1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
|
@comment %**start of header (This is for running Texinfo on a region.)
@setfilename rltech.info
@comment %**end of header (This is for running Texinfo on a region.)
@setchapternewpage odd
@ifinfo
This document describes the GNU Readline Library, a utility for aiding
in the consitency of user interface across discrete programs that need
to provide a command line interface.
Copyright (C) 1988, 1994, 1996 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
pare preserved on all copies.
@ignore
Permission is granted to process this file through TeX and print the
results, provided the printed document carries copying permission
notice identical to this one except for the removal of this paragraph
(this paragraph not being relevant to the printed manual).
@end ignore
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided that the entire
resulting derived work is distributed under the terms of a permission
notice identical to this one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that this permission notice may be stated in a translation approved
by the Foundation.
@end ifinfo
@node Programming with GNU Readline
@chapter Programming with GNU Readline
This chapter describes the interface between the GNU Readline Library and
other programs. If you are a programmer, and you wish to include the
features found in GNU Readline
such as completion, line editing, and interactive history manipulation
in your own programs, this section is for you.
@menu
* Basic Behavior:: Using the default behavior of Readline.
* Custom Functions:: Adding your own functions to Readline.
* Readline Variables:: Variables accessible to custom
functions.
* Readline Convenience Functions:: Functions which Readline supplies to
aid in writing your own
* Custom Completers:: Supplanting or supplementing Readline's
completion functions.
@end menu
@node Basic Behavior
@section Basic Behavior
Many programs provide a command line interface, such as @code{mail},
@code{ftp}, and @code{sh}. For such programs, the default behaviour of
Readline is sufficient. This section describes how to use Readline in
the simplest way possible, perhaps to replace calls in your code to
@code{gets()} or @code{fgets ()}.
@findex readline
@cindex readline, function
The function @code{readline ()} prints a prompt and then reads and returns
a single line of text from the user. The line @code{readline}
returns is allocated with @code{malloc ()}; you should @code{free ()}
the line when you are done with it. The declaration for @code{readline}
in ANSI C is
@example
@code{char *readline (char *@var{prompt});}
@end example
@noindent
So, one might say
@example
@code{char *line = readline ("Enter a line: ");}
@end example
@noindent
in order to read a line of text from the user.
The line returned has the final newline removed, so only the
text remains.
If @code{readline} encounters an @code{EOF} while reading the line, and the
line is empty at that point, then @code{(char *)NULL} is returned.
Otherwise, the line is ended just as if a newline had been typed.
If you want the user to be able to get at the line later, (with
@key{C-p} for example), you must call @code{add_history ()} to save the
line away in a @dfn{history} list of such lines.
@example
@code{add_history (line)};
@end example
@noindent
For full details on the GNU History Library, see the associated manual.
It is preferable to avoid saving empty lines on the history list, since
users rarely have a burning need to reuse a blank line. Here is
a function which usefully replaces the standard @code{gets ()} library
function, and has the advantage of no static buffer to overflow:
@example
/* A static variable for holding the line. */
static char *line_read = (char *)NULL;
/* Read a string, and return a pointer to it. Returns NULL on EOF. */
char *
rl_gets ()
@{
/* If the buffer has already been allocated, return the memory
to the free pool. */
if (line_read)
@{
free (line_read);
line_read = (char *)NULL;
@}
/* Get a line from the user. */
line_read = readline ("");
/* If the line has any text in it, save it on the history. */
if (line_read && *line_read)
add_history (line_read);
return (line_read);
@}
@end example
This function gives the user the default behaviour of @key{TAB}
completion: completion on file names. If you do not want Readline to
complete on filenames, you can change the binding of the @key{TAB} key
with @code{rl_bind_key ()}.
@example
@code{int rl_bind_key (int @var{key}, int (*@var{function})());}
@end example
@code{rl_bind_key ()} takes two arguments: @var{key} is the character that
you want to bind, and @var{function} is the address of the function to
call when @var{key} is pressed. Binding @key{TAB} to @code{rl_insert ()}
makes @key{TAB} insert itself.
@code{rl_bind_key ()} returns non-zero if @var{key} is not a valid
ASCII character code (between 0 and 255).
Thus, to disable the default @key{TAB} behavior, the following suffices:
@example
@code{rl_bind_key ('\t', rl_insert);}
@end example
This code should be executed once at the start of your program; you
might write a function called @code{initialize_readline ()} which
performs this and other desired initializations, such as installing
custom completers (@pxref{Custom Completers}).
@node Custom Functions
@section Custom Functions
Readline provides many functions for manipulating the text of
the line, but it isn't possible to anticipate the needs of all
programs. This section describes the various functions and variables
defined within the Readline library which allow a user program to add
customized functionality to Readline.
@menu
* The Function Type:: C declarations to make code readable.
* Function Writing:: Variables and calling conventions.
@end menu
@node The Function Type
@subsection The Function Type
For readabilty, we declare a new type of object, called
@dfn{Function}. A @code{Function} is a C function which
returns an @code{int}. The type declaration for @code{Function} is:
@noindent
@code{typedef int Function ();}
The reason for declaring this new type is to make it easier to write
code describing pointers to C functions. Let us say we had a variable
called @var{func} which was a pointer to a function. Instead of the
classic C declaration
@code{int (*)()func;}
@noindent
we may write
@code{Function *func;}
@noindent
Similarly, there are
@example
typedef void VFunction ();
typedef char *CPFunction (); @r{and}
typedef char **CPPFunction ();
@end example
@noindent
for functions returning no value, @code{pointer to char}, and
@code{pointer to pointer to char}, respectively.
