum nunc consequat lobortis.

Dolor
Donec eget arcu bibendum nunc consequat lobortis.



AsciiDoc User Guide 32 / 93

Suspendisse
A massa id sem aliquam auctor.

Morbi
Pretium nulla vel lorem.

In
Dictum mauris in urna.

Vivamus
Fringilla mi eu lacus.

Donec
Eget arcu bibendum nunc consequat lobortis.

17.3.1 Horizontal labeled list style

The horizontal labeled list style (also the first positional attribute) places the list text side-by-side with the label instead of under
the label. Here is an example:

[horizontal]

*Lorem*:: Fusce euismod commodo velit. Qui in magna commodo, est
labitur dolorum an. Est ne magna primis adolescens.

Fusce euismod commodo velit.

*Ipsum*:: Vivamus fringilla mi eu lacus.
- Vivamus fringilla mi eu lacus.
- Donec eget arcu bibendum nunc consequat lobortis.

*Dolor*::
- Vivamus fringilla mi eu lacus.
- Donec eget arcu bibendum nunc consequat lobortis.

Which render as:

Lorem Fusce euismod commodo velit. Qui in magna commodo, est labitur dolorum an. Est ne magna primis
adolescens.

Fusce euismod commodo velit.

Ipsum Vivamus fringilla mi eu lacus.

• Vivamus fringilla mi eu lacus.

• Donec eget arcu bibendum nunc consequat lobortis.

Dolor

• Vivamus fringilla mi eu lacus.

• Donec eget arcu bibendum nunc consequat lobortis.



AsciiDoc User Guide 33 / 93

Note

• Current PDF toolchains do not make a good job of determining the relative column widths for horizontal labeled lists.

• Nested horizontal labeled lists will generate DocBook validation errors because the DocBook XML V4.2 DTD does not permit
nested informal tables (although DocBook XSL Stylesheets and dblatex process them correctly).

• The label width can be set as a percentage of the total width by setting the width attribute e.g. width="10%"

17.4 Question and Answer Lists

AsciiDoc comes pre-configured with a qanda style labeled list for generating DocBook question and answer (Q&A) lists. Ex-
ample:

[qanda]
Question one::

Answer one.
Question two::

Answer two.

Renders:

1. Question one

Answer one.

2. Question two

Answer two.

17.5 Glossary Lists

AsciiDoc comes pre-configured with a glossary style labeled list for generating DocBook glossary lists. Example:

[glossary]
A glossary term::

The corresponding definition.
A second glossary term::

The corresponding definition.

For working examples see the article.txt and book.txt documents in the AsciiDoc ./doc distribution directory.

Note
To generate valid DocBook output glossary lists must be located in a section that uses the glossary section markup template.

17.6 Bibliography Lists

AsciiDoc comes with a predefined bibliography bulleted list style generating DocBook bibliography entries. Example:



AsciiDoc User Guide 34 / 93

[bibliography]
.Optional list title
- [[[taoup]]] Eric Steven Raymond. 'The Art of UNIX

Programming'. Addison-Wesley. ISBN 0-13-142901-9.
- [[[walsh-muellner]]] Norman Walsh & Leonard Muellner.

'DocBook - The Definitive Guide'. O'Reilly & Associates. 1999.
ISBN 1-56592-580-7.

The [[[<reference>]]] syntax is a bibliography entry anchor, it generates an anchor named <reference> and addition-
ally displays [<reference>] at the anchor position. For example [[[taoup]]] generates an anchor named taoup that
displays [taoup] at the anchor position. Cite the reference from elsewhere your document using <<taoup>>, this displays a
hyperlink ([taoup]) to the corresponding bibliography entry anchor.

For working examples see the article.txt and book.txt documents in the AsciiDoc ./doc distribution directory.

Note
To generate valid DocBook output bibliography lists must be located in a bibliography section.

17.7 List Item Continuation

Another list or a literal paragraph immediately following a list item is implicitly appended to the list item; to append other block
elements to a list item you need to explicitly join them to the list item with a list continuation (a separator line containing a single
plus character). Multiple block elements can be appended to a list item using list continuations (provided they are legal list item
children in the backend markup).

Here are some examples of list item continuations: list item one contains multiple continuations; list item two is continued with
an OpenBlock containing multiple elements:

1. List item one.
+
List item one continued with a second paragraph followed by an
Indented block.
+
.................
$ ls *.sh
$ mv *.sh ~/tmp
.................
+
List item continued with a third paragraph.

2. List item two continued with an open block.
+
--
This paragraph is part of the preceding list item.

a. This list is nested and does not require explicit item continuation.
+
This paragraph is part of the preceding list item.

b. List item b.

This paragraph belongs to item two of the outer list.
--

Renders:



AsciiDoc User Guide 35 / 93

1. List item one.

List item one continued with a second paragraph followed by an Indented block.

$ ls *.sh
$ mv *.sh ~/tmp

List item continued with a third paragraph.

2. List item two continued with an open block.

This paragraph is part of the preceding list item.

a. This list is nested and does not require explicit item continuation.
This paragraph is part of the preceding list item.

b. List item b.

This paragraph belongs to item two of the outer list.

18 Footnotes

The shipped AsciiDoc configuration includes three footnote inline macros:

footnote:[<text>]
Generates a footnote with text <text>.

footnoteref:[<id>,<text>]
Generates a footnote with a reference ID <id> and text <text>.

footnoteref:[<id>]
Generates a reference to the footnote with ID <id>.

The footnote text can span multiple lines.

The xhtml11 and html5 backends render footnotes dynamically using JavaScript; html4 outputs do not use JavaScript and leave
the footnotes inline; docbook footnotes are processed by the downstream DocBook toolchain.

Example footnotes:

A footnote footnote:[An example footnote.];
a second footnote with a reference ID footnoteref:[note2,Second footnote.];
finally a reference to the second footnote footnoteref:[note2].

Renders:

A footnote 2; a second footnote with a reference ID 3; finally a reference to the second footnote 3.

19 Indexes

The shipped AsciiDoc configuration includes the inline macros for generating DocBook index entries.
2An example footnote.
3 Second footnote.



AsciiDoc User Guide 36 / 93

indexterm:[<primary>,<secondary>,<tertiary>] , (((<primary>,<secondary>,<tertiary>)))
This inline macro generates an index term (the <secondary> and <tertiary> positional attributes are optional).
Example: indexterm:[Tigers,Big cats] (or, using the alternative syntax (((Tigers,Big cats))). Index
terms that have secondary and tertiary entries also generate separate index terms for the secondary and tertiary entries. The
index terms appear in the index, not the primary text flow.

indexterm2:[<primary>] , ((<primary>))
This inline macro generates an index term that appears in both the index and the primary text flow. The <primary>
should not be padded to the left or right with white space characters.

For working examples see the article.txt and book.txt documents in the AsciiDoc ./doc distribution directory.

Note
Index entries only really make sense if you are generating DocBook markup — DocBook conversion programs automatically
generate an index at the point an Index section appears in source document.

20 Callouts

Callouts are a mechanism for annotating verbatim text (for example: source code, computer output and user input). Callout
markers are placed inside the annotated text while the actual annotations are presented in a callout list after the annotated text.
Here’s an example:

.MS-DOS directory listing
-----------------------------------------------------
10/17/97 9:04 <DIR> bin
10/16/97 14:11 <DIR> DOS <1>
10/16/97 14:40 <DIR> Program Files
10/16/97 14:46 <DIR> TEMP
10/17/97 9:04 <DIR> tmp
10/16/97 14:37 <DIR> WINNT
10/16/97 14:25 119 AUTOEXEC.BAT <2>
2/13/94 6:21 54,619 COMMAND.COM <2>

10/16/97 14:25 115 CONFIG.SYS <2>
11/16/97 17:17 61,865,984 pagefile.sys
2/13/94 6:21 9,349 WINA20.386 <3>

-----------------------------------------------------

<1> This directory holds MS-DOS.
<2> System startup code for DOS.
<3> Some sort of Windows 3.1 hack.

Which renders:

MS-DOS directory listing

10/17/97 9:04 <DIR> bin
10/16/97 14:11 <DIR> DOS v1
10/16/97 14:40 <DIR> Program Files
10/16/97 14:46 <DIR> TEMP
10/17/97 9:04 <DIR> tmp
10/16/97 14:37 <DIR> WINNT
10/16/97 14:25 119 AUTOEXEC.BAT v2
2/13/94 6:21 54,619 COMMAND.COM v3

10/16/97 14:25 115 CONFIG.SYS v4
11/16/97 17:17 61,865,984 pagefile.sys
2/13/94 6:21 9,349 WINA20.386 v5



AsciiDoc User Guide 37 / 93

v1 This directory holds MS-DOS.v2 , v3 , v4 System startup code for DOS.v5 Some sort of Windows 3.1 hack.

EXPLANATION

• The callout marks are whole numbers enclosed in angle brackets — they refer to the correspondingly numbered item in the
following callout list.

• By default callout marks are confined to LiteralParagraphs, LiteralBlocks and ListingBlocks (although this is a configuration
file option and can be changed).

• Callout list item numbering is fairly relaxed — list items can start with <n>, n> or > where n is the optional list item number
(in the latter case list items starting with a single > character are implicitly numbered starting at one).

• Callout lists should not be nested.

• Callout lists cannot be used within tables.

• Callout lists start list items hard against the left margin.

• If you want to present a number inside angle brackets you’ll need to escape it with a backslash to prevent it being interpreted
as a callout mark.

Note
Define the AsciiDoc icons attribute (for example using the -a icons command-line option) to display callout icons.

20.1 Implementation Notes

Callout marks are generated by the callout inline macro while callout lists are generated using the callout list definition. The
callout macro and callout list are special in that they work together. The callout inline macro is not enabled by the normal macros
substitutions option, instead it has its own callouts substitution option.

The following attributes are available during inline callout macro substitution:

{index}
The callout list item index inside the angle brackets.

{coid}
An identifier formatted like CO<listnumber>-<index> that uniquely identifies the callout mark. For example CO2-4
identifies the fourth callout mark in the second set of callout marks.

The {coids} attribute can be used during callout list item substitution — it is a space delimited list of callout IDs that refer to
the explanatory list item.

20.2 Including callouts in included code

You can annotate working code examples with callouts — just remember to put the callouts inside source code comments. This
example displays the test.py source file (containing a single callout) using the source (code highlighter) filter:

AsciiDoc source



AsciiDoc User Guide 38 / 93

[source,python]
-------------------------------------------
\include::test.py[]
-------------------------------------------

<1> Print statement.

Included test.py source

print 'Hello World!' # <1>

21 Macros

Macros are a mechanism for substituting parametrized text into output documents.

Macros have a name, a single target argument and an attribute list. The usual syntax is <name>:<target>[<attrlist>]
(for inline macros) and <name>::<target>[<attrlist>] (for block macros). Here are some examples:

http://www.docbook.org/[DocBook.org]
include::chapt1.txt[tabsize=2]
mailto:srackham@gmail.com[]

MACRO BEHAVIOR

• <name> is the macro name. It can only contain letters, digits or dash characters and cannot start with a dash.

• The optional <target> cannot contain white space characters.

• <attrlist> is a list of attributes enclosed in square brackets.

• ] characters inside attribute lists must be escaped with a backslash.

• Expansion of macro references can normally be escaped by prefixing a backslash character (see the AsciiDoc FAQ for examples
of exceptions to this rule).

• Attribute references in block macros are expanded.

• The substitutions performed prior to Inline macro macro expansion are determined by the inline context.

• Macros are processed in the order they appear in the configuration file(s).

• Calls to inline macros can be nested inside different inline macros (an inline macro call cannot contain a nested call to itself).

• In addition to <name>, <target> and <attrlist> the <passtext> and <subslist> named groups are available to
passthrough macros. A macro is a passthrough macro if the definition includes a <passtext> named group.

21.1 Inline Macros

Inline Macros occur in an inline element context. Predefined Inline macros include URLs, image and link macros.



AsciiDoc User Guide 39 / 93

21.1.1 URLs

http, https, ftp, file, mailto and callto URLs are rendered using predefined inline macros.

• If you don’t need a custom link caption you can enter the http, https, ftp, file URLs and email addresses without any special
macro syntax.

• If the <attrlist> is empty the URL is displayed.

Here are some examples:

http://www.docbook.org/[DocBook.org]
http://www.docbook.org/
mailto:joe.bloggs@foobar.com[email Joe Bloggs]
joe.bloggs@foobar.com

Which are rendered:

DocBook.org

http://www.docbook.org/

email Joe Bloggs

joe.bloggs@foobar.com

If the <target> necessitates space characters use %20, for example large%20image.png.

21.1.2 Internal Cross References

Two AsciiDoc inline macros are provided for creating hypertext links within an AsciiDoc document. You can use either the
standard macro syntax or the (preferred) alternative.

anchor

Used to specify hypertext link targets:

[[<id>,<xreflabel>]]
anchor:<id>[<xreflabel>]

The <id> is a unique string that conforms to the output markup’s anchor syntax. The optional <xreflabel> is the text to be
displayed by captionless xref macros that refer to this anchor. The optional <xreflabel> is only really useful when generating
DocBook output. Example anchor:

[[X1]]

You may have noticed that the syntax of this inline element is the same as that of the BlockId block element, this is no coincidence
since they are functionally equivalent.

http://www.docbook.org/
http://www.docbook.org/
mailto:joe.bloggs@foobar.com
mailto:joe.bloggs@foobar.com


AsciiDoc User Guide 40 / 93

xref

Creates a hypertext link to a document anchor.

<<<id>,<caption>>>
xref:<id>[<caption>]

The <id> refers to an anchor ID. The optional <caption> is the link’s displayed text. Example:

<<X21,attribute lists>>

If <caption> is not specified then the displayed text is auto-generated:

• The AsciiDoc xhtml11 and html5 backends display the <id> enclosed in square brackets.

• If DocBook is produced the DocBook toolchain is responsible for the displayed text which will normally be the referenced
figure, table or section title number followed by the element’s title text.

Here is an example:

[[tiger_image]]
.Tyger tyger
image::tiger.png[]

This can be seen in <<tiger_image>>.

21.1.3 Linking to Local Documents

Hypertext links to files on the local file system are specified using the link inline macro.

link:<target>[<caption>]

The link macro generates relative URLs. The link macro <target> is the target file name (relative to the file system location of
the referring document). The optional <caption> is the link’s displayed text. If <caption> is not specified then <target>
is displayed. Example:

link:downloads/foo.zip[download foo.zip]

You can use the <filename>#<id> syntax to refer to an anchor within a target document but this usually only makes sense
when targeting HTML documents.

21.1.4 Images

Inline images are inserted into the output document using the image macro. The inline syntax is:

image:<target>[<attributes>]



AsciiDoc User Guide 41 / 93

The contents of the image file <target> is displayed. To display the image its file format must be supported by the target
backend application. HTML and DocBook applications normally support PNG or JPG files.

<target> file name paths are relative to the location of the referring document.

