/* * Copyright (c) 1988-1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1996 by Xerox Corporation. All rights reserved. * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved. * Copyright (c) 1999-2011 Hewlett-Packard Development Company, L.P. * Copyright (c) 2008-2022 Ivan Maidanski * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. * */ #include "private/gc_priv.h" #if !defined(MACOS) && !defined(MSWINCE) # include # if !defined(GC_NO_TYPES) && !defined(SN_TARGET_PSP2) \ && !defined(__CC_ARM) # include # endif #endif /* * Separate free lists are maintained for different sized objects * up to MAXOBJBYTES. * The call GC_allocobj(i,k) ensures that the freelist for * kind k objects of size i points to a non-empty * free list. It returns a pointer to the first entry on the free list. * In a single-threaded world, GC_allocobj may be called to allocate * an object of small size lb (and NORMAL kind) as follows * (GC_generic_malloc_inner is a wrapper over GC_allocobj which also * fills in GC_size_map if needed): * * lg = GC_size_map[lb]; * op = GC_objfreelist[lg]; * if (NULL == op) { * op = GC_generic_malloc_inner(lb, NORMAL, 0); * } else { * GC_objfreelist[lg] = obj_link(op); * GC_bytes_allocd += GRANULES_TO_BYTES((word)lg); * } * * Note that this is very fast if the free list is non-empty; it should * only involve the execution of 4 or 5 simple instructions. * All composite objects on freelists are cleared, except for * their first word. */ /* * The allocator uses GC_allochblk to allocate large chunks of objects. * These chunks all start on addresses which are multiples of * HBLKSZ. Each allocated chunk has an associated header, * which can be located quickly based on the address of the chunk. * (See headers.c for details.) * This makes it possible to check quickly whether an * arbitrary address corresponds to an object administered by the * allocator. */ word GC_non_gc_bytes = 0; /* Number of bytes not intended to be collected */ word GC_gc_no = 0; #ifndef NO_CLOCK static unsigned long full_gc_total_time = 0; /* in ms, may wrap */ static unsigned long stopped_mark_total_time = 0; static unsigned full_gc_total_ns_frac = 0; /* fraction of 1 ms */ static unsigned stopped_mark_total_ns_frac = 0; static GC_bool measure_performance = FALSE; /* Do performance measurements if set to true (e.g., */ /* accumulation of the total time of full collections). */ GC_API void GC_CALL GC_start_performance_measurement(void) { measure_performance = TRUE; } GC_API unsigned long GC_CALL GC_get_full_gc_total_time(void) { return full_gc_total_time; } GC_API unsigned long GC_CALL GC_get_stopped_mark_total_time(void) { return stopped_mark_total_time; } #endif /* !NO_CLOCK */ #ifndef GC_DISABLE_INCREMENTAL GC_INNER GC_bool GC_incremental = FALSE; /* By default, stop the world. */ STATIC GC_bool GC_should_start_incremental_collection = FALSE; #endif GC_API int GC_CALL GC_is_incremental_mode(void) { return (int)GC_incremental; } #ifdef THREADS int GC_parallel = FALSE; /* By default, parallel GC is off. */ #endif #if defined(GC_FULL_FREQ) && !defined(CPPCHECK) int GC_full_freq = GC_FULL_FREQ; #else int GC_full_freq = 19; /* Every 20th collection is a full */ /* collection, whether we need it */ /* or not. */ #endif STATIC GC_bool GC_need_full_gc = FALSE; /* Need full GC due to heap growth. */ #ifdef THREAD_LOCAL_ALLOC GC_INNER GC_bool GC_world_stopped = FALSE; #endif STATIC GC_bool GC_disable_automatic_collection = FALSE; GC_API void GC_CALL GC_set_disable_automatic_collection(int value) { LOCK(); GC_disable_automatic_collection = (GC_bool)value; UNLOCK(); } GC_API int GC_CALL GC_get_disable_automatic_collection(void) { int value; LOCK(); value = (int)GC_disable_automatic_collection; UNLOCK(); return value; } STATIC word GC_used_heap_size_after_full = 0; /* Version macros are now defined in gc_version.h, which is included by */ /* gc.h, which is included by gc_priv.h. */ #ifndef GC_NO_VERSION_VAR EXTERN_C_BEGIN extern const unsigned GC_version; EXTERN_C_END const unsigned GC_version = ((GC_VERSION_MAJOR << 16) | (GC_VERSION_MINOR << 8) | GC_VERSION_MICRO); #endif GC_API unsigned GC_CALL GC_get_version(void) { return (GC_VERSION_MAJOR << 16) | (GC_VERSION_MINOR << 8) | GC_VERSION_MICRO; } /* some more variables */ #ifdef GC_DONT_EXPAND int GC_dont_expand = TRUE; #else int GC_dont_expand = FALSE; #endif #if defined(GC_FREE_SPACE_DIVISOR) && !defined(CPPCHECK) word GC_free_space_divisor = GC_FREE_SPACE_DIVISOR; /* must be > 0 */ #else word GC_free_space_divisor = 3; #endif GC_INNER int GC_CALLBACK GC_never_stop_func(void) { return FALSE; } #if defined(GC_TIME_LIMIT) && !defined(CPPCHECK) unsigned long GC_time_limit = GC_TIME_LIMIT; /* We try to keep pause times from exceeding */ /* this by much. In milliseconds. */ #elif defined(PARALLEL_MARK) unsigned long GC_time_limit = GC_TIME_UNLIMITED; /* The parallel marker cannot be interrupted for */ /* now, so the time limit is absent by default. */ #else unsigned long GC_time_limit = 15; #endif #ifndef NO_CLOCK STATIC unsigned long GC_time_lim_nsec = 0; /* The nanoseconds add-on to GC_time_limit */ /* value. Not updated by GC_set_time_limit(). */ /* Ignored if the value of GC_time_limit is */ /* GC_TIME_UNLIMITED. */ # define TV_NSEC_LIMIT (1000UL * 1000) /* amount of nanoseconds in 1 ms */ GC_API void GC_CALL GC_set_time_limit_tv(struct GC_timeval_s tv) { GC_ASSERT(tv.tv_ms <= GC_TIME_UNLIMITED); GC_ASSERT(tv.tv_nsec < TV_NSEC_LIMIT); GC_time_limit = tv.tv_ms; GC_time_lim_nsec = tv.tv_nsec; } GC_API struct GC_timeval_s GC_CALL GC_get_time_limit_tv(void) { struct GC_timeval_s tv; tv.tv_ms = GC_time_limit; tv.tv_nsec = GC_time_lim_nsec; return tv; } STATIC CLOCK_TYPE GC_start_time = CLOCK_TYPE_INITIALIZER; /* Time at which we stopped world. */ /* used only in GC_timeout_stop_func. */ #endif /* !NO_CLOCK */ STATIC int GC_n_attempts = 0; /* Number of attempts at finishing */ /* collection within GC_time_limit. */ STATIC GC_stop_func GC_default_stop_func = GC_never_stop_func; /* Accessed holding the allocator lock. */ GC_API void GC_CALL GC_set_stop_func(GC_stop_func stop_func) { GC_ASSERT(NONNULL_ARG_NOT_NULL(stop_func)); LOCK(); GC_default_stop_func = stop_func; UNLOCK(); } GC_API GC_stop_func GC_CALL GC_get_stop_func(void) { GC_stop_func stop_func; LOCK(); stop_func = GC_default_stop_func; UNLOCK(); return stop_func; } #if defined(GC_DISABLE_INCREMENTAL) || defined(NO_CLOCK) # define GC_timeout_stop_func GC_default_stop_func #else STATIC int GC_CALLBACK GC_timeout_stop_func(void) { CLOCK_TYPE current_time; static unsigned count = 0; unsigned long time_diff, nsec_diff; if (GC_default_stop_func()) return TRUE; if (GC_time_limit == GC_TIME_UNLIMITED || (count++ & 3) != 0) return FALSE; GET_TIME(current_time); time_diff = MS_TIME_DIFF(current_time, GC_start_time); nsec_diff = NS_FRAC_TIME_DIFF(current_time, GC_start_time); # if defined(CPPCHECK) GC_noop1((word)&nsec_diff); # endif if (time_diff >= GC_time_limit && (time_diff > GC_time_limit || nsec_diff >= GC_time_lim_nsec)) { GC_COND_LOG_PRINTF("Abandoning stopped marking after %lu ms %lu ns" " (attempt %d)\n", time_diff, nsec_diff, GC_n_attempts); return TRUE; } return FALSE; } #endif /* !GC_DISABLE_INCREMENTAL */ #ifdef THREADS GC_INNER word GC_total_stacksize = 0; /* updated on every push_all_stacks */ #endif static size_t min_bytes_allocd_minimum = 1; /* The lowest value returned by min_bytes_allocd(). */ GC_API void GC_CALL GC_set_min_bytes_allocd(size_t value) { GC_ASSERT(value > 0); min_bytes_allocd_minimum = value; } GC_API size_t GC_CALL GC_get_min_bytes_allocd(void) { return min_bytes_allocd_minimum; } /* Return the minimum number of bytes that must be allocated between */ /* collections to amortize the collection cost. Should be non-zero. */ static word min_bytes_allocd(void) { word result; word stack_size; word total_root_size; /* includes double stack size, */ /* since the stack is expensive */ /* to scan. */ word scan_size; /* Estimate of memory to be scanned */ /* during normal GC. */ # ifdef THREADS if (GC_need_to_lock) { /* We are multi-threaded... */ stack_size = GC_total_stacksize; /* For now, we just use the value computed during the latest GC. */ # ifdef DEBUG_THREADS GC_log_printf("Total stacks size: %lu\n", (unsigned long)stack_size); # endif } else # endif /* else*/ { # ifdef STACK_NOT_SCANNED stack_size = 0; # elif defined(STACK_GROWS_UP) stack_size = GC_approx_sp() - GC_stackbottom; # else stack_size = GC_stackbottom - GC_approx_sp(); # endif } total_root_size = 2 * stack_size + GC_root_size; scan_size = 2 * GC_composite_in_use + GC_atomic_in_use / 4 + total_root_size; result = scan_size / GC_free_space_divisor; if (GC_incremental) { result /= 2; } return result > min_bytes_allocd_minimum ? result : min_bytes_allocd_minimum; } STATIC word GC_non_gc_bytes_at_gc = 0; /* Number of explicitly managed bytes of storage */ /* at last collection. */ /* Return the number of bytes allocated, adjusted for explicit storage */ /* management, etc.. This number is used in deciding when to trigger */ /* collections. */ STATIC word GC_adj_bytes_allocd(void) { signed_word result; signed_word expl_managed = (signed_word)GC_non_gc_bytes - (signed_word)GC_non_gc_bytes_at_gc; /* Don't count what was explicitly freed, or newly allocated for */ /* explicit management. Note that deallocating an explicitly */ /* managed object should not alter result, assuming the client */ /* is playing by the rules. */ result = (signed_word)GC_bytes_allocd + (signed_word)GC_bytes_dropped - (signed_word)GC_bytes_freed + (signed_word)GC_finalizer_bytes_freed - expl_managed; if (result > (signed_word)GC_bytes_allocd) { result = GC_bytes_allocd; /* probably client bug or unfortunate scheduling */ } result += GC_bytes_finalized; /* We count objects enqueued for finalization as though they */ /* had been reallocated this round. Finalization is user */ /* visible progress. And if we don't count this, we have */ /* stability problems for programs that finalize all objects. */ if (result < (signed_word)(GC_bytes_allocd >> 3)) { /* Always count at least 1/8 of the allocations. We don't want */ /* to collect too infrequently, since that would inhibit */ /* coalescing of free storage blocks. */ /* This also makes us partially robust against client bugs. */ result = (signed_word)(GC_bytes_allocd >> 3); } return (word)result; } /* Clear up a few frames worth of garbage left at the top of the stack. */ /* This is used to prevent us from accidentally treating garbage left */ /* on the stack by other parts of the collector as roots. This */ /* differs from the code in misc.c, which actually tries to keep the */ /* stack clear of long-lived, client-generated garbage. */ STATIC void GC_clear_a_few_frames(void) { # ifndef CLEAR_NWORDS # define CLEAR_NWORDS 64 # endif volatile word frames[CLEAR_NWORDS]; BZERO((word *)frames, CLEAR_NWORDS * sizeof(word)); } GC_API void GC_CALL GC_start_incremental_collection(void) { # ifndef GC_DISABLE_INCREMENTAL if (!GC_incremental) return; LOCK(); GC_should_start_incremental_collection = TRUE; if (!GC_dont_gc) { ENTER_GC(); GC_collect_a_little_inner(1); EXIT_GC(); } UNLOCK(); # endif } /* Have we allocated enough to amortize a collection? */ GC_INNER GC_bool GC_should_collect(void) { static word last_min_bytes_allocd; static word last_gc_no; GC_ASSERT(I_HOLD_LOCK()); if (last_gc_no != GC_gc_no) { last_min_bytes_allocd = min_bytes_allocd(); last_gc_no = GC_gc_no; } # ifndef GC_DISABLE_INCREMENTAL if (GC_should_start_incremental_collection) { GC_should_start_incremental_collection = FALSE; return TRUE; } # endif if (GC_disable_automatic_collection) return FALSE; if (GC_last_heap_growth_gc_no == GC_gc_no) return TRUE; /* avoid expanding past limits used by blacklisting */ return GC_adj_bytes_allocd() >= last_min_bytes_allocd; } /* STATIC */ GC_start_callback_proc GC_start_call_back = 0; /* Called at start of full collections. */ /* Not called if 0. Called with the allocation */ /* lock held. Not used by GC itself. */ GC_API void GC_CALL GC_set_start_callback(GC_start_callback_proc fn) { LOCK(); GC_start_call_back = fn; UNLOCK(); } GC_API GC_start_callback_proc GC_CALL GC_get_start_callback(void) { GC_start_callback_proc fn; LOCK(); fn = GC_start_call_back; UNLOCK(); return fn; } GC_INLINE void GC_notify_full_gc(void) { if (GC_start_call_back != 0) { (*GC_start_call_back)(); } } STATIC GC_bool