@node Function Writing
@subsection Writing a New Function
In order to write new functions for Readline, you need to know the
calling conventions for keyboard-invoked functions, and the names of the
variables that describe the current state of the line read so far.
The calling sequence for a command @code{foo} looks like
@example
@code{foo (int count, int key)}
@end example
@noindent
where @var{count} is the numeric argument (or 1 if defaulted) and
@var{key} is the key that invoked this function.
It is completely up to the function as to what should be done with the
numeric argument. Some functions use it as a repeat count, some
as a flag, and others to choose alternate behavior (refreshing the current
line as opposed to refreshing the screen, for example). Some choose to
ignore it. In general, if a
function uses the numeric argument as a repeat count, it should be able
to do something useful with both negative and positive arguments.
At the very least, it should be aware that it can be passed a
negative argument.
@node Readline Variables
@section Readline Variables
These variables are available to function writers.
@deftypevar {char *} rl_line_buffer
This is the line gathered so far. You are welcome to modify the
contents of the line, but see @ref{Allowing Undoing}.
@end deftypevar
@deftypevar int rl_point
The offset of the current cursor position in @code{rl_line_buffer}
(the @emph{point}).
@end deftypevar
@deftypevar int rl_end
The number of characters present in @code{rl_line_buffer}. When
@code{rl_point} is at the end of the line, @code{rl_point} and
@code{rl_end} are equal.
@end deftypevar
@deftypevar int rl_mark
The mark (saved position) in the current line. If set, the mark
and point define a @emph{region}.
@end deftypevar
@deftypevar int rl_done
Setting this to a non-zero value causes Readline to return the current
line immediately.
@end deftypevar
@deftypevar int rl_pending_input
Setting this to a value makes it the next keystroke read. This is a
way to stuff a single character into the input stream.
@end deftypevar
@deftypevar {char *} rl_prompt
The prompt Readline uses. This is set from the argument to
@code{readline ()}, and should not be assigned to directly.
@end deftypevar
@deftypevar {char *} rl_library_version
The version number of this revision of the library.
@end deftypevar
@deftypevar {char *} rl_terminal_name
The terminal type, used for initialization.
@end deftypevar
@deftypevar {char *} rl_readline_name
This variable is set to a unique name by each application using Readline.
The value allows conditional parsing of the inputrc file
(@pxref{Conditional Init Constructs}).
@end deftypevar
@deftypevar {FILE *} rl_instream
The stdio stream from which Readline reads input.
@end deftypevar
@deftypevar {FILE *} rl_outstream
The stdio stream to which Readline performs output.
@end deftypevar
@deftypevar {Function *} rl_startup_hook
If non-zero, this is the address of a function to call just
before @code{readline} prints the first prompt.
@end deftypevar
@deftypevar {Function *} rl_event_hook
If non-zero, this is the address of a function to call periodically
when readline is waiting for terminal input.
@end deftypevar
@deftypevar {Function *} rl_getc_function
If non-zero, @code{readline} will call indirectly through this pointer
to get a character from the input stream. By default, it is set to
@code{rl_getc}, the default @code{readline} character input function
(@pxref{Utility Functions}).
@end deftypevar
@deftypevar {Function *} rl_redisplay_function
If non-zero, @code{readline} will call indirectly through this pointer
to update the display with the current contents of the editing buffer.
By default, it is set to @code{rl_redisplay}, the default @code{readline}
redisplay function (@pxref{Redisplay}).
@end deftypevar
@deftypevar {Keymap} rl_executing_keymap
This variable is set to the keymap (@pxref{Keymaps}) in which the
currently executing readline function was found.
@end deftypevar
@deftypevar {Keymap} rl_binding_keymap
This variable is set to the keymap (@pxref{Keymaps}) in which the
last key binding occurred.
@end deftypevar
@node Readline Convenience Functions
@section Readline Convenience Functions
@menu
* Function Naming:: How to give a function you write a name.
* Keymaps:: Making keymaps.
* Binding Keys:: Changing Keymaps.
* Associating Function Names and Bindings:: Translate function names to
key sequences.
* Allowing Undoing:: How to make your functions undoable.
* Redisplay:: Functions to control line display.
* Modifying Text:: Functions to modify @code{rl_line_buffer}.
* Utility Functions:: Generally useful functions and hooks.
* Alternate Interface:: Using Readline in a `callback' fashion.
@end menu
@node Function Naming
@subsection Naming a Function
The user can dynamically change the bindings of keys while using
Readline. This is done by representing the function with a descriptive
name. The user is able to type the descriptive name when referring to
the function. Thus, in an init file, one might find
@example
Meta-Rubout: backward-kill-word
@end example
This binds the keystroke @key{Meta-Rubout} to the function
@emph{descriptively} named @code{backward-kill-word}. You, as the
programmer, should bind the functions you write to descriptive names as
well. Readline provides a function for doing that:
@deftypefun int rl_add_defun (char *name, Function *function, int key)
Add @var{name} to the list of named functions. Make @var{function} be
the function that gets called. If @var{key} is not -1, then bind it to
@var{function} using @code{rl_bind_key ()}.
@end deftypefun
Using this function alone is sufficient for most applications. It is
the recommended way to add a few functions to the default functions that
Readline has built in. If you need to do something other
than adding a function to Readline, you may need to use the
underlying functions described below.
@node Keymaps
@subsection Selecting a Keymap
Key bindings take place on a @dfn{keymap}. The keymap is the
association between the keys that the user types and the functions that
get run. You can make your own keymaps, copy existing keymaps, and tell
Readline which keymap to use.
@deftypefun Keymap rl_make_bare_keymap ()
Returns a new, empty keymap. The space for the keymap is allocated with
@code{malloc ()}; you should @code{free ()} it when you are done.