IMAGE MACRO ATTRIBUTES

• The optional alt attribute is also the first positional attribute, it specifies alternative text which is displayed if the output
application is unable to display the image file (see also Use of ALT texts in IMGs). For example:

image:images/logo.png[Company Logo]

• The optional title attribute provides a title for the image. The block image macro renders the title alongside the image. The
inline image macro displays the title as a popup “tooltip” in visual browsers (AsciiDoc HTML outputs only).

• The optional width and height attributes scale the image size and can be used in any combination. The units are pixels.
The following example scales the previous example to a height of 32 pixels:

image:images/logo.png["Company Logo",height=32]

• The optional link attribute is used to link the image to an external document. The following example links a screenshot
thumbnail to a full size version:

image:screen-thumbnail.png[height=32,link="screen.png"]

• The optional scaledwidth attribute is only used in DocBook block images (specifically for PDF documents). The following
example scales the images to 75% of the available print width:

image::images/logo.png[scaledwidth="75%",alt="Company Logo"]

• The image scale attribute sets the DocBook imagedata element scale attribute.

• The optional align attribute aligns block macro images horizontally. Allowed values are center, left and right. For
example:

image::images/tiger.png["Tiger image",align="left"]

• The optional float attribute floats the image left or right on the page (works with HTML outputs only, has no effect
on DocBook outputs). float and align attributes are mutually exclusive. Use the unfloat::[] block macro to stop
floating.

21.1.5 Comment Lines

See comment block macro.

21.2 Block Macros

A Block macro reference must be contained in a single line separated either side by a blank line or a block delimiter.

Block macros behave just like Inline macros, with the following differences:

• They occur in a block context.

• The default syntax is <name>::<target>[<attrlist>] (two colons, not one).

• Markup template section names end in -blockmacro instead of -inlinemacro.

http://htmlhelp.com/feature/art3.htm


AsciiDoc User Guide 42 / 93

21.2.1 Block Identifier

The Block Identifier macro sets the id attribute and has the same syntax as the anchor inline macro since it performs essentially
the same function — block templates use the id attribute as a block element ID. For example:

[[X30]]

This is equivalent to the [id="X30"] AttributeList element).

21.2.2 Images

The image block macro is used to display images in a block context. The syntax is:

image::<target>[<attributes>]

The block image macro has the same macro attributes as it’s inline image macro counterpart.

Warning
Unlike the inline image macro, the entire block image macro must be on a single line.

Block images can be titled by preceding the image macro with a BlockTitle. DocBook toolchains normally number titled block
images and optionally list them in an automatically generated List of Figures backmatter section.

This example:

.Main circuit board
image::images/layout.png[J14P main circuit board]

is equivalent to:

image::images/layout.png["J14P main circuit board", title="Main circuit board"]

A title prefix that can be inserted with the caption attribute (HTML backends). For example:

.Main circuit board
[caption="Figure 2: "]
image::images/layout.png[J14P main circuit board]



AsciiDoc User Guide 43 / 93

Embedding images in XHTML documents

If you define the data-uri attribute then images will be embedded in XHTML outputs using the data URI scheme.
You can use the data-uri attribute with the xhtml11 and html5 backends to produce single-file XHTML documents with
embedded images and CSS, for example:

$ asciidoc -a data-uri mydocument.txt

Note

• All current popular browsers support data URIs, although versions of Internet Explorer prior to version 8 do not.

• Some browsers limit the size of data URIs.

21.2.3 Comment Lines

Single lines starting with two forward slashes hard up against the left margin are treated as comments. Comment lines do not
appear in the output unless the showcomments attribute is defined. Comment lines have been implemented as both block and
inline macros so a comment line can appear as a stand-alone block or within block elements that support inline macro expansion.
Example comment line:

// This is a comment.

If the showcomments attribute is defined comment lines are written to the output:

• In DocBook the comment lines are enclosed by the remark element (which may or may not be rendered by your toolchain).

• The showcomments attribute does not expose Comment Blocks. Comment Blocks are never passed to the output.

21.3 System Macros

System macros are block macros that perform a predefined task and are hardwired into the asciidoc(1) program.

• You can escape system macros with a leading backslash character (as you can with other macros).

• The syntax and tasks performed by system macros is built into asciidoc(1) so they don’t appear in configuration files. You can
however customize the syntax by adding entries to a configuration file [macros] section.

21.3.1 Include Macros

The include and include1 system macros to include the contents of a named file into the source document.

The include macro includes a file as if it were part of the parent document — tabs are expanded and system macros processed.
The contents of include1 files are not subject to tab expansion or system macro processing nor are attribute or lower priority
substitutions performed. The include1macro’s intended use is to include verbatim embedded CSS or scripts into configuration
file headers. Example:

include::chapter1.txt[tabsize=4]

INCLUDE MACRO BEHAVIOR

http://en.wikipedia.org/wiki/Data:_URI_scheme


AsciiDoc User Guide 44 / 93

• If the included file name is specified with a relative path then the path is relative to the location of the referring document.

• Include macros can appear inside configuration files.

• Files included from within DelimitedBlocks are read to completion to avoid false end-of-block underline termination.

• Attribute references are expanded inside the include target; if an attribute is undefined then the included file is silently skipped.

• The tabsize macro attribute sets the number of space characters to be used for tab expansion in the included file (not applicable
to include1 macro).

• The depth macro attribute sets the maximum permitted number of subsequent nested includes (not applicable to include1
macro which does not process nested includes). Setting depth to 1 disables nesting inside the included file. By default, nesting
is limited to a depth of ten.

• If the he warnings attribute is set to False (or any other Python literal that evaluates to boolean false) then no warning message
is printed if the included file does not exist. By default warnings are enabled.

• Internally the include1 macro is translated to the include1 system attribute which means it must be evaluated in a region
where attribute substitution is enabled. To inhibit nested substitution in included files it is preferable to use the include
macro and set the attribute depth=1.

21.3.2 Conditional Inclusion Macros

Lines of text in the source document can be selectively included or excluded from processing based on the existence (or not) of
a document attribute.

Document text between the ifdef and endif macros is included if a document attribute is defined:

ifdef::<attribute>[]
:
endif::<attribute>[]

Document text between the ifndef and endif macros is not included if a document attribute is defined:

ifndef::<attribute>[]
:
endif::<attribute>[]

<attribute> is an attribute name which is optional in the trailing endif macro.

If you only want to process a single line of text then the text can be put inside the square brackets and the endif macro omitted,
for example:

ifdef::revnumber[Version number 42]

Is equivalent to:

ifdef::revnumber[]
Version number 42
endif::revnumber[]

ifdef and ifndef macros also accept multiple attribute names:



AsciiDoc User Guide 45 / 93

• Multiple , separated attribute names evaluate to defined if one or more of the attributes is defined, otherwise it’s value is
undefined.

• Multiple + separated attribute names evaluate to defined if all of the attributes is defined, otherwise it’s value is undefined.

Document text between the ifeval and endif macros is included if the Python expression inside the square brackets is true.
Example:

ifeval::[{rs458}==2]
:
endif::[]

• Document attribute references are expanded before the expression is evaluated.

• If an attribute reference is undefined then the expression is considered false.

Take a look at the *.conf configuration files in the AsciiDoc distribution for examples of conditional inclusion macro usage.

21.3.3 Executable system macros

The eval, sys and sys2 block macros exhibit the same behavior as their same named system attribute references. The difference
is that system macros occur in a block macro context whereas system attributes are confined to inline contexts where attribute
substitution is enabled.

The following example displays a long directory listing inside a literal block:

------------------
sys::[ls -l *.txt]
------------------

Note
There are no block macro versions of the eval3 and sys3 system attributes.

21.3.4 Template System Macro

The template block macro allows the inclusion of one configuration file template section within another. The following
example includes the [admonitionblock] section in the [admonitionparagraph] section:

[admonitionparagraph]
template::[admonitionblock]

TEMPLATE MACRO BEHAVIOR

• The template::[] macro is useful for factoring configuration file markup.

• template::[] macros cannot be nested.

• template::[] macro expansion is applied after all configuration files have been read.



AsciiDoc User Guide 46 / 93

21.4 Passthrough macros

Passthrough macros are analogous to passthrough blocks and are used to pass text directly to the output. The substitution
performed on the text is determined by the macro definition but can be overridden by the <subslist>. The usual syntax
is <name>:<subslist>[<passtext>] (for inline macros) and <name>::<subslist>[<passtext>] (for block
macros). Passthroughs, by definition, take precedence over all other text substitutions.

pass
Inline and block. Passes text unmodified (apart from explicitly specified substitutions). Examples:

pass:[<q>To be or not to be</q>]
pass:attributes,quotes[<u>the '{author}'</u>]

asciimath, latexmath
Inline and block. Passes text unmodified. Used for mathematical formulas.

+++
Inline and block. The triple-plus passthrough is functionally identical to the pass macro but you don’t have to escape ]
characters and you can prefix with quoted attributes in the inline version. Example:

Red [red]+++`sum_(i=1)\^n i=(n(n+1))/2`$+++ AsciiMathML formula

$$
Inline and block. The double-dollar passthrough is functionally identical to the triple-plus passthrough with one exception:
special characters are escaped. Example:

$$`[[a,b],[c,d]]((n),(k))`$$

`
Text quoted with single backtick characters constitutes an inline literal passthrough. The enclosed text is rendered in a
monospaced font and is only subject to special character substitution. This makes sense since monospace text is usually
intended to be rendered literally and often contains characters that would otherwise have to be escaped. If you need
monospaced text containing inline substitutions use a plus character instead of a backtick.

21.5 Macro Definitions

Each entry in the configuration [macros] section is a macro definition which can take one of the following forms:

<pattern>=<name>[<subslist]
Inline macro definition.

<pattern>=#<name>[<subslist]
Block macro definition.

<pattern>=+<name>[<subslist]
System macro definition.

<pattern>
Delete the existing macro with this <pattern>.

<pattern> is a Python regular expression and <name> is the name of a markup template. If <name> is omitted then it is the
value of the regular expression match group named name. The optional [<subslist] is a comma-separated list of substitution
names enclosed in [] brackets, it sets the default substitutions for passthrough text, if omitted then no passthrough substitutions
are performed.

Pattern named groups The following named groups can be used in macro <pattern> regular expressions and are available
as markup template attributes:



AsciiDoc User Guide 47 / 93

name
The macro name.

target
The macro target.

attrlist
The macro attribute list.

passtext
Contents of this group are passed unmodified to the output subject only to subslist substitutions.

subslist
Processed as a comma-separated list of substitution names for passtext substitution, overrides the the macro definition
subslist.

HERE’S WHAT HAPPENS DURING MACRO SUBSTITUTION

• Each contextually relevant macro pattern from the [macros] section is matched against the input source line.

• If a match is found the text to be substituted is loaded from a configuration markup template section named like <name>-inlinemacro
or <name>-blockmacro (depending on the macro type).

• Global and macro attribute list attributes are substituted in the macro’s markup template.

• The substituted template replaces the macro reference in the output document.

22 HTML 5 audio and video block macros

The html5 backend audio and video block macros generate the HTML 5 audio and video elements respectively. They follow the
usual AsciiDoc block macro syntax <name>::<target>[<attrlist>] where:

<name> audio or video.

<target> The URL or file name of the video or audio file.

<attrlist> A list of named attributes (see below).

Table 4: Audio macro attributes

Name Value
options A comma separated list of one or more of the following items: autoplay, loop which correspond to

the same-named HTML 5 audio element boolean attributes. By default the player controls are
enabled, include the nocontrols option value to hide them.

Table 5: Video macro attributes

Name Value
height The height of the player in pixels.
width The width of the player in pixels.
poster The URL or file name of an image representing the video.



AsciiDoc User Guide 48 / 93

Table 5: (continued)

Name Value
options A comma separated list of one or more of the following items: autoplay, loop and nocontrols. The

autoplay and loop options correspond to the same-named HTML 5 video element boolean attributes.
By default the player controls are enabled, include the nocontrols option value to hide them.

Examples:

audio::images/example.ogg[]

video::gizmo.ogv[width=200,options="nocontrols,autoplay"]

.Example video
video::gizmo.ogv[]

video::http://www.808.dk/pics/video/gizmo.ogv[]

If your needs are more complex put raw HTML 5 in a markup block, for example (from http://www.808.dk/?code-html-5-video):

++++
<video poster="pics/video/gizmo.jpg" id="video" style="cursor: pointer;" >

<source src="pics/video/gizmo.mp4" />
<source src="pics/video/gizmo.webm" type="video/webm" />
<source src="pics/video/gizmo.ogv" type="video/ogg" />
Video not playing? <a href="pics/video/gizmo.mp4">Download file</a> instead.

</video>

<script type="text/javascript">
var video = document.getElementById('video');
video.addEventListener('click',function(){
video.play();

},false);
</script>
++++

23 Tables

The AsciiDoc table syntax looks and behaves like other delimited block types and supports standard block configuration entries.
Formatting is easy to read and, just as importantly, easy to enter.

• Cells and columns can be formatted using built-in customizable styles.

• Horizontal and vertical cell alignment can be set on columns and cell.

• Horizontal and vertical cell spanning is supported.

http://www.808.dk/?code-html-5-video


AsciiDoc User Guide 49 / 93

Use tables sparingly

When technical users first start creating documents, tables (complete with column spanning and table nesting) are often
considered very important. The reality is that tables are seldom used, even in technical documentation.

Try this exercise: thumb through your library of technical books, you’ll be surprised just how seldom tables are actually
used, even less seldom are tables containing block elements (such as paragraphs or lists) or spanned cells. This is no
accident, like figures, tables are outside the normal document flow — tables are for consulting not for reading.

Tables are designed for, and should normally only be used for, displaying column oriented tabular data.

23.1 Example tables

Table 6: Simple table

1 2 A
3 4 B
5 6 C

AsciiDoc source

[width="15%"]
|=======
|1 |2 |A
|3 |4 |B
|5 |6 |C
|=======

Table 7: Columns formatted with strong, monospaced and emphasis
styles

Columns 2 and 3
1 Item 1 Item 1
2 Item 2 Item 2
3 Item 3 Item 3
4 Item 4 Item 4

footer 1 footer 2 footer 3

AsciiDoc source

.An example table
[width="50%",cols=">s,^m,e",frame="topbot",options="header,footer"]
|==========================
| 2+|Columns 2 and 3
|1 |Item 1 |Item 1
|2 |Item 2 |Item 2
|3 |Item 3 |Item 3
|4 |Item 4 |Item 4



AsciiDoc User Guide 50 / 93

|footer 1|footer 2|footer 3
|==========================

Table 8: Horizontal and vertical source data

Date Duration Avg HR Notes
22-Aug-08 10:24 157 Worked out MSHR (max sustainable heart rate) by

going hard for this interval.
22-Aug-08 23:03 152 Back-to-back with previous interval.
24-Aug-08 40:00 145 Moderately hard interspersed with 3x 3min

intervals (2min hard + 1min really hard taking the
HR up to 160).

Short cells can be entered horizontally, longer cells vertically. The default behavior is to strip leading and trailing blank lines
within a cell. These characteristics aid readability and data entry.