GC_is_full_gc = FALSE; STATIC GC_bool GC_stopped_mark(GC_stop_func stop_func); STATIC void GC_finish_collection(void); /* Initiate a garbage collection if appropriate. Choose judiciously */ /* between partial, full, and stop-world collections. */ STATIC void GC_maybe_gc(void) { static int n_partial_gcs = 0; GC_ASSERT(I_HOLD_LOCK()); ASSERT_CANCEL_DISABLED(); if (!GC_should_collect()) return; if (!GC_incremental) { GC_gcollect_inner(); return; } GC_ASSERT(!GC_collection_in_progress()); # ifdef PARALLEL_MARK if (GC_parallel) GC_wait_for_reclaim(); # endif if (GC_need_full_gc || n_partial_gcs >= GC_full_freq) { GC_COND_LOG_PRINTF( "***>Full mark for collection #%lu after %lu allocd bytes\n", (unsigned long)GC_gc_no + 1, (unsigned long)GC_bytes_allocd); GC_promote_black_lists(); (void)GC_reclaim_all((GC_stop_func)0, TRUE); GC_notify_full_gc(); GC_clear_marks(); n_partial_gcs = 0; GC_is_full_gc = TRUE; } else { n_partial_gcs++; } /* Try to mark with the world stopped. If we run out of */ /* time, this turns into an incremental marking. */ # ifndef NO_CLOCK if (GC_time_limit != GC_TIME_UNLIMITED) GET_TIME(GC_start_time); # endif if (GC_stopped_mark(GC_timeout_stop_func)) { # ifdef SAVE_CALL_CHAIN GC_save_callers(GC_last_stack); # endif GC_finish_collection(); } else if (!GC_is_full_gc) { /* Count this as the first attempt. */ GC_n_attempts++; } } STATIC GC_on_collection_event_proc GC_on_collection_event = 0; GC_API void GC_CALL GC_set_on_collection_event(GC_on_collection_event_proc fn) { /* fn may be 0 (means no event notifier). */ LOCK(); GC_on_collection_event = fn; UNLOCK(); } GC_API GC_on_collection_event_proc GC_CALL GC_get_on_collection_event(void) { GC_on_collection_event_proc fn; LOCK(); fn = GC_on_collection_event; UNLOCK(); return fn; } /* Stop the world garbage collection. If stop_func is not */ /* GC_never_stop_func then abort if stop_func returns TRUE. */ /* Return TRUE if we successfully completed the collection. */ GC_INNER GC_bool GC_try_to_collect_inner(GC_stop_func stop_func) { # ifndef NO_CLOCK CLOCK_TYPE start_time = CLOCK_TYPE_INITIALIZER; GC_bool start_time_valid; # endif ASSERT_CANCEL_DISABLED(); GC_ASSERT(I_HOLD_LOCK()); GC_ASSERT(GC_is_initialized); if (GC_dont_gc || (*stop_func)()) return FALSE; if (GC_on_collection_event) GC_on_collection_event(GC_EVENT_START); if (GC_incremental && GC_collection_in_progress()) { GC_COND_LOG_PRINTF( "GC_try_to_collect_inner: finishing collection in progress\n"); /* Just finish collection already in progress. */ do { if ((*stop_func)()) { /* TODO: Notify GC_EVENT_ABANDON */ return FALSE; } ENTER_GC(); GC_collect_a_little_inner(1); EXIT_GC(); } while (GC_collection_in_progress()); } GC_notify_full_gc(); # ifndef NO_CLOCK start_time_valid = FALSE; if ((GC_print_stats | (int)measure_performance) != 0) { if (GC_print_stats) GC_log_printf("Initiating full world-stop collection!\n"); start_time_valid = TRUE; GET_TIME(start_time); } # endif GC_promote_black_lists(); /* Make sure all blocks have been reclaimed, so sweep routines */ /* don't see cleared mark bits. */ /* If we're guaranteed to finish, then this is unnecessary. */ /* In the find_leak case, we have to finish to guarantee that */ /* previously unmarked objects are not reported as leaks. */ # ifdef PARALLEL_MARK if (GC_parallel) GC_wait_for_reclaim(); # endif if ((GC_find_leak || stop_func != GC_never_stop_func) && !GC_reclaim_all(stop_func, FALSE)) { /* Aborted. So far everything is still consistent. */ /* TODO: Notify GC_EVENT_ABANDON */ return FALSE; } GC_invalidate_mark_state(); /* Flush mark stack. */ GC_clear_marks(); # ifdef SAVE_CALL_CHAIN GC_save_callers(GC_last_stack); # endif GC_is_full_gc = TRUE; if (!GC_stopped_mark(stop_func)) { if (!GC_incremental) { /* We're partially done and have no way to complete or use */ /* current work. Reestablish invariants as cheaply as */ /* possible. */ GC_invalidate_mark_state(); GC_unpromote_black_lists(); } /* else we claim the world is already still consistent. We'll */ /* finish incrementally. */ /* TODO: Notify GC_EVENT_ABANDON */ return FALSE; } GC_finish_collection(); # ifndef NO_CLOCK if (start_time_valid) { CLOCK_TYPE current_time; unsigned long time_diff, ns_frac_diff; GET_TIME(current_time); time_diff = MS_TIME_DIFF(current_time, start_time); ns_frac_diff = NS_FRAC_TIME_DIFF(current_time, start_time); if (measure_performance) { full_gc_total_time += time_diff; /* may wrap */ full_gc_total_ns_frac += (unsigned)ns_frac_diff; if (full_gc_total_ns_frac >= 1000000U) { /* Overflow of the nanoseconds part. */ full_gc_total_ns_frac -= 1000000U; full_gc_total_time++; } } if (GC_print_stats) GC_log_printf("Complete collection took %lu ms %lu ns\n", time_diff, ns_frac_diff); } # endif if (GC_on_collection_event) GC_on_collection_event(GC_EVENT_END); return TRUE; } /* The number of extra calls to GC_mark_some that we have made. */ STATIC int GC_deficit = 0; /* The default value of GC_rate. */ #ifndef GC_RATE # define GC_RATE 10 #endif /* When GC_collect_a_little_inner() performs n units of GC work, a unit */ /* is intended to touch roughly GC_rate pages. (But, every once in */ /* a while, we do more than that.) This needs to be a fairly large */ /* number with our current incremental GC strategy, since otherwise we */ /* allocate too much during GC, and the cleanup gets expensive. */ STATIC int GC_rate = GC_RATE; GC_API void GC_CALL GC_set_rate(int value) { GC_ASSERT(value > 0); GC_rate = value; } GC_API int GC_CALL GC_get_rate(void) { return GC_rate; } /* The default maximum number of prior attempts at world stop marking. */ #ifndef MAX_PRIOR_ATTEMPTS # define MAX_PRIOR_ATTEMPTS 3 #endif /* The maximum number of prior attempts at world stop marking. */ /* A value of 1 means that we finish the second time, no matter how */ /* long it takes. Does not count the initial root scan for a full GC. */ static int max_prior_attempts = MAX_PRIOR_ATTEMPTS; GC_API void GC_CALL GC_set_max_prior_attempts(int value) { GC_ASSERT(value >= 0); max_prior_attempts = value; } GC_API int GC_CALL GC_get_max_prior_attempts(void) { return max_prior_attempts; } GC_INNER void GC_collect_a_little_inner(int n) { IF_CANCEL(int