@end deftypefun
@deftypefun Keymap rl_copy_keymap (Keymap map)
Return a new keymap which is a copy of @var{map}.
@end deftypefun
@deftypefun Keymap rl_make_keymap ()
Return a new keymap with the printing characters bound to rl_insert,
the lowercase Meta characters bound to run their equivalents, and
the Meta digits bound to produce numeric arguments.
@end deftypefun
@deftypefun void rl_discard_keymap (Keymap keymap)
Free the storage associated with @var{keymap}.
@end deftypefun
Readline has several internal keymaps. These functions allow you to
change which keymap is active.
@deftypefun Keymap rl_get_keymap ()
Returns the currently active keymap.
@end deftypefun
@deftypefun void rl_set_keymap (Keymap keymap)
Makes @var{keymap} the currently active keymap.
@end deftypefun
@deftypefun Keymap rl_get_keymap_by_name (char *name)
Return the keymap matching @var{name}. @var{name} is one which would
be supplied in a @code{set keymap} inputrc line (@pxref{Readline Init File}).
@end deftypefun
@node Binding Keys
@subsection Binding Keys
You associate keys with functions through the keymap. Readline has
several internal keymaps: @code{emacs_standard_keymap},
@code{emacs_meta_keymap}, @code{emacs_ctlx_keymap},
@code{vi_movement_keymap}, and @code{vi_insertion_keymap}.
@code{emacs_standard_keymap} is the default, and the examples in
this manual assume that.
These functions manage key bindings.
@deftypefun int rl_bind_key (int key, Function *function)
Binds @var{key} to @var{function} in the currently active keymap.
Returns non-zero in the case of an invalid @var{key}.
@end deftypefun
@deftypefun int rl_bind_key_in_map (int key, Function *function, Keymap map)
Bind @var{key} to @var{function} in @var{map}. Returns non-zero in the case
of an invalid @var{key}.
@end deftypefun
@deftypefun int rl_unbind_key (int key)
Bind @var{key} to the null function in the currently active keymap.
Returns non-zero in case of error.
@end deftypefun
@deftypefun int rl_unbind_key_in_map (int key, Keymap map)
Bind @var{key} to the null function in @var{map}.
Returns non-zero in case of error.
@end deftypefun
@deftypefun int rl_generic_bind (int type, char *keyseq, char *data, Keymap map)
Bind the key sequence represented by the string @var{keyseq} to the arbitrary
pointer @var{data}. @var{type} says what kind of data is pointed to by
@var{data}; this can be a function (@code{ISFUNC}), a macro
(@code{ISMACR}), or a keymap (@code{ISKMAP}). This makes new keymaps as
necessary. The initial keymap in which to do bindings is @var{map}.
@end deftypefun
@deftypefun int rl_parse_and_bind (char *line)
Parse @var{line} as if it had been read from the @code{inputrc} file and
perform any key bindings and variable assignments found
(@pxref{Readline Init File}).
@end deftypefun
@deftypefun int rl_read_init_file (char *filename)
Read keybindings and variable assignments from @var{filename}
(@pxref{Readline Init File}).
@end deftypefun
@node Associating Function Names and Bindings
@subsection Associating Function Names and Bindings
These functions allow you to find out what keys invoke named functions
and the functions invoked by a particular key sequence.
@deftypefun {Function *} rl_named_function (char *name)
Return the function with name @var{name}.
@end deftypefun
@deftypefun {Function *} rl_function_of_keyseq (char *keyseq, Keymap map, int *type)
Return the function invoked by @var{keyseq} in keymap @var{map}.
If @var{map} is NULL, the current keymap is used. If @var{type} is
not NULL, the type of the object is returned in it (one of @code{ISFUNC},
@code{ISKMAP}, or @code{ISMACR}).
@end deftypefun
@deftypefun {char **} rl_invoking_keyseqs (Function *function)
Return an array of strings representing the key sequences used to
invoke @var{function} in the current keymap.
@end deftypefun
@deftypefun {char **} rl_invoking_keyseqs_in_map (Function *function, Keymap map)
Return an array of strings representing the key sequences used to
invoke @var{function} in the keymap @var{map}.
@end deftypefun
@deftypefun void rl_function_dumper (int readable)
Print the readline function names and the key sequences currently
bound to them to @code{rl_outstream}. If @var{readable} is non-zero,
the list is formatted in such a way that it can be made part of an
@code{inputrc} file and re-read.
@end deftypefun
@deftypefun void rl_list_funmap_names ()
Print the names of all bindable Readline functions to @code{rl_outstream}.
@end deftypefun
@node Allowing Undoing
@subsection Allowing Undoing
Supporting the undo command is a painless thing, and makes your
functions much more useful. It is certainly easy to try
something if you know you can undo it. I could use an undo function for
the stock market.
If your function simply inserts text once, or deletes text once, and
uses @code{rl_insert_text ()} or @code{rl_delete_text ()} to do it, then
undoing is already done for you automatically.
If you do multiple insertions or multiple deletions, or any combination
of these operations, you should group them together into one operation.
This is done with @code{rl_begin_undo_group ()} and
@code{rl_end_undo_group ()}.
The types of events that can be undone are:
@example
enum undo_code @{ UNDO_DELETE, UNDO_INSERT, UNDO_BEGIN, UNDO_END @};
@end example
Notice that @code{UNDO_DELETE} means to insert some text, and
@code{UNDO_INSERT} means to delete some text. That is, the undo code
tells undo what to undo, not how to undo it. @code{UNDO_BEGIN} and
@code{UNDO_END} are tags added by @code{rl_begin_undo_group ()} and
@code{rl_end_undo_group ()}.