AsciiDoc source

.Windtrainer workouts
[width="80%",cols="3,^2,^2,10",options="header"]
|=========================================================
|Date |Duration |Avg HR |Notes

|22-Aug-08 |10:24 | 157 |
Worked out MSHR (max sustainable heart rate) by going hard
for this interval.

|22-Aug-08 |23:03 | 152 |
Back-to-back with previous interval.

|24-Aug-08 |40:00 | 145 |
Moderately hard interspersed with 3x 3min intervals (2min
hard + 1min really hard taking the HR up to 160).

|=========================================================

Table 9: A table with externally sourced CSV data

ID Customer Name Contact Name Customer Address Phone
AROUT Around the Horn Thomas Hardy 120 Hanover Sq.

London
(171) 555-7788

BERGS Berglunds snabbkop Christina Berglund Berguvsvagen 8 Lulea 0921-12 34 65
BLAUS Blauer See Delikatessen Hanna Moos Forsterstr. 57

Mannheim
0621-08460

BLONP Blondel pere et fils Frederique Citeaux 24, place Kleber
Strasbourg

88.60.15.31

BOLID Bolido Comidas
preparadas

Martin Sommer C/ Araquil, 67 Madrid (91) 555 22 82

BONAP Bon app’ Laurence Lebihan 12, rue des Bouchers
Marseille

91.24.45.40

BOTTM Bottom-Dollar Markets Elizabeth Lincoln 23 Tsawassen Blvd.
Tsawassen

(604) 555-4729



AsciiDoc User Guide 51 / 93

Table 9: (continued)

ID Customer Name Contact Name Customer Address Phone
BSBEV B’s Beverages Victoria Ashworth Fauntleroy Circus

London
(171) 555-1212

CACTU Cactus Comidas para
llevar

Patricio Simpson Cerrito 333 Buenos
Aires

(1) 135-5555

AsciiDoc source

[format="csv",cols="^1,4*2",options="header"]
|===================================================
ID,Customer Name,Contact Name,Customer Address,Phone
include::customers.csv[]
|===================================================

Table 10: Cell spans, alignments and styles

1 2 3 4
5

6

7

8
9 10

AsciiDoc source

[cols="e,m,^,>s",width="25%"]
|============================
|1 >s|2 |3 |4
^|5 2.2+^.^|6 .3+<.>m|7
^|8
|9 2+>|10
|============================

23.2 Table input data formats

AsciiDoc table data can be psv, dsv or csv formatted. The default table format is psv.

AsciiDoc psv (Prefix Separated Values) and dsv (Delimiter Separated Values) formats are cell oriented — the table is treated as a
sequence of cells — there are no explicit row separators.

• psv prefixes each cell with a separator whereas dsv delimits cells with a separator.

• psv and dsv separators are Python regular expressions.

• The default psv separator contains cell specifier related named regular expression groups.

• The default dsv separator is :|\n (a colon or a new line character).

• psv and dsv cell separators can be escaped by preceding them with a backslash character.



AsciiDoc User Guide 52 / 93

Here are four psv cells (the second item spans two columns; the last contains an escaped separator):

|One 2+|Two and three |A \| separator character

csv is the quasi-standard row oriented Comma Separated Values (CSV) format commonly used to import and export spreadsheet
and database data.

23.3 Table attributes

Tables can be customized by the following attributes:

format
psv (default), dsv or csv (See Table Data Formats).

separator
The cell separator. A Python regular expression (psv and dsv formats) or a single character (csv format).

frame
Defines the table border and can take the following values: topbot (top and bottom), all (all sides), none and sides (left and
right sides). The default value is all.

grid
Defines which ruler lines are drawn between table rows and columns. The grid attribute value can be any of the following
values: none, cols, rows and all. The default value is all.

align
Use the align attribute to horizontally align the table on the page (works with HTML outputs only, has no effect on
DocBook outputs). The following values are valid: left, right, and center.

float
Use the float attribute to float the table left or right on the page (works with HTML outputs only, has no effect on DocBook
outputs). Floating only makes sense in conjunction with a table width attribute value of less than 100% (otherwise the
table will take up all the available space). float and align attributes are mutually exclusive. Use the unfloat::[] block
macro to stop floating.

halign
Use the halign attribute to horizontally align all cells in a table. The following values are valid: left, right, and center
(defaults to left). Overridden by Column specifiers and Cell specifiers.

valign
Use the valign attribute to vertically align all cells in a table. The following values are valid: top, bottom, and middle
(defaults to top). Overridden by Column specifiers and Cell specifiers.

options
The options attribute can contain comma separated values, for example: header, footer. By default header and footer rows
are omitted. See attribute options for a complete list of available table options.

cols
The cols attribute is a comma separated list of column specifiers. For example cols="2<p,2*,4p,>".

• If cols is present it must specify all columns.

• If the cols attribute is not specified the number of columns is calculated as the number of data items in the first line of
the table.

• The degenerate form for the cols attribute is an integer specifying the number of columns e.g. cols=4.

width
The width attribute is expressed as a percentage value ("1%". . . "99%"). The width specifies the table width relative to the
available width. HTML backends use this value to set the table width attribute. It’s a bit more complicated with DocBook,
see the DocBook table widths sidebar.



AsciiDoc User Guide 53 / 93

filter
The filter attribute defines an external shell command that is invoked for each cell. The built-in asciidoc table style is
implemented using a filter.

DocBook table widths

The AsciiDoc docbook backend generates CALS tables. CALS tables do not support a table width attribute — table width
can only be controlled by specifying absolute column widths.

Specifying absolute column widths is not media independent because different presentation media have different physical
dimensions. To get round this limitation both DocBook XSL Stylesheets and dblatex have implemented table width
processing instructions for setting the table width as a percentage of the available width. AsciiDoc emits these processing
instructions if the width attribute is set along with proportional column widths (the AsciiDoc docbook backend pageunits
attribute defaults to *).

To generate DocBook tables with absolute column widths set the pageunits attribute to a CALS absolute unit such as pt
and set the pagewidth attribute to match the width of the presentation media.

23.4 Column Specifiers

Column specifiers define how columns are rendered and appear in the table cols attribute. A column specifier consists of an
optional column multiplier followed by optional alignment, width and style values and is formatted like:

[<multiplier>*][<align>][<width>][<style>]

• All components are optional. The multiplier must be first and the style last. The order of <align> or <width> is not
important.

• Column <width> can be either an integer proportional value (1. . . ) or a percentage (1%. . . 100%). The default value is 1. To
ensure portability across different backends, there is no provision for absolute column widths (not to be confused with output
column width markup attributes which are available in both percentage and absolute units).

• The <align> column alignment specifier is formatted like:

[<horizontal>][.<vertical>]

Where <horizontal> and <vertical> are one of the following characters: <, ˆ or > which represent left, center and
right horizontal alignment or top, middle and bottom vertical alignment respectively.

• A <multiplier> can be used to specify repeated columns e.g. cols="4*<" specifies four left-justified columns. The
default multiplier value is 1.

• The <style> name specifies a table style to used to markup column cells (you can use the full style names if you wish but
the first letter is normally sufficient).

• Column specific styles are not applied to header rows.

23.5 Cell Specifiers

Cell specifiers allow individual cells in psv formatted tables to be spanned, multiplied, aligned and styled. Cell specifiers prefix
psv | delimiters and are formatted like:

[<span>*|+][<align>][<style>]

http://www.sagehill.net/docbookxsl/Tables.html#TableWidth
http://dblatex.sourceforge.net/doc/manual/ch03s05.html#sec-table-width


AsciiDoc User Guide 54 / 93

• <span> specifies horizontal and vertical cell spans (+ operator) or the number of times the cell is replicated (* operator).
<span> is formatted like:

[<colspan>][.<rowspan>]

Where <colspan> and <rowspan> are integers specifying the number of columns and rows to span.

• <align> specifies horizontal and vertical cell alignment an is the same as in column specifiers.

• A <style> value is the first letter of table style name.

For example, the following psv formatted cell will span two columns and the text will be centered and emphasized:

`2+^e| Cell text`

23.6 Table styles

Table styles can be applied to the entire table (by setting the style attribute in the table’s attribute list) or on a per column basis
(by specifying the style in the table’s cols attribute). Table data can be formatted using the following predefined styles:

default
The default style: AsciiDoc inline text formatting; blank lines are treated as paragraph breaks.

emphasis
Like default but all text is emphasised.

monospaced
Like default but all text is in a monospaced font.

strong
Like default but all text is bold.

header
Apply the same style as the table header. Normally used to create a vertical header in the first column.

asciidoc
With this style table cells can contain any of the AsciiDoc elements that are allowed inside document sections. This style
runs asciidoc(1) as a filter to process cell contents. See also Docbook table limitations.

literal
No text formatting; monospaced font; all line breaks are retained (the same as the AsciiDoc LiteralBlock element).

verse
All line breaks are retained (just like the AsciiDoc verse paragraph style).

23.7 Markup attributes

AsciiDoc makes a number of attributes available to table markup templates and tags. Column specific attributes are available
when substituting the colspec cell data tags.

pageunits
DocBook backend only. Specifies table column absolute width units. Defaults to *.

pagewidth
DocBook backend only. The nominal output page width in pageunit units. Used to calculate CALS tables absolute column
and table widths. Defaults to 425.



AsciiDoc User Guide 55 / 93

tableabswidth
Integer value calculated from width and pagewidth attributes. In pageunit units.

tablepcwidth
Table width expressed as a percentage of the available width. Integer value (0..100).

colabswidth
Integer value calculated from cols column width, width and pagewidth attributes. In pageunit units.

colpcwidth
Column width expressed as a percentage of the table width. Integer value (0..100).

colcount
Total number of table columns.

rowcount
Total number of table rows.

halign
Horizontal cell content alignment: left, right or center.

valign
Vertical cell content alignment: top, bottom or middle.

colnumber, colstart
The number of the leftmost column occupied by the cell (1. . . ).

colend
The number of the rightmost column occupied by the cell (1. . . ).

colspan
Number of columns the cell should span.

rowspan
Number of rows the cell should span (1. . . ).

morerows
Number of additional rows the cell should span (0. . . ).

23.8 Nested tables

An alternative psv separator character ! can be used (instead of |) in nested tables. This allows a single level of table nesting.
Columns containing nested tables must use the asciidoc style. An example can be found in ./examples/website/newtables.txt.

23.9 DocBook table limitations

Fully implementing tables is not trivial, some DocBook toolchains do better than others. AsciiDoc HTML table outputs are
rendered correctly in all the popular browsers — if your DocBook generated tables don’t look right compare them with the
output generated by the AsciiDoc xhtml11 backend or try a different DocBook toolchain. Here is a list of things to be aware of:

• Although nested tables are not legal in DocBook 4 the FOP and dblatex toolchains will process them correctly. If you use
a2x(1) you will need to include the --no-xmllint option to suppress DocBook validation errors.

Note
In theory you can nest DocBook 4 tables one level using the entrytbl element, but not all toolchains process entrytbl.

• DocBook only allows a subset of block elements inside table cells so not all AsciiDoc elements produce valid DocBook inside
table cells. If you get validation errors running a2x(1) try the --no-xmllint option, toolchains will often process nested
block elements such as sidebar blocks and floating titles correctly even though, strictly speaking, they are not legal.



AsciiDoc User Guide 56 / 93

• Text formatting in cells using the monospaced table style will raise validation errors because the DocBook literal element was
not designed to support formatted text (using the literal element is a kludge on the part of AsciiDoc as there is no easy way to
set the font style in DocBook.

• Cell alignments are ignored for verse, literal or asciidoc table styles.

24 Manpage Documents

Sooner or later, if you program in a UNIX environment, you’re going to have to write a man page.

By observing a couple of additional conventions (detailed below) you can write AsciiDoc files that will generate HTML and PDF
man pages plus the native manpage roff format. The easiest way to generate roff manpages from AsciiDoc source is to use the
a2x(1) command. The following example generates a roff formatted manpage file called asciidoc.1 (a2x(1) uses asciidoc(1)
to convert asciidoc.1.txt to DocBook which it then converts to roff using DocBook XSL Stylesheets):

a2x --doctype manpage --format manpage asciidoc.1.txt

Viewing and printing manpage files

Use the man(1) command to view the manpage file:

$ man -l asciidoc.1

To print a high quality man page to a postscript printer:

$ man -l -Tps asciidoc.1 | lpr

You could also create a PDF version of the man page by converting PostScript to PDF using ps2pdf(1):

$ man -l -Tps asciidoc.1 | ps2pdf - asciidoc.1.pdf

The ps2pdf(1) command is included in the Ghostscript distribution.

To find out more about man pages view the man(7) manpage (man 7 man and man man-pages commands).

24.1 Document Header

A manpage document Header is mandatory. The title line contains the man page name followed immediately by the manual
section number in brackets, for example ASCIIDOC(1). The title name should not contain white space and the manual section
number is a single digit optionally followed by a single character.

24.2 The NAME Section

The first manpage section is mandatory, must be titled NAME and must contain a single paragraph (usually a single line) consist-
ing of a list of one or more comma separated command name(s) separated from the command purpose by a dash character. The
dash must have at least one white space character on either side. For example:

printf, fprintf, sprintf - print formatted output



AsciiDoc User Guide 57 / 93

24.3 The SYNOPSIS Section

The second manpage section is mandatory and must be titled SYNOPSIS.

24.4 refmiscinfo attributes

In addition to the automatically created man page intrinsic attributes you can assign DocBook refmiscinfo element source,
version and manual values using AsciiDoc {mansource}, {manversion} and {manmanual} attributes respectively. This
example is from the AsciiDoc header of a man page source file:

:man source: AsciiDoc
:man version: {revnumber}
:man manual: AsciiDoc Manual

25 Mathematical Formulas

The asciimath and latexmath passthrough blocks along with the asciimath and latexmath passthrough macros provide a (backend
dependent) mechanism for rendering mathematical formulas. You can use the following math markups:

25.1 LaTeX Math

LaTeX math can be included in documents that are processed by dblatex(1). Example inline formula:

latexmath:[$C = \alpha + \beta Y^{\gamma} + \epsilon$]

For more examples see the AsciiDoc website or the distributed doc/latexmath.txt file.

25.2 MathJax

MathJax allows LaTeX Math style formulas to be included in XHTML documents generated via the AsciiDoc xhtml11 and
html5 backends. This route overcomes several restrictions of the MathML-based approaches, notably, restricted support of
MathML by many mainstream browsers. To enable MathJax support you must define the mathjax attribute, for example using
the -a mathjax command-line option. Equations are specified as explained above using the latexmath passthrough blocks.
By default, rendering of equations with MathJax requires a working internet connection and will thus not work if you are offline
(but it can be configured differently).