cancel_state;) GC_ASSERT(I_HOLD_LOCK()); GC_ASSERT(GC_is_initialized); DISABLE_CANCEL(cancel_state); if (GC_incremental && GC_collection_in_progress()) { int i; int max_deficit = GC_rate * n; # ifdef PARALLEL_MARK if (GC_time_limit != GC_TIME_UNLIMITED) GC_parallel_mark_disabled = TRUE; # endif for (i = GC_deficit; i < max_deficit; i++) { if (GC_mark_some(NULL)) break; } # ifdef PARALLEL_MARK GC_parallel_mark_disabled = FALSE; # endif if (i < max_deficit && !GC_dont_gc) { GC_ASSERT(!GC_collection_in_progress()); /* Need to follow up with a full collection. */ # ifdef SAVE_CALL_CHAIN GC_save_callers(GC_last_stack); # endif # ifdef PARALLEL_MARK if (GC_parallel) GC_wait_for_reclaim(); # endif # ifndef NO_CLOCK if (GC_time_limit != GC_TIME_UNLIMITED && GC_n_attempts < max_prior_attempts) GET_TIME(GC_start_time); # endif if (GC_stopped_mark(GC_n_attempts < max_prior_attempts ? GC_timeout_stop_func : GC_never_stop_func)) { GC_finish_collection(); } else { GC_n_attempts++; } } if (GC_deficit > 0) { GC_deficit -= max_deficit; if (GC_deficit < 0) GC_deficit = 0; } } else if (!GC_dont_gc) { GC_maybe_gc(); } RESTORE_CANCEL(cancel_state); } GC_INNER void (*GC_check_heap)(void) = 0; GC_INNER void (*GC_print_all_smashed)(void) = 0; GC_API int GC_CALL GC_collect_a_little(void) { int result; if (!EXPECT(GC_is_initialized, TRUE)) GC_init(); LOCK(); ENTER_GC(); /* Note: if the collection is in progress, this may do marking (not */ /* stopping the world) even in case of disabled GC. */ GC_collect_a_little_inner(1); EXIT_GC(); result = (int)GC_collection_in_progress(); UNLOCK(); if (!result && GC_debugging_started) GC_print_all_smashed(); return result; } #ifndef NO_CLOCK /* Variables for world-stop average delay time statistic computation. */ /* "divisor" is incremented every world-stop and halved when reached */ /* its maximum (or upon "total_time" overflow). */ static unsigned world_stopped_total_time = 0; static unsigned world_stopped_total_divisor = 0; # ifndef MAX_TOTAL_TIME_DIVISOR /* We shall not use big values here (so "outdated" delay time */ /* values would have less impact on "average" delay time value than */ /* newer ones). */ # define MAX_TOTAL_TIME_DIVISOR 1000 # endif #endif /* !NO_CLOCK */ #ifdef USE_MUNMAP # ifndef MUNMAP_THRESHOLD # define MUNMAP_THRESHOLD 7 # endif GC_INNER unsigned GC_unmap_threshold = MUNMAP_THRESHOLD; # define IF_USE_MUNMAP(x) x # define COMMA_IF_USE_MUNMAP(x) /* comma */, x #else # define IF_USE_MUNMAP(x) /* empty */ # define COMMA_IF_USE_MUNMAP(x) /* empty */ #endif /* We stop the world and mark from all roots. If stop_func() ever */ /* returns TRUE, we may fail and return FALSE. Increment GC_gc_no if */ /* we succeed. */ STATIC GC_bool GC_stopped_mark(GC_stop_func stop_func) { int abandoned_at; ptr_t cold_gc_frame = GC_approx_sp(); # ifndef NO_CLOCK CLOCK_TYPE start_time = CLOCK_TYPE_INITIALIZER; GC_bool start_time_valid = FALSE; # endif GC_ASSERT(I_HOLD_LOCK()); GC_ASSERT(GC_is_initialized); # if !defined(REDIRECT_MALLOC) && defined(USE_WINALLOC) GC_add_current_malloc_heap(); # endif # if defined(REGISTER_LIBRARIES_EARLY) GC_cond_register_dynamic_libraries(); # endif # if !defined(GC_NO_FINALIZATION) && !defined(GC_TOGGLE_REFS_NOT_NEEDED) GC_process_togglerefs(); # endif /* Output blank line for convenience here. */ GC_COND_LOG_PRINTF( "\n--> Marking for collection #%lu after %lu allocated bytes\n", (unsigned long)GC_gc_no + 1, (unsigned long)GC_bytes_allocd); # ifndef NO_CLOCK if (GC_PRINT_STATS_FLAG || measure_performance) { GET_TIME(start_time); start_time_valid = TRUE; } # endif # ifdef THREADS if (GC_on_collection_event) GC_on_collection_event(GC_EVENT_PRE_STOP_WORLD); # endif STOP_WORLD(); # ifdef THREADS if (GC_on_collection_event) GC_on_collection_event(GC_EVENT_POST_STOP_WORLD); # endif # ifdef THREAD_LOCAL_ALLOC GC_world_stopped = TRUE; # endif # ifdef MAKE_BACK_GRAPH if (GC_print_back_height) { GC_build_back_graph(); } # endif /* Notify about marking from all roots. */ if (GC_on_collection_event) GC_on_collection_event(GC_EVENT_MARK_START); /* Minimize junk left in my registers and on the stack. */ GC_clear_a_few_frames(); GC_noop6(0,0,0,0,0,0); GC_initiate_gc(); # ifdef PARALLEL_MARK if (stop_func != GC_never_stop_func) GC_parallel_mark_disabled = TRUE; # endif for (abandoned_at = 0; !(*stop_func)(); abandoned_at++) { if (GC_mark_some(cold_gc_frame)) { # ifdef PARALLEL_MARK if (GC_parallel && GC_parallel_mark_disabled) { GC_COND_LOG_PRINTF("Stopped marking done after %d iterations" " with disabled parallel marker\n", abandoned_at); } # endif abandoned_at = -1; break; } } # ifdef PARALLEL_MARK GC_parallel_mark_disabled = FALSE; # endif if (abandoned_at >= 0) { GC_deficit = abandoned_at; /* Give the mutator a chance. */ /* TODO: Notify GC_EVENT_MARK_ABANDON */ } else { GC_gc_no++; /* Check all debugged objects for consistency. */ if (GC_debugging_started) { (*GC_check_heap)(); } if (GC_on_collection_event) GC_on_collection_event(GC_EVENT_MARK_END); } # ifdef THREADS if (GC_on_collection_event) GC_on_collection_event(GC_EVENT_PRE_START_WORLD); # endif # ifdef THREAD_LOCAL_ALLOC GC_world_stopped = FALSE; # endif START_WORLD(); # ifdef THREADS if (GC_on_collection_event) GC_on_collection_event(GC_EVENT_POST_START_WORLD); # endif # ifndef NO_CLOCK if (start_time_valid) { CLOCK_TYPE current_time; unsigned long time_diff, ns_frac_diff; /* TODO: Avoid code duplication from GC_try_to_collect_inner */ GET_TIME(current_time); time_diff = MS_TIME_DIFF(current_time, start_time); ns_frac_diff = NS_FRAC_TIME_DIFF(current_time, start_time); if (measure_performance) { stopped_mark_total_time += time_diff; /* may wrap */ stopped_mark_total_ns_frac += (unsigned)ns_frac_diff; if (stopped_mark_total_ns_frac >= 1000000U) { stopped_mark_total_ns_frac -= 1000000U; stopped_mark_total_time++; } } if (GC_PRINT_STATS_FLAG) { unsigned total_time = world_stopped_total_time; unsigned divisor = world_stopped_total_divisor; /* Compute new world-stop delay total time. */ if (total_time > (((unsigned)-1) >> 1) || divisor >= MAX_TOTAL_TIME_DIVISOR) { /* Halve values if overflow occurs. */ total_time >>= 1; divisor >>= 1; } total_time += time_diff < (((unsigned)-1) >> 1) ? (unsigned)time_diff : ((unsigned)-1) >> 1; /* Update