@deftypefun int rl_begin_undo_group ()
Begins saving undo information in a group construct. The undo
information usually comes from calls to @code{rl_insert_text ()} and
@code{rl_delete_text ()}, but could be the result of calls to
@code{rl_add_undo ()}.
@end deftypefun
@deftypefun int rl_end_undo_group ()
Closes the current undo group started with @code{rl_begin_undo_group
()}. There should be one call to @code{rl_end_undo_group ()}
for each call to @code{rl_begin_undo_group ()}.
@end deftypefun
@deftypefun void rl_add_undo (enum undo_code what, int start, int end, char *text)
Remember how to undo an event (according to @var{what}). The affected
text runs from @var{start} to @var{end}, and encompasses @var{text}.
@end deftypefun
@deftypefun void free_undo_list ()
Free the existing undo list.
@end deftypefun
@deftypefun int rl_do_undo ()
Undo the first thing on the undo list. Returns @code{0} if there was
nothing to undo, non-zero if something was undone.
@end deftypefun
Finally, if you neither insert nor delete text, but directly modify the
existing text (e.g., change its case), call @code{rl_modifying ()}
once, just before you modify the text. You must supply the indices of
the text range that you are going to modify.
@deftypefun int rl_modifying (int start, int end)
Tell Readline to save the text between @var{start} and @var{end} as a
single undo unit. It is assumed that you will subsequently modify
that text.
@end deftypefun
@node Redisplay
@subsection Redisplay
@deftypefun int rl_redisplay ()
Change what's displayed on the screen to reflect the current contents
of @code{rl_line_buffer}.
@end deftypefun
@deftypefun int rl_forced_update_display ()
Force the line to be updated and redisplayed, whether or not
Readline thinks the screen display is correct.
@end deftypefun
@deftypefun int rl_on_new_line ()
Tell the update routines that we have moved onto a new (empty) line,
usually after ouputting a newline.
@end deftypefun
@deftypefun int rl_reset_line_state ()
Reset the display state to a clean state and redisplay the current line
starting on a new line.
@end deftypefun
@deftypefun int rl_message (va_alist)
The arguments are a string as would be supplied to @code{printf}. The
resulting string is displayed in the @dfn{echo area}. The echo area
is also used to display numeric arguments and search strings.
@end deftypefun
@deftypefun int rl_clear_message ()
Clear the message in the echo area.
@end deftypefun
@node Modifying Text
@subsection Modifying Text
@deftypefun int rl_insert_text (char *text)
Insert @var{text} into the line at the current cursor position.
@end deftypefun
@deftypefun int rl_delete_text (int start, int end)
Delete the text between @var{start} and @var{end} in the current line.
@end deftypefun
@deftypefun {char *} rl_copy_text (int start, int end)
Return a copy of the text between @var{start} and @var{end} in
the current line.
@end deftypefun
@deftypefun int rl_kill_text (int start, int end)
Copy the text between @var{start} and @var{end} in the current line
to the kill ring, appending or prepending to the last kill if the
last command was a kill command. The text is deleted.
If @var{start} is less than @var{end},
the text is appended, otherwise prepended. If the last command was
not a kill, a new kill ring slot is used.
@end deftypefun
@node Utility Functions
@subsection Utility Functions
@deftypefun int rl_read_key ()
Return the next character available. This handles input inserted into
the input stream via @var{pending input} (@pxref{Readline Variables})
and @code{rl_stuff_char ()}, macros, and characters read from the keyboard.
@end deftypefun
@deftypefun int rl_getc (FILE *)
Return the next character available from the keyboard.
@end deftypefun
@deftypefun int rl_stuff_char (int c)
Insert @var{c} into the Readline input stream. It will be "read"
before Readline attempts to read characters from the terminal with
@code{rl_read_key ()}.
@end deftypefun
@deftypefun int rl_initialize ()
Initialize or re-initialize Readline's internal state.
@end deftypefun
@deftypefun int rl_reset_terminal (char *terminal_name)
Reinitialize Readline's idea of the terminal settings using
@var{terminal_name} as the terminal type (e.g., @code{vt100}).
@end deftypefun
@deftypefun int alphabetic (int c)
Return 1 if @var{c} is an alphabetic character.
@end deftypefun
@deftypefun int numeric (int c)
Return 1 if @var{c} is a numeric character.
@end deftypefun
@deftypefun int ding ()
Ring the terminal bell, obeying the setting of @code{bell-style}.
@end deftypefun
The following are implemented as macros, defined in @code{chartypes.h}.
@deftypefun int uppercase_p (int c)
Return 1 if @var{c} is an uppercase alphabetic character.
@end deftypefun
@deftypefun int lowercase_p (int c)
Return 1 if @var{c} is a lowercase alphabetic character.
@end deftypefun
@deftypefun int digit_p (int c)
Return 1 if @var{c} is a numeric character.
@end deftypefun
@deftypefun int to_upper (int c)
If @var{c} is a lowercase alphabetic character, return the corresponding
uppercase character.
@end deftypefun
@deftypefun int to_lower (int c)
If @var{c} is an uppercase alphabetic character, return the corresponding
lowercase character.
@end deftypefun
@deftypefun int digit_value (int c)
If @var{c} is a number, return the value it represents.
@end deftypefun
@node Alternate Interface
@subsection Alternate Interface
An alternate interface is available to plain @code{readline()}. Some
applications need to interleave keyboard I/O with file, device, or
window system I/O, typically by using a main loop to @code{select()}
on various file descriptors. To accomodate this need, readline can
also be invoked as a `callback' function from an event loop. There
are functions available to make this easy.