25.3 LaTeXMathML

LaTeXMathML allows LaTeX Math style formulas to be included in XHTML documents generated using the AsciiDoc xhtml11
and html5 backends. AsciiDoc uses the original LaTeXMathML by Douglas Woodall. LaTeXMathML is derived from ASCI-
IMathML and is for users who are more familiar with or prefer using LaTeX math formulas (it recognizes a subset of LaTeX
Math, the differences are documented on the LaTeXMathML web page). To enable LaTeXMathML support you must define the
latexmath attribute, for example using the -a latexmath command-line option. Example inline formula:

latexmath:[$\sum_{n=1}^\infty \frac{1}{2^n}$]

For more examples see the AsciiDoc website or the distributed doc/latexmathml.txt file.

http://www.docbook.org/tdg5/en/html/refmiscinfo.html
ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf
https://asciidoc.org/
http://www.mathjax.org/
http://www.maths.nottingham.ac.uk/personal/drw/lm.html
https://asciidoc.org/


AsciiDoc User Guide 58 / 93

Note
The latexmath macro used to include LaTeX Math in DocBook outputs is not the same as the latexmath macro used to include
LaTeX MathML in XHTML outputs. LaTeX Math applies to DocBook outputs that are processed by dblatex and is normally used
to generate PDF files. LaTeXMathML is very much a subset of LaTeX Math and applies to XHTML documents. This remark
does not apply to MathJax which does not use any of the latexmath macros (but only requires the latexmath passthrough blocks
for identification of the equations).

25.4 ASCIIMathML

ASCIIMathML formulas can be included in XHTML documents generated using the xhtml11 and html5 backends. To enable
ASCIIMathML support you must define the asciimath attribute, for example using the -a asciimath command-line option.
Example inline formula:

asciimath:[`x/x={(1,if x!=0),(text{undefined},if x=0):}`]

For more examples see the AsciiDoc website or the distributed doc/asciimathml.txt file.

25.5 MathML

MathML is a low level XML markup for mathematics. AsciiDoc has no macros for MathML but users familiar with this markup
could use passthrough macros and passthrough blocks to include MathML in output documents.

26 Configuration Files

AsciiDoc source file syntax and output file markup is largely controlled by a set of cascading, text based, configuration files. At
runtime The AsciiDoc default configuration files are combined with optional user and document specific configuration files.

26.1 Configuration File Format

Configuration files contain named sections. Each section begins with a section name in square brackets []. The section body
consists of the lines of text between adjacent section headings.

• Section names consist of one or more alphanumeric, underscore or dash characters and cannot begin or end with a dash.

• Lines starting with a # character are treated as comments and ignored.

• If the section name is prefixed with a + character then the section contents is appended to the contents of an already existing
same-named section.

• Otherwise same-named sections and section entries override previously loaded sections and section entries (this is sometimes
referred to as cascading). Consequently, downstream configuration files need only contain those sections and section entries
that need to be overridden.

Tip
When creating custom configuration files you only need to include the sections and entries that differ from the default configu-
ration.

Tip
The best way to learn about configuration files is to read the default configuration files in the AsciiDoc distribution in conjunction
with asciidoc(1) output files. You can view configuration file load sequence by turning on the asciidoc(1) -v (--verbose)
command-line option.

http://www1.chapman.edu/~jipsen/mathml/asciimath.html
https://asciidoc.org/
http://www.w3.org/Math/


AsciiDoc User Guide 59 / 93

AsciiDoc reserves the following section names for specific purposes:

miscellaneous
Configuration options that don’t belong anywhere else.

attributes
Attribute name/value entries.

specialcharacters
Special characters reserved by the backend markup.

tags
Backend markup tags.

quotes
Definitions for quoted inline character formatting.

specialwords
Lists of words and phrases singled out for special markup.

replacements, replacements2, replacements3
Find and replace substitution definitions.

specialsections
Used to single out special section names for specific markup.

macros
Macro syntax definitions.

titles
Heading, section and block title definitions.

paradef-*
Paragraph element definitions.

blockdef-*
DelimitedBlock element definitions.

listdef-*
List element definitions.

listtags-*
List element tag definitions.

tabledef-*
Table element definitions.

tabletags-*
Table element tag definitions.

Each line of text in these sections is a section entry. Section entries share the following syntax:

name=value
The entry value is set to value.

name=
The entry value is set to a zero length string.

name!
The entry is undefined (deleted from the configuration). This syntax only applies to attributes and miscellaneous sections.

SECTION ENTRY BEHAVIOR



AsciiDoc User Guide 60 / 93

• All equals characters inside the name must be escaped with a backslash character.

• name and value are stripped of leading and trailing white space.

• Attribute names, tag entry names and markup template section names consist of one or more alphanumeric, underscore or dash
characters. Names should not begin or end with a dash.

• A blank configuration file section (one without any entries) deletes any preceding section with the same name (applies to
non-markup template sections).

26.2 Miscellaneous section

The optional [miscellaneous] section specifies the following name=value options:

newline
Output file line termination characters. Can include any valid Python string escape sequences. The default value is \r\n
(carriage return, line feed). Should not be quoted or contain explicit spaces (use \x20 instead). For example:

$ asciidoc -a 'newline=\n' -b docbook mydoc.txt

outfilesuffix
The default extension for the output file, for example outfilesuffix=.html. Defaults to backend name.

tabsize
The number of spaces to expand tab characters, for example tabsize=4. Defaults to 8. A tabsize of zero suppresses tab
expansion (useful when piping included files through block filters). Included files can override this option using the tabsize
attribute.

pagewidth, pageunits
These global table related options are documented in the Table Configuration File Definitions sub-section.

Note
[miscellaneous] configuration file entries can be set using the asciidoc(1) -a (--attribute) command-line option.

26.3 Titles section

sectiontitle
Two line section title pattern. The entry value is a Python regular expression containing the named group title.

underlines
A comma separated list of document and section title underline character pairs starting with the section level 0 and ending
with section level 4 underline. The default setting is:

underlines="==","--","~~","^^","++"

sect0. . . sect4
One line section title patterns. The entry value is a Python regular expression containing the named group title.

blocktitle
BlockTitle element pattern. The entry value is a Python regular expression containing the named group title.

subs
A comma separated list of substitutions that are performed on the document header and section titles. Defaults to normal
substitution.



AsciiDoc User Guide 61 / 93

26.4 Tags section

The [tags] section contains backend tag definitions (one per line). Tags are used to translate AsciiDoc elements to backend
markup.

An AsciiDoc tag definition is formatted like <tagname>=<starttag>|<endtag>. For example:

emphasis=<em>|</em>

In this example asciidoc(1) replaces the | character with the emphasized text from the AsciiDoc input file and writes the result to
the output file.

Use the {brvbar} attribute reference if you need to include a | pipe character inside tag text.

26.5 Attributes section

The optional [attributes] section contains predefined attributes.

If the attribute value requires leading or trailing spaces then the text text should be enclosed in quotation mark (") characters.

To delete a attribute insert a name! entry in a downstream configuration file or use the asciidoc(1) --attribute name!
command-line option (an attribute name suffixed with a ! character deletes the attribute)

26.6 Special Characters section

The [specialcharacters] section specifies how to escape characters reserved by the backend markup. Each translation is
specified on a single line formatted like:

<special_character>=<translated_characters>

Special characters are normally confined to those that resolve markup ambiguity (in the case of HTML and XML markups the
ampersand, less than and greater than characters). The following example causes all occurrences of the < character to be replaced
by &lt;.

<=&lt;

26.7 Quoted Text section

Quoting is used primarily for text formatting. The [quotes] section defines AsciiDoc quoting characters and their correspond-
ing backend markup tags. Each section entry value is the name of a of a [tags] section entry. The entry name is the character
(or characters) that quote the text. The following examples are taken from AsciiDoc configuration files:

[quotes]
_=emphasis

[tags]
emphasis=<em>|</em>



AsciiDoc User Guide 62 / 93

You can specify the left and right quote strings separately by separating them with a | character, for example:

``|''=quoted

Omitting the tag will disable quoting, for example, if you don’t want superscripts or subscripts put the following in a custom
configuration file or edit the global asciidoc.conf configuration file:

[quotes]
^=
~=

Unconstrained quotes are differentiated from constrained quotes by prefixing the tag name with a hash character, for example:

__=#emphasis

QUOTED TEXT BEHAVIOR

• Quote characters must be non-alphanumeric.

• To minimize quoting ambiguity try not to use the same quote characters in different quote types.

26.8 Special Words section

The [specialwords] section is used to single out words and phrases that you want to consistently format in some way
throughout your document without having to repeatedly specify the markup. The name of each entry corresponds to a markup
template section and the entry value consists of a list of words and phrases to be marked up. For example:

[specialwords]
strongwords=NOTE IMPORTANT

[strongwords]
<strong>{words}</strong>

The examples specifies that any occurrence of NOTE or IMPORTANT should appear in a bold font.

Words and word phrases are treated as Python regular expressions: for example, the word ˆNOTE would only match NOTE if
appeared at the start of a line.

AsciiDoc comes with three built-in Special Word types: emphasizedwords, monospacedwords and strongwords, each has a
corresponding (backend specific) markup template section. Edit the configuration files to customize existing Special Words and
to add new ones.

SPECIAL WORD BEHAVIOR

• Word list entries must be separated by space characters.

• Word list entries with embedded spaces should be enclosed in quotation (") characters.

• A [specialwords] section entry of the form name=word1 [word2...] adds words to existing name entries.

• A [specialwords] section entry of the form name undefines (deletes) all existing name words.



AsciiDoc User Guide 63 / 93

• Since word list entries are processed as Python regular expressions you need to be careful to escape regular expression special
characters.

• By default Special Words are substituted before Inline Macros, this may lead to undesirable consequences. For example the
special word foobar would be expanded inside the macro call http://www.foobar.com[]. A possible solution is to
emphasize whole words only by defining the word using regular expression characters, for example \bfoobar\b.

• If the first matched character of a special word is a backslash then the remaining characters are output without markup i.e.
the backslash can be used to escape special word markup. For example the special word \\?\b[Tt]en\b will mark up the
words Ten and ten only if they are not preceded by a backslash.

26.9 Replacements section

[replacements], [replacements2] and [replacements3] configuration file entries specify find and replace text
and are formatted like:

<find_pattern>=<replacement_text>

The find text can be a Python regular expression; the replace text can contain Python regular expression group references.

Use Replacement shortcuts for often used macro references, for example (the second replacement allows us to backslash escape
the macro name):

NEW!=image:./images/smallnew.png[New!]
\\NEW!=NEW!

The only difference between the three replacement types is how they are applied. By default replacements and replacements2
are applied in normal substitution contexts whereas replacements3 needs to be configured explicitly and should only be used in
backend configuration files.

REPLACEMENT BEHAVIOR

• The built-in replacements can be escaped with a backslash.

• If the find or replace text has leading or trailing spaces then the text should be enclosed in quotation (") characters.

• Since the find text is processed as a regular expression you need to be careful to escape regular expression special characters.

• Replacements are performed in the same order they appear in the configuration file replacements section.

26.10 Markup Template Sections

Markup template sections supply backend markup for translating AsciiDoc elements. Since the text is normally backend depen-
dent you’ll find these sections in the backend specific configuration files. Template sections differ from other sections in that they
contain a single block of text instead of per line name=value entries. A markup template section body can contain:

• Attribute references

• System macro calls.

• A document content placeholder

The document content placeholder is a single | character and is replaced by text from the source element. Use the {brvbar}
attribute reference if you need a literal | character in the template.



AsciiDoc User Guide 64 / 93

26.11 Configuration file names, precedence and locations

Configuration files have a .conf file name extension; they are loaded from the following locations:

1. The directory containing the asciidoc executable.

2. If there is no asciidoc.conf file in the directory containing the asciidoc executable then load from the global con-
figuration directory (normally /etc/asciidoc or /usr/local/etc/asciidoc) i.e. the global configuration files
directory is skipped if AsciiDoc configuration files are installed in the same directory as the asciidoc executable. This
allows both a system wide copy and multiple local copies of AsciiDoc to coexist on the same host PC.

3. The user’s $HOME/.asciidoc directory (if it exists).

4. The directory containing the AsciiDoc source file.

5. Explicit configuration files specified using:

• The conf-files attribute (one or more file names separated by a | character). These files are loaded in the order they
are specified and prior to files specified using the --conf-file command-line option.

• The asciidoc(1) --conf-file) command-line option. The --conf-file option can be specified multiple times, in
which case configuration files will be processed in the same order they appear on the command-line.

6. Backend plugin configuration files are loaded from subdirectories named like backends/<backend> in locations 1, 2
and 3.

7. Filter configuration files are loaded from subdirectories named like filters/<filter> in locations 1, 2 and 3.

Configuration files from the above locations are loaded in the following order:

• The [attributes] section only from:

– asciidoc.conf in location 3

– Files from location 5.
This first pass makes locally set attributes available in the global asciidoc.conf file.

• asciidoc.conf from locations 1, 2, 3.

• attributes, titles and specialcharacters sections from the asciidoc.conf in location 4.

• The document header is parsed at this point and we can assume the backend and doctype have now been defined.

• Backend plugin <backend>.conf and <backend>-<doctype>.conf files from locations 6. If a backend plugin is not
found then try locations 1, 2 and 3 for <backend>.conf and <backend>-<doctype>.conf backend configuration
files.

• Filter conf files from locations 7.

• lang-<lang>.conf from locations 1, 2, 3.

• asciidoc.conf from location 4.

• <backend>.conf and <backend>-<doctype>.conf from location 4.

• Filter conf files from location 4.

• <docfile>.conf and <docfile>-<backend>.conf from location 4.

• Configuration files from location 5.

Where:



AsciiDoc User Guide 65 / 93

• <backend> and <doctype> are values specified by the asciidoc(1) -b (--backend) and -d (--doctype) command-
line options.

• <infile> is the path name of the AsciiDoc input file without the file name extension.

• <lang> is a two letter country code set by the the AsciiDoc lang attribute.

Note
The backend and language global configuration files are loaded after the header has been parsed. This means that you can
set most attributes in the document header. Here’s an example header:

Life's Mysteries
================
:author: Hu Nose
:doctype: book
:toc:
:icons:
:data-uri:
:lang: en
:encoding: iso-8859-1

Attributes set in the document header take precedence over configuration file attributes.

Tip
Use the asciidoc(1) -v (--verbose) command-line option to see which configuration files are loaded and the order in which
they are loaded.

27 Document Attributes

A document attribute is comprised of a name and a textual value and is used for textual substitution in AsciiDoc documents and
configuration files. An attribute reference (an attribute name enclosed in braces) is replaced by the corresponding attribute value.
Attribute names are case insensitive and can only contain alphanumeric, dash and underscore characters.

There are four sources of document attributes (from highest to lowest precedence):

• Command-line attributes.

• AttributeEntry, AttributeList, Macro and BlockId elements.

• Configuration file [attributes] sections.

• Intrinsic attributes.

Within each of these divisions the last processed entry takes precedence.

Note
If an attribute is not defined then the line containing the attribute reference is dropped. This property is used extensively in
AsciiDoc configuration files to facilitate conditional markup generation.



AsciiDoc User Guide 66 / 93

28 Attribute Entries

The AttributeEntry block element allows document attributes to be assigned within an AsciiDoc document. Attribute
entries are added to the global document attributes dictionary. The attribute name/value syntax is a single line like:

:<name>: <value>

For example:

:Author Initials: JB

This will set an attribute reference {authorinitials} to the value JB in the current document.

To delete (undefine) an attribute use the following syntax:

:<name>!:

ATTRIBUTEENTRY BEHAVIOR

• The attribute entry line begins with colon — no white space allowed in left margin.

• AsciiDoc converts the <name> to a legal attribute name (lower case, alphanumeric, dash and underscore characters only — all
other characters deleted). This allows more human friendly text to be used.

• Leading and trailing white space is stripped from the <value>.

• Lines ending in a space followed by a plus character are continued to the next line, for example:

:description: AsciiDoc is a text document format for writing notes, +
documentation, articles, books, slideshows, web pages +
and man pages.

• If the <value> is blank then the corresponding attribute value is set to an empty string.

• Attribute references contained in the entry <value> will be expanded.

• By default AttributeEntry values are substituted for specialcharacters and attributes (see above), if you want to
change or disable AttributeEntry substitution use the pass:[] inline macro syntax.

• Attribute entries in the document Header are available for header markup template substitution.

• Attribute elements override configuration file and intrinsic attributes but do not override command-line attributes.

Here are some more attribute entry examples:

AsciiDoc User Manual
====================
:author: Stuart Rackham
:email: srackham@gmail.com
:revdate: April 23, 2004
:revnumber: 5.1.1



AsciiDoc User Guide 67 / 93

Which creates these attributes:

{author}, {firstname}, {lastname}, {authorinitials}, {email},
{revdate}, {revnumber}

The previous example is equivalent to this document header:

AsciiDoc User Manual
====================
Stuart Rackham <srackham@gmail.com>
5.1.1, April 23, 2004

28.1 Setting configuration entries

A variant of the Attribute Entry syntax allows configuration file section entries and markup template sections to be set from
within an AsciiDoc document:

:<section_name>.[<entry_name>]: <entry_value>

Where <section_name> is the configuration section name, <entry_name> is the name of the entry and <entry_value>
is the optional entry value. This example sets the default labeled list style to horizontal:

:listdef-labeled.style: horizontal

It is exactly equivalent to a configuration file containing:

[listdef-labeled]
style=horizontal

• If the <entry_name> is omitted then the entire section is substituted with the <entry_value>. This feature should only
be used to set markup template sections. The following example sets the xref2 inline macro markup template:

:xref2-inlinemacro.: <a href="#{1}">{2?{2}}</a>

• No substitution is performed on configuration file attribute entries and they cannot be undefined.

• This feature can only be used in attribute entries — configuration attributes cannot be set using the asciidoc(1) command
--attribute option.



AsciiDoc User Guide 68 / 93

Attribute entries promote clarity and eliminate repetition

URLs and file names in AsciiDoc macros are often quite long — they break paragraph flow and readability suffers. The
problem is compounded by redundancy if the same name is used repeatedly. Attribute entries can be used to make your
documents easier to read and write, here are some examples:

:1: http://freshmeat.net/projects/asciidoc/
:homepage: http://asciidoc.org[AsciiDoc home page]
:new: image:./images/smallnew.png[]
:footnote1: footnote:[A meaningless latin term]

Using previously defined attributes: See the {1}[Freshmeat summary]
or the {homepage} for something new {new}. Lorem ispum {footnote1}.

NOTE

• The attribute entry definition must precede it’s usage.

• You are not limited to URLs or file names, entire macro calls or arbitrary lines of text can be abbreviated.

• Shared attributes entries could be grouped into a separate file and included in multiple documents.

29 Attribute Lists

• An attribute list is a comma separated list of attribute values.

• The entire list is enclosed in square brackets.

• Attribute lists are used to pass parameters to macros, blocks (using the AttributeList element) and inline quotes.

The list consists of zero or more positional attribute values followed by zero or more named attribute values. Here are three
examples: a single unquoted positional attribute; three unquoted positional attribute values; one positional attribute followed by
two named attributes; the unquoted attribute value in the final example contains comma (&#44;) and double-quote (&#34;)
character entities:

[Hello]
[quote, Bertrand Russell, The World of Mathematics (1956)]
["22 times", backcolor="#0e0e0e", options="noborders,wide"]
[A footnote&#44; &#34;with an image&#34; image:smallnew.png[]]

ATTRIBUTE LIST BEHAVIOR

• If one or more attribute values contains a comma the all string values must be quoted (enclosed in double quotation mark
characters).

• If the list contains any named or quoted attributes then all string attribute values must be quoted.

• To include a double quotation mark (") character in a quoted attribute value the the quotation mark must be escaped with a
backslash.

• List attributes take precedence over existing attributes.

• List attributes can only be referenced in configuration file markup templates and tags, they are not available elsewhere in the
document.



AsciiDoc User Guide 69 / 93

• Setting a named attribute to None undefines the attribute.

• Positional attributes are referred to as {1},{2},{3},. . .

• Attribute {0} refers to the entire list (excluding the enclosing square brackets).

• Named attribute names cannot contain dash characters.

29.1 Options attribute

If the attribute list contains an attribute named options it is processed as a comma separated list of option names:

• Each name generates an attribute named like <option>-option (where <option> is the option name) with an empty
string value. For example [options="opt1,opt2,opt3"] is equivalent to setting the following three attributes [opt1-option="",opt2-option="",opt2-option=""].

• If you define a an option attribute globally (for example with an attribute entry) then it will apply to all elements in the
document.

• AsciiDoc implements a number of predefined options which are listed in the Attribute Options appendix.

29.2 Macro Attribute lists

Macros calls are suffixed with an attribute list. The list may be empty but it cannot be omitted. List entries are used to pass
attribute values to macro markup templates.

30 Attribute References

An attribute reference is an attribute name (possibly followed by an additional parameters) enclosed in curly braces. When an
attribute reference is encountered it is evaluated and replaced by its corresponding text value. If the attribute is undefined the line
containing the attribute is dropped.

There are three types of attribute reference: Simple, Conditional and System.

ATTRIBUTE REFERENCE EVALUATION

• You can suppress attribute reference expansion by placing a backslash character immediately in front of the opening brace
character.

• By default attribute references are not expanded in LiteralParagraphs, ListingBlocks or LiteralBlocks.

• Attribute substitution proceeds line by line in reverse line order.

• Attribute reference evaluation is performed in the following order: Simple then Conditional and finally System.

30.1 Simple Attributes References

Simple attribute references take the form {<name>}. If the attribute name is defined its text value is substituted otherwise the
line containing the reference is dropped from the output.



AsciiDoc User Guide 70 / 93

30.2 Conditional Attribute References

Additional parameters are used in conjunction with attribute names to calculate a substitution value. Conditional attribute refer-
ences take the following forms:

{<names>=<value>}
<value> is substituted if the attribute <names> is undefined otherwise its value is substituted. <value> can contain
simple attribute references.

{<names>?<value>}
<value> is substituted if the attribute <names> is defined otherwise an empty string is substituted. <value> can
contain simple attribute references.

{<names>!<value>}
<value> is substituted if the attribute <names> is undefined otherwise an empty string is substituted. <value> can
contain simple attribute references.

{<names>#<value>}
<value> is substituted if the attribute <names> is defined otherwise the undefined attribute entry causes the containing
line to be dropped. <value> can contain simple attribute references.

{<names>%<value>}
<value> is substituted if the attribute <names> is not defined otherwise the containing line is dropped. <value> can
contain simple attribute references.

{<names>@<regexp>:<value1>[:<value2>]}
<value1> is substituted if the value of attribute <names>matches the regular expression <regexp> otherwise <value2>
is substituted. If attribute <names> is not defined the containing line is dropped. If <value2> is omitted an empty string
is assumed. The values and the regular expression can contain simple attribute references. To embed colons in the values
or the regular expression escape them with backslashes.

{<names>$<regexp>:<value1>[:<value2>]}
Same behavior as the previous ternary attribute except for the following cases:

{<names>$<regexp>:<value>}
Substitutes <value> if <names> matches <regexp> otherwise the result is undefined and the containing line is
dropped.

{<names>$<regexp>::<value>}
Substitutes <value> if <names> does not match <regexp> otherwise the result is undefined and the containing
line is dropped.

The attribute <names> parameter normally consists of a single attribute name but it can be any one of the following:

• A single attribute name which evaluates to the attributes value.

• Multiple , separated attribute names which evaluates to an empty string if one or more of the attributes is defined, otherwise
it’s value is undefined.

• Multiple + separated attribute names which evaluates to an empty string if all of the attributes are defined, otherwise it’s value
is undefined.

Conditional attributes with single attribute names are evaluated first so they can be used inside the multi-attribute conditional
<value>.



AsciiDoc User Guide 71 / 93

30.2.1 Conditional attribute examples

Conditional attributes are mainly used in AsciiDoc configuration files — see the distribution .conf files for examples.

Attribute equality test
If {backend} is docbook45 or xhtml11 the example evaluates to “DocBook 4.5 or XHTML 1.1 backend” otherwise it
evaluates to “some other backend”:

{backend@docbook45|xhtml11:DocBook 4.5 or XHTML 1.1 backend:some other backend ←↩
}

Attribute value map
This example maps the frame attribute values [topbot, all, none, sides] to [hsides, border, void, vsides]:

{frame@topbot:hsides}{frame@all:border}{frame@none:void}{frame@sides:vsides}

30.3 System Attribute References

System attribute references generate the attribute text value by executing a predefined action that is parametrized by one or more
arguments. The syntax is {<action>:<arguments>}.

{counter:<attrname>[:<seed>]}
Increments the document attribute (if the attribute is undefined it is set to 1). Returns the new attribute value.

• Counters generate global (document wide) attributes.

• The optional <seed> specifies the counter’s initial value; it can be a number or a single letter; defaults to 1.

• <seed> can contain simple and conditional attribute references.

• The counter system attribute will not be executed if the containing line is dropped by the prior evaluation of an undefined
attribute.

{counter2:<attrname>[:<seed>]}
Same as counter except the it always returns a blank string.

{eval:<expression>}
Substitutes the result of the Python <expression>.

• If <expression> evaluates to None or False the reference is deemed undefined and the line containing the reference
is dropped from the output.

• If the expression evaluates to True the attribute evaluates to an empty string.

• <expression> can contain simple and conditional attribute references.

• The eval system attribute can be nested inside other system attributes.

{eval3:<command>}
Passthrough version of {eval:<expression>}— the generated output is written directly to the output without any
further substitutions.

{include:<filename>}
Substitutes contents of the file named <filename>.

• The included file is read at the time of attribute substitution.

• If the file does not exist a warning is emitted and the line containing the reference is dropped from the output file.

• Tabs are expanded based on the current tabsize attribute value.



AsciiDoc User Guide 72 / 93

{set:<attrname>[!][:<value>]}
Sets or unsets document attribute. Normally only used in configuration file markup templates (use AttributeEntries in
AsciiDoc documents).

• If the attribute name is followed by an exclamation mark the attribute becomes undefined.

• If <value> is omitted the attribute is set to a blank string.

• <value> can contain simple and conditional attribute references.

• Returns a blank string unless the attribute is undefined in which case the return value is undefined and the enclosing line
will be dropped.

{set2:<attrname>[!][:<value>]}
Same as set except that the attribute scope is local to the template.

{sys:<command>}
Substitutes the stdout generated by the execution of the shell <command>.

{sys2:<command>}
Substitutes the stdout and stderr generated by the execution of the shell <command>.

{sys3:<command>}
Passthrough version of {sys:<command>}— the generated output is written directly to the output without any further
substitutions.

{template:<template>}
Substitutes the contents of the configuration file section named <template>. Attribute references contained in the
template are substituted.

SYSTEM REFERENCE BEHAVIOR

• System attribute arguments can contain non-system attribute references.

• Closing brace characters inside system attribute arguments must be escaped with a backslash.

31 Intrinsic Attributes

Intrinsic attributes are simple attributes that are created automatically from: AsciiDoc document header parameters; asciidoc(1)
command-line arguments; attributes defined in the default configuration files; the execution context. Here’s the list of predefined
intrinsic attributes:

{amp} ampersand (&) character entity
{asciidoc-args} used to pass inherited arguments to asciidoc filters
{asciidoc-confdir} the asciidoc(1) global configuration directory
{asciidoc-dir} the asciidoc(1) application directory
{asciidoc-file} the full path name of the asciidoc(1) script
{asciidoc-version} the version of asciidoc(1)
{author} author's full name
{authored} empty string '' if {author} or {email} defined,
{authorinitials} author initials (from document header)
{backend-<backend>} empty string ''
{<backend>-<doctype>} empty string ''
{backend} document backend specified by `-b` option
{backend-confdir} the directory containing the <backend>.conf file
{backslash} backslash character
{basebackend-<base>} empty string ''
{basebackend} html or docbook



AsciiDoc User Guide 73 / 93

{blockname} current block name (note 8).
{brvbar} broken vertical bar (|) character
{docdate} document last modified date (note 9)
{docdir} document input directory name (note 5)
{docfile} document file name (note 5)
{docname} document file name without extension (note 6)
{doctime} document last modified time (note 9)
{doctitle} document title (from document header)
{doctype-<doctype>} empty string ''
{doctype} document type specified by `-d` option
{email} author's email address (from document header)
{empty} empty string ''
{encoding} specifies input and output encoding
{filetype-<fileext>} empty string ''
{filetype} output file name file extension
{firstname} author first name (from document header)
{gt} greater than (>) character entity
{id} running block id generated by BlockId elements
{indir} input file directory name (note 2,5)
{infile} input file name (note 2,5)
{lastname} author last name (from document header)
{ldquo} Left double quote character (note 7)
{level} title level 1..4 (in section titles)
{listindex} the list index (1..) of the most recent list item
{localdate} the current date (note 9)
{localtime} the current time (note 9)
{lsquo} Left single quote character (note 7)
{lt} less than (<) character entity
{manname} manpage name (defined in NAME section)
{manpurpose} manpage (defined in NAME section)
{mantitle} document title minus the manpage volume number
{manvolnum} manpage volume number (1..8) (from document header)
{middlename} author middle name (from document header)
{nbsp} non-breaking space character entity
{notitle} do not display the document title
{outdir} document output directory name (note 2)
{outfile} output file name (note 2)
{plus} plus character
{python} the full path name of the Python interpreter executable
{rdquo} right double quote character (note 7)
{reftext} running block xreflabel generated by BlockId elements
{revdate} document revision date (from document header)
{revnumber} document revision number (from document header)
{rsquo} right single quote character (note 7)
{sectnum} formatted section number (in section titles)
{sp} space character
{showcomments} send comment lines to the output
{title} section title (in titled elements)
{two-colons} two colon characters
{two-semicolons} two semicolon characters
{user-dir} the ~/.asciidoc directory (if it exists)
{verbose} defined as '' if --verbose command option specified
{wj} word-joiner
{zwsp} zero-width space character entity



AsciiDoc User Guide 74 / 93

Note

1. Intrinsic attributes are global so avoid defining custom attributes with the same names.

2. {outfile}, {outdir}, {infile}, {indir} attributes are effectively read-only (you can set them but it won’t
affect the input or output file paths).

3. See also the Backend Attributes section for attributes that relate to AsciiDoc XHTML file generation.

4. The entries that translate to blank strings are designed to be used for conditional text inclusion. You can also use the
ifdef, ifndef and endif System macros for conditional inclusion. a

5. {docfile} and {docdir} refer to root document specified on the asciidoc(1) command-line; {infile} and
{indir} refer to the current input file which may be the root document or an included file. When the input is be-
ing read from the standard input (stdin) these attributes are undefined.

6. If the input file is the standard input and the output file is not the standard output then {docname} is the output file
name sans file extension.

7. See non-English usage of quotation marks.

8. The {blockname} attribute identifies the style of the current block. It applies to delimited blocks, lists and tables. Here
is a list of {blockname} values (does not include filters or custom block and style names):

delimited blocks
comment, sidebar, open, pass, literal, verse, listing, quote, example, note, tip, important, caution, warning, abstract,
partintro

lists
arabic, loweralpha, upperalpha, lowerroman, upperroman, labeled, labeled3, labeled4, qanda, horizontal, bibliog-
raphy, glossary

tables
table

9. If the SOURCE_DATE_EPOCH environment variable is set to a UNIX timestamp, then the {docdate}, {doctime},
{localdate}, and {localtime} attributes are computed in the UTC time zone, with any timestamps newer than
SOURCE_DATE_EPOCH replaced by SOURCE_DATE_EPOCH. (This helps software using AsciiDoc to build repro-
ducibly.)

aConditional inclusion using ifdef and ifndef macros differs from attribute conditional inclusion in that the former occurs when the file is read
while the latter occurs when the contents are written.

32 Block Element Definitions

The syntax and behavior of Paragraph, DelimitedBlock, List and Table block elements is determined by block definitions con-
tained in AsciiDoc configuration file sections.

Each definition consists of a section title followed by one or more section entries. Each entry defines a block parameter controlling
some aspect of the block’s behavior. Here’s an example:

[blockdef-listing]
delimiter=^-{4,}$
template=listingblock
presubs=specialcharacters,callouts

Configuration file block definition sections are processed incrementally after each configuration file is loaded. Block definition
section entries are merged into the block definition, this allows block parameters to be overridden and extended by later loading
configuration files.

http://en.wikipedia.org/wiki/Non-English_usage_of_quotation_marks


AsciiDoc User Guide 75 / 93

AsciiDoc Paragraph, DelimitedBlock, List and Table block elements share a common subset of configuration file parameters:

delimiter
A Python regular expression that matches the first line of a block element — in the case of DelimitedBlocks and Tables it
also matches the last line.

template
The name of the configuration file markup template section that will envelope the block contents. The pipe (|) character is
substituted for the block contents. List elements use a set of (list specific) tag parameters instead of a single template. The
template name can contain attribute references allowing dynamic template selection a the time of template substitution.

options
A comma delimited list of element specific option names. In addition to being used internally, options are available during
markup tag and template substitution as attributes with an empty string value named like <option>-option (where
<option> is the option name). See attribute options for a complete list of available options.

subs, presubs, postsubs

• presubs and postsubs are lists of comma separated substitutions that are performed on the block contents. presubs is
applied first, postsubs (if specified) second.

• subs is an alias for presubs.

• If a filter is allowed (Paragraphs, DelimitedBlocks and Tables) and has been specified then presubs and postsubs substi-
tutions are performed before and after the filter is run respectively.

• Allowed values: specialcharacters, quotes, specialwords, replacements, macros, attributes, callouts.

• The following composite values are also allowed:

none
No substitutions.

normal
The following substitutions in the following order: specialcharacters, quotes, attributes, specialwords, replace-
ments, macros, replacements2.

verbatim
The following substitutions in the following order: specialcharacters and callouts.

• normal and verbatim substitutions can be redefined by with subsnormal and subsverbatim entries in a configu-
ration file [miscellaneous] section.

• The substitutions are processed in the order in which they are listed and can appear more than once.

filter
This optional entry specifies an executable shell command for processing block content (Paragraphs, DelimitedBlocks and
Tables). The filter command can contain attribute references.

posattrs
Optional comma separated list of positional attribute names. This list maps positional attributes (in the block’s attribute list)
to named block attributes. The following example, from the QuoteBlock definition, maps the first and section positional
attributes:

posattrs=attribution,citetitle

style
This optional parameter specifies the default style name.

<stylename>-style
Optional style definition (see Styles below).

The following block parameters behave like document attributes and can be set in block attribute lists and style definitions:
template, options, subs, presubs, postsubs, filter.



AsciiDoc User Guide 76 / 93

32.1 Styles

A style is a set of block parameter bundled as a single named parameter. The following example defines a style named verbatim:

verbatim-style=template="literalblock",subs="verbatim"

If a block’s attribute list contains a style attribute then the corresponding style parameters are be merged into the default block
definition parameters.

• All style parameter names must be suffixed with -style and the style parameter value is in the form of a list of named
attributes.

• The template style parameter is mandatory, other parameters can be omitted in which case they inherit their values from the
default block definition parameters.

• Multi-item style parameters (subs,presubs,postsubs,posattrs) must be specified using Python tuple syntax (rather than a simple
list of values as they in separate entries) e.g. postsubs=("callouts",) not postsubs="callouts".

32.2 Paragraphs

Paragraph translation is controlled by [paradef-*] configuration file section entries. Users can define new types of paragraphs
and modify the behavior of existing types by editing AsciiDoc configuration files.

Here is the shipped Default paragraph definition:

[paradef-default]
delimiter=(?P<text>\S.*)
template=paragraph

The normal paragraph definition has a couple of special properties:

1. It must exist and be defined in a configuration file section named [paradef-default].

2. Irrespective of its position in the configuration files default paragraph document matches are attempted only after trying all
other paragraph types.

Paragraph specific block parameter notes:

delimiter
This regular expression must contain the named group text which matches the text on the first line. Paragraphs are termi-
nated by a blank line, the end of file, or the start of a DelimitedBlock.

options
The listelement option specifies that paragraphs of this type will automatically be considered part of immediately preceding
list items. The skip option causes the paragraph to be treated as a comment (see CommentBlocks).

PARAGRAPH PROCESSING PROCEEDS AS FOLLOWS:

1. The paragraph text is aligned to the left margin.

2. Optional presubs inline substitutions are performed on the paragraph text.

3. If a filter command is specified it is executed and the paragraph text piped to its standard input; the filter output replaces
the paragraph text.

4. Optional postsubs inline substitutions are performed on the paragraph text.

5. The paragraph text is enveloped by the paragraph’s markup template and written to the output file.



AsciiDoc User Guide 77 / 93

32.3 Delimited Blocks

DelimitedBlock options values are:

sectionbody
The block contents are processed as a SectionBody.

skip
The block is treated as a comment (see CommentBlocks). Preceding attribute lists and block titles are not consumed.

presubs, postsubs and filter entries are ignored when sectionbody or skip options are set.

DelimitedBlock processing proceeds as follows:

1. Optional presubs substitutions are performed on the block contents.

2. If a filter is specified it is executed and the block’s contents piped to its standard input. The filter output replaces the block
contents.

3. Optional postsubs substitutions are performed on the block contents.

4. The block contents is enveloped by the block’s markup template and written to the output file.

Tip
Attribute expansion is performed on the block filter command before it is executed, this is useful for passing arguments to the
filter.

32.4 Lists

List behavior and syntax is determined by [listdef-*] configuration file sections. The user can change existing list behavior
and add new list types by editing configuration files.

List specific block definition notes:

type
This is either bulleted,numbered,labeled or callout.

delimiter
A Python regular expression that matches the first line of a list element entry. This expression can contain the named
groups text (bulleted groups), index and text (numbered lists), label and text (labeled lists).

tags
The <name> of the [listtags-<name>] configuration file section containing list markup tag definitions. The tag
entries (list, entry, label, term, text) map the AsciiDoc list structure to backend markup; see the listtags sections in the
AsciiDoc distributed backend .conf configuration files for examples.

32.5 Tables

Table behavior and syntax is determined by [tabledef-*] and [tabletags-*] configuration file sections. The user can
change existing table behavior and add new table types by editing configuration files. The following [tabledef-*] section
entries generate table output markup elements:

colspec
The table colspec tag definition.

headrow, footrow, bodyrow
Table header, footer and body row tag definitions. headrow and footrow table definition entries default to bodyrow if they
are undefined.



AsciiDoc User Guide 78 / 93

headdata, footdata, bodydata
Table header, footer and body data tag definitions. headdata and footdata table definition entries default to bodydata if
they are undefined.

paragraph
If the paragraph tag is specified then blank lines in the cell data are treated as paragraph delimiters and marked up using
this tag.

Table behavior is also influenced by the following [miscellaneous] configuration file entries:

pagewidth
This integer value is the printable width of the output media. See table attributes.

pageunits
The units of width in output markup width attribute values.

TABLE DEFINITION BEHAVIOR

• The output markup generation is specifically designed to work with the HTML and CALS (DocBook) table models, but should
be adaptable to most XML table schema.

• Table definitions can be “mixed in” from multiple cascading configuration files.

• New table definitions inherit the default table and table tags definitions ([tabledef-default] and [tabletags-default])
so you only need to override those conf file entries that require modification.

33 Filters

AsciiDoc filters allow external commands to process AsciiDoc Paragraphs, DelimitedBlocks and Table content. Filters are
primarily an extension mechanism for generating specialized outputs. Filters are implemented using external commands which
are specified in configuration file definitions.

There’s nothing special about the filters, they’re just standard UNIX filters: they read text from the standard input, process it, and
write to the standard output.

The asciidoc(1) command --filter option can be used to install and remove filters. The same option is used to unconditionally
load a filter.

Attribute substitution is performed on the filter command prior to execution — attributes can be used to pass parameters from the
AsciiDoc source document to the filter.

Warning
Filters sometimes included executable code. Before installing a filter you should verify that it is from a trusted source.

33.1 Filter Search Paths

If the filter command does not specify a directory path then asciidoc(1) recursively searches for the executable filter command:

• First it looks in the user’s $HOME/.asciidoc/filters directory.

• Next the global filters directory (usually /etc/asciidoc/filters or /usr/local/etc/asciidoc) directory is
searched.

• Then it looks in the asciidoc(1) ./filters directory.

• Finally it relies on the executing shell to search the environment search path ($PATH).

Standard practice is to install each filter in it’s own sub-directory with the same name as the filter’s style definition. For example
the music filter’s style name is music so it’s configuration and filter files are stored in the filters/music directory.



AsciiDoc User Guide 79 / 93

33.2 Filter Configuration Files

Filters are normally accompanied by a configuration file containing a Paragraph or DelimitedBlock definition along with corre-
sponding markup templates.

While it is possible to create new Paragraph or DelimitedBlock definitions the preferred way to implement a filter is to add a
style to the existing Paragraph and ListingBlock definitions (all filters shipped with AsciiDoc use this technique). The filter is
applied to the paragraph or delimited block by preceding it with an attribute list: the first positional attribute is the style name,
remaining attributes are normally filter specific parameters.

asciidoc(1) auto-loads all .conf files found in the filter search paths unless the container directory also contains a file named
__noautoload__ (see previous section). The __noautoload__ feature is used for filters that will be loaded manually
using the --filter option.

33.3 Example Filter

AsciiDoc comes with a toy filter for highlighting source code keywords and comments. See also the ./filters/code/code-filter-readme.txt
file.

Note
The purpose of this toy filter is to demonstrate how to write a filter — it’s much to simplistic to be passed off as a code syntax
highlighter. If you want a full featured multi-language highlighter use the source code highlighter filter.

33.4 Built-in filters

The AsciiDoc distribution includes source, music, latex and graphviz filters, details are on the AsciiDoc website.

Table 11: Built-in filters list

Filter name Description
music A music filter is included in the distribution ./filters/ directory. It translates music in

LilyPond or ABC notation to standard classical notation.
source A source code highlight filter is included in the distribution ./filters/ directory.
latex The AsciiDoc LaTeX filter translates LaTeX source to an image that is automatically inserted into

the AsciiDoc output documents.
graphviz Gouichi Iisaka has written a Graphviz filter for AsciiDoc. Graphviz generates diagrams from a

textual specification. Gouichi Iisaka’s Graphviz filter is included in the AsciiDoc distribution. Here
are some AsciiDoc Graphviz examples.

33.5 Filter plugins

Filter plugins are a mechanism for distributing AsciiDoc filters. A filter plugin is a Zip file containing the files that constitute a
filter. The asciidoc(1) --filter option is used to load and manage filer plugins.

• Filter plugins take precedence over built-in filters with the same name.

• By default filter plugins are installed in $HOME/.asciidoc/filters/<filter> where <filter> is the filter name.

https://asciidoc.org/source-highlight-filter.html
https://asciidoc.org/index.html#_filters
https://asciidoc.org/music-filter.html
http://lilypond.org/
http://abcnotation.org.uk/
https://asciidoc.org/source-highlight-filter.html
https://asciidoc.org/latex-filter.html
http://www.graphviz.org/
https://asciidoc.org/asciidoc-graphviz-sample.html


AsciiDoc User Guide 80 / 93

34 Plugins

The AsciiDoc plugin architecture is an extension mechanism that allows additional backends, filters and themes to be added to
AsciiDoc.

• A plugin is a Zip file containing an AsciiDoc backend, filter or theme (configuration files, stylesheets, scripts, images).

• The asciidoc(1) --backend, --filter and --theme command-line options are used to load and manage plugins. Each
of these options responds to the plugin management install, list, remove and build commands.

• The plugin management command names are reserved and cannot be used for filter, backend or theme names.

• The plugin Zip file name always begins with the backend, filter or theme name.

Plugin commands and conventions are documented in the asciidoc(1) man page. You can find lists of plugins on the AsciiDoc
website.

35 Help Commands

The asciidoc(1) command has a --help option which prints help topics to stdout. The default topic summarizes asciidoc(1)
usage:

$ asciidoc --help

To print a help topic specify the topic name as a command argument. Help topic names can be shortened so long as they are not
ambiguous. Examples:

$ asciidoc --help manpage
$ asciidoc -h m # Short version of previous example.
$ asciidoc --help syntax
$ asciidoc -h s # Short version of previous example.

35.1 Customizing Help

To change, delete or add your own help topics edit a help configuration file. The help file name help-<lang>.conf is based
on the setting of the lang attribute, it defaults to help.conf (English). The help file location will depend on whether you
want the topics to apply to all users or just the current user.

The help topic files have the same named section format as other configuration files. The help.conf files are stored in the
same locations and loaded in the same order as other configuration files.

When the --help command-line option is specified AsciiDoc loads the appropriate help files and then prints the contents of the
section whose name matches the help topic name. If a topic name is not specified default is used. You don’t need to specify
the whole help topic name on the command-line, just enough letters to ensure it’s not ambiguous. If a matching help file section
is not found a list of available topics is printed.