old world_stopped_total_time and its divisor. */ world_stopped_total_time = total_time; world_stopped_total_divisor = ++divisor; if (abandoned_at < 0) { GC_ASSERT(divisor != 0); GC_log_printf("World-stopped marking took %lu ms %lu ns" " (%u ms in average)\n", time_diff, ns_frac_diff, total_time / divisor); } } } # endif if (abandoned_at >= 0) { GC_COND_LOG_PRINTF("Abandoned stopped marking after %d iterations\n", abandoned_at); return FALSE; } return TRUE; } /* Set all mark bits for the free list whose first entry is q */ GC_INNER void GC_set_fl_marks(ptr_t q) { if (q /* != NULL */) { /* CPPCHECK */ struct hblk *h = HBLKPTR(q); struct hblk *last_h = h; hdr *hhdr = HDR(h); IF_PER_OBJ(word sz = hhdr->hb_sz;) for (;;) { word bit_no = MARK_BIT_NO((ptr_t)q - (ptr_t)h, sz); if (!mark_bit_from_hdr(hhdr, bit_no)) { set_mark_bit_from_hdr(hhdr, bit_no); ++hhdr -> hb_n_marks; } q = (ptr_t)obj_link(q); if (q == NULL) break; h = HBLKPTR(q); if (h != last_h) { last_h = h; hhdr = HDR(h); IF_PER_OBJ(sz = hhdr->hb_sz;) } } } } #if defined(GC_ASSERTIONS) && defined(THREAD_LOCAL_ALLOC) /* Check that all mark bits for the free list whose first entry is */ /* (*pfreelist) are set. Check skipped if points to a special value. */ void GC_check_fl_marks(void **pfreelist) { /* TODO: There is a data race with GC_FAST_MALLOC_GRANS (which does */ /* not do atomic updates to the free-list). The race seems to be */ /* harmless, and for now we just skip this check in case of TSan. */ # if defined(AO_HAVE_load_acquire_read) && !defined(THREAD_SANITIZER) AO_t *list = (AO_t *)AO_load_acquire_read((AO_t *)pfreelist); /* Atomic operations are used because the world is running. */ AO_t *prev; AO_t *p; if ((word)list <= HBLKSIZE) return; prev = (AO_t *)pfreelist; for (p = list; p != NULL;) { AO_t *next; if (!GC_is_marked(p)) { ABORT_ARG2("Unmarked local free list entry", ": object %p on list %p", (void *)p, (void *)list); } /* While traversing the free-list, it re-reads the pointer to */ /* the current node before accepting its next pointer and */ /* bails out if the latter has changed. That way, it won't */ /* try to follow the pointer which might be been modified */ /* after the object was returned to the client. It might */ /* perform the mark-check on the just allocated object but */ /* that should be harmless. */ next = (AO_t *)AO_load_acquire_read(p); if (AO_load(prev) != (AO_t)p) break; prev = p; p = next; } # else /* FIXME: Not implemented (just skipped). */ (void)pfreelist; # endif } #endif /* GC_ASSERTIONS && THREAD_LOCAL_ALLOC */ /* Clear all mark bits for the free list whose first entry is q */ /* Decrement GC_bytes_found by number of bytes on free list. */ STATIC void GC_clear_fl_marks(ptr_t q) { struct hblk *h = HBLKPTR(q); struct hblk *last_h = h; hdr *hhdr = HDR(h); word sz = hhdr->hb_sz; /* Normally set only once. */ for (;;) { word bit_no = MARK_BIT_NO((ptr_t)q - (ptr_t)h, sz); if (mark_bit_from_hdr(hhdr, bit_no)) { size_t n_marks = hhdr -> hb_n_marks; GC_ASSERT(n_marks != 0); clear_mark_bit_from_hdr(hhdr, bit_no); n_marks--; # ifdef PARALLEL_MARK /* Appr. count, don't decrement to zero! */ if (0 != n_marks || !GC_parallel) { hhdr -> hb_n_marks = n_marks; } # else hhdr -> hb_n_marks = n_marks; # endif } GC_bytes_found -= sz; q = (ptr_t)obj_link(q); if (q == NULL) break; h = HBLKPTR(q); if (h != last_h) { last_h = h; hhdr = HDR(h); sz = hhdr->hb_sz; } } } #if defined(GC_ASSERTIONS) && defined(THREAD_LOCAL_ALLOC) void GC_check_tls(void); #endif GC_on_heap_resize_proc GC_on_heap_resize = 0; /* Used for logging only. */ GC_INLINE int GC_compute_heap_usage_percent(void) { word used = GC_composite_in_use + GC_atomic_in_use + GC_bytes_allocd; word heap_sz = GC_heapsize - GC_unmapped_bytes; # if defined(CPPCHECK) word limit = (GC_WORD_MAX >> 1) / 50; /* to avoid a false positive */ # else const word limit = GC_WORD_MAX / 100; # endif return used >= heap_sz ? 0 : used < limit ? (int)((used * 100) / heap_sz) : (int)(used / (heap_sz / 100)); } #define GC_DBGLOG_PRINT_HEAP_IN_USE() \ GC_DBGLOG_PRINTF("In-use heap: %d%% (%lu KiB pointers + %lu KiB other)\n", \ GC_compute_heap_usage_percent(), \ TO_KiB_UL(GC_composite_in_use), \ TO_KiB_UL(GC_atomic_in_use + GC_bytes_allocd)) /* Finish up a collection. Assumes mark bits are consistent, but the */ /* world is otherwise running. */ STATIC void GC_finish_collection(void) { # ifndef NO_CLOCK CLOCK_TYPE start_time = CLOCK_TYPE_INITIALIZER; CLOCK_TYPE finalize_time = CLOCK_TYPE_INITIALIZER; # endif GC_ASSERT(I_HOLD_LOCK()); # if defined(GC_ASSERTIONS) \ && defined(THREAD_LOCAL_ALLOC) && !defined(DBG_HDRS_ALL) /* Check that we marked some of our own data. */ /* TODO: Add more checks. */ GC_check_tls(); # endif # ifndef NO_CLOCK if (GC_print_stats) GET_TIME(start_time); # endif if (GC_on_collection_event) GC_on_collection_event(GC_EVENT_RECLAIM_START); # ifndef GC_GET_HEAP_USAGE_NOT_NEEDED if (GC_bytes_found > 0) GC_reclaimed_bytes_before_gc += (word)GC_bytes_found; # endif GC_bytes_found = 0; # if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG) if (GETENV("GC_PRINT_ADDRESS_MAP") != 0) { GC_print_address_map(); } # endif COND_DUMP; if (GC_find_leak) { /* Mark all objects on the free list. All objects should be */ /* marked when we're done. */ word size; /* current object size */ unsigned kind; ptr_t q; for (kind = 0; kind < GC_n_kinds; kind++) { for (size = 1; size <= MAXOBJGRANULES; size++) { q = (ptr_t)GC_obj_kinds[kind].ok_freelist[size]; if (q != NULL) GC_set_fl_marks(q); } } GC_start_reclaim(TRUE); /* The above just checks; it doesn't really reclaim anything. */ } # ifndef GC_NO_FINALIZATION GC_finalize(); # endif # ifndef NO_CLOCK if (GC_print_stats) GET_TIME(finalize_time); # endif if (GC_print_back_height) { # ifdef MAKE_BACK_GRAPH GC_traverse_back_graph(); # elif !defined(SMALL_CONFIG) GC_err_printf("Back height not available: " "Rebuild collector with -DMAKE_BACK_GRAPH\n"); # endif } /* Clear free list mark bits, in case they got accidentally marked */ /* (or GC_find_leak is set and they were intentionally marked). */ /* Also subtract memory remaining from GC_bytes_found count. */ /* Note that composite objects on free list are cleared. */ /* Thus accidentally