@deftypefun void rl_callback_handler_install (char *prompt, Vfunction *lhandler)
Set up the terminal for readline I/O and display the initial
expanded value of @var{prompt}. Save the value of @var{lhandler} to
use as a callback when a complete line of input has been entered.
@end deftypefun
@deftypefun void rl_callback_read_char ()
Whenever an application determines that keyboard input is available, it
should call @code{rl_callback_read_char()}, which will read the next
character from the current input source. If that character completes the
line, @code{rl_callback_read_char} will invoke the @var{lhandler}
function saved by @code{rl_callback_handler_install} to process the
line. @code{EOF} is indicated by calling @var{lhandler} with a
@code{NULL} line.
@end deftypefun
@deftypefun void rl_callback_handler_remove ()
Restore the terminal to its initial state and remove the line handler.
This may be called from within a callback as well as independently.
@end deftypefun
@subsection An Example
Here is a function which changes lowercase characters to their uppercase
equivalents, and uppercase characters to lowercase. If
this function was bound to @samp{M-c}, then typing @samp{M-c} would
change the case of the character under point. Typing @samp{M-1 0 M-c}
would change the case of the following 10 characters, leaving the cursor on
the last character changed.
@example
/* Invert the case of the COUNT following characters. */
int
invert_case_line (count, key)
int count, key;
@{
register int start, end, i;
start = rl_point;
if (rl_point >= rl_end)
return (0);
if (count < 0)
@{
direction = -1;
count = -count;
@}
else
direction = 1;
/* Find the end of the range to modify. */
end = start + (count * direction);
/* Force it to be within range. */
if (end > rl_end)
end = rl_end;
else if (end < 0)
end = 0;
if (start == end)
return (0);
if (start > end)
@{
int temp = start;
start = end;
end = temp;
@}
/* Tell readline that we are modifying the line, so it will save
the undo information. */
rl_modifying (start, end);
for (i = start; i != end; i++)
@{
if (uppercase_p (rl_line_buffer[i]))
rl_line_buffer[i] = to_lower (rl_line_buffer[i]);
else if (lowercase_p (rl_line_buffer[i]))
rl_line_buffer[i] = to_upper (rl_line_buffer[i]);
@}
/* Move point to on top of the last character changed. */
rl_point = (direction == 1) ? end - 1 : start;
return (0);
@}
@end example
@node Custom Completers
@section Custom Completers
Typically, a program that reads commands from the user has a way of
disambiguating commands and data. If your program is one of these, then
it can provide completion for commands, data, or both.
The following sections describe how your program and Readline
cooperate to provide this service.
@menu
* How Completing Works:: The logic used to do completion.
* Completion Functions:: Functions provided by Readline.
* Completion Variables:: Variables which control completion.
* A Short Completion Example:: An example of writing completer subroutines.
@end menu
@node How Completing Works
@subsection How Completing Works
In order to complete some text, the full list of possible completions
must be available. That is, it is not possible to accurately
expand a partial word without knowing all of the possible words
which make sense in that context. The Readline library provides
the user interface to completion, and two of the most common
completion functions: filename and username. For completing other types
of text, you must write your own completion function. This section
describes exactly what such functions must do, and provides an example.
There are three major functions used to perform completion:
@enumerate
@item
The user-interface function @code{rl_complete ()}. This function is
called with the same arguments as other Readline
functions intended for interactive use: @var{count} and
@var{invoking_key}. It isolates the word to be completed and calls
@code{completion_matches ()} to generate a list of possible completions.
It then either lists the possible completions, inserts the possible
completions, or actually performs the
completion, depending on which behavior is desired.
@item
The internal function @code{completion_matches ()} uses your
@dfn{generator} function to generate the list of possible matches, and
then returns the array of these matches. You should place the address
of your generator function in @code{rl_completion_entry_function}.
@item
The generator function is called repeatedly from
@code{completion_matches ()}, returning a string each time. The
arguments to the generator function are @var{text} and @var{state}.
@var{text} is the partial word to be completed. @var{state} is zero the
first time the function is called, allowing the generator to perform
any necessary initialization, and a positive non-zero integer for
each subsequent call. When the generator function returns
@code{(char *)NULL} this signals @code{completion_matches ()} that there are
no more possibilities left. Usually the generator function computes the
list of possible completions when @var{state} is zero, and returns them
one at a time on subsequent calls. Each string the generator function
returns as a match must be allocated with @code{malloc()}; Readline
frees the strings when it has finished with them.
@end enumerate
@deftypefun int rl_complete (int ignore, int invoking_key)
Complete the word at or before point. You have supplied the function
that does the initial simple matching selection algorithm (see
@code{completion_matches ()}). The default is to do filename completion.
@end deftypefun
@deftypevar {Function *} rl_completion_entry_function
This is a pointer to the generator function for @code{completion_matches
()}. If the value of @code{rl_completion_entry_function} is
@code{(Function *)NULL} then the default filename generator function,
@code{filename_entry_function ()}, is used.
@end deftypevar
@node Completion Functions
@subsection Completion Functions
Here is the complete list of callable completion functions present in
Readline.
@deftypefun int rl_complete_internal (int what_to_do)
Complete the word at or before point. @var{what_to_do} says what to do
with the completion. A value of @samp{?} means list the possible
completions. @samp{TAB} means do standard completion. @samp{*} means
insert all of the possible completions. @samp{!} means to display
all of the possible completions, if there is more than one, as well as
performing partial completion.
@end deftypefun
@deftypefun int rl_complete (int ignore, int invoking_key)
Complete the word at or before point. You have supplied the function
that does the initial simple matching selection algorithm (see
@code{completion_matches ()} and @code{rl_completion_entry_function}).
The default is to do filename
completion. This calls @code{rl_complete_internal ()} with an
argument depending on @var{invoking_key}.
