/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * Copyright (c) 1996 by Silicon Graphics. All rights reserved. * Copyright (c) 2000 by Hewlett-Packard Company. All rights reserved. * Copyright (c) 2009-2022 Ivan Maidanski * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ #include "private/gc_priv.h" /* * These are extra allocation routines which are likely to be less * frequently used than those in malloc.c. They are separate in the * hope that the .o file will be excluded from statically linked * executables. We should probably break this up further. */ #include #ifndef MSWINCE # include #endif /* Some externally visible but unadvertised variables to allow access to */ /* free lists from inlined allocators without including gc_priv.h */ /* or introducing dependencies on internal data structure layouts. */ #include "private/gc_alloc_ptrs.h" void ** const GC_objfreelist_ptr = GC_objfreelist; void ** const GC_aobjfreelist_ptr = GC_aobjfreelist; void ** const GC_uobjfreelist_ptr = GC_uobjfreelist; # ifdef GC_ATOMIC_UNCOLLECTABLE void ** const GC_auobjfreelist_ptr = GC_auobjfreelist; # endif GC_API int GC_CALL GC_get_kind_and_size(const void * p, size_t * psize) { hdr * hhdr = HDR(p); if (psize != NULL) { *psize = (size_t)hhdr->hb_sz; } return hhdr -> hb_obj_kind; } GC_API GC_ATTR_MALLOC void * GC_CALL GC_generic_or_special_malloc(size_t lb, int k) { switch (k) { case PTRFREE: case NORMAL: return GC_malloc_kind(lb, k); case UNCOLLECTABLE: # ifdef GC_ATOMIC_UNCOLLECTABLE case AUNCOLLECTABLE: # endif return GC_generic_malloc_uncollectable(lb, k); default: return GC_generic_malloc_aligned(lb, k, 0 /* flags */, 0); } } /* Change the size of the block pointed to by p to contain at least */ /* lb bytes. The object may be (and quite likely will be) moved. */ /* The kind (e.g. atomic) is the same as that of the old. */ /* Shrinking of large blocks is not implemented well. */ GC_API void * GC_CALL GC_realloc(void * p, size_t lb) { struct hblk * h; hdr * hhdr; void * result; # if defined(_FORTIFY_SOURCE) && defined(__GNUC__) && !defined(__clang__) volatile /* Use cleared_p instead of p as a workaround to avoid */ /* passing alloc_size(lb) attribute associated with p */ /* to memset (including memset call inside GC_free). */ # endif word cleared_p = (word)p; size_t sz; /* Current size in bytes */ size_t orig_sz; /* Original sz in bytes */ int obj_kind; if (NULL == p) return GC_malloc(lb); /* Required by ANSI */ if (0 == lb) /* and p != NULL */ { # ifndef IGNORE_FREE GC_free(p); # endif return NULL; } h = HBLKPTR(p); hhdr = HDR(h); sz = (size_t)hhdr->hb_sz; obj_kind = hhdr -> hb_obj_kind; orig_sz = sz; if (sz > MAXOBJBYTES) { struct obj_kind * ok = &GC_obj_kinds[obj_kind]; word descr = ok -> ok_descriptor; /* Round it up to the next whole heap block. */ sz = (sz + HBLKSIZE-1) & ~(HBLKSIZE-1); # if ALIGNMENT > GC_DS_TAGS /* An extra byte is not added in case of ignore-off-page */ /* allocated objects not smaller than HBLKSIZE. */ GC_ASSERT(sz >= HBLKSIZE); if (EXTRA_BYTES != 0 && (hhdr -> hb_flags & IGNORE_OFF_PAGE) != 0 && obj_kind == NORMAL) descr += ALIGNMENT; /* or set to 0 */ # endif if (ok -> ok_relocate_descr) descr += sz; /* GC_realloc might be changing the block size while */ /* GC_reclaim_block or GC_clear_hdr_marks is examining it. */ /* The change to the size field is benign, in that GC_reclaim */ /* (and GC_clear_hdr_marks) would work correctly with either */ /* value, since we are not changing the