marking a free list is not a problem; only */ /* objects on the list itself will be marked, and that's fixed here. */ { word size; /* current object size */ ptr_t q; /* pointer to current object */ unsigned kind; for (kind = 0; kind < GC_n_kinds; kind++) { for (size = 1; size <= MAXOBJGRANULES; size++) { q = (ptr_t)GC_obj_kinds[kind].ok_freelist[size]; if (q != NULL) GC_clear_fl_marks(q); } } } GC_VERBOSE_LOG_PRINTF("Bytes recovered before sweep - f.l. count = %ld\n", (long)GC_bytes_found); /* Reconstruct free lists to contain everything not marked */ GC_start_reclaim(FALSE); # ifdef USE_MUNMAP if (GC_unmap_threshold > 0 /* unmapping enabled? */ && EXPECT(GC_gc_no != 1, TRUE)) /* do not unmap during GC init */ GC_unmap_old(GC_unmap_threshold); GC_ASSERT(GC_heapsize >= GC_unmapped_bytes); # endif GC_ASSERT(GC_our_mem_bytes >= GC_heapsize); GC_DBGLOG_PRINTF("GC #%lu freed %ld bytes, heap %lu KiB (" IF_USE_MUNMAP("+ %lu KiB unmapped ") "+ %lu KiB internal)\n", (unsigned long)GC_gc_no, (long)GC_bytes_found, TO_KiB_UL(GC_heapsize - GC_unmapped_bytes) /*, */ COMMA_IF_USE_MUNMAP(TO_KiB_UL(GC_unmapped_bytes)), TO_KiB_UL(GC_our_mem_bytes - GC_heapsize + sizeof(GC_arrays))); GC_DBGLOG_PRINT_HEAP_IN_USE(); if (GC_is_full_gc) { GC_used_heap_size_after_full = GC_heapsize - GC_large_free_bytes; GC_need_full_gc = FALSE; } else { GC_need_full_gc = GC_heapsize - GC_used_heap_size_after_full > min_bytes_allocd() + GC_large_free_bytes; } /* Reset or increment counters for next cycle */ GC_n_attempts = 0; GC_is_full_gc = FALSE; GC_bytes_allocd_before_gc += GC_bytes_allocd; GC_non_gc_bytes_at_gc = GC_non_gc_bytes; GC_bytes_allocd = 0; GC_bytes_dropped = 0; GC_bytes_freed = 0; GC_finalizer_bytes_freed = 0; if (GC_on_collection_event) GC_on_collection_event(GC_EVENT_RECLAIM_END); # ifndef NO_CLOCK if (GC_print_stats) { CLOCK_TYPE done_time; GET_TIME(done_time); # if !defined(SMALL_CONFIG) && !defined(GC_NO_FINALIZATION) /* A convenient place to output finalization statistics. */ GC_print_finalization_stats(); # endif GC_log_printf("Finalize and initiate sweep took %lu ms %lu ns" " + %lu ms %lu ns\n", MS_TIME_DIFF(finalize_time, start_time), NS_FRAC_TIME_DIFF(finalize_time, start_time), MS_TIME_DIFF(done_time, finalize_time), NS_FRAC_TIME_DIFF(done_time, finalize_time)); } # elif !defined(SMALL_CONFIG) && !defined(GC_NO_FINALIZATION) if (GC_print_stats) GC_print_finalization_stats(); # endif } STATIC word GC_heapsize_at_forced_unmap = 0; /* accessed with the allocation lock held */ /* If stop_func == 0 then GC_default_stop_func is used instead. */ STATIC GC_bool GC_try_to_collect_general(GC_stop_func stop_func, GC_bool force_unmap) { GC_bool result; IF_USE_MUNMAP(int old_unmap_threshold;) IF_CANCEL(int cancel_state;) if (!EXPECT(GC_is_initialized, TRUE)) GC_init(); if (GC_debugging_started) GC_print_all_smashed(); GC_INVOKE_FINALIZERS(); LOCK(); if (force_unmap) { /* Record current heap size to make heap growth more conservative */ /* afterwards (as if the heap is growing from zero size again). */ GC_heapsize_at_forced_unmap = GC_heapsize; } DISABLE_CANCEL(cancel_state); # ifdef USE_MUNMAP old_unmap_threshold = GC_unmap_threshold; if (force_unmap || (GC_force_unmap_on_gcollect && old_unmap_threshold > 0)) GC_unmap_threshold = 1; /* unmap as much as possible */ # endif ENTER_GC(); /* Minimize junk left in my registers */ GC_noop6(0,0,0,0,0,0); result = GC_try_to_collect_inner(stop_func != 0 ? stop_func : GC_default_stop_func); EXIT_GC(); IF_USE_MUNMAP(GC_unmap_threshold = old_unmap_threshold); /* restore */ RESTORE_CANCEL(cancel_state); UNLOCK(); if (result) { if (GC_debugging_started) GC_print_all_smashed(); GC_INVOKE_FINALIZERS(); } return result; } /* Externally callable routines to invoke full, stop-the-world collection. */ GC_API int GC_CALL GC_try_to_collect(GC_stop_func stop_func) { GC_ASSERT(NONNULL_ARG_NOT_NULL(stop_func)); return (int)GC_try_to_collect_general(stop_func, FALSE); } GC_API void GC_CALL GC_gcollect(void) { /* 0 is passed as stop_func to get GC_default_stop_func value */ /* while holding the allocation lock (to prevent data races). */ (void)GC_try_to_collect_general(0, FALSE); if (get_have_errors()) GC_print_all_errors(); } GC_API void GC_CALL GC_gcollect_and_unmap(void) { /* Collect and force memory unmapping to OS. */ (void)GC_try_to_collect_general(GC_never_stop_func, TRUE); } #ifdef USE_PROC_FOR_LIBRARIES /* Add HBLKSIZE aligned, GET_MEM-generated block to GC_our_memory. */ GC_INNER void GC_add_to_our_memory(ptr_t p, size_t bytes) { GC_ASSERT(I_HOLD_LOCK()); GC_ASSERT(p != NULL); if (GC_n_memory >= MAX_HEAP_SECTS) ABORT("Too many GC-allocated memory sections: Increase MAX_HEAP_SECTS"); GC_our_memory[GC_n_memory].hs_start = p; GC_our_memory[GC_n_memory].hs_bytes = bytes; GC_n_memory++; GC_our_mem_bytes += bytes; } #endif /* Use the chunk of memory starting at p of size bytes as part of the heap. */ /* Assumes p is HBLKSIZE aligned, bytes argument is a multiple of HBLKSIZE. */ STATIC void GC_add_to_heap(struct hblk *p, size_t bytes) { hdr * phdr; word endp; size_t old_capacity = 0; void *old_heap_sects = NULL; # ifdef GC_ASSERTIONS unsigned i; # endif GC_ASSERT(I_HOLD_LOCK()); GC_ASSERT((word)p % HBLKSIZE == 0); GC_ASSERT(bytes % HBLKSIZE == 0); GC_ASSERT(bytes > 0); GC_ASSERT(GC_all_nils != NULL); if (EXPECT(GC_n_heap_sects == GC_capacity_heap_sects, FALSE)) { /* Allocate new GC_heap_sects with sufficient capacity. */ # ifndef INITIAL_HEAP_SECTS # define INITIAL_HEAP_SECTS 32 # endif size_t new_capacity = GC_n_heap_sects > 0 ? (size_t)GC_n_heap_sects * 2 : INITIAL_HEAP_SECTS; void *new_heap_sects = GC_scratch_alloc(new_capacity * sizeof(struct HeapSect)); if (NULL == new_heap_sects) { /* Retry with smaller yet sufficient capacity. */ new_capacity = (size_t)GC_n_heap_sects + INITIAL_HEAP_SECTS; new_heap_sects = GC_scratch_alloc(new_capacity * sizeof(struct HeapSect)); if (NULL == new_heap_sects) ABORT("Insufficient memory for heap sections"); } old_capacity = GC_capacity_heap_sects; old_heap_sects = GC_heap_sects; /* Transfer GC_heap_sects contents to the newly allocated array. */ if (GC_n_heap_sects > 0) BCOPY(old_heap_sects, new_heap_sects, GC_n_heap_sects * sizeof(struct HeapSect)); GC_capacity_heap_sects = new_capacity; GC_heap_sects = (struct HeapSect *)new_heap_sects; GC_COND_LOG_PRINTF("Grew heap sections array to %lu elements\n", (unsigned long)new_capacity); } while (EXPECT((word)p <= HBLKSIZE, FALSE)) { /* Can't handle memory near address zero. */ ++p; bytes -= HBLKSIZE; if (0 == bytes) return; } endp = (word)p + bytes; if (EXPECT(endp <= (word)p, FALSE)) { /* Address wrapped. */ bytes -= HBLKSIZE; if (0 == bytes) return; endp -= HBLKSIZE; } phdr = GC_install_header(p); if (EXPECT(NULL == phdr, FALSE)) { /* This is extremely unlikely. Can't add it. This will */ /* almost certainly result in a 0 return from the allocator, */ /* which is entirely appropriate. */ return; } GC_ASSERT(endp > (word)p && endp == (word)p + bytes); # ifdef GC_ASSERTIONS /* Ensure no intersection between sections. */ for (i = 0; i < GC_n_heap_sects; i++) { word hs_start = (word)GC_heap_sects[i].hs_start; word hs_end = hs_start + GC_heap_sects[i].hs_bytes; GC_ASSERT(!((hs_start <= (word)p && (word)p < hs_end) || (hs_start < endp && endp <= hs_end) || ((word)p < hs_start && hs_end < endp))); } # endif GC_heap_sects[GC_n_heap_sects].hs_start = (ptr_t)p; GC_heap_sects[GC_n_heap_sects].hs_bytes = bytes; GC_n_heap_sects++; phdr -> hb_sz = bytes; phdr -> hb_flags = 0; GC_freehblk(p); GC_heapsize += bytes; if ((word)p <= (word)GC_least_plausible_heap_addr || EXPECT(NULL == GC_least_plausible_heap_addr, FALSE)) { GC_least_plausible_heap_addr = (void *)((ptr_t)p - sizeof(word)); /* Making it a little smaller than necessary prevents */ /* us from getting a false hit from the variable */ /* itself. There's some unintentional reflection */ /* here. */ } if (endp > (word)GC_greatest_plausible_heap_addr) { GC_greatest_plausible_heap_addr = (void *)endp; } # ifdef SET_REAL_HEAP_BOUNDS if ((word)p < GC_least_real_heap_addr || EXPECT(0 == GC_least_real_heap_addr, FALSE)) GC_least_real_heap_addr = (word)p - sizeof(word); if (endp > GC_greatest_real_heap_addr) { # ifdef INCLUDE_LINUX_THREAD_DESCR /* Avoid heap intersection with the static data roots. */ GC_exclude_static_roots_inner((void *)p, (void *)endp); # endif GC_greatest_real_heap_addr = endp; } # endif if (EXPECT(old_capacity > 0, FALSE)) { # ifndef GWW_VDB /* Recycling may call GC_add_to_heap() again but should not */ /* cause resizing of GC_heap_sects. */ GC_scratch_recycle_no_gww(old_heap_sects, old_capacity * sizeof(struct HeapSect)); # else /* TODO: implement GWW-aware recycling as in alloc_mark_stack */ GC_noop1((word)old_heap_sects); # endif } } #if !defined(NO_DEBUGGING) void GC_print_heap_sects(void) { unsigned i; GC_printf("Total heap size: %lu" IF_USE_MUNMAP(" (%lu unmapped)") "\n", (unsigned long)GC_heapsize /*, */ COMMA_IF_USE_MUNMAP((unsigned long)GC_unmapped_bytes)); for (i = 0; i < GC_n_heap_sects; i++) { ptr_t start = GC_heap_sects[i].hs_start; size_t len = GC_heap_sects[i].hs_bytes; struct hblk *h; unsigned nbl = 0; for (h = (struct hblk *)start; (word)h < (word)(start + len); h++) { if (GC_is_black_listed(h, HBLKSIZE)) nbl++; } GC_printf("Section %d from %p to %p %u/%lu blacklisted\n", i, (void *)start, (void *)&start[len], nbl, (unsigned long)divHBLKSZ(len)); } } #endif void * GC_least_plausible_heap_addr = (void *)GC_WORD_MAX; void * GC_greatest_plausible_heap_addr = 0; STATIC word GC_max_heapsize = 0; GC_API void GC_CALL GC_set_max_heap_size(GC_word n) { GC_max_heapsize = n; } word GC_max_retries = 0; GC_INNER void GC_scratch_recycle_inner(void *ptr, size_t bytes) { size_t page_offset; size_t displ = 0; size_t recycled_bytes; GC_ASSERT(I_HOLD_LOCK()); if (NULL == ptr) return; GC_ASSERT(bytes != 0); GC_ASSERT(GC_page_size != 0); /* TODO: Assert correct memory flags if GWW_VDB */ page_offset = (word)ptr & (GC_page_size - 1); if (page_offset != 0) displ = GC_page_size - page_offset; recycled_bytes = bytes > displ ? (bytes - displ) & ~(GC_page_size - 1) : 0; GC_COND_LOG_PRINTF("Recycle %lu/%lu scratch-allocated bytes at %p\n", (unsigned long)recycled_bytes, (unsigned long)bytes, ptr); if (recycled_bytes > 0) GC_add_to_heap((struct hblk *)((word)ptr + displ), recycled_bytes); } /* This explicitly increases the size of the heap. It is used */ /* internally, but may also be invoked from GC_expand_hp by the user. */ /* The argument is in units of HBLKSIZE (zero is treated as 1). */ /* Returns FALSE on failure. */ GC_INNER GC_bool GC_expand_hp_inner(word n) { size_t bytes; struct hblk * space; word expansion_slop; /* Number of bytes by which we expect */ /* the heap to expand soon. */ GC_ASSERT(I_HOLD_LOCK()); GC_ASSERT(GC_page_size != 0); if (0 == n) n = 1; bytes = ROUNDUP_PAGESIZE((size_t)n * HBLKSIZE); GC_DBGLOG_PRINT_HEAP_IN_USE(); if (GC_max_heapsize != 0 && (GC_max_heapsize < (word)bytes || GC_heapsize > GC_max_heapsize - (word)bytes)) { /* Exceeded self-imposed limit */ return FALSE; } space = GET_MEM(bytes); if (EXPECT(NULL == space, FALSE)) { WARN("Failed to expand heap by %" WARN_PRIuPTR " KiB\n", bytes >> 10); return FALSE; } GC_add_to_our_memory((ptr_t)space, bytes); GC_last_heap_growth_gc_no = GC_gc_no; GC_INFOLOG_PRINTF("Grow heap to %lu KiB after %lu bytes allocated\n", TO_KiB_UL(GC_heapsize + bytes), (unsigned long)GC_bytes_allocd); /* Adjust heap limits generously for blacklisting to work better. */ /* GC_add_to_heap performs minimal adjustment needed for */ /* correctness. */ expansion_slop = min_bytes_allocd() + 4 * MAXHINCR * HBLKSIZE; if ((GC_last_heap_addr == 0 && !((word)space & SIGNB)) || (GC_last_heap_addr != 0 && (word)GC_last_heap_addr < (word)space)) { /* Assume the heap is growing up. */ word new_limit = (word)space + (word)bytes + expansion_slop; if (new_limit > (word)space && (word)GC_greatest_plausible_heap_addr < new_limit) GC_greatest_plausible_heap_addr = (void *)new_limit; } else { /* Heap is growing down. */ word new_limit = (word)space - expansion_slop - sizeof(word); if (new_limit < (word)space && (word)GC_least_plausible_heap_addr > new_limit) GC_least_plausible_heap_addr = (void *)new_limit; } GC_last_heap_addr = (ptr_t)space; GC_add_to_heap(space, bytes); if (GC_on_heap_resize) (*GC_on_heap_resize)(GC_heapsize); return TRUE; } /* Really returns a bool, but it's externally visible, so that's clumsy. */ GC_API int GC_CALL GC_expand_hp(size_t bytes) { word n_blocks = OBJ_SZ_TO_BLOCKS_CHECKED(bytes); word old_heapsize; GC_bool result; if (!EXPECT(GC_is_initialized, TRUE)) GC_init(); LOCK(); old_heapsize = GC_heapsize; result = GC_expand_hp_inner(n_blocks); if (result) { GC_requested_heapsize += bytes; if (GC_dont_gc) { /* Do not call WARN if the heap growth is intentional. */ GC_ASSERT(GC_heapsize >= old_heapsize); GC_heapsize_on_gc_disable += GC_heapsize - old_heapsize; } } UNLOCK(); return (int)result; } GC_INNER unsigned GC_fail_count = 0; /* How many consecutive GC/expansion failures? */ /* Reset by GC_allochblk. */ /* The minimum value of the ratio of allocated bytes since the latest */ /* GC to the amount of finalizers created since that GC which triggers */ /* the collection instead heap expansion. Has no effect in the */ /* incremental mode. */ #if defined(GC_ALLOCD_BYTES_PER_FINALIZER) && !defined(CPPCHECK) STATIC word GC_allocd_bytes_per_finalizer = GC_ALLOCD_BYTES_PER_FINALIZER; #else STATIC word GC_allocd_bytes_per_finalizer = 10000; #endif GC_API void GC_CALL GC_set_allocd_bytes_per_finalizer(GC_word value) { GC_allocd_bytes_per_finalizer = value; } GC_API GC_word GC_CALL GC_get_allocd_bytes_per_finalizer(void) { return GC_allocd_bytes_per_finalizer; } static word last_fo_entries = 0; static word last_bytes_finalized = 0; /* Collect or expand heap in an attempt make the indicated number of */ /* free blocks available. Should be called until the blocks are */ /* available (setting retry value to TRUE unless this is the first call */ /* in a loop) or until it fails by returning FALSE. The flags argument */ /* should be IGNORE_OFF_PAGE or 0. */ GC_INNER GC_bool GC_collect_or_expand(word needed_blocks, unsigned flags, GC_bool retry) { GC_bool gc_not_stopped = TRUE; word blocks_to_get; IF_CANCEL(int cancel_state;) GC_ASSERT(I_HOLD_LOCK()); GC_ASSERT(GC_is_initialized); DISABLE_CANCEL(cancel_state); if (!GC_incremental && !GC_dont_gc && ((GC_dont_expand && GC_bytes_allocd > 0) || (GC_fo_entries > last_fo_entries && (last_bytes_finalized | GC_bytes_finalized) != 0 && (GC_fo_entries - last_fo_entries) * GC_allocd_bytes_per_finalizer > GC_bytes_allocd) || GC_should_collect())) { /* Try to do a full collection using 'default' stop_func (unless */ /* nothing has been allocated since the latest collection or heap */ /* expansion is disabled). */ gc_not_stopped = GC_try_to_collect_inner( GC_bytes_allocd > 0 && (!GC_dont_expand || !retry) ? GC_default_stop_func : GC_never_stop_func); if (gc_not_stopped == TRUE || !retry) { /* Either the collection hasn't been aborted or this is the */ /* first attempt (in a loop). */ last_fo_entries = GC_fo_entries; last_bytes_finalized = GC_bytes_finalized; RESTORE_CANCEL(cancel_state); return TRUE; } } blocks_to_get = (GC_heapsize - GC_heapsize_at_forced_unmap) / (HBLKSIZE * GC_free_space_divisor) + needed_blocks; if (blocks_to_get > MAXHINCR) { word slop; /* Get the minimum required to make it likely that we can satisfy */ /* the current request in the presence of black-listing. */ /* This will probably be more than MAXHINCR. */ if ((flags & IGNORE_OFF_PAGE) != 0) { slop = 4; } else { slop = 2 * divHBLKSZ(BL_LIMIT); if (slop > needed_blocks) slop = needed_blocks; } if (needed_blocks + slop > MAXHINCR) { blocks_to_get = needed_blocks + slop; } else { blocks_to_get = MAXHINCR; } if (blocks_to_get > divHBLKSZ(GC_WORD_MAX)) blocks_to_get = divHBLKSZ(GC_WORD_MAX); } else if (blocks_to_get < MINHINCR) { blocks_to_get = MINHINCR; } if (GC_max_heapsize > GC_heapsize) { word max_get_blocks = divHBLKSZ(GC_max_heapsize - GC_heapsize); if (blocks_to_get > max_get_blocks) blocks_to_get = max_get_blocks > needed_blocks ? max_get_blocks : needed_blocks; } # ifdef USE_MUNMAP if (GC_unmap_threshold > 1) { /* Return as much memory to the OS as possible before */ /* trying to get memory from it. */ GC_unmap_old(0); } # endif if (!GC_expand_hp_inner(blocks_to_get) && (blocks_to_get == needed_blocks || !GC_expand_hp_inner(needed_blocks))) { if (gc_not_stopped == FALSE) { /* Don't increment GC_fail_count here (and no warning). */ GC_gcollect_inner(); GC_ASSERT(GC_bytes_allocd == 0); } else if (GC_fail_count++ < GC_max_retries) { WARN("Out of Memory! Trying to continue...\n", 0); GC_gcollect_inner(); } else { # if !defined(AMIGA) || !defined(GC_AMIGA_FASTALLOC) # ifdef USE_MUNMAP GC_ASSERT(GC_heapsize >= GC_unmapped_bytes); # endif WARN("Out of Memory! Heap size: %" WARN_PRIuPTR " MiB." " Returning NULL!\n", (GC_heapsize - GC_unmapped_bytes) >> 20); # endif RESTORE_CANCEL(cancel_state); return FALSE; } } else if (GC_fail_count) { GC_COND_LOG_PRINTF("Memory available again...\n"); } RESTORE_CANCEL(cancel_state); return TRUE; } /* * Make sure the object free list for size gran (in granules) is not empty. * Return a pointer to the first object on the free list. * The object MUST BE REMOVED FROM THE FREE LIST BY THE CALLER. */ GC_INNER ptr_t GC_allocobj(size_t gran, int kind) { void ** flh = &GC_obj_kinds[kind].ok_freelist[gran]; GC_bool tried_minor = FALSE; GC_bool retry = FALSE; GC_ASSERT(I_HOLD_LOCK()); GC_ASSERT(GC_is_initialized); if (0 == gran) return NULL; while (NULL == *flh) { ENTER_GC(); # ifndef GC_DISABLE_INCREMENTAL if (GC_incremental && GC_time_limit != GC_TIME_UNLIMITED && !GC_dont_gc) { /* True incremental mode, not just generational. */ /* Do our share of marking work. */ GC_collect_a_little_inner(1); } # endif /* Sweep blocks for objects of this size */ GC_ASSERT(!GC_is_full_gc || NULL == GC_obj_kinds[kind].ok_reclaim_list || NULL == GC_obj_kinds[kind].ok_reclaim_list[gran]); GC_continue_reclaim(gran, kind); EXIT_GC(); # if defined(CPPCHECK) GC_noop1((word)&flh); # endif if (NULL == *flh) { GC_new_hblk(gran, kind); # if defined(CPPCHECK) GC_noop1((word)&flh); # endif if (NULL == *flh) { ENTER_GC(); if (GC_incremental && GC_time_limit == GC_TIME_UNLIMITED && !tried_minor && !GC_dont_gc) { GC_collect_a_little_inner(1); tried_minor = TRUE; } else { if (!GC_collect_or_expand(1, 0 /* flags */, retry)) { EXIT_GC(); return NULL; } retry = TRUE; } EXIT_GC(); } } } /* Successful allocation; reset failure count. */ GC_fail_count = 0; return (ptr_t)(*flh); }