@end deftypefun
@deftypefun int rl_possible_completions (int count, int invoking_key))
List the possible completions. See description of @code{rl_complete
()}. This calls @code{rl_complete_internal ()} with an argument of
@samp{?}.
@end deftypefun
@deftypefun int rl_insert_completions (int count, int invoking_key))
Insert the list of possible completions into the line, deleting the
partially-completed word. See description of @code{rl_complete ()}.
This calls @code{rl_complete_internal ()} with an argument of @samp{*}.
@end deftypefun
@deftypefun {char **} completion_matches (char *text, CPFunction *entry_func)
Returns an array of @code{(char *)} which is a list of completions for
@var{text}. If there are no completions, returns @code{(char **)NULL}.
The first entry in the returned array is the substitution for @var{text}.
The remaining entries are the possible completions. The array is
terminated with a @code{NULL} pointer.
@var{entry_func} is a function of two args, and returns a
@code{(char *)}. The first argument is @var{text}. The second is a
state argument; it is zero on the first call, and non-zero on subsequent
calls. @var{entry_func} returns a @code{NULL} pointer to the caller
when there are no more matches.
@end deftypefun
@deftypefun {char *} filename_completion_function (char *text, int state)
A generator function for filename completion in the general case. Note
that completion in Bash is a little different because of all
the pathnames that must be followed when looking up completions for a
command. The Bash source is a useful reference for writing custom
completion functions.
@end deftypefun
@deftypefun {char *} username_completion_function (char *text, int state)
A completion generator for usernames. @var{text} contains a partial
username preceded by a random character (usually @samp{~}). As with all
completion generators, @var{state} is zero on the first call and non-zero
for subsequent calls.
@end deftypefun
@node Completion Variables
@subsection Completion Variables
@deftypevar {Function *} rl_completion_entry_function
A pointer to the generator function for @code{completion_matches ()}.
@code{NULL} means to use @code{filename_entry_function ()}, the default
filename completer.
@end deftypevar
@deftypevar {CPPFunction *} rl_attempted_completion_function
A pointer to an alternative function to create matches.
The function is called with @var{text}, @var{start}, and @var{end}.
@var{start} and @var{end} are indices in @code{rl_line_buffer} saying
what the boundaries of @var{text} are. If this function exists and
returns @code{NULL}, or if this variable is set to @code{NULL}, then
@code{rl_complete ()} will call the value of
@code{rl_completion_entry_function} to generate matches, otherwise the
array of strings returned will be used.
@end deftypevar
@deftypevar {CPFunction *} rl_filename_quoting_function
A pointer to a function that will quote a filename in an application-
specific fashion. This is called if filename completion is being
attempted and one of the characters in @code{rl_filename_quote_characters}
appears in a completed filename. The function is called with
@var{text}, @var{match_type}, and @var{quote_pointer}. The @var{text}
is the filename to be quoted. The @var{match_type} is either
@code{SINGLE_MATCH}, if there is only one completion match, or
@code{MULT_MATCH}. Some functions use this to decide whether or not to
insert a closing quote character. The @var{quote_pointer} is a pointer
to any opening quote character the user typed. Some functions choose
to reset this character.
@end deftypevar
@deftypevar {CPFunction *} rl_filename_dequoting_function
A pointer to a function that will remove application-specific quoting
characters from a filename before completion is attempted, so those
characters do not interfere with matching the text against names in
the filesystem. It is called with @var{text}, the text of the word
to be dequoted, and @var{quote_char}, which is the quoting character
that delimits the filename (usually @samp{'} or @samp{"}). If
@var{quote_char} is zero, the filename was not in an embedded string.
@end deftypevar
@deftypevar {Function *} rl_char_is_quoted_p
A pointer to a function to call that determines whether or not a specific
character in the line buffer is quoted, according to whatever quoting
mechanism the program calling readline uses. The function is called with
two arguments: @var{text}, the text of the line, and @var{index}, the
index of the character in the line. It is used to decide whether a
character found in @code{rl_completer_word_break_characters} should be
used to break words for the completer.
@end deftypevar
@deftypevar int rl_completion_query_items
Up to this many items will be displayed in response to a
possible-completions call. After that, we ask the user if she is sure
she wants to see them all. The default value is 100.
@end deftypevar
@deftypevar {char *} rl_basic_word_break_characters
The basic list of characters that signal a break between words for the
completer routine. The default value of this variable is the characters
which break words for completion in Bash, i.e.,
@code{" \t\n\"\\'`@@$><=;|&@{("}.
@end deftypevar
@deftypevar {char *} rl_basic_quote_characters
List of quote characters which can cause a word break.
@end deftypevar
@deftypevar {char *} rl_completer_word_break_characters
The list of characters that signal a break between words for
@code{rl_complete_internal ()}. The default list is the value of
@code{rl_basic_word_break_characters}.
@end deftypevar
@deftypevar {char *} rl_completer_quote_characters
List of characters which can be used to quote a substring of the line.
Completion occurs on the entire substring, and within the substring
@code{rl_completer_word_break_characters} are treated as any other character,
unless they also appear within this list.
@end deftypevar
@deftypevar {char *} rl_filename_quote_characters
A list of characters that cause a filename to be quoted by the completer
when they appear in a completed filename. The default is empty.
@end deftypevar
@deftypevar {char *} rl_special_prefixes
The list of characters that are word break characters, but should be
left in @var{text} when it is passed to the completion function.
Programs can use this to help determine what kind of completing to do.
For instance, Bash sets this variable to "$@@" so that it can complete
shell variables and hostnames.