number of objects in */ /* the block. But seeing a half-updated value (though unlikely */ /* to occur in practice) could be probably bad. */ /* Using unordered atomic accesses on the size and hb_descr */ /* fields would solve the issue. (The alternate solution might */ /* be to initially overallocate large objects, so we do not */ /* have to adjust the size in GC_realloc, if they still fit. */ /* But that is probably more expensive, since we may end up */ /* scanning a bunch of zeros during GC.) */ # ifdef AO_HAVE_store GC_STATIC_ASSERT(sizeof(hhdr->hb_sz) == sizeof(AO_t)); AO_store((volatile AO_t *)&hhdr->hb_sz, (AO_t)sz); AO_store((volatile AO_t *)&hhdr->hb_descr, (AO_t)descr); # else { LOCK(); hhdr -> hb_sz = sz; hhdr -> hb_descr = descr; UNLOCK(); } # endif # ifdef MARK_BIT_PER_OBJ GC_ASSERT(hhdr -> hb_inv_sz == LARGE_INV_SZ); # endif # ifdef MARK_BIT_PER_GRANULE GC_ASSERT((hhdr -> hb_flags & LARGE_BLOCK) != 0 && hhdr -> hb_map[ANY_INDEX] == 1); # endif if (IS_UNCOLLECTABLE(obj_kind)) GC_non_gc_bytes += (sz - orig_sz); /* Extra area is already cleared by GC_alloc_large_and_clear. */ } if (ADD_EXTRA_BYTES(lb) <= sz) { if (lb >= (sz >> 1)) { if (orig_sz > lb) { /* Clear unneeded part of object to avoid bogus pointer */ /* tracing. */ BZERO((ptr_t)cleared_p + lb, orig_sz - lb); } return p; } /* shrink */ sz = lb; } result = GC_generic_or_special_malloc((word)lb, obj_kind); if (EXPECT(result != NULL, TRUE)) { /* In case of shrink, it could also return original object. */ /* But this gives the client warning of imminent disaster. */ BCOPY(p, result, sz); # ifndef IGNORE_FREE GC_free((ptr_t)cleared_p); # endif } return result; } # if defined(REDIRECT_MALLOC) && !defined(REDIRECT_REALLOC) # define REDIRECT_REALLOC GC_realloc # endif # ifdef REDIRECT_REALLOC /* As with malloc, avoid two levels of extra calls here. */ # define GC_debug_realloc_replacement(p, lb) \ GC_debug_realloc(p, lb, GC_DBG_EXTRAS) # if !defined(REDIRECT_MALLOC_IN_HEADER) void * realloc(void * p, size_t lb) { return REDIRECT_REALLOC(p, lb); } # endif # undef GC_debug_realloc_replacement # endif /* REDIRECT_REALLOC */ /* Allocate memory such that only pointers to near the */ /* beginning of the object are considered. */ /* We avoid holding allocation lock while we clear the memory. */ GC_API GC_ATTR_MALLOC void * GC_CALL GC_generic_malloc_ignore_off_page(size_t lb, int k) { return GC_generic_malloc_aligned(lb, k, IGNORE_OFF_PAGE, 0 /* align_m1 */); } GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_ignore_off_page(size_t lb) { return GC_generic_malloc_aligned(lb, NORMAL, IGNORE_OFF_PAGE, 0); } GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_atomic_ignore_off_page(size_t lb) { return GC_generic_malloc_aligned(lb, PTRFREE, IGNORE_OFF_PAGE, 0); } /* Increment GC_bytes_allocd from code that doesn't have direct access */ /* to GC_arrays. */ void GC_CALL GC_incr_bytes_allocd(size_t n) { GC_bytes_allocd += n; } /* The same for GC_bytes_freed. */ void GC_CALL GC_incr_bytes_freed(size_t n) { GC_bytes_freed += n; } GC_API size_t GC_CALL GC_get_expl_freed_bytes_since_gc(void) { return (size_t)GC_bytes_freed; } # ifdef PARALLEL_MARK STATIC volatile AO_t GC_bytes_allocd_tmp = 0; /* Number of bytes of memory allocated since */ /* we released the GC lock. Instead of */ /* reacquiring the GC lock just to add this in, */ /* we add it in the next time we reacquire */ /* the lock. (Atomically adding it doesn't */ /* work, since we would have to atomically */ /* update it in GC_malloc, which is too */ /* expensive.) */ # endif /* PARALLEL_MARK */ /* Return a list of 1 or more objects of the indicated size, linked */ /* through the first word in the object. This has the advantage that */ /* it acquires the allocation lock only once, and may greatly reduce */ /* time wasted contending for the allocation lock. Typical usage would */ /* be in a thread that requires many items of the same size. It would */ /* keep its own free list in thread-local storage, and call */ /* GC_malloc_many or friends to replenish it. (We do not round up */ /* object sizes, since a call indicates the intention to consume many */ /* objects of exactly this size.) */ /* We assume that the size is a multiple of GRANULE_BYTES. */ /* We return the free-list by assigning it to *result, since it is */ /* not safe to return, e.g. a linked list of pointer-free objects, */ /* since the collector would not retain the entire list if it were */ /* invoked just as we were returning. */ /* Note that the client should usually clear the link field. */ GC_API void GC_CALL GC_generic_malloc_many(size_t lb, int k, void **result) { void *op; void *p; void **opp; size_t lw; /* Length in words. */ size_t lg; /* Length in granules. */ signed_word my_bytes_allocd = 0; struct obj_kind * ok; struct hblk ** rlh; GC_ASSERT(lb != 0 && (lb & (GRANULE_BYTES-1)) == 0); /* Currently a single object is always allocated if manual VDB. */ /* TODO: GC_dirty should be called for each linked object (but */ /* the last one) to support multiple objects allocation. */ if (!SMALL_OBJ(lb) || GC_manual_vdb) { op = GC_generic_malloc_aligned(lb, k, 0 /* flags */, 0 /* align_m1 */); if (EXPECT(0 != op, TRUE)) obj_link(op) = 0; *result = op; # ifndef GC_DISABLE_INCREMENTAL if (GC_manual_vdb && GC_is_heap_ptr(result)) { GC_dirty_inner(result); REACHABLE_AFTER_DIRTY(op); } # endif return; } GC_ASSERT(k < MAXOBJKINDS); lw = BYTES_TO_WORDS(lb); lg = BYTES_TO_GRANULES(lb); if (EXPECT(get_have_errors(), FALSE)) GC_print_all_errors(); GC_INVOKE_FINALIZERS(); GC_DBG_COLLECT_AT_MALLOC(lb); if (!EXPECT(GC_is_initialized, TRUE)) GC_init(); LOCK(); /* Do our share of marking work */ if (GC_incremental && !GC_dont_gc) { ENTER_GC(); GC_collect_a_little_inner(1); EXIT_GC(); } /* First see if we can reclaim a page of objects waiting to be */ /* reclaimed. */ ok = &GC_obj_kinds[k]; rlh = ok -> ok_reclaim_list; if (rlh != NULL) { struct hblk * hbp; hdr * hhdr; while ((hbp = rlh[lg]) != NULL) { hhdr = HDR(hbp); rlh[lg] = hhdr -> hb_next; GC_ASSERT(hhdr -> hb_sz == lb); hhdr -> hb_last_reclaimed = (unsigned short) GC_gc_no; # ifdef PARALLEL_MARK if (GC_parallel) { signed_word my_bytes_allocd_tmp = (signed_word)AO_load(&GC_bytes_allocd_tmp); GC_ASSERT(my_bytes_allocd_tmp >= 0); /* We only decrement it while holding the GC lock. */ /* Thus we can't accidentally adjust it down in more */ /* than one thread simultaneously. */ if (my_bytes_allocd_tmp != 0) { (void)AO_fetch_and_add(&GC_bytes_allocd_tmp, (AO_t)(-my_bytes_allocd_tmp)); GC_bytes_allocd += my_bytes_allocd_tmp; } GC_acquire_mark_lock(); ++ GC_fl_builder_count; UNLOCK(); GC_release_mark_lock(); } # endif op = GC_reclaim_generic(hbp, hhdr, lb, ok -> ok_init, 0, &my_bytes_allocd); if (op != 0) { # ifdef PARALLEL_MARK if (GC_parallel) { *result = op; (void)AO_fetch_and_add(&GC_bytes_allocd_tmp, (AO_t)my_bytes_allocd); GC_acquire_mark_lock(); -- GC_fl_builder_count; if (GC_fl_builder_count == 0) GC_notify_all_builder(); # ifdef THREAD_SANITIZER GC_release_mark_lock(); LOCK(); GC_bytes_found += my_bytes_allocd; UNLOCK(); # else GC_bytes_found += my_bytes_allocd; /* The result may be inaccurate. */ GC_release_mark_lock(); # endif (void) GC_clear_stack(0); return; } # endif /* We also reclaimed memory, so we need to adjust */ /* that count. */ GC_bytes_found += my_bytes_allocd; GC_bytes_allocd += my_bytes_allocd; goto out; } # ifdef PARALLEL_MARK if (GC_parallel) { GC_acquire_mark_lock(); -- GC_fl_builder_count; if (GC_fl_builder_count == 0) GC_notify_all_builder(); GC_release_mark_lock(); LOCK(); /* The GC lock is needed for reclaim list access. We */ /* must decrement fl_builder_count before reacquiring */ /* the lock. Hopefully this path is rare. */ rlh = ok -> ok_reclaim_list; /* reload rlh after locking */ if (NULL == rlh) break; } # endif } } /* Next try to use prefix of global free list if there is one. */ /* We don't refill it, but we need to use it up before allocating */ /* a new block ourselves. */ opp = &(ok -> ok_freelist[lg]); if ((op = *opp) != NULL) { *opp = 0; my_bytes_allocd = 0; for (p = op; p != 0; p = obj_link(p)) { my_bytes_allocd += lb; if ((word)my_bytes_allocd >= HBLKSIZE) { *opp = obj_link(p); obj_link(p) = 0; break; } } GC_bytes_allocd += my_bytes_allocd; goto out; } /* Next try to allocate a new block worth of objects of this size. */ { struct hblk *h = GC_allochblk(lb, k, 0 /* flags */, 0 /* align_m1 */); if (h /* != NULL */) { /* CPPCHECK */ if (IS_UNCOLLECTABLE(k)) GC_set_hdr_marks(HDR(h)); GC_bytes_allocd += HBLKSIZE - HBLKSIZE % lb; # ifdef PARALLEL_MARK if (GC_parallel) { GC_acquire_mark_lock(); ++ GC_fl_builder_count; UNLOCK(); GC_release_mark_lock(); op = GC_build_fl(h, lw, (ok -> ok_init || GC_debugging_started), 0); *result = op; GC_acquire_mark_lock(); -- GC_fl_builder_count; if (GC_fl_builder_count == 0) GC_notify_all_builder(); GC_release_mark_lock(); (void) GC_clear_stack(0); return; } # endif op = GC_build_fl(h, lw, (ok -> ok_init || GC_debugging_started), 0); goto out; } } /* As a last attempt, try allocating a single object. Note that */ /* this may trigger a collection or expand the heap. */ op = GC_generic_malloc_inner(lb, k, 0 /* flags */); if (op != NULL) obj_link(op) = NULL; out: *result = op; UNLOCK(); (void) GC_clear_stack(0); } /* Note that the "atomic" version of this would be unsafe, since the */ /* links would not be seen by the collector. */ GC_API GC_ATTR_MALLOC void * GC_CALL GC_malloc_many(size_t lb) { void *result; size_t lg = ALLOC_REQUEST_GRANS(lb); GC_generic_malloc_many(GRANULES_TO_BYTES(lg), NORMAL, &result); return result; } /* TODO: The debugging version of GC_memalign and friends is tricky */ /* and currently missing. There are 2 major difficulties: */ /* - GC_base() should always point to the beginning of the allocated */ /* block (thus, for small objects allocation we should probably */ /* iterate over the list of free objects to find the one with the */ /* suitable alignment); */ /* - store_debug_info() should return the pointer of the object with */ /* the requested alignment (unlike the object header). */ GC_API GC_ATTR_MALLOC void * GC_CALL GC_memalign(size_t align, size_t lb) { size_t offset; ptr_t result; size_t align_m1 = align - 1; /* Check the alignment argument. */ if (EXPECT(0 == align || (align & align_m1) != 0, FALSE)) return NULL; if (align <= GRANULE_BYTES) return GC_malloc(lb); if (align >= HBLKSIZE/2 || lb >= HBLKSIZE/2) { return GC_clear_stack(GC_generic_malloc_aligned(lb, NORMAL, 0 /* flags */, align_m1)); } /* We could also try to make sure that the real rounded-up object size */ /* is a multiple of align. That would be correct up to HBLKSIZE. */ /* TODO: Not space efficient for big align values. */ result = (ptr_t)GC_malloc(SIZET_SAT_ADD(lb, align_m1)); /* It is OK not to check result for NULL as in that case */ /* GC_memalign returns NULL too since (0 + 0 % align) is 0. */ offset = (size_t)(word)result & align_m1; if (offset != 0) { offset = align - offset; if (!GC_all_interior_pointers) { GC_STATIC_ASSERT(VALID_OFFSET_SZ <= HBLKSIZE); GC_ASSERT(offset < VALID_OFFSET_SZ); GC_register_displacement(offset); } result += offset; } GC_ASSERT(((word)result & align_m1) == 0); return result; } /* This one exists largely to redirect posix_memalign for leaks finding. */ GC_API int GC_CALL GC_posix_memalign(void **memptr, size_t align, size_t lb) { size_t align_minus_one = align - 1; /* to workaround a cppcheck warning */ /* Check alignment properly. */ if (EXPECT(align < sizeof(void *) || (align_minus_one & align) != 0, FALSE)) { # ifdef MSWINCE return ERROR_INVALID_PARAMETER; # else return EINVAL; # endif } if ((*memptr = GC_memalign(align, lb)) == NULL) { # ifdef MSWINCE return ERROR_NOT_ENOUGH_MEMORY; # else return ENOMEM; # endif } return 0; } #ifndef GC_NO_VALLOC GC_API GC_ATTR_MALLOC void * GC_CALL GC_valloc(size_t lb) { if (!EXPECT(GC_is_initialized, TRUE)) GC_init(); GC_ASSERT(GC_real_page_size != 0); return GC_memalign(GC_real_page_size, lb); } GC_API GC_ATTR_MALLOC void * GC_CALL GC_pvalloc(size_t lb) { if (!EXPECT(GC_is_initialized, TRUE)) GC_init(); GC_ASSERT(GC_real_page_size != 0); lb = SIZET_SAT_ADD(lb, GC_real_page_size - 1) & ~(GC_real_page_size - 1); return GC_memalign(GC_real_page_size, lb); } #endif /* !GC_NO_VALLOC */ /* Provide a version of strdup() that uses the collector to allocate */ /* the copy of the string. */ GC_API GC_ATTR_MALLOC char * GC_CALL GC_strdup(const char *s) { char *copy; size_t lb; if (s == NULL) return NULL; lb = strlen(s) + 1; copy = (char *)GC_malloc_atomic(lb); if (EXPECT(NULL == copy, FALSE)) { # ifndef MSWINCE errno = ENOMEM; # endif return NULL; } BCOPY(s, copy, lb); return copy; } GC_API GC_ATTR_MALLOC char * GC_CALL GC_strndup(const char *str, size_t size) { char *copy; size_t len = strlen(str); /* str is expected to be non-NULL */ if (EXPECT(len > size, FALSE)) len = size; copy = (char *)GC_malloc_atomic(len + 1); if (EXPECT(NULL == copy, FALSE)) { # ifndef MSWINCE errno = ENOMEM; # endif return NULL; } if (EXPECT(len > 0, TRUE)) BCOPY(str, copy, len); copy[len] = '\0'; return copy; } #ifdef GC_REQUIRE_WCSDUP # include /* for wcslen() */ GC_API GC_ATTR_MALLOC wchar_t * GC_CALL GC_wcsdup(const wchar_t *str) { size_t lb = (wcslen(str) + 1) * sizeof(wchar_t); wchar_t *copy = (wchar_t *)GC_malloc_atomic(lb); if (EXPECT(NULL == copy, FALSE)) { # ifndef MSWINCE errno = ENOMEM; # endif return NULL; } BCOPY(str, copy, lb); return copy; } #endif /* GC_REQUIRE_WCSDUP */ #ifndef CPPCHECK GC_API void * GC_CALL GC_malloc_stubborn(size_t lb) { return GC_malloc(lb); } GC_API void GC_CALL GC_change_stubborn(const void *p) { UNUSED_ARG(p); } #endif /* !CPPCHECK */ GC_API void GC_CALL GC_end_stubborn_change(const void *p) { GC_dirty(p); /* entire object */ } GC_API void GC_CALL GC_ptr_store_and_dirty(void *p, const void *q) { *(const void **)p = q; GC_dirty(p); REACHABLE_AFTER_DIRTY(q); }