36 Tips and Tricks

36.1 Know Your Editor

Writing AsciiDoc documents will be a whole lot more pleasant if you know your favorite text editor. Learn how to indent and
reformat text blocks, paragraphs, lists and sentences. Tips for vim users follow.

https://asciidoc.org/plugins.html
https://asciidoc.org/plugins.html


AsciiDoc User Guide 81 / 93

36.2 Vim Commands for Formatting AsciiDoc

36.2.1 Text Wrap Paragraphs

Use the vim :gq command to reformat paragraphs. Setting the textwidth sets the right text wrap margin; for example:

:set textwidth=70

To reformat a paragraph:

1. Position the cursor at the start of the paragraph.

2. Type gq}.

Execute :help gq command to read about the vim gq command.

Tip

• Assign the gq} command to the Q key with the nnoremap Q gq} command or put it in your ~/.vimrc file to so it’s
always available (see the Example ~/.vimrc file).

• Put set commands in your ~/.vimrc file so you don’t have to enter them manually.

• The Vim website (http://www.vim.org) has a wealth of resources, including scripts for automated spell checking and ASCII
Art drawing.

36.2.2 Format Lists

The gq command can also be used to format bulleted, numbered and callout lists. First you need to set the comments,
formatoptions and formatlistpat (see the Example ~/.vimrc file).

Now you can format simple lists that use dash, asterisk, period and plus bullets along with numbered ordered lists:

1. Position the cursor at the start of the list.

2. Type gq}.

36.2.3 Indent Paragraphs

Indent whole paragraphs by indenting the fist line with the desired indent and then executing the gq} command.

36.2.4 Example ~/.vimrc File

" Use bold bright fonts.
set background=dark

" Show tabs and trailing characters.
"set listchars=tab:»·,trail:·,eol:\ensuremath{\lnot}
set listchars=tab:»·,trail:·
set list

" Reformat paragraphs and list.
nnoremap <Leader>r gq}

http://www.vim.org


AsciiDoc User Guide 82 / 93

" Delete trailing white space and Dos-returns and to expand tabs to spaces.
nnoremap <Leader>t :set et<CR>:retab!<CR>:%s/[\r \t]\+$//<CR>

autocmd BufRead,BufNewFile *.txt,*.asciidoc,README,TODO,CHANGELOG,NOTES,ABOUT
\ setlocal autoindent expandtab tabstop=8 softtabstop=2 shiftwidth=2 filetype= ←↩

asciidoc
\ textwidth=70 wrap formatoptions=tcqn
\ formatlistpat=^\\s*\\d\\+\\.\\s\\+\\\\|^\\s*<\\d\\+>\\s\\+\\\\|^\\s*[a-zA-Z ←↩

.]\\.\\s\\+\\\\|^\\s*[ivxIVX]\\+\\.\\s\\+
\ comments=s1:/*,ex:*/,://,b:#,:%,:XCOMM,fb:-,fb:*,fb:+,fb:.,fb:>

36.3 Troubleshooting

AsciiDoc diagnostic features are detailed in the Diagnostics appendix.

36.4 Gotchas

Incorrect character encoding
If you get an error message like ’UTF-8’ codec can’t decode ... then you source file contains invalid UTF-8
characters — set the AsciiDoc encoding attribute for the correct character set (typically ISO-8859-1 (Latin-1) for European
languages).

Invalid output
AsciiDoc attempts to validate the input AsciiDoc source but makes no attempt to validate the output markup, it leaves that
to external tools such as xmllint(1) (integrated into a2x(1)). Backend validation cannot be hardcoded into AsciiDoc
because backends are dynamically configured. The following example generates valid HTML but invalid DocBook (the
DocBook literal element cannot contain an emphasis element):

+monospaced text with an _emphasized_ word+

Misinterpreted text formatting
You can suppress markup expansion by placing a backslash character immediately in front of the element. The following
example suppresses inline monospaced formatting:

\+1 for C++.

Overlapping text formatting
Overlapping text formatting will generate illegal overlapping markup tags which will result in downstream XML parsing
errors. Here’s an example:

Some *strong markup _that overlaps* emphasized markup_.

Ambiguous underlines
A DelimitedBlock can immediately follow a paragraph without an intervening blank line, but be careful, a single line
paragraph underline may be misinterpreted as a section title underline resulting in a “closing block delimiter expected”
error.

Ambiguous ordered list items
Lines beginning with numbers at the end of sentences will be interpreted as ordered list items. The following example
(incorrectly) begins a new list with item number 1999:



AsciiDoc User Guide 83 / 93

He was last sighted in
1999. Since then things have moved on.

The list item out of sequence warning makes it unlikely that this problem will go unnoticed.

Special characters in attribute values
Special character substitution precedes attribute substitution so if attribute values contain special characters you may,
depending on the substitution context, need to escape the special characters yourself. For example:

$ asciidoc -a 'orgname=Bill &amp; Ben Inc.' mydoc.txt

Attribute lists
If any named attribute entries are present then all string attribute values must be quoted. For example:

["Desktop screenshot",width=32]

36.5 Combining separate documents

You have a number of stand-alone AsciiDoc documents that you want to process as a single document. Simply processing them
with a series of include macros won’t work because the documents contain (level 0) document titles. The solution is to create
a top level wrapper document and use the leveloffset attribute to push them all down one level. For example:

Combined Document Title
=======================

// Push titles down one level.
:leveloffset: 1

include::document1.txt[]

// Return to normal title levels.
:leveloffset: 0

A Top Level Section
-------------------
Lorum ipsum.

// Push titles down one level.
:leveloffset: 1

include::document2.txt[]

include::document3.txt[]

The document titles in the included documents will now be processed as level 1 section titles, level 1 sections as level 2 sections
and so on.

• Put a blank line between the include macro lines to ensure the title of the included document is not seen as part of the last
paragraph of the previous document.

• You won’t want non-title document header lines (for example, Author and Revision lines) in the included files — conditionally
exclude them if they are necessary for stand-alone processing.



AsciiDoc User Guide 84 / 93

36.6 Processing document sections separately

You have divided your AsciiDoc document into separate files (one per top level section) which are combined and processed with
the following top level document:

Combined Document Title
=======================
Joe Bloggs
v1.0, 12-Aug-03

include::section1.txt[]

include::section2.txt[]

include::section3.txt[]

You also want to process the section files as separate documents. This is easy because asciidoc(1) will quite happily process
section1.txt, section2.txt and section3.txt separately — the resulting output documents contain the section but
have no document title.

36.7 Processing document snippets

Use the -s (--no-header-footer) command-line option to suppress header and footer output, this is useful if the processed
output is to be included in another file. For example:

$ asciidoc -sb docbook section1.txt

asciidoc(1) can be used as a filter, so you can pipe chunks of text through it. For example:

$ echo 'Hello *World!*' | asciidoc -s -
<div class="paragraph"><p>Hello <strong>World!</strong></p></div>

36.8 Badges in HTML page footers

See the [footer] section in the AsciiDoc distribution xhtml11.conf configuration file.

36.9 Pretty printing AsciiDoc output

If the indentation and layout of the asciidoc(1) output is not to your liking you can:

1. Change the indentation and layout of configuration file markup template sections. The {empty} attribute is useful for
outputting trailing blank lines in markup templates.

2. Use Dave Raggett’s HTML Tidy program to tidy asciidoc(1) output. Example:

$ asciidoc -b docbook -o - mydoc.txt | tidy -indent -xml >mydoc.xml

3. Use the xmllint(1) format option. Example:

$ xmllint --format mydoc.xml

http://tidy.sourceforge.net/


AsciiDoc User Guide 85 / 93

36.10 Supporting minor DocBook DTD variations

The conditional inclusion of DocBook SGML markup at the end of the distribution docbook45.conf file illustrates how to
support minor DTD variations. The included sections override corresponding entries from preceding sections.

36.11 Creating stand-alone HTML documents

If you’ve ever tried to send someone an HTML document that includes stylesheets and images you’ll know that it’s not as
straight-forward as exchanging a single file. AsciiDoc has options to create stand-alone documents containing embedded images,
stylesheets and scripts. The following AsciiDoc command creates a single file containing embedded images, CSS stylesheets,
and JavaScript (for table of contents and footnotes):

$ asciidoc -a data-uri -a icons -a toc -a max-width=55em article.txt

You can view the HTML file here: https://asciidoc.org/article-standalone.html

36.12 Shipping stand-alone AsciiDoc source

Reproducing presentation documents from someone else’s source has one major problem: unless your configuration files are the
same as the creator’s you won’t get the same output.

The solution is to create a single backend specific configuration file using the asciidoc(1) -c (--dump-conf) command-line
option. You then ship this file along with the AsciiDoc source document plus the asciidoc.py script. The only end user
requirement is that they have Python installed (and that they consider you a trusted source). This example creates a composite
HTML configuration file for mydoc.txt:

$ asciidoc -cb xhtml11 mydoc.txt > mydoc-xhtml11.conf

Ship mydoc.txt, mydoc-html.conf, and asciidoc.py. With these three files (and a Python interpreter) the recipient
can regenerate the HMTL output:

$ ./asciidoc.py -eb xhtml11 mydoc.txt

The -e (--no-conf) option excludes the use of implicit configuration files, ensuring that only entries from the mydoc-html.conf
configuration are used.

36.13 Inserting blank space

Adjust your style sheets to add the correct separation between block elements. Inserting blank paragraphs containing a single
non-breaking space character {nbsp} works but is an ad hoc solution compared to using style sheets.

36.14 Closing open sections

You can close off section tags up to level N by calling the eval::[Section.setlevel(N)] system macro. This is useful
if you want to include a section composed of raw markup. The following example includes a DocBook glossary division at the
top section level (level 0):

https://asciidoc.org/article-standalone.html


AsciiDoc User Guide 86 / 93

ifdef::basebackend-docbook[]

eval::[Section.setlevel(0)]

+++++++++++++++++++++++++++++++
<glossary>

<title>Glossary</title>
<glossdiv>
...
</glossdiv>

</glossary>
+++++++++++++++++++++++++++++++
endif::basebackend-docbook[]

36.15 Validating output files

Use xmllint(1) to check the AsciiDoc generated markup is both well formed and valid. Here are some examples:

$ xmllint --nonet --noout --valid docbook-file.xml
$ xmllint --nonet --noout --valid xhtml11-file.html
$ xmllint --nonet --noout --valid --html html4-file.html

The --valid option checks the file is valid against the document type’s DTD, if the DTD is not installed in your system’s
catalog then it will be fetched from its Internet location. If you omit the --valid option the document will only be checked
that it is well formed.

The online W3C Markup Validation Service is the defacto standard when it comes to validating HTML (it validates all HTML
standards including HTML5).

37 Glossary

Block element
An AsciiDoc block element is a document entity composed of one or more whole lines of text.

Inline element
AsciiDoc inline elements occur within block element textual content, they perform formatting and substitution tasks.

Formal element
An AsciiDoc block element that has a BlockTitle. Formal elements are normally listed in front or back matter, for example
lists of tables, examples and figures.

Verbatim element
The word verbatim indicates that white space and line breaks in the source document are to be preserved in the output
document.

A Migration Notes

A.1 Version 7 to version 8

• A new set of quotes has been introduced which may match inline text in existing documents — if they do you’ll need to escape
the matched text with backslashes.

http://validator.w3.org/#validate_by_uri+with_options


AsciiDoc User Guide 87 / 93

• The index entry inline macro syntax has changed — if your documents include indexes you may need to edit them.

• Replaced a2x(1) --no-icons and --no-copy options with their negated equivalents: --icons and --copy respec-
tively. The default behavior has also changed — the use of icons and copying of icon and CSS files must be specified explicitly
with the --icons and --copy options.

The rationale for the changes can be found in the AsciiDoc CHANGELOG.

Note
If you want to disable unconstrained quotes, the new alternative constrained quotes syntax and the new index entry syntax then
you can define the attribute asciidoc7compatible (for example by using the -a asciidoc7compatible command-
line option).

B Packager Notes

Read the README and INSTALL files (in the distribution root directory) for install prerequisites and procedures. The distribution
Makefile.in (used by configure to generate the Makefile) is the canonical installation procedure.

C AsciiDoc Safe Mode

AsciiDoc safe mode skips potentially dangerous scripted sections in AsciiDoc source files by inhibiting the execution of arbitrary
code or the inclusion of arbitrary files.

The safe mode is disabled by default, it can be enabled with the asciidoc(1) --safe command-line option.

SAFE MODE CONSTRAINTS

• eval, sys and sys2 executable attributes and block macros are not executed.

• include::<filename>[] and include1::<filename>[] block macro files must reside inside the parent file’s
directory.

• {include:<filename>} executable attribute files must reside inside the source document directory.

• Passthrough Blocks are dropped.

Warning
The safe mode is not designed to protect against unsafe AsciiDoc configuration files. Be especially careful when:

1. Implementing filters.

2. Implementing elements that don’t escape special characters.

3. Accepting configuration files from untrusted sources.

D Using AsciiDoc with non-English Languages

AsciiDoc can process UTF-8 character sets but there are some things you need to be aware of:

• If you are generating output documents using a DocBook toolchain then you should set the AsciiDoc lang attribute to the
appropriate language (it defaults to en (English)). This will ensure things like table of contents, figure and table captions and
admonition captions are output in the specified language. For example:



AsciiDoc User Guide 88 / 93

$ a2x -a lang=es doc/article.txt

• If you are outputting HTML directly from asciidoc(1) you’ll need to set the various *_caption attributes to match your
target language (see the list of captions and titles in the [attributes] section of the distribution lang-*.conf files).
The easiest way is to create a language .conf file (see the AsciiDoc’s lang-en.conf file).

Note
You still use the NOTE, CAUTION, TIP, WARNING, IMPORTANT captions in the AsciiDoc source, they get translated in the
HTML output file.

• asciidoc(1) automatically loads configuration files named like lang-<lang>.conf where <lang> is a two letter language
code that matches the current AsciiDoc lang attribute. See also Configuration File Names and Locations.

E Vim Syntax Highlighter

Syntax highlighting is incredibly useful, in addition to making reading AsciiDoc documents much easier syntax highlighting also
helps you catch AsciiDoc syntax errors as you write your documents.

The AsciiDoc distribution directory contains a Vim syntax highlighter for AsciiDoc (./vim/syntax/asciidoc.vim), you
can find the latest version in the online AsciiDoc repository.

Install the highlighter by copying asciidoc.vim to your $HOME/.vim/syntax directory (create it if it doesn’t already
exist).

To enable syntax highlighting:

• Put a Vim autocmd in your Vim configuration file (see the example vimrc file).

• or execute the Vim command :set syntax=asciidoc.

• or add the following line to the end of you AsciiDoc source files:

// vim: set syntax=asciidoc:

F Attribute Options

Here is the list of predefined attribute list options:

Option Backends AsciiDoc Elements Description
autowidth xhtml11, html5,

html4
table The column widths are determined by the browser,

not the AsciiDoc cols attribute. If there is no width
attribute the table width is also left up to the
browser.

unbreakable xhtml11, html5 block elements unbreakable attempts to keep the block element
together on a single printed page c.f. the breakable
and unbreakable docbook (XSL/FO) options
below.

breakable,
unbreakable

docbook (XSL/FO) table, example,
block image

The breakable options allows block elements to
break across page boundaries; unbreakable
attempts to keep the block element together on a
single page. If neither option is specified the
default XSL stylesheet behavior prevails.

https://code.google.com/p/asciidoc/source/browse/


AsciiDoc User Guide 89 / 93

Option Backends AsciiDoc Elements Description
compact docbook, xhtml11,

html5
bulleted list,
numbered list

Minimizes vertical space in the list

footer docbook, xhtml11,
html5, html4

table The last row of the table is rendered as a footer.

header docbook, xhtml11,
html5, html4

table The first row of the table is rendered as a header.

pgwide docbook (XSL/FO) table, block image,
horizontal labeled
list

Specifies that the element should be rendered
across the full text width of the page irrespective of
the current indentation.

strong xhtml11, html5,
html4

labeled lists Emboldens label text.

G Diagnostics

The asciidoc(1) --verbose command-line option prints additional information to stderr: files processed, filters processed,
warnings, system attribute evaluation.

A special attribute named trace enables the output of element-by-element diagnostic messages detailing output markup generation
to stderr. The trace attribute can be set on the command-line or from within the document using Attribute Entries (the latter allows
tracing to be confined to specific portions of the document).

• Trace messages print the source file name and line number and the trace name followed by related markup.

• trace names are normally the names of AsciiDoc elements (see the list below).

• The trace message is only printed if the trace attribute value matches the start of a trace name. The trace attribute value can
be any Python regular expression. If a trace value is not specified all trace messages will be printed (this can result in large
amounts of output if applied to the whole document).

• In the case of inline substitutions:

– The text before and after the substitution is printed; the before text is preceded by a line containing <<< and the after text
by a line containing >>>.

– The subs trace value is an alias for all inline substitutions.

Trace names

<blockname> block close
<blockname> block open
<subs>
dropped line (a line containing an undefined attribute reference).
floating title
footer
header
list close
list entry close
list entry open
list item close
list item open
list label close
list label open
list open
macro block (a block macro)
name (man page NAME section)



AsciiDoc User Guide 90 / 93

paragraph
preamble close
preamble open
push blockname
pop blockname
section close
section open: level <level>
subs (all inline substitutions)
table

Where:

• <level> is section level number 0. . . 4.

• <blockname> is a delimited block name: comment, sidebar, open, pass, listing, literal, quote, example.

• <subs> is an inline substitution type: specialcharacters,quotes,specialwords, replacements, attributes,macros,callouts, re-
placements2, replacements3.

Command-line examples:

1. Trace the entire document.

$ asciidoc -a trace mydoc.txt

2. Trace messages whose names start with quotes or macros:

$ asciidoc -a 'trace=quotes|macros' mydoc.txt

3. Print the first line of each trace message:

$ asciidoc -a trace mydoc.txt 2>&1 | grep ^TRACE:

Attribute Entry examples:

1. Begin printing all trace messages:

:trace:

2. Print only matched trace messages:

:trace: quotes|macros

3. Turn trace messages off:

:trace!:

H Backend Attributes

This table contains a list of optional attributes that influence the generated outputs.



AsciiDoc User Guide 91 / 93

Name Backends Description
badges xhtml11, html5 Link badges (XHTML 1.1 and CSS) in document footers. By default badges are

omitted (badges is undefined).

Note
The path names of images, icons and scripts are relative path names to the output
document not the source document.

data-uri xhtml11, html5 Embed images using the data: uri scheme.
css-signature html5, xhtml11 Set a CSS signature for the document (sets the id attribute of the HTML body

element). CSS signatures provide a mechanism that allows users to personalize the
document appearance. The term CSS signature was coined by Eric Meyer.

disable-
javascript

xhtml11, html5 If the disable-javascript attribute is defined the asciidoc.js
JavaScript is not embedded or linked to the output document. By default AsciiDoc
automatically embeds or links the asciidoc.js JavaScript to the output
document. The script dynamically generates table of contents and footnotes.

docinfo,
docinfo1,
docinfo2

All backends These three attributes control which document information files will be included in
the the header of the output file:

docinfo
Include <filename>-docinfo.<ext>

docinfo1
Include docinfo.<ext>

docinfo2
Include docinfo.<ext> and <filename>-docinfo.<ext>

Where <filename> is the file name (sans extension) of the AsciiDoc input file
and <ext> is .html for HTML outputs or .xml for DocBook outputs. If the
input file is the standard input then the output file name is used. The following
example will include the mydoc-docinfo.xml docinfo file in the DocBook
mydoc.xml output file:

$ asciidoc -a docinfo -b docbook mydoc.txt

This next example will include docinfo.html and mydoc-docinfo.html
docinfo files in the HTML output file:

$ asciidoc -a docinfo2 -b html4 mydoc.txt

encoding html4, html5,
xhtml11,
docbook

Set the input and output document character set encoding. For example the
--attribute encoding=ISO-8859-1 command-line option will set the
character set encoding to ISO-8859-1.

• The default encoding is UTF-8.

• This attribute specifies the character set in the output document.

• The encoding name must correspond to a Python codec name or alias.

• The encoding attribute can be set using an AttributeEntry inside the document
header. For example:

:encoding: ISO-8859-1

hr html4 Defines the html4 inter-section horizontal ruler element. By default html4 top level
sections are separated by a horizontal ruler element, undefine this attribute or set it
to an empty string if you do not want them. The default html4 backend value for
the hr attribute is <hr>.

http://archivist.incutio.com/viewlist/css-discuss/13291


AsciiDoc User Guide 92 / 93

Name Backends Description
icons xhtml11, html5 Link admonition paragraph and admonition block icon images and badge images.

By default icons is undefined and text is used in place of icon images.
iconsdir html4, html5,

xhtml11,
docbook

The name of the directory containing linked admonition icons, navigation icons
and the callouts sub-directory (the callouts sub-directory contains callout
number images). iconsdir defaults to ./images/icons. If admonition icons are
embedded using the data-uri scheme then the iconsdir attribute defaults to the
location of the icons installed in the AsciiDoc configuration directory.

imagesdir html4, html5,
xhtml11,
docbook

If this attribute is defined it is prepended to the target image file name paths in
inline and block image macros.

keywords,
description, title

html4, html5,
xhtml11

The keywords and description attributes set the correspondingly named HTML
meta tag contents; the title attribute sets the HTML title tag contents. Their
principle use is for SEO (Search Engine Optimisation). All three are optional, but
if they are used they must appear in the document header (or on the
command-line). If title is not specified the AsciiDoc document title is used.

linkcss html5, xhtml11 Link CSS stylesheets and JavaScripts. By default linkcss is undefined in which
case stylesheets and scripts are automatically embedded in the output document.

max-width html5, xhtml11 Set the document maximum display width (sets the body element CSS max-width
property).

numbered html4, html5,
xhtml11,
docbook (XSL
Stylesheets)

Adds section numbers to section titles. The docbook backend ignores numbered
attribute entries after the document header.

plaintext All backends If this global attribute is defined all inline substitutions are suppressed and block
indents are retained. This option is useful when dealing with large amounts of
imported plain text.

quirks xhtml11 Include the xhtml11-quirks.conf configuration file and
xhtml11-quirks.css stylesheet to work around IE6 browser
incompatibilities. This feature is deprecated and its use is discouraged —
documents are still viewable in IE6 without it.

revremark docbook A short summary of changes in this document revision. Must be defined prior to the
first document section. The document also needs to be dated to output this attribute.

footer-style html4, html5,
xhtml11

Changes the "Last updated" field in the footer of the document or removes this field
and the revision number (in the footer only).
Can take 3 values:

• none : Don’t display the "Last updated" and "Revision number" fields in the
footer of the document

• revdate : The "Last updated" field’s date in the footer will be the revision date
specified in the document (revdate attribute)

• default (or any other value) : The "Last updated" field’s date in the footer will be
the date of the input file modification

This attribute can be set, for example, using :footer-style: revdate in
the header of the file or using the --attribute footer-style=revdate
command-line option.

scriptsdir html5, xhtml11 The name of the directory containing linked JavaScripts. See HTML stylesheets
and JavaScript locations.

sgml docbook45 The --backend=docbook45 command-line option produces DocBook 4.5
XML. You can produce the older DocBook SGML format using the
--attribute sgml command-line option.

stylesdir html5, xhtml11 The name of the directory containing linked or embedded stylesheets. See HTML
stylesheets and JavaScript locations.

stylesheet html5, xhtml11 The file name of an optional additional CSS stylesheet.
theme html5, xhtml11 Use alternative stylesheet (see Stylesheets).



AsciiDoc User Guide 93 / 93

Name Backends Description
toc html5, xhtml11,

docbook (XSL
Stylesheets)

Adds a table of contents to the start of an article or book document. The toc
attribute can be specified using the --attribute toc command-line option or
a :toc: attribute entry in the document header. The toc attribute is defined by
default when the docbook backend is used. To disable table of contents generation
undefine the toc attribute by putting a :toc!: attribute entry in the document
header or from the command-line with an --attribute toc! option.
xhtml11 and html5 backends

• JavaScript needs to be enabled in your browser.

• The following example generates a numbered table of contents using a
JavaScript embedded in the mydoc.html output document:

$ asciidoc -a toc -a numbered mydoc.txt

toc2 html5, xhtml11 Adds a scrollable table of contents in the left hand margin of an article or book
document. Use the max-width attribute to change the content width. In all other
respects behaves the same as the toc attribute.

toc-placement html5, xhtml11 When set to auto (the default value) asciidoc(1) will place the table of contents in
the document header. When toc-placement is set to manual the TOC can be
positioned anywhere in the document by placing the toc::[] block macro at the
point you want the TOC to appear.

Note
If you use toc-placement then you also have to define the toc attribute.

toc-title html5, xhtml11 Sets the table of contents title (defaults to Table of Contents).
toclevels html5, xhtml11 Sets the number of title levels (1..4) reported in the table of contents (see the toc

attribute above). Defaults to 2 and must be used with the toc attribute. Example
usage:

$ asciidoc -a toc -a toclevels=3 doc/asciidoc.txt

I License

AsciiDoc is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2
(GPLv2) as published by the Free Software Foundation.

AsciiDoc is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License version 2 for
more details.

Copyright © 2002-2013 Stuart Rackham.

Copyright © 2013-2020 AsciiDoc Contributors.


	Introduction
	Getting Started
	Installing AsciiDoc
	Example AsciiDoc Documents

	AsciiDoc Document Types
	article
	book
	manpage

	AsciiDoc Backends
	Backend Aliases
	Backend Plugins

	DocBook
	Converting DocBook to other file formats
	a2x Toolchain Wrapper
	HTML generation
	PDF generation
	HTML Help generation
	Toolchain components summary
	AsciiDoc dblatex configuration files
	AsciiDoc DocBook XSL Stylesheets drivers

	Generating Plain Text Files
	HTML5 and XHTML 1.1
	Themes

	Document Structure
	Block Elements
	Header
	Additional document header information

	Preamble
	Sections
	Section markup templates
	Section IDs
	Special Section Titles

	Inline Elements

	Document Processing
	Text Formatting
	Quoted Text
	Quoted text attributes
	Constrained and Unconstrained Quotes
	Constrained quotes
	Unconstrained quotes


	Superscripts and Subscripts
	Line Breaks
	Page Breaks
	Rulers
	Tabs
	Replacements
	Special Words

	Titles
	Two line titles
	One line titles
	Floating titles

	Block Titles
	BlockId Element
	AttributeList Element
	Attribute value substitution
	Common attributes

	Paragraphs
	normal paragraph syntax
	literal paragraph syntax
	quote and verse paragraph styles
	Admonition Paragraphs
	Admonition Icons and Captions


	Delimited Blocks
	Predefined Delimited Blocks
	Listing Blocks
	Literal Blocks
	Sidebar Blocks
	Comment Blocks
	Passthrough Blocks
	Quote Blocks
	Example Blocks
	Admonition Blocks
	Open Blocks

	Lists
	Bulleted Lists
	Numbered Lists
	Labeled Lists
	Horizontal labeled list style

	Question and Answer Lists
	Glossary Lists
	Bibliography Lists
	List Item Continuation

	Footnotes
	Indexes
	Callouts
	Implementation Notes
	Including callouts in included code

	Macros
	Inline Macros
	URLs
	Internal Cross References
	anchor
	xref

	Linking to Local Documents
	Images
	Comment Lines

	Block Macros
	Block Identifier
	Images
	Comment Lines

	System Macros
	Include Macros
	Conditional Inclusion Macros
	Executable system macros
	Template System Macro

	Passthrough macros
	Macro Definitions

	HTML 5 audio and video block macros
	Tables
	Example tables
	Table input data formats
	Table attributes
	Column Specifiers
	Cell Specifiers
	Table styles
	Markup attributes
	Nested tables
	DocBook table limitations

	Manpage Documents
	Document Header
	The NAME Section
	The SYNOPSIS Section
	refmiscinfo attributes

	Mathematical Formulas
	LaTeX Math
	MathJax
	LaTeXMathML
	ASCIIMathML
	MathML

	Configuration Files
	Configuration File Format
	Miscellaneous section
	Titles section
	Tags section
	Attributes section
	Special Characters section
	Quoted Text section
	Special Words section
	Replacements section
	Markup Template Sections
	Configuration file names, precedence and locations

	Document Attributes
	Attribute Entries
	Setting configuration entries

	Attribute Lists
	Options attribute
	Macro Attribute lists

	Attribute References
	Simple Attributes References
	Conditional Attribute References
	Conditional attribute examples

	System Attribute References

	Intrinsic Attributes
	Block Element Definitions
	Styles
	Paragraphs
	Delimited Blocks
	Lists
	Tables

	Filters
	Filter Search Paths
	Filter Configuration Files
	Example Filter
	Built-in filters
	Filter plugins

	Plugins
	Help Commands
	Customizing Help

	Tips and Tricks
	Know Your Editor
	Vim Commands for Formatting AsciiDoc
	Text Wrap Paragraphs
	Format Lists
	Indent Paragraphs
	Example ~/.vimrc File

	Troubleshooting
	Gotchas
	Combining separate documents
	Processing document sections separately
	Processing document snippets
	Badges in HTML page footers
	Pretty printing AsciiDoc output
	Supporting minor DocBook DTD variations
	Creating stand-alone HTML documents
	Shipping stand-alone AsciiDoc source
	Inserting blank space
	Closing open sections
	Validating output files

	Glossary
	Migration Notes
	Version 7 to version 8

	Packager Notes
	AsciiDoc Safe Mode
	Using AsciiDoc with non-English Languages
	Vim Syntax Highlighter
	Attribute Options
	Diagnostics
	Backend Attributes
	License