@end deftypevar
@deftypevar {int} rl_completion_append_character
When a single completion alternative matches at the end of the command
line, this character is appended to the inserted completion text. The
default is a space character (@samp{ }). Setting this to the null
character (@samp{\0}) prevents anything being appended automatically.
This can be changed in custom completion functions to
provide the ``most sensible word separator character'' according to
an application-specific command line syntax specification.
@end deftypevar
@deftypevar int rl_ignore_completion_duplicates
If non-zero, then disallow duplicates in the matches. Default is 1.
@end deftypevar
@deftypevar int rl_filename_completion_desired
Non-zero means that the results of the matches are to be treated as
filenames. This is @emph{always} zero on entry, and can only be changed
within a completion entry generator function. If it is set to a non-zero
value, directory names have a slash appended and Readline attempts to
quote completed filenames if they contain any embedded word break
characters.
@end deftypevar
@deftypevar int rl_filename_quoting_desired
Non-zero means that the results of the matches are to be quoted using
double quotes (or an application-specific quoting mechanism) if the
completed filename contains any characters in
@code{rl_filename_quote_chars}. This is @emph{always} non-zero
on entry, and can only be changed within a completion entry generator
function. The quoting is effected via a call to the function pointed to
by @code{rl_filename_quoting_function}.
@end deftypevar
@deftypevar int rl_inhibit_completion
If this variable is non-zero, completion is inhibited. The completion
character will be inserted as any other bound to @code{self-insert}.
@end deftypevar
@deftypevar {Function *} rl_ignore_some_completions_function
This function, if defined, is called by the completer when real filename
completion is done, after all the matching names have been generated.
It is passed a @code{NULL} terminated array of matches.
The first element (@code{matches[0]}) is the
maximal substring common to all matches. This function can
re-arrange the list of matches as required, but each element deleted
from the array must be freed.
@end deftypevar
@deftypevar {Function *} rl_directory_completion_hook
This function, if defined, is allowed to modify the directory portion
of filenames Readline completes. It is called with the address of a
string (the current directory name) as an argument. It could be used
to expand symbolic links or shell variables in pathnames.
@end deftypevar
@node A Short Completion Example
@subsection A Short Completion Example
Here is a small application demonstrating the use of the GNU Readline
library. It is called @code{fileman}, and the source code resides in
@file{examples/fileman.c}. This sample application provides
completion of command names, line editing features, and access to the
history list.
@page
@smallexample
/* fileman.c -- A tiny application which demonstrates how to use the
GNU Readline library. This application interactively allows users
to manipulate files and their modes. */
#include <stdio.h>
#include <sys/types.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/errno.h>
#include <readline/readline.h>
#include <readline/history.h>
extern char *getwd ();
extern char *xmalloc ();
/* The names of functions that actually do the manipulation. */
int com_list (), com_view (), com_rename (), com_stat (), com_pwd ();
int com_delete (), com_help (), com_cd (), com_quit ();
/* A structure which contains information on the commands this program
can understand. */
typedef struct @{
char *name; /* User printable name of the function. */
Function *func; /* Function to call to do the job. */
char *doc; /* Documentation for this function. */
@} COMMAND;
COMMAND commands[] = @{
@{ "cd", com_cd, "Change to directory DIR" @},
@{ "delete", com_delete, "Delete FILE" @},
@{ "help", com_help, "Display this text" @},
@{ "?", com_help, "Synonym for `help'" @},
@{ "list", com_list, "List files in DIR" @},
@{ "ls", com_list, "Synonym for `list'" @},
@{ "pwd", com_pwd, "Print the current working directory" @},
@{ "quit", com_quit, "Quit using Fileman" @},
@{ "rename", com_rename, "Rename FILE to NEWNAME" @},
@{ "stat", com_stat, "Print out statistics on FILE" @},
@{ "view", com_view, "View the contents of FILE" @},
@{ (char *)NULL, (Function *)NULL, (char *)NULL @}
@};
/* Forward declarations. */
char *stripwhite ();
COMMAND *find_command ();
/* The name of this program, as taken from argv[0]. */
char *progname;
/* When non-zero, this global means the user is done using this program. */
int done;
char *
dupstr (s)
int s;
@{
char *r;
r = xmalloc (strlen (s) + 1);
strcpy (r, s);
return (r);
@}
main (argc, argv)
int argc;
char **argv;
@{
char *line, *s;
progname = argv[0];
initialize_readline (); /* Bind our completer. */
/* Loop reading and executing lines until the user quits. */
for ( ; done == 0; )
@{
line = readline ("FileMan: ");
if (!line)
break;
/* Remove leading and trailing whitespace from the line.
Then, if there is anything left, add it to the history list
and execute it. */
s = stripwhite (line);
if (*s)
@{
add_history (s);
execute_line (s);
@}
free (line);
@}
exit (0);
@}
/* Execute a command line. */
int
execute_line (line)
char *line;
@{
register int i;
COMMAND *command;
char *word;
/* Isolate the command word. */
i = 0;
while (line[i] && whitespace (line[i]))
i++;
word = line + i;
while (line[i] && !whitespace (line[i]))
i++;
if (line[i])
line[i++] = '\0';
command = find_command (word);
if (!command)
@{
fprintf (stderr, "%s: No such command for FileMan.\n", word);
return (-1);
@}
/* Get argument to command, if any. */
while (whitespace (line[i]))
i++;
word = line + i;
/* Call the function. */
return ((*(command->func)) (word));
@}
/* Look up NAME as the name of a command, and return a pointer to that
command. Return a NULL pointer if NAME isn't a command name. */
COMMAND *
find_command (name)
char *name;
@{
register int i;
for (i = 0; commands[i].name; i++)
if (strcmp (name, commands[i].name) == 0)
return (&commands[i]);
return ((COMMAND *)NULL);
@}
/* Strip whitespace from the start and end of STRING. Return a pointer
into STRING. */
char *
stripwhite (string)
char *string;
@{
register char *s, *t;
for (s = string; whitespace (*s); s++)
;
if (*s == 0)
return (s);
t = s + strlen (s) - 1;
while (t > s && whitespace (*t))
t--;
*++t = '\0';
return s;
@}
/* **************************************************************** */
/* */
/* Interface to Readline Completion */
/* */
/* **************************************************************** */
char *command_generator ();
char **fileman_completion ();
/* Tell the GNU Readline library how to complete. We want to try to complete
on command names if this is the first word in the line, or on filenames
if not. */
initialize_readline ()
@{
/* Allow conditional parsing of the ~/.inputrc file. */
rl_readline_name = "FileMan";
/* Tell the completer that we want a crack first. */
rl_attempted_completion_function = (CPPFunction *)fileman_completion;
@}
/* Attempt to complete on the contents of TEXT. START and END bound the
region of rl_line_buffer that contains the word to complete. TEXT is
the word to complete. We can use the entire contents of rl_line_buffer
in case we want to do some simple parsing. Return the array of matches,
or NULL if there aren't any. */
char **
fileman_completion (text, start, end)
char *text;
int start, end;
@{
char **matches;
matches = (char **)NULL;
/* If this word is at the start of the line, then it is a command
to complete. Otherwise it is the name of a file in the current
directory. */
if (start == 0)
matches = completion_matches (text, command_generator);
return (matches);
@}
/* Generator function for command completion. STATE lets us know whether
to start from scratch; without any state (i.e. STATE == 0), then we
start at the top of the list. */
char *
command_generator (text, state)
char *text;
int state;
@{
static int list_index, len;
char *name;
/* If this is a new word to complete, initialize now. This includes
saving the length of TEXT for efficiency, and initializing the index
variable to 0. */
if (!state)
@{
list_index = 0;
len = strlen (text);
@}
/* Return the next name which partially matches from the command list. */
while (name = commands[list_index].name)
@{
list_index++;
if (strncmp (name, text, len) == 0)
return (dupstr(name));
@}
/* If no names matched, then return NULL. */
return ((char *)NULL);
@}
/* **************************************************************** */
/* */
/* FileMan Commands */
/* */
/* **************************************************************** */
/* String to pass to system (). This is for the LIST, VIEW and RENAME
commands. */
static char syscom[1024];
/* List the file(s) named in arg. */
com_list (arg)
char *arg;
@{
if (!arg)
arg = "";
sprintf (syscom, "ls -FClg %s", arg);
return (system (syscom));
@}
com_view (arg)
char *arg;
@{
if (!valid_argument ("view", arg))
return 1;
sprintf (syscom, "more %s", arg);
return (system (syscom));
@}
com_rename (arg)
char *arg;
@{
too_dangerous ("rename");
return (1);
@}
com_stat (arg)
char *arg;
@{
struct stat finfo;
if (!valid_argument ("stat", arg))
return (1);
if (stat (arg, &finfo) == -1)
@{
perror (arg);
return (1);
@}
printf ("Statistics for `%s':\n", arg);
printf ("%s has %d link%s, and is %d byte%s in length.\n", arg,
finfo.st_nlink,
(finfo.st_nlink == 1) ? "" : "s",
finfo.st_size,
(finfo.st_size == 1) ? "" : "s");
printf ("Inode Last Change at: %s", ctime (&finfo.st_ctime));
printf (" Last access at: %s", ctime (&finfo.st_atime));
printf (" Last modified at: %s", ctime (&finfo.st_mtime));
return (0);
@}
com_delete (arg)
char *arg;
@{
too_dangerous ("delete");
return (1);
@}
/* Print out help for ARG, or for all of the commands if ARG is
not present. */
com_help (arg)
char *arg;
@{
register int i;
int printed = 0;
for (i = 0; commands[i].name; i++)
@{
if (!*arg || (strcmp (arg, commands[i].name) == 0))
@{
printf ("%s\t\t%s.\n", commands[i].name, commands[i].doc);
printed++;
@}
@}
if (!printed)
@{
printf ("No commands match `%s'. Possibilties are:\n", arg);
for (i = 0; commands[i].name; i++)
@{
/* Print in six columns. */
if (printed == 6)
@{
printed = 0;
printf ("\n");
@}
printf ("%s\t", commands[i].name);
printed++;
@}
if (printed)
printf ("\n");
@}
return (0);
@}
/* Change to the directory ARG. */
com_cd (arg)
char *arg;
@{
if (chdir (arg) == -1)
@{
perror (arg);
return 1;
@}
com_pwd ("");
return (0);
@}
/* Print out the current working directory. */
com_pwd (ignore)
char *ignore;
@{
char dir[1024], *s;
s = getwd (dir);
if (s == 0)
@{
printf ("Error getting pwd: %s\n", dir);
return 1;
@}
printf ("Current directory is %s\n", dir);
return 0;
@}
/* The user wishes to quit using this program. Just set DONE non-zero. */
com_quit (arg)
char *arg;
@{
done = 1;
return (0);
@}
/* Function which tells you that you can't do this. */
too_dangerous (caller)
char *caller;
@{
fprintf (stderr,
"%s: Too dangerous for me to distribute. Write it yourself.\n",
caller);
@}
/* Return non-zero if ARG is a valid argument for CALLER, else print
an error message and return zero. */
int
valid_argument (caller, arg)
char *caller, *arg;
@{
if (!arg || !*arg)
@{
fprintf (stderr, "%s: Argument required.\n", caller);
return (0);
@}
return (1);
@}
@end smallexample
|