summaryrefslogtreecommitdiff
path: root/lib/malloc/gmalloc.c
blob: 8441b0f976aa33715b2b21099fb0d8fc7432d6eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
/* The malloc headers and source files from the C library follow here.  */

/* Declarations for `malloc' and friends.
   Copyright 1990, 91, 92, 93, 95, 96 Free Software Foundation, Inc.
		  Written May 1989 by Mike Haertel.

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
Library General Public License for more details.

You should have received a copy of the GNU Library General Public
License along with this library; see the file COPYING.LIB.  If
ot, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111 USA.

   The author may be reached (Email) at the address mike@ai.mit.edu,
   or (US mail) as Mike Haertel c/o Free Software Foundation.  */

/* XXX NOTES:
    1.	Augment the mstats struct so we can see how many blocks for fragments
	and how many blocks for large requests were allocated.
*/

/* CHANGES:
    1.	Reorganized the source for my benefit.
    2.	Integrated the range-checking code by default.
    3.  free(0) no longer dumps core.
    4.  Extended the statistics.
    5.  Fixed a couple of places where the stats were not kept correctly.
*/

#ifdef	HAVE_CONFIG_H
#include <config.h>
#endif

#if defined (HAVE_STRING_H)
#  include <string.h>
#else
#  include <strings.h>
#endif

#if defined (HAVE_LIMITS_H)
#  include <limits.h>
#endif

#if defined (HAVE_UNISTD_H)
#  ifdef _MINIX
#    include <sys/types.h>
#  endif
#  include <unistd.h>
#endif

#if defined (HAVE_STDDEF_H)
#  include <stddef.h>
#endif
#include <errno.h>

#if defined (RCHECK) && !defined (botch)
#  include <stdio.h>
#  define STDIO_H_INCLUDED
#endif

#include "stdc.h"

#ifndef errno
extern int errno;
#endif

/* Need an autoconf test for this. */
#if __STDC__
#  undef  genptr_t
#  define genptr_t	void *
#else
#  undef  genptr_t
#  define genptr_t	char *
#endif /* !__STDC__ */

#if !defined (HAVE_MEMSET)
#  define	memset(s, zero, n)	bzero ((s), (n))
#endif
#if !defined (HAVE_MEMCPY)
#  define	memcpy(d, s, n)		bcopy ((s), (d), (n))
#endif

/* Cope with systems lacking `memmove'.    */
#if !defined (HAVE_MEMMOVE) && !defined (memmove)
static void malloc_safe_bcopy __P ((genptr_t, genptr_t, size_t));
#  define memmove(to, from, size)	malloc_safe_bcopy ((from), (to), (size))
#endif

#ifndef	NULL
#define	NULL	0
#endif

#ifndef min
#define min(A, B) ((A) < (B) ? (A) : (B))
#endif

/* Return values for `mprobe': these are the kinds of inconsistencies that
   `mcheck' enables detection of.  */
enum mcheck_status
  {
    MCHECK_DISABLED = -1,	/* Consistency checking is not turned on.  */
    MCHECK_OK,			/* Block is fine.  */
    MCHECK_FREE,		/* Block freed twice.  */
    MCHECK_HEAD,		/* Memory before the block was clobbered.  */
    MCHECK_TAIL			/* Memory after the block was clobbered.  */
  };

/* Statistics available to the user.  */
struct mstats
  {
    size_t bytes_total; /* Total size of the heap. */
    size_t chunks_used; /* Chunks allocated by the user. */
    size_t bytes_used;	/* Byte total of user-allocated chunks. */
    size_t chunks_free; /* Chunks in the free list. */
    size_t bytes_free;	/* Byte total of chunks in the free list. */
    int nmalloc;	/* Total number of calls to malloc. */
    int nfree;		/* Total number of calls to free. */
    int nrealloc;	/* Total number of calls to realloc. */
    int nsbrk;		/* Total number of calls to sbrk. */
    size_t tsbrk;	/* Total number of bytes allocated via sbrk. */
    int negsbrk;	/* Total number of calls to sbrk with a negative arg */
    size_t tnegsbrk;	/* Total number of bytes returned to the kernel. */
  };

#ifdef RCHECK
/* Arbitrary magical numbers.  */
#define MAGICWORD	0xfedabeeb
#define MAGICFREE	0xd8675309
#define MAGICBYTE	((char) 0xd7)
#define MALLOCFLOOD	((char) 0x93)
#define FREEFLOOD	((char) 0x95)

struct hdr
  {
    size_t size;		/* Exact size requested by user.  */
    u_bits32_t magic;		/* Magic number to check header integrity.  */
  };
#endif /* RCHECK */

/* Functions exported by this library. */
/* Allocate SIZE bytes of memory.  */
extern genptr_t malloc __P ((size_t __size));

/* Re-allocate the previously allocated block
   in genptr_t, making the new block SIZE bytes long.  */
extern genptr_t realloc __P ((genptr_t __ptr, size_t __size));

/* Allocate NMEMB elements of SIZE bytes each, all initialized to 0.  */
extern genptr_t calloc __P ((size_t __nmemb, size_t __size));

/* Free a block allocated by `malloc', `realloc' or `calloc'.  */
extern void free __P ((genptr_t __ptr));

/* Allocate SIZE bytes allocated to ALIGNMENT bytes.  */
extern genptr_t memalign __P ((size_t __alignment, size_t __size));

/* Pick up the current statistics. */
extern struct mstats mstats __P ((void));

#ifdef RCHECK
extern enum mcheck_status mprobe __P((genptr_t ptr));
#endif

/* End of exported functions. */

/* The allocator divides the heap into blocks of fixed size; large
   requests receive one or more whole blocks, and small requests
   receive a fragment of a block.  Fragment sizes are powers of two,
   and all fragments of a block are the same size.  When all the
   fragments in a block have been freed, the block itself is freed.  */
#define BLOCKLOG	12
#define BLOCKSIZE	4096		/* 1 << BLOCKLOG */
#define BLOCKIFY(SIZE)	(((SIZE) + BLOCKSIZE - 1) / BLOCKSIZE)

/* Determine the amount of memory spanned by the initial heap table
   (not an absolute limit).  */
#define HEAP		4194304		/* 1 << 22 */

/* Number of contiguous free blocks allowed to build up at the end of
   memory before they will be returned to the system.  */
#define FINAL_FREE_BLOCKS	8

/* Data structure giving per-block information.  */
typedef union
  {
    /* Heap information for a busy block.  */
    struct
      {
	/* Zero for a large (multiblock) object, or positive giving the
	   logarithm to the base two of the fragment size.  */
	int type;
	union
	  {
	    struct
	      {
		size_t nfree; /* Free frags in a fragmented block.  */
		size_t first; /* First free fragment of the block.  */
	      } frag;
	    /* For a large object, in its first block, this has the number
	       of blocks in the object.  In the other blocks, this has a
	       negative number which says how far back the first block is.  */
	    ptrdiff_t size;
	  } info;
      } busy;
    /* Heap information for a free block (that may be the first of a
       free cluster).  */
    struct
      {
	size_t size;	/* Size (in blocks) of a free cluster.  */
	size_t next;	/* Index of next free cluster.  */
	size_t prev;	/* Index of previous free cluster.  */
      } free;
  } malloc_info;

/* Pointer to first block of the heap.  */
static char *_heapbase;

/* Table indexed by block number giving per-block information.  */
static malloc_info *_heapinfo;

/* Address to block number and vice versa.  */
#define BLOCK(A)	(((char *) (A) - _heapbase) / BLOCKSIZE + 1)
#define ADDRESS(B)	((genptr_t) (((B) - 1) * BLOCKSIZE + _heapbase))

/* Number of info entries.  */
static size_t heapsize;

/* Current search index for the heap table.  */
static size_t _heapindex;

/* Limit of valid info table indices.  */
static size_t _heaplimit;

/* Doubly linked lists of free fragments.  */
struct list
  {
    struct list *next;
    struct list *prev;
  };

/* Free list headers for each fragment size.  */
static struct list _fraghead[BLOCKLOG];

/* List of blocks allocated with `memalign'.  */
struct alignlist
  {
    struct alignlist *next;
    genptr_t aligned;		/* The address that memaligned returned.  */
    genptr_t exact;		/* The address that malloc returned.  */
  };

/* List of blocks allocated by memalign.  */
static struct alignlist *_aligned_blocks = NULL;

/* Internal versions of `malloc', `realloc', and `free'
   used when these functions need to call each other. */
static genptr_t imalloc __P ((size_t __size));
static genptr_t irealloc __P ((genptr_t __ptr, size_t __size));
static void ifree __P ((genptr_t __ptr));

/* Given an address in the middle of a malloc'd object,
   return the address of the beginning of the object.  */
static genptr_t malloc_find_object_address __P ((genptr_t __ptr));

/* Underlying allocation function; successive calls should
   return contiguous pieces of memory.  */
static genptr_t default_morecore __P ((ptrdiff_t __size));

/* Number of extra blocks to get each time we ask for more core.
   This reduces the frequency of calling `default_morecore'.  */
static size_t malloc_extra_blocks;

/* Nonzero if `malloc' has been called and done its initialization.  */
static int malloc_initialized;
/* Function called to initialize malloc data structures.  */
static int malloc_initialize __P ((void));

#ifdef RCHECK
static void zmemset __P((genptr_t, int, size_t));
static enum mcheck_status checkhdr __P((const struct hdr *));
static void mabort __P((enum mcheck_status));
#endif

/* Instrumentation.  */
static size_t chunks_used;
static size_t bytes_used;
static size_t chunks_free;
static size_t bytes_free;
static int nmalloc, nfree, nrealloc;
static int nsbrk;
static size_t tsbrk;
static int negsbrk;
static size_t tnegsbrk;

/* Aligned allocation.  */
static genptr_t
align (size)
     size_t size;
{
  genptr_t result;
  unsigned long int adj;

  result = default_morecore (size);
  adj = (unsigned long int) ((unsigned long int) ((char *) result -
						  (char *) NULL)) % BLOCKSIZE;
  if (adj != 0)
    {
      genptr_t new;
      adj = BLOCKSIZE - adj;
      new = default_morecore (adj);
      result = (char *) result + adj;
    }

  return result;
}

/* Get SIZE bytes, if we can get them starting at END.
   Return the address of the space we got.
   If we cannot get space at END, fail and return -1.  */
static genptr_t
get_contiguous_space (size, position)
     ptrdiff_t size;
     genptr_t position;
{
  genptr_t before;
  genptr_t after;

  before = default_morecore (0);
  /* If we can tell in advance that the break is at the wrong place,
     fail now.  */
  if (before != position)
    return 0;

  /* Allocate SIZE bytes and get the address of them.  */
  after = default_morecore (size);
  if (!after)
    return 0;

  /* It was not contiguous--reject it.  */
  if (after != position)
    {
      default_morecore (- size);
      return 0;
    }

  return after;
}

/* This is called when `_heapinfo' and `heapsize' have just
   been set to describe a new info table.  Set up the table
   to describe itself and account for it in the statistics.  */
inline static void
register_heapinfo ()
{
  size_t block, blocks;

  block = BLOCK (_heapinfo);
  blocks = BLOCKIFY (heapsize * sizeof (malloc_info));

  /* Account for the _heapinfo block itself in the statistics.  */
  bytes_used += blocks * BLOCKSIZE;
  ++chunks_used;

  /* Describe the heapinfo block itself in the heapinfo.  */
  _heapinfo[block].busy.type = 0;
  _heapinfo[block].busy.info.size = blocks;
  /* Leave back-pointers for malloc_find_address.  */
  while (--blocks > 0)
    _heapinfo[block + blocks].busy.info.size = -blocks;
}

/* Set everything up and remember that we have.  */
static int
malloc_initialize ()
{
  if (malloc_initialized)
    return 0;

  heapsize = HEAP / BLOCKSIZE;
  _heapinfo = (malloc_info *) align (heapsize * sizeof (malloc_info));
  if (_heapinfo == NULL)
    return 0;
  memset (_heapinfo, 0, heapsize * sizeof (malloc_info));
  _heapinfo[0].free.size = 0;
  _heapinfo[0].free.next = _heapinfo[0].free.prev = 0;
  _heapindex = 0;
  _heapbase = (char *) _heapinfo;
  _heaplimit = BLOCK (_heapbase + heapsize * sizeof (malloc_info));

  register_heapinfo ();

  malloc_initialized = 1;
  return 1;
}

/* Allocate INCREMENT more bytes of data space,
   and return the start of data space, or NULL on errors.
   If INCREMENT is negative, shrink data space.  */
static genptr_t
default_morecore (increment)
     ptrdiff_t increment;
{
  genptr_t result;

  nsbrk++;
  tsbrk += increment;
  if (increment < 0)
    {
      negsbrk++;
      tnegsbrk += -increment;
    }
  result = (genptr_t) sbrk (increment);
  if ((long)result == -1L)
    return NULL;
  return result;
}

static int morecore_recursing;

/* Get neatly aligned memory, initializing or
   growing the heap info table as necessary. */
static genptr_t
morecore (size)
     size_t size;
{
  genptr_t result;
  malloc_info *newinfo, *oldinfo;
  size_t newsize;

  if (morecore_recursing)
    /* Avoid recursion.  The caller will know how to handle a null return.  */
    return NULL;

  result = align (size);
  if (result == NULL)
    return NULL;

  /* Check if we need to grow the info table.  */
  if ((size_t) BLOCK ((char *) result + size) > heapsize)
    {
      /* Calculate the new _heapinfo table size.  We do not account for the
	 added blocks in the table itself, as we hope to place them in
	 existing free space, which is already covered by part of the
	 existing table.  */
      newsize = heapsize;
      do
	newsize <<= 1;
      while ((size_t) BLOCK ((char *) result + size) > newsize);

      /* We must not reuse existing core for the new info table when called
	 from realloc in the case of growing a large block, because the
	 block being grown is momentarily marked as free.  In this case
	 _heaplimit is zero so we know not to reuse space for internal
	 allocation.  */
      if (_heaplimit != 0)
	{
	  /* First try to allocate the new info table in core we already
	     have, in the usual way using realloc.  If realloc cannot
	     extend it in place or relocate it to existing sufficient core,
	     we will get called again, and the code above will notice the
	     `morecore_recursing' flag and return null.  */
	  int save = errno;	/* Don't want to clobber errno with ENOMEM.  */
	  morecore_recursing = 1;
	  newinfo = (malloc_info *) irealloc (_heapinfo, newsize * sizeof (malloc_info));
	  morecore_recursing = 0;
	  if (newinfo == NULL)
	    errno = save;
	  else
	    {
	      /* We found some space in core, and realloc has put the old
		 table's blocks on the free list.  Now zero the new part
		 of the table and install the new table location.  */
	      memset (&newinfo[heapsize], 0, (newsize - heapsize) * sizeof (malloc_info));
	      _heapinfo = newinfo;
	      heapsize = newsize;
	      goto got_heap;
	    }
	}

      /* Allocate new space for the malloc info table.  */
      while (1)
  	{
 	  newinfo = (malloc_info *) align (newsize * sizeof (malloc_info));

 	  /* Did it fail?  */
 	  if (newinfo == NULL)
 	    {
 	      default_morecore (-size);
 	      return NULL;
 	    }

 	  /* Is it big enough to record status for its own space?
 	     If so, we win.  */
 	  if ((size_t) BLOCK ((char *) newinfo + newsize * sizeof (malloc_info)) < newsize)
 	    break;

 	  /* Must try again.  First give back most of what we just got.  */
 	  default_morecore (- newsize * sizeof (malloc_info));
 	  newsize *= 2;
  	}

      /* Copy the old table to the beginning of the new,
	 and zero the rest of the new table.  */
      memcpy (newinfo, _heapinfo, heapsize * sizeof (malloc_info));
      memset (&newinfo[heapsize], 0, (newsize - heapsize) * sizeof (malloc_info));
      oldinfo = _heapinfo;
      _heapinfo = newinfo;
      heapsize = newsize;

      register_heapinfo ();

      /* Reset _heaplimit so ifree never decides
	 it can relocate or resize the info table.  */
      _heaplimit = 0;
      ifree (oldinfo);

      /* The new heap limit includes the new table just allocated.  */
      _heaplimit = BLOCK ((char *) newinfo + heapsize * sizeof (malloc_info));
      return result;
    }

 got_heap:
  _heaplimit = BLOCK ((char *) result + size);
  return result;
}

/* Allocate memory from the heap.  */
static genptr_t
imalloc (size)
     size_t size;
{
  genptr_t result;
  size_t block, blocks, lastblocks, start;
  register size_t i;
  struct list *next;

  /* ANSI C allows `malloc (0)' to either return NULL, or to return a
     valid address you can realloc and free (though not dereference).

     It turns out that some extant code (sunrpc, at least Ultrix's version)
     expects `malloc (0)' to return non-NULL and breaks otherwise.
     Be compatible.  */

#if 0
  if (size == 0)
    return NULL;
#endif

  if (size < sizeof (struct list))
    size = sizeof (struct list);

#ifdef SUNOS_LOCALTIME_BUG
  if (size < 16)
    size = 16;
#endif

  /* Determine the allocation policy based on the request size.  */
  if (size <= BLOCKSIZE / 2)
    {
      /* Small allocation to receive a fragment of a block.
	 Determine the logarithm to base two of the fragment size. */
      register size_t log = 1;
      --size;
      while ((size /= 2) != 0)
	++log;

      /* Look in the fragment lists for a
	 free fragment of the desired size. */
      next = _fraghead[log].next;
      if (next != NULL)
	{
	  /* There are free fragments of this size.
	     Pop a fragment out of the fragment list and return it.
	     Update the block's nfree and first counters. */
	  result = (genptr_t) next;
	  next->prev->next = next->next;
	  if (next->next != NULL)
	    next->next->prev = next->prev;
	  block = BLOCK (result);
	  if (--_heapinfo[block].busy.info.frag.nfree != 0)
	    _heapinfo[block].busy.info.frag.first = (unsigned long int)
	      ((unsigned long int) ((char *) next->next - (char *) NULL)
	       % BLOCKSIZE) >> log;

	  /* Update the statistics.  */
	  ++chunks_used;
	  bytes_used += 1 << log;
	  --chunks_free;
	  bytes_free -= 1 << log;
	}
      else
	{
	  /* No free fragments of the desired size, so get a new block
	     and break it into fragments, returning the first.  */
	  result = imalloc (BLOCKSIZE);
	  if (result == NULL)
	    return NULL;

	  /* Link all fragments but the first into the free list.  */
	  next = (struct list *) ((char *) result + (1 << log));
	  next->next = NULL;
	  next->prev = &_fraghead[log];
	  _fraghead[log].next = next;

	  for (i = 2; i < (size_t) (BLOCKSIZE >> log); ++i)
	    {
	      next = (struct list *) ((char *) result + (i << log));
	      next->next = _fraghead[log].next;
	      next->prev = &_fraghead[log];
	      next->prev->next = next;
	      next->next->prev = next;
	    }

	  /* Initialize the nfree and first counters for this block.  */
	  block = BLOCK (result);
	  _heapinfo[block].busy.type = log;
	  _heapinfo[block].busy.info.frag.nfree = i - 1;
	  _heapinfo[block].busy.info.frag.first = i - 1;

	  chunks_free += (BLOCKSIZE >> log) - 1;
	  bytes_free += BLOCKSIZE - (1 << log);
	  bytes_used -= BLOCKSIZE - (1 << log);
	}
    }
  else
    {
      /* Large allocation to receive one or more blocks.
	 Search the free list in a circle starting at the last place visited.
	 If we loop completely around without finding a large enough
	 space we will have to get more memory from the system.  */
      blocks = BLOCKIFY (size);
      start = block = _heapindex;
      while (_heapinfo[block].free.size < blocks)
	{
	  block = _heapinfo[block].free.next;
	  if (block == start)
	    {
	      /* Need to get more from the system.  Get a little extra.  */
	      size_t wantblocks = blocks + malloc_extra_blocks;
	      block = _heapinfo[0].free.prev;
	      lastblocks = _heapinfo[block].free.size;
	      /* Check to see if the new core will be contiguous with the
		 final free block; if so we don't need to get as much.  */
	      if (_heaplimit != 0 && block + lastblocks == _heaplimit &&
		  /* We can't do this if we will have to make the heap info
                     table bigger to accomodate the new space.  */
		  block + wantblocks <= heapsize &&
		  get_contiguous_space ((wantblocks - lastblocks) * BLOCKSIZE,
					ADDRESS (block + lastblocks)))
		{
 		  /* We got it contiguously.  Which block we are extending
		     (the `final free block' referred to above) might have
		     changed, if it got combined with a freed info table.  */
 		  block = _heapinfo[0].free.prev;
  		  _heapinfo[block].free.size += (wantblocks - lastblocks);
		  bytes_free += (wantblocks - lastblocks) * BLOCKSIZE;
 		  _heaplimit += wantblocks - lastblocks;
		  continue;
		}
	      result = morecore (wantblocks * BLOCKSIZE);
	      if (result == NULL)
		return NULL;
	      block = BLOCK (result);
	      /* Put the new block at the end of the free list.  */
	      _heapinfo[block].free.size = wantblocks;
	      _heapinfo[block].free.prev = _heapinfo[0].free.prev;
	      _heapinfo[block].free.next = 0;
	      _heapinfo[0].free.prev = block;
	      _heapinfo[_heapinfo[block].free.prev].free.next = block;
	      ++chunks_free;
	      bytes_free += wantblocks * BLOCKSIZE;
	      /* Now loop to use some of that block for this allocation.  */
	    }
	}

      /* At this point we have found a suitable free list entry.
	 Figure out how to remove what we need from the list. */
      result = ADDRESS (block);
      if (_heapinfo[block].free.size > blocks)
	{
	  /* The block we found has a bit left over,
	     so relink the tail end back into the free list. */
	  _heapinfo[block + blocks].free.size
	    = _heapinfo[block].free.size - blocks;
	  _heapinfo[block + blocks].free.next
	    = _heapinfo[block].free.next;
	  _heapinfo[block + blocks].free.prev
	    = _heapinfo[block].free.prev;
	  _heapinfo[_heapinfo[block].free.prev].free.next
	    = _heapinfo[_heapinfo[block].free.next].free.prev
	    = _heapindex = block + blocks;
	}
      else
	{
	  /* The block exactly matches our requirements,
	     so just remove it from the list. */
	  _heapinfo[_heapinfo[block].free.next].free.prev
	    = _heapinfo[block].free.prev;
	  _heapinfo[_heapinfo[block].free.prev].free.next
	    = _heapindex = _heapinfo[block].free.next;
	  --chunks_free;
	}

      _heapinfo[block].busy.type = 0;
      _heapinfo[block].busy.info.size = blocks;
      ++chunks_used;
      bytes_used += blocks * BLOCKSIZE;
      bytes_free -= blocks * BLOCKSIZE;

      /* Mark all the blocks of the object just allocated except for the
	 first with a negative number so you can find the first block by
	 adding that adjustment.  */
      while (--blocks > 0)
	_heapinfo[block + blocks].busy.info.size = -blocks;
    }

  return result;
}

genptr_t
malloc (size)
     size_t size;
{
#ifdef RCHECK
  struct hdr *hdr;
#endif

  nmalloc++;

  if (malloc_initialized == 0 && malloc_initialize () == 0)
    return NULL;

#ifdef RCHECK
  hdr = (struct hdr *) imalloc (sizeof (struct hdr) + size + 1);
  if (hdr == NULL)
    return NULL;

  hdr->size = size;
  hdr->magic = MAGICWORD;
  ((char *) &hdr[1])[size] = MAGICBYTE;
  zmemset ((genptr_t) (hdr + 1), MALLOCFLOOD, size);
  return (genptr_t) (hdr + 1);
#else
  return (imalloc (size));
#endif
}

/* Free a block of memory allocated by `malloc'. */

/* Return memory to the heap. */
static void
ifree (ptr)
     genptr_t ptr;
{
  int type;
  size_t block, blocks;
  register size_t i;
  struct list *prev, *next;
  genptr_t curbrk;
  size_t lesscore_threshold;
  register struct alignlist *l;

  if (ptr == NULL)
    return;

  /* Threshold of free space at which we will return some to the system.  */
  lesscore_threshold = FINAL_FREE_BLOCKS + 2 * malloc_extra_blocks;

  for (l = _aligned_blocks; l != NULL; l = l->next)
    if (l->aligned == ptr)
      {
	l->aligned = NULL;	/* Mark the slot in the list as free.  */
	ptr = l->exact;
	break;
      }

  block = BLOCK (ptr);

  type = _heapinfo[block].busy.type;
  switch (type)
    {
    case 0:
      /* Get as many statistics as early as we can.  */
      --chunks_used;
      bytes_used -= _heapinfo[block].busy.info.size * BLOCKSIZE;
      bytes_free += _heapinfo[block].busy.info.size * BLOCKSIZE;

      /* Find the free cluster previous to this one in the free list.
	 Start searching at the last block referenced; this may benefit
	 programs with locality of allocation.  */
      i = _heapindex;
      if (i > block)
	while (i > block)
	  i = _heapinfo[i].free.prev;
      else
	{
	  do
	    i = _heapinfo[i].free.next;
	  while (i > 0 && i < block);
	  i = _heapinfo[i].free.prev;
	}

      /* Determine how to link this block into the free list.  */
      if (block == i + _heapinfo[i].free.size)
	{
	  /* Coalesce this block with its predecessor.  */
	  _heapinfo[i].free.size += _heapinfo[block].busy.info.size;
	  block = i;
	}
      else
	{
	  /* Really link this block back into the free list.  */
	  _heapinfo[block].free.size = _heapinfo[block].busy.info.size;
	  _heapinfo[block].free.next = _heapinfo[i].free.next;
	  _heapinfo[block].free.prev = i;
	  _heapinfo[i].free.next = block;
	  _heapinfo[_heapinfo[block].free.next].free.prev = block;
	  ++chunks_free;
	}

      /* Now that the block is linked in, see if we can coalesce it
	 with its successor (by deleting its successor from the list
	 and adding in its size).  */
      if (block + _heapinfo[block].free.size == _heapinfo[block].free.next)
	{
	  _heapinfo[block].free.size
	    += _heapinfo[_heapinfo[block].free.next].free.size;
	  _heapinfo[block].free.next
	    = _heapinfo[_heapinfo[block].free.next].free.next;
	  _heapinfo[_heapinfo[block].free.next].free.prev = block;
	  --chunks_free;
	}

      /* How many trailing free blocks are there now?  */
      blocks = _heapinfo[block].free.size;

      /* Where is the current end of accessible core?  */
      curbrk = default_morecore (0);

      if (_heaplimit != 0 && curbrk == ADDRESS (_heaplimit))
	{
	  /* The end of the malloc heap is at the end of accessible core.
	     It's possible that moving _heapinfo will allow us to
	     return some space to the system.  */

 	  size_t info_block = BLOCK (_heapinfo);
 	  size_t info_blocks = _heapinfo[info_block].busy.info.size;
 	  size_t prev_block = _heapinfo[block].free.prev;
 	  size_t prev_blocks = _heapinfo[prev_block].free.size;
 	  size_t next_block = _heapinfo[block].free.next;
 	  size_t next_blocks = _heapinfo[next_block].free.size;

	  if (/* Win if this block being freed is last in core, the info table
		 is just before it, the previous free block is just before the
		 info table, and the two free blocks together form a useful
		 amount to return to the system.  */
	      (block + blocks == _heaplimit &&
	       info_block + info_blocks == block &&
	       prev_block != 0 && prev_block + prev_blocks == info_block &&
	       blocks + prev_blocks >= lesscore_threshold) ||
	      /* Nope, not the case.  We can also win if this block being
		 freed is just before the info table, and the table extends
		 to the end of core or is followed only by a free block,
		 and the total free space is worth returning to the system.  */
	      (block + blocks == info_block &&
	       ((info_block + info_blocks == _heaplimit &&
		 blocks >= lesscore_threshold) ||
		(info_block + info_blocks == next_block &&
		 next_block + next_blocks == _heaplimit &&
		 blocks + next_blocks >= lesscore_threshold)))
	      )
	    {
	      malloc_info *newinfo;
	      size_t oldlimit = _heaplimit;

	      /* Free the old info table, clearing _heaplimit to avoid
		 recursion into this code.  We don't want to return the
		 table's blocks to the system before we have copied them to
		 the new location.  */
	      _heaplimit = 0;
	      ifree (_heapinfo);
	      _heaplimit = oldlimit;

	      /* Tell malloc to search from the beginning of the heap for
		 free blocks, so it doesn't reuse the ones just freed.  */
	      _heapindex = 0;

	      /* Allocate new space for the info table and move its data.  */
	      newinfo = (malloc_info *) imalloc (info_blocks
							  * BLOCKSIZE);
	      memmove (newinfo, _heapinfo, info_blocks * BLOCKSIZE);
	      _heapinfo = newinfo;

	      /* We should now have coalesced the free block with the
		 blocks freed from the old info table.  Examine the entire
		 trailing free block to decide below whether to return some
		 to the system.  */
	      block = _heapinfo[0].free.prev;
	      blocks = _heapinfo[block].free.size;
 	    }

	  /* Now see if we can return stuff to the system.  */
	  if (block + blocks == _heaplimit && blocks >= lesscore_threshold)
	    {
	      register size_t bytes = blocks * BLOCKSIZE;
	      _heaplimit -= blocks;
	      default_morecore (-bytes);
	      _heapinfo[_heapinfo[block].free.prev].free.next
		= _heapinfo[block].free.next;
	      _heapinfo[_heapinfo[block].free.next].free.prev
		= _heapinfo[block].free.prev;
	      block = _heapinfo[block].free.prev;
	      --chunks_free;
	      bytes_free -= bytes;
	    }
	}

      /* Set the next search to begin at this block.  */
      _heapindex = block;
      break;

    default:
      /* Do some of the statistics.  */
      --chunks_used;
      bytes_used -= 1 << type;
      ++chunks_free;
      bytes_free += 1 << type;

      /* Get the address of the first free fragment in this block.  */
      prev = (struct list *) ((char *) ADDRESS (block) +
			      (_heapinfo[block].busy.info.frag.first << type));

      if (_heapinfo[block].busy.info.frag.nfree == (BLOCKSIZE >> type) - 1)
	{
	  /* If all fragments of this block are free, remove them
	     from the fragment list and free the whole block.  */
	  next = prev;
	  for (i = 1; i < (size_t) (BLOCKSIZE >> type); ++i)
	    next = next->next;
	  prev->prev->next = next;
	  if (next != NULL)
	    next->prev = prev->prev;
	  _heapinfo[block].busy.type = 0;
	  _heapinfo[block].busy.info.size = 1;

	  /* Keep the statistics accurate.  */
	  ++chunks_used;
	  bytes_used += BLOCKSIZE;
	  chunks_free -= BLOCKSIZE >> type;
	  bytes_free -= BLOCKSIZE;

	  ifree (ADDRESS (block));
	}
      else if (_heapinfo[block].busy.info.frag.nfree != 0)
	{
	  /* If some fragments of this block are free, link this
	     fragment into the fragment list after the first free
	     fragment of this block. */
	  next = (struct list *) ptr;
	  next->next = prev->next;
	  next->prev = prev;
	  prev->next = next;
	  if (next->next != NULL)
	    next->next->prev = next;
	  ++_heapinfo[block].busy.info.frag.nfree;
	}
      else
	{
	  /* No fragments of this block are free, so link this
	     fragment into the fragment list and announce that
	     it is the first free fragment of this block. */
	  prev = (struct list *) ptr;
	  _heapinfo[block].busy.info.frag.nfree = 1;
	  _heapinfo[block].busy.info.frag.first = (unsigned long int)
	    ((unsigned long int) ((char *) ptr - (char *) NULL)
	     % BLOCKSIZE >> type);
	  prev->next = _fraghead[type].next;
	  prev->prev = &_fraghead[type];
	  prev->prev->next = prev;
	  if (prev->next != NULL)
	    prev->next->prev = prev;
	}
      break;
    }
}

/* Return memory to the heap.  */
void
free (ptr)
     genptr_t ptr;
{
#ifdef RCHECK
  struct hdr *hdr;
#endif

  nfree++;

  if (ptr == 0)
    return;

#ifdef RCHECK
  hdr = ((struct hdr *) ptr) - 1;
  checkhdr (hdr);
  hdr->magic = MAGICFREE;
  zmemset (ptr, FREEFLOOD, hdr->size);
  ifree (hdr);
#else
  ifree (ptr);
#endif
}

/* Change the size of a block allocated by `malloc'. */

#ifndef HAVE_MEMMOVE
/* Snarfed directly from Emacs src/dispnew.c:
   XXX Should use system bcopy if it handles overlap.  */

/* Like bcopy except never gets confused by overlap.  */

static void
malloc_safe_bcopy (afrom, ato, size)
     genptr_t afrom;
     genptr_t ato;
     size_t size;
{
  char *from, *to;

  from = afrom;
  to = ato;
  if (size <= 0 || from == to)
    return;

  /* If the source and destination don't overlap, then bcopy can
     handle it.  If they do overlap, but the destination is lower in
     memory than the source, we'll assume bcopy can handle that.  */
  if (to < from || from + size <= to)
    bcopy (from, to, size);

  /* Otherwise, we'll copy from the end.  */
  else
    {
      register char *endf = from + size;
      register char *endt = to + size;

      /* If TO - FROM is large, then we should break the copy into
	 nonoverlapping chunks of TO - FROM bytes each.  However, if
	 TO - FROM is small, then the bcopy function call overhead
	 makes this not worth it.  The crossover point could be about
	 anywhere.  Since I don't think the obvious copy loop is too
	 bad, I'm trying to err in its favor.  */
      if (to - from < 64)
	{
	  do
	    *--endt = *--endf;
	  while (endf != from);
	}
      else
	{
	  for (;;)
	    {
	      endt -= (to - from);
	      endf -= (to - from);

	      if (endt < to)
		break;

	      bcopy (endf, endt, to - from);
	    }

	  /* If SIZE wasn't a multiple of TO - FROM, there will be a
	     little left over.  The amount left over is
	     (endt + (to - from)) - to, which is endt - from.  */
	  bcopy (from, to, endt - from);
	}
    }
}
#endif /* !HAVE_MEMMOVE */

/* Resize the given region to the new size, returning a pointer
   to the (possibly moved) region.  This is optimized for speed;
   some benchmarks seem to indicate that greater compactness is
   achieved by unconditionally allocating and copying to a
   new region.  This module has incestuous knowledge of the
   internals of both free and malloc. */
static genptr_t
irealloc (ptr, size)
     genptr_t ptr;
     size_t size;
{
  genptr_t result;
  int type;
  size_t block, blocks, oldlimit;

  if (size == 0)
    {
      ifree (ptr);
      return imalloc (0);
    }
  else if (ptr == NULL)
    return imalloc (size);

  block = BLOCK (ptr);

  type = _heapinfo[block].busy.type;
  switch (type)
    {
    case 0:
      /* Maybe reallocate a large block to a small fragment.  */
      if (size <= BLOCKSIZE / 2)
	{
	  result = imalloc (size);
	  if (result != NULL)
	    {
	      memcpy (result, ptr, size);
	      ifree (ptr);
	      return result;
	    }
	}

      /* The new size is a large allocation as well;
	 see if we can hold it in place. */
      blocks = BLOCKIFY (size);
      if (blocks < _heapinfo[block].busy.info.size)
	{
	  /* The new size is smaller; return
	     excess memory to the free list. */
	  _heapinfo[block + blocks].busy.type = 0;
	  _heapinfo[block + blocks].busy.info.size
	    = _heapinfo[block].busy.info.size - blocks;
	  _heapinfo[block].busy.info.size = blocks;
	  /* We have just created a new chunk by splitting a chunk in two.
	     Now we will free this chunk; increment the statistics counter
	     so it doesn't become wrong when ifree decrements it.  */
	  ++chunks_used;
	  ifree (ADDRESS (block + blocks));
	  result = ptr;
	}
      else if (blocks == _heapinfo[block].busy.info.size)
	/* No size change necessary.  */
	result = ptr;
      else
	{
	  /* Won't fit, so allocate a new region that will.
	     Free the old region first in case there is sufficient
	     adjacent free space to grow without moving. */
	  blocks = _heapinfo[block].busy.info.size;
	  /* Prevent free from actually returning memory to the system.  */
	  oldlimit = _heaplimit;
	  _heaplimit = 0;
	  ifree (ptr);
	  result = imalloc (size);
	  if (_heaplimit == 0)
	    _heaplimit = oldlimit;
	  if (result == NULL)
	    {
	      /* Now we're really in trouble.  We have to unfree
		 the thing we just freed.  Unfortunately it might
		 have been coalesced with its neighbors.  */
	      if (_heapindex == block)
	        (void) imalloc (blocks * BLOCKSIZE);
	      else
		{
		  genptr_t previous;
		  previous  = imalloc ((block - _heapindex) * BLOCKSIZE);
		  (void) imalloc (blocks * BLOCKSIZE);
		  ifree (previous);
		}
	      return NULL;
	    }
	  if (ptr != result)
	    memmove (result, ptr, blocks * BLOCKSIZE);
	}
      break;

    default:
      /* Old size is a fragment; type is logarithm
	 to base two of the fragment size.  */
      if (size > (size_t) (1 << (type - 1)) &&
	  size <= (size_t) (1 << type))
	/* The new size is the same kind of fragment.  */
	result = ptr;
      else
	{
	  /* The new size is different; allocate a new space,
	     and copy the lesser of the new size and the old. */
	  result = imalloc (size);
	  if (result == NULL)
	    return NULL;
	  memcpy (result, ptr, min (size, (size_t) 1 << type));
	  ifree (ptr);
	}
      break;
    }

  return result;
}

genptr_t
realloc (ptr, size)
     genptr_t ptr;
     size_t size;
{
#ifdef RCHECK
  struct hdr *hdr;
  size_t osize;
#endif

  if (malloc_initialized == 0 && malloc_initialize () == 0)
    return NULL;

  nrealloc++;

#ifdef RCHECK
  hdr = ((struct hdr *) ptr) - 1;
  osize = hdr->size;

  checkhdr (hdr);
  if (size < osize)
    zmemset ((char *) ptr + size, FREEFLOOD, osize - size);
  hdr = (struct hdr *) irealloc ((genptr_t) hdr, sizeof (struct hdr) + size + 1);
  if (hdr == NULL)
    return NULL;

  hdr->size = size;
  hdr->magic = MAGICWORD;
  ((char *) &hdr[1])[size] = MAGICBYTE;
  if (size > osize)
    zmemset ((char *) (hdr + 1) + osize, MALLOCFLOOD, size - osize);
  return (genptr_t) (hdr + 1);
#else
  return (irealloc (ptr, size));
#endif
}

/* Allocate an array of NMEMB elements each SIZE bytes long.
   The entire array is initialized to zeros.  */
genptr_t
calloc (nmemb, size)
     register size_t nmemb;
     register size_t size;
{
  register genptr_t result;

  result = malloc (nmemb * size);
  if (result != NULL)
    (void) memset (result, 0, nmemb * size);

  return result;
}

/* Define the `cfree' alias for `free'.  */
void
cfree (ptr)
     genptr_t ptr;
{
  free (ptr);
}

genptr_t
memalign (alignment, size)
     size_t alignment;
     size_t size;
{
  genptr_t result;
  unsigned long int adj, lastadj;

  /* Allocate a block with enough extra space to pad the block with up to
     (ALIGNMENT - 1) bytes if necessary.  */
  result = malloc (size + alignment - 1);
  if (result == NULL)
    return NULL;

  /* Figure out how much we will need to pad this particular block
     to achieve the required alignment.  */
  adj = (unsigned long int) ((char *) result - (char *) NULL) % alignment;

  do
    {
      /* Reallocate the block with only as much excess as it needs.  */
      free (result);
      result = malloc (adj + size);
      if (result == NULL)	/* Impossible unless interrupted.  */
	return NULL;

      lastadj = adj;
      adj = (unsigned long int) ((char *) result - (char *) NULL) % alignment;
      /* It's conceivable we might have been so unlucky as to get a
	 different block with weaker alignment.  If so, this block is too
	 short to contain SIZE after alignment correction.  So we must
	 try again and get another block, slightly larger.  */
    } while (adj > lastadj);

  if (adj != 0)
    {
      /* Record this block in the list of aligned blocks, so that `free'
	 can identify the pointer it is passed, which will be in the middle
	 of an allocated block.  */

      struct alignlist *l;
      for (l = _aligned_blocks; l != NULL; l = l->next)
	if (l->aligned == NULL)
	  /* This slot is free.  Use it.  */
	  break;
      if (l == NULL)
	{
	  l = (struct alignlist *) imalloc (sizeof (struct alignlist));
	  if (l == NULL)
	    {
	      free (result);
	      return NULL;
	    }
	  l->next = _aligned_blocks;
	  _aligned_blocks = l;
	}
      l->exact = result;
      result = l->aligned = (char *) result + alignment - adj;
    }

  return result;
}

/* On some ANSI C systems, some libc functions call _malloc, _free
   and _realloc.  Make them use the GNU functions.  */

genptr_t
_malloc (size)
     size_t size;
{
  return malloc (size);
}

void
_free (ptr)
     genptr_t ptr;
{
  free (ptr);
}

genptr_t
_realloc (ptr, size)
     genptr_t ptr;
     size_t size;
{
  return realloc (ptr, size);
}

struct mstats
mstats ()
{
  struct mstats result;
	  
  result.bytes_total = (char *) default_morecore (0) - _heapbase;
  result.chunks_used = chunks_used;
  result.bytes_used = bytes_used;
  result.chunks_free = chunks_free;
  result.bytes_free = bytes_free;
  result.nmalloc = nmalloc;
  result.nrealloc = nrealloc;
  result.nfree = nfree;
  result.nsbrk = nsbrk;
  result.tsbrk = tsbrk;
  result.negsbrk = negsbrk;
  result.tnegsbrk = tnegsbrk;

  return result;
}

#ifdef RCHECK
/* Standard debugging hooks for `malloc'. */

static void
zmemset (ptr, val, size)
     genptr_t ptr;
     int val;
     size_t size;
{
  char *cp = ptr;

  while (size--)
    *cp++ = val;
}

static enum mcheck_status
checkhdr (hdr)
     const struct hdr *hdr;
{
  enum mcheck_status status;

  switch (hdr->magic)
    {
    default:
      status = MCHECK_HEAD;
      break;
    case MAGICFREE:
      status = MCHECK_FREE;
      break;
    case MAGICWORD:
      if (((char *) &hdr[1])[hdr->size] != MAGICBYTE)
	status = MCHECK_TAIL;
      else
	status = MCHECK_OK;
      break;
    }
  if (status != MCHECK_OK)
    mabort (status);
  return status;
}

#ifndef botch
botch (msg)
     char *msg;
{
  fprintf (stderr, "mcheck: %s\n", msg);
  fflush (stderr);
  abort ();
}
#endif

static void
mabort (status)
     enum mcheck_status status;
{
  const char *msg;

  switch (status)
    {
    case MCHECK_OK:
      msg = "memory is consistent, library is buggy";
      break;
    case MCHECK_HEAD:
      msg = "memory clobbered before allocated block";
      break;
    case MCHECK_TAIL:
      msg = "memory clobbered past end of allocated block";
      break;
    case MCHECK_FREE:
      msg = "block freed twice";
      break;
    default:
      msg = "bogus mcheck_status, library is buggy";
      break;
    }

  botch (msg);
}

enum mcheck_status
mprobe (ptr)
     genptr_t ptr;
{
  return checkhdr ((struct hdr *)ptr);
}

#ifndef STDIO_H_INCLUDED
#  include <stdio.h>
#endif

void
print_malloc_stats (s)
     char *s;
{
  struct mstats ms;

  ms = mstats ();
  fprintf (stderr, "Memory allocation statistics: %s\n", s ? s : "");
  fprintf (stderr, "\nTotal chunks in use: %d, total chunks free: %d\n",
	   ms.chunks_used, ms.chunks_free);
  fprintf (stderr, "Total bytes in use: %u, total bytes free: %u\n",
	   ms.bytes_used, ms.bytes_free);
  fprintf (stderr, "Total bytes (from heapbase): %d\n", ms.bytes_total);
  fprintf (stderr, "Total mallocs: %d, total frees: %d, total reallocs: %d\n",
	   ms.nmalloc, ms.nfree, ms.nrealloc);
  fprintf (stderr, "Total sbrks: %d, total bytes via sbrk: %d\n",
  	   ms.nsbrk, ms.tsbrk);
  fprintf (stderr, "Total negative sbrks: %d, total bytes returned to kernel: %d\n",
  	   ms.negsbrk, ms.tnegsbrk);
}
#endif /* RCHECK */