diff options
author | nobody <> | 2002-06-19 16:55:29 +0000 |
---|---|---|
committer | nobody <> | 2002-06-19 16:55:29 +0000 |
commit | b4e397edc3619279f3e370d5c76551a7f9e843d7 (patch) | |
tree | 4ceb9a02cb03fb841b79cb83367f228e6060275d /gdb/ada-lang.c | |
parent | 2c830de8f260ebb1feb0b13c17eefdf12722d9f7 (diff) | |
download | binutils-gdb-b4e397edc3619279f3e370d5c76551a7f9e843d7.tar.gz |
This commit was manufactured by cvs2svn to create branch
'kseitz_interps-20020528-branch'.
Cherrypick from master 2002-06-19 16:55:28 UTC Daniel Jacobowitz <drow@false.org> '2002-06-19 Daniel Jacobowitz <drow@mvista.com>':
bfd/cpu-frv.c
bfd/elf32-frv.c
gdb/ada-lang.c
gdb/config/sparc/nbsd.mt
gdb/i386-sol2-tdep.c
include/elf/frv.h
include/gdb/sim-arm.h
opcodes/frv-asm.c
opcodes/frv-desc.c
opcodes/frv-desc.h
opcodes/frv-dis.c
opcodes/frv-ibld.c
opcodes/frv-opc.c
opcodes/frv-opc.h
sim/mips/mdmx.c
Diffstat (limited to 'gdb/ada-lang.c')
-rw-r--r-- | gdb/ada-lang.c | 8618 |
1 files changed, 8618 insertions, 0 deletions
diff --git a/gdb/ada-lang.c b/gdb/ada-lang.c new file mode 100644 index 00000000000..db1d7d4f185 --- /dev/null +++ b/gdb/ada-lang.c @@ -0,0 +1,8618 @@ +/* Ada language support routines for GDB, the GNU debugger. Copyright + 1992, 1993, 1994, 1997, 1998, 1999, 2000 Free Software Foundation, Inc. + +This file is part of GDB. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ + +#include <stdio.h> +#include <string.h> +#include <ctype.h> +#include <stdarg.h> +#include "demangle.h" +#include "defs.h" +#include "symtab.h" +#include "gdbtypes.h" +#include "gdbcmd.h" +#include "expression.h" +#include "parser-defs.h" +#include "language.h" +#include "c-lang.h" +#include "inferior.h" +#include "symfile.h" +#include "objfiles.h" +#include "breakpoint.h" +#include "gdbcore.h" +#include "ada-lang.h" +#ifdef UI_OUT +#include "ui-out.h" +#endif + +struct cleanup* unresolved_names; + +void extract_string (CORE_ADDR addr, char *buf); + +static struct type * ada_create_fundamental_type (struct objfile *, int); + +static void modify_general_field (char *, LONGEST, int, int); + +static struct type* desc_base_type (struct type*); + +static struct type* desc_bounds_type (struct type*); + +static struct value* desc_bounds (struct value*); + +static int fat_pntr_bounds_bitpos (struct type*); + +static int fat_pntr_bounds_bitsize (struct type*); + +static struct type* desc_data_type (struct type*); + +static struct value* desc_data (struct value*); + +static int fat_pntr_data_bitpos (struct type*); + +static int fat_pntr_data_bitsize (struct type*); + +static struct value* desc_one_bound (struct value*, int, int); + +static int desc_bound_bitpos (struct type*, int, int); + +static int desc_bound_bitsize (struct type*, int, int); + +static struct type* desc_index_type (struct type*, int); + +static int desc_arity (struct type*); + +static int ada_type_match (struct type*, struct type*, int); + +static int ada_args_match (struct symbol*, struct value**, int); + +static struct value* place_on_stack (struct value*, CORE_ADDR*); + +static struct value* convert_actual (struct value*, struct type*, CORE_ADDR*); + +static struct value* make_array_descriptor (struct type*, struct value*, CORE_ADDR*); + +static void ada_add_block_symbols (struct block*, const char*, + namespace_enum, struct objfile*, int); + +static void fill_in_ada_prototype (struct symbol*); + +static int is_nonfunction (struct symbol**, int); + +static void add_defn_to_vec (struct symbol*, struct block*); + +static struct partial_symbol* +ada_lookup_partial_symbol (struct partial_symtab*, const char*, + int, namespace_enum, int); + +static struct symtab* symtab_for_sym (struct symbol*); + +static struct value* ada_resolve_subexp (struct expression**, int*, int, struct type*); + +static void replace_operator_with_call (struct expression**, int, int, int, + struct symbol*, struct block*); + +static int possible_user_operator_p (enum exp_opcode, struct value**); + +static const char* ada_op_name (enum exp_opcode); + +static int numeric_type_p (struct type*); + +static int integer_type_p (struct type*); + +static int scalar_type_p (struct type*); + +static int discrete_type_p (struct type*); + +static char* extended_canonical_line_spec (struct symtab_and_line, const char*); + +static struct value* evaluate_subexp (struct type*, struct expression*, int*, enum noside); + +static struct value* evaluate_subexp_type (struct expression*, int*); + +static struct type * ada_create_fundamental_type (struct objfile*, int); + +static int is_dynamic_field (struct type *, int); + +static struct type* +to_fixed_variant_branch_type (struct type*, char*, CORE_ADDR, struct value*); + +static struct type* to_fixed_range_type (char*, struct value*, struct objfile*); + +static struct type* to_static_fixed_type (struct type*); + +static struct value* unwrap_value (struct value*); + +static struct type* packed_array_type (struct type*, long*); + +static struct type* decode_packed_array_type (struct type*); + +static struct value* decode_packed_array (struct value*); + +static struct value* value_subscript_packed (struct value*, int, struct value**); + +static struct value* coerce_unspec_val_to_type (struct value*, long, struct type*); + +static struct value* get_var_value (char*, char*); + +static int lesseq_defined_than (struct symbol*, struct symbol*); + +static int equiv_types (struct type*, struct type*); + +static int is_name_suffix (const char*); + +static int wild_match (const char*, int, const char*); + +static struct symtabs_and_lines find_sal_from_funcs_and_line (const char*, int, struct symbol**, int); + +static int +find_line_in_linetable (struct linetable*, int, struct symbol**, int, int*); + +static int find_next_line_in_linetable (struct linetable*, int, int, int); + +static struct symtabs_and_lines all_sals_for_line (const char*, int, char***); + +static void read_all_symtabs (const char*); + +static int is_plausible_func_for_line (struct symbol*, int); + +static struct value* ada_coerce_ref (struct value*); + +static struct value* value_pos_atr (struct value*); + +static struct value* value_val_atr (struct type*, struct value*); + +static struct symbol* standard_lookup (const char*, namespace_enum); + +extern void markTimeStart (int index); +extern void markTimeStop (int index); + + + +/* Maximum-sized dynamic type. */ +static unsigned int varsize_limit; + +static const char* ada_completer_word_break_characters = + " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-"; + +/* The name of the symbol to use to get the name of the main subprogram */ +#define ADA_MAIN_PROGRAM_SYMBOL_NAME "__gnat_ada_main_program_name" + + /* Utilities */ + +/* extract_string + * + * read the string located at ADDR from the inferior and store the + * result into BUF + */ +void +extract_string (CORE_ADDR addr, char *buf) +{ + int char_index = 0; + + /* Loop, reading one byte at a time, until we reach the '\000' + end-of-string marker */ + do + { + target_read_memory (addr + char_index * sizeof (char), + buf + char_index * sizeof (char), + sizeof (char)); + char_index++; + } + while (buf[char_index - 1] != '\000'); +} + +/* Assuming *OLD_VECT points to an array of *SIZE objects of size + ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects, + updating *OLD_VECT and *SIZE as necessary. */ + +void +grow_vect (old_vect, size, min_size, element_size) + void** old_vect; + size_t* size; + size_t min_size; + int element_size; +{ + if (*size < min_size) { + *size *= 2; + if (*size < min_size) + *size = min_size; + *old_vect = xrealloc (*old_vect, *size * element_size); + } +} + +/* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing + suffix of FIELD_NAME beginning "___" */ + +static int +field_name_match (field_name, target) + const char *field_name; + const char *target; +{ + int len = strlen (target); + return + STREQN (field_name, target, len) + && (field_name[len] == '\0' + || (STREQN (field_name + len, "___", 3) + && ! STREQ (field_name + strlen (field_name) - 6, "___XVN"))); +} + + +/* The length of the prefix of NAME prior to any "___" suffix. */ + +int +ada_name_prefix_len (name) + const char* name; +{ + if (name == NULL) + return 0; + else + { + const char* p = strstr (name, "___"); + if (p == NULL) + return strlen (name); + else + return p - name; + } +} + +/* SUFFIX is a suffix of STR. False if STR is null. */ +static int +is_suffix (const char* str, const char* suffix) +{ + int len1, len2; + if (str == NULL) + return 0; + len1 = strlen (str); + len2 = strlen (suffix); + return (len1 >= len2 && STREQ (str + len1 - len2, suffix)); +} + +/* Create a value of type TYPE whose contents come from VALADDR, if it + * is non-null, and whose memory address (in the inferior) is + * ADDRESS. */ +struct value* +value_from_contents_and_address (type, valaddr, address) + struct type* type; + char* valaddr; + CORE_ADDR address; +{ + struct value* v = allocate_value (type); + if (valaddr == NULL) + VALUE_LAZY (v) = 1; + else + memcpy (VALUE_CONTENTS_RAW (v), valaddr, TYPE_LENGTH (type)); + VALUE_ADDRESS (v) = address; + if (address != 0) + VALUE_LVAL (v) = lval_memory; + return v; +} + +/* The contents of value VAL, beginning at offset OFFSET, treated as a + value of type TYPE. The result is an lval in memory if VAL is. */ + +static struct value* +coerce_unspec_val_to_type (val, offset, type) + struct value* val; + long offset; + struct type *type; +{ + CHECK_TYPEDEF (type); + if (VALUE_LVAL (val) == lval_memory) + return value_at_lazy (type, + VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset, NULL); + else + { + struct value* result = allocate_value (type); + VALUE_LVAL (result) = not_lval; + if (VALUE_ADDRESS (val) == 0) + memcpy (VALUE_CONTENTS_RAW (result), VALUE_CONTENTS (val) + offset, + TYPE_LENGTH (type) > TYPE_LENGTH (VALUE_TYPE (val)) + ? TYPE_LENGTH (VALUE_TYPE (val)) : TYPE_LENGTH (type)); + else + { + VALUE_ADDRESS (result) = + VALUE_ADDRESS (val) + VALUE_OFFSET (val) + offset; + VALUE_LAZY (result) = 1; + } + return result; + } +} + +static char* +cond_offset_host (valaddr, offset) + char* valaddr; + long offset; +{ + if (valaddr == NULL) + return NULL; + else + return valaddr + offset; +} + +static CORE_ADDR +cond_offset_target (address, offset) + CORE_ADDR address; + long offset; +{ + if (address == 0) + return 0; + else + return address + offset; +} + +/* Perform execute_command on the result of concatenating all + arguments up to NULL. */ +static void +do_command (const char* arg, ...) +{ + int len; + char* cmd; + const char* s; + va_list ap; + + va_start (ap, arg); + len = 0; + s = arg; + cmd = ""; + for (; s != NULL; s = va_arg (ap, const char*)) + { + char* cmd1; + len += strlen (s); + cmd1 = alloca (len+1); + strcpy (cmd1, cmd); + strcat (cmd1, s); + cmd = cmd1; + } + va_end (ap); + execute_command (cmd, 0); +} + + + /* Language Selection */ + +/* If the main program is in Ada, return language_ada, otherwise return LANG + (the main program is in Ada iif the adainit symbol is found). + + MAIN_PST is not used. */ + +enum language +ada_update_initial_language (lang, main_pst) + enum language lang; + struct partial_symtab* main_pst; +{ + if (lookup_minimal_symbol ("adainit", (const char*) NULL, + (struct objfile*) NULL) != NULL) + /* return language_ada; */ + /* FIXME: language_ada should be defined in defs.h */ + return language_unknown; + + return lang; +} + + + /* Symbols */ + +/* Table of Ada operators and their GNAT-mangled names. Last entry is pair + of NULLs. */ + +const struct ada_opname_map ada_opname_table[] = +{ + { "Oadd", "\"+\"", BINOP_ADD }, + { "Osubtract", "\"-\"", BINOP_SUB }, + { "Omultiply", "\"*\"", BINOP_MUL }, + { "Odivide", "\"/\"", BINOP_DIV }, + { "Omod", "\"mod\"", BINOP_MOD }, + { "Orem", "\"rem\"", BINOP_REM }, + { "Oexpon", "\"**\"", BINOP_EXP }, + { "Olt", "\"<\"", BINOP_LESS }, + { "Ole", "\"<=\"", BINOP_LEQ }, + { "Ogt", "\">\"", BINOP_GTR }, + { "Oge", "\">=\"", BINOP_GEQ }, + { "Oeq", "\"=\"", BINOP_EQUAL }, + { "One", "\"/=\"", BINOP_NOTEQUAL }, + { "Oand", "\"and\"", BINOP_BITWISE_AND }, + { "Oor", "\"or\"", BINOP_BITWISE_IOR }, + { "Oxor", "\"xor\"", BINOP_BITWISE_XOR }, + { "Oconcat", "\"&\"", BINOP_CONCAT }, + { "Oabs", "\"abs\"", UNOP_ABS }, + { "Onot", "\"not\"", UNOP_LOGICAL_NOT }, + { "Oadd", "\"+\"", UNOP_PLUS }, + { "Osubtract", "\"-\"", UNOP_NEG }, + { NULL, NULL } +}; + +/* True if STR should be suppressed in info listings. */ +static int +is_suppressed_name (str) + const char* str; +{ + if (STREQN (str, "_ada_", 5)) + str += 5; + if (str[0] == '_' || str[0] == '\000') + return 1; + else + { + const char* p; + const char* suffix = strstr (str, "___"); + if (suffix != NULL && suffix[3] != 'X') + return 1; + if (suffix == NULL) + suffix = str + strlen (str); + for (p = suffix-1; p != str; p -= 1) + if (isupper (*p)) + { + int i; + if (p[0] == 'X' && p[-1] != '_') + goto OK; + if (*p != 'O') + return 1; + for (i = 0; ada_opname_table[i].mangled != NULL; i += 1) + if (STREQN (ada_opname_table[i].mangled, p, + strlen (ada_opname_table[i].mangled))) + goto OK; + return 1; + OK: ; + } + return 0; + } +} + +/* The "mangled" form of DEMANGLED, according to GNAT conventions. + * The result is valid until the next call to ada_mangle. */ +char * +ada_mangle (demangled) + const char* demangled; +{ + static char* mangling_buffer = NULL; + static size_t mangling_buffer_size = 0; + const char* p; + int k; + + if (demangled == NULL) + return NULL; + + GROW_VECT (mangling_buffer, mangling_buffer_size, 2*strlen (demangled) + 10); + + k = 0; + for (p = demangled; *p != '\0'; p += 1) + { + if (*p == '.') + { + mangling_buffer[k] = mangling_buffer[k+1] = '_'; + k += 2; + } + else if (*p == '"') + { + const struct ada_opname_map* mapping; + + for (mapping = ada_opname_table; + mapping->mangled != NULL && + ! STREQN (mapping->demangled, p, strlen (mapping->demangled)); + p += 1) + ; + if (mapping->mangled == NULL) + error ("invalid Ada operator name: %s", p); + strcpy (mangling_buffer+k, mapping->mangled); + k += strlen (mapping->mangled); + break; + } + else + { + mangling_buffer[k] = *p; + k += 1; + } + } + + mangling_buffer[k] = '\0'; + return mangling_buffer; +} + +/* Return NAME folded to lower case, or, if surrounded by single + * quotes, unfolded, but with the quotes stripped away. Result good + * to next call. */ +char* +ada_fold_name (const char* name) +{ + static char* fold_buffer = NULL; + static size_t fold_buffer_size = 0; + + int len = strlen (name); + GROW_VECT (fold_buffer, fold_buffer_size, len+1); + + if (name[0] == '\'') + { + strncpy (fold_buffer, name+1, len-2); + fold_buffer[len-2] = '\000'; + } + else + { + int i; + for (i = 0; i <= len; i += 1) + fold_buffer[i] = tolower (name[i]); + } + + return fold_buffer; +} + +/* Demangle: + 1. Discard final __{DIGIT}+ or ${DIGIT}+ + 2. Convert other instances of embedded "__" to `.'. + 3. Discard leading _ada_. + 4. Convert operator names to the appropriate quoted symbols. + 5. Remove everything after first ___ if it is followed by + 'X'. + 6. Replace TK__ with __, and a trailing B or TKB with nothing. + 7. Put symbols that should be suppressed in <...> brackets. + 8. Remove trailing X[bn]* suffix (indicating names in package bodies). + The resulting string is valid until the next call of ada_demangle. + */ + +char * +ada_demangle (mangled) + const char* mangled; +{ + int i, j; + int len0; + const char* p; + char* demangled; + int at_start_name; + static char* demangling_buffer = NULL; + static size_t demangling_buffer_size = 0; + + if (STREQN (mangled, "_ada_", 5)) + mangled += 5; + + if (mangled[0] == '_' || mangled[0] == '<') + goto Suppress; + + p = strstr (mangled, "___"); + if (p == NULL) + len0 = strlen (mangled); + else + { + if (p[3] == 'X') + len0 = p - mangled; + else + goto Suppress; + } + if (len0 > 3 && STREQ (mangled + len0 - 3, "TKB")) + len0 -= 3; + if (len0 > 1 && STREQ (mangled + len0 - 1, "B")) + len0 -= 1; + + /* Make demangled big enough for possible expansion by operator name. */ + GROW_VECT (demangling_buffer, demangling_buffer_size, 2*len0+1); + demangled = demangling_buffer; + + if (isdigit (mangled[len0 - 1])) { + for (i = len0-2; i >= 0 && isdigit (mangled[i]); i -= 1) + ; + if (i > 1 && mangled[i] == '_' && mangled[i-1] == '_') + len0 = i - 1; + else if (mangled[i] == '$') + len0 = i; + } + + for (i = 0, j = 0; i < len0 && ! isalpha (mangled[i]); i += 1, j += 1) + demangled[j] = mangled[i]; + + at_start_name = 1; + while (i < len0) + { + if (at_start_name && mangled[i] == 'O') + { + int k; + for (k = 0; ada_opname_table[k].mangled != NULL; k += 1) + { + int op_len = strlen (ada_opname_table[k].mangled); + if (STREQN (ada_opname_table[k].mangled+1, mangled+i+1, op_len-1) + && ! isalnum (mangled[i + op_len])) + { + strcpy (demangled + j, ada_opname_table[k].demangled); + at_start_name = 0; + i += op_len; + j += strlen (ada_opname_table[k].demangled); + break; + } + } + if (ada_opname_table[k].mangled != NULL) + continue; + } + at_start_name = 0; + + if (i < len0-4 && STREQN (mangled+i, "TK__", 4)) + i += 2; + if (mangled[i] == 'X' && i != 0 && isalnum (mangled[i-1])) + { + do + i += 1; + while (i < len0 && (mangled[i] == 'b' || mangled[i] == 'n')); + if (i < len0) + goto Suppress; + } + else if (i < len0-2 && mangled[i] == '_' && mangled[i+1] == '_') + { + demangled[j] = '.'; + at_start_name = 1; + i += 2; j += 1; + } + else + { + demangled[j] = mangled[i]; + i += 1; j += 1; + } + } + demangled[j] = '\000'; + + for (i = 0; demangled[i] != '\0'; i += 1) + if (isupper (demangled[i]) || demangled[i] == ' ') + goto Suppress; + + return demangled; + +Suppress: + GROW_VECT (demangling_buffer, demangling_buffer_size, + strlen (mangled) + 3); + demangled = demangling_buffer; + if (mangled[0] == '<') + strcpy (demangled, mangled); + else + sprintf (demangled, "<%s>", mangled); + return demangled; + +} + +/* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing + * suffixes that encode debugging information or leading _ada_ on + * SYM_NAME (see is_name_suffix commentary for the debugging + * information that is ignored). If WILD, then NAME need only match a + * suffix of SYM_NAME minus the same suffixes. Also returns 0 if + * either argument is NULL. */ + +int +ada_match_name (sym_name, name, wild) + const char* sym_name; + const char* name; + int wild; +{ + if (sym_name == NULL || name == NULL) + return 0; + else if (wild) + return wild_match (name, strlen (name), sym_name); + else { + int len_name = strlen (name); + return (STREQN (sym_name, name, len_name) + && is_name_suffix (sym_name+len_name)) + || (STREQN (sym_name, "_ada_", 5) + && STREQN (sym_name+5, name, len_name) + && is_name_suffix (sym_name+len_name+5)); + } +} + +/* True (non-zero) iff in Ada mode, the symbol SYM should be + suppressed in info listings. */ + +int +ada_suppress_symbol_printing (sym) + struct symbol *sym; +{ + if (SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE) + return 1; + else + return is_suppressed_name (SYMBOL_NAME (sym)); +} + + + /* Arrays */ + +/* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of + array descriptors. */ + +static char* bound_name[] = { + "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3", + "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7" +}; + +/* Maximum number of array dimensions we are prepared to handle. */ + +#define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char*))) + +/* Like modify_field, but allows bitpos > wordlength. */ + +static void +modify_general_field (addr, fieldval, bitpos, bitsize) + char *addr; + LONGEST fieldval; + int bitpos, bitsize; +{ + modify_field (addr + sizeof (LONGEST) * bitpos / (8 * sizeof (LONGEST)), + fieldval, bitpos % (8 * sizeof (LONGEST)), + bitsize); +} + + +/* The desc_* routines return primitive portions of array descriptors + (fat pointers). */ + +/* The descriptor or array type, if any, indicated by TYPE; removes + level of indirection, if needed. */ +static struct type* +desc_base_type (type) + struct type* type; +{ + if (type == NULL) + return NULL; + CHECK_TYPEDEF (type); + if (type != NULL && TYPE_CODE (type) == TYPE_CODE_PTR) + return check_typedef (TYPE_TARGET_TYPE (type)); + else + return type; +} + +/* True iff TYPE indicates a "thin" array pointer type. */ +static int +is_thin_pntr (struct type* type) +{ + return + is_suffix (ada_type_name (desc_base_type (type)), "___XUT") + || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE"); +} + +/* The descriptor type for thin pointer type TYPE. */ +static struct type* +thin_descriptor_type (struct type* type) +{ + struct type* base_type = desc_base_type (type); + if (base_type == NULL) + return NULL; + if (is_suffix (ada_type_name (base_type), "___XVE")) + return base_type; + else + { + struct type* alt_type = + ada_find_parallel_type (base_type, "___XVE"); + if (alt_type == NULL) + return base_type; + else + return alt_type; + } +} + +/* A pointer to the array data for thin-pointer value VAL. */ +static struct value* +thin_data_pntr (struct value* val) +{ + struct type* type = VALUE_TYPE (val); + if (TYPE_CODE (type) == TYPE_CODE_PTR) + return value_cast (desc_data_type (thin_descriptor_type (type)), + value_copy (val)); + else + return value_from_longest (desc_data_type (thin_descriptor_type (type)), + VALUE_ADDRESS (val) + VALUE_OFFSET (val)); +} + +/* True iff TYPE indicates a "thick" array pointer type. */ +static int +is_thick_pntr (struct type* type) +{ + type = desc_base_type (type); + return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT + && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL); +} + +/* If TYPE is the type of an array descriptor (fat or thin pointer) or a + pointer to one, the type of its bounds data; otherwise, NULL. */ +static struct type* +desc_bounds_type (type) + struct type* type; +{ + struct type* r; + + type = desc_base_type (type); + + if (type == NULL) + return NULL; + else if (is_thin_pntr (type)) + { + type = thin_descriptor_type (type); + if (type == NULL) + return NULL; + r = lookup_struct_elt_type (type, "BOUNDS", 1); + if (r != NULL) + return check_typedef (r); + } + else if (TYPE_CODE (type) == TYPE_CODE_STRUCT) + { + r = lookup_struct_elt_type (type, "P_BOUNDS", 1); + if (r != NULL) + return check_typedef (TYPE_TARGET_TYPE (check_typedef (r))); + } + return NULL; +} + +/* If ARR is an array descriptor (fat or thin pointer), or pointer to + one, a pointer to its bounds data. Otherwise NULL. */ +static struct value* +desc_bounds (arr) + struct value* arr; +{ + struct type* type = check_typedef (VALUE_TYPE (arr)); + if (is_thin_pntr (type)) + { + struct type* bounds_type = desc_bounds_type (thin_descriptor_type (type)); + LONGEST addr; + + if (desc_bounds_type == NULL) + error ("Bad GNAT array descriptor"); + + /* NOTE: The following calculation is not really kosher, but + since desc_type is an XVE-encoded type (and shouldn't be), + the correct calculation is a real pain. FIXME (and fix GCC). */ + if (TYPE_CODE (type) == TYPE_CODE_PTR) + addr = value_as_long (arr); + else + addr = VALUE_ADDRESS (arr) + VALUE_OFFSET (arr); + + return + value_from_longest (lookup_pointer_type (bounds_type), + addr - TYPE_LENGTH (bounds_type)); + } + + else if (is_thick_pntr (type)) + return value_struct_elt (&arr, NULL, "P_BOUNDS", NULL, + "Bad GNAT array descriptor"); + else + return NULL; +} + +/* If TYPE is the type of an array-descriptor (fat pointer), the bit + position of the field containing the address of the bounds data. */ +static int +fat_pntr_bounds_bitpos (type) + struct type* type; +{ + return TYPE_FIELD_BITPOS (desc_base_type (type), 1); +} + +/* If TYPE is the type of an array-descriptor (fat pointer), the bit + size of the field containing the address of the bounds data. */ +static int +fat_pntr_bounds_bitsize (type) + struct type* type; +{ + type = desc_base_type (type); + + if (TYPE_FIELD_BITSIZE (type, 1) > 0) + return TYPE_FIELD_BITSIZE (type, 1); + else + return 8 * TYPE_LENGTH (check_typedef (TYPE_FIELD_TYPE (type, 1))); +} + +/* If TYPE is the type of an array descriptor (fat or thin pointer) or a + pointer to one, the type of its array data (a + pointer-to-array-with-no-bounds type); otherwise, NULL. Use + ada_type_of_array to get an array type with bounds data. */ +static struct type* +desc_data_type (type) + struct type* type; +{ + type = desc_base_type (type); + + /* NOTE: The following is bogus; see comment in desc_bounds. */ + if (is_thin_pntr (type)) + return lookup_pointer_type + (desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type),1))); + else if (is_thick_pntr (type)) + return lookup_struct_elt_type (type, "P_ARRAY", 1); + else + return NULL; +} + +/* If ARR is an array descriptor (fat or thin pointer), a pointer to + its array data. */ +static struct value* +desc_data (arr) + struct value* arr; +{ + struct type* type = VALUE_TYPE (arr); + if (is_thin_pntr (type)) + return thin_data_pntr (arr); + else if (is_thick_pntr (type)) + return value_struct_elt (&arr, NULL, "P_ARRAY", NULL, + "Bad GNAT array descriptor"); + else + return NULL; +} + + +/* If TYPE is the type of an array-descriptor (fat pointer), the bit + position of the field containing the address of the data. */ +static int +fat_pntr_data_bitpos (type) + struct type* type; +{ + return TYPE_FIELD_BITPOS (desc_base_type (type), 0); +} + +/* If TYPE is the type of an array-descriptor (fat pointer), the bit + size of the field containing the address of the data. */ +static int +fat_pntr_data_bitsize (type) + struct type* type; +{ + type = desc_base_type (type); + + if (TYPE_FIELD_BITSIZE (type, 0) > 0) + return TYPE_FIELD_BITSIZE (type, 0); + else + return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)); +} + +/* If BOUNDS is an array-bounds structure (or pointer to one), return + the Ith lower bound stored in it, if WHICH is 0, and the Ith upper + bound, if WHICH is 1. The first bound is I=1. */ +static struct value* +desc_one_bound (bounds, i, which) + struct value* bounds; + int i; + int which; +{ + return value_struct_elt (&bounds, NULL, bound_name[2*i+which-2], NULL, + "Bad GNAT array descriptor bounds"); +} + +/* If BOUNDS is an array-bounds structure type, return the bit position + of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper + bound, if WHICH is 1. The first bound is I=1. */ +static int +desc_bound_bitpos (type, i, which) + struct type* type; + int i; + int which; +{ + return TYPE_FIELD_BITPOS (desc_base_type (type), 2*i+which-2); +} + +/* If BOUNDS is an array-bounds structure type, return the bit field size + of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper + bound, if WHICH is 1. The first bound is I=1. */ +static int +desc_bound_bitsize (type, i, which) + struct type* type; + int i; + int which; +{ + type = desc_base_type (type); + + if (TYPE_FIELD_BITSIZE (type, 2*i+which-2) > 0) + return TYPE_FIELD_BITSIZE (type, 2*i+which-2); + else + return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2*i+which-2)); +} + +/* If TYPE is the type of an array-bounds structure, the type of its + Ith bound (numbering from 1). Otherwise, NULL. */ +static struct type* +desc_index_type (type, i) + struct type* type; + int i; +{ + type = desc_base_type (type); + + if (TYPE_CODE (type) == TYPE_CODE_STRUCT) + return lookup_struct_elt_type (type, bound_name[2*i-2], 1); + else + return NULL; +} + +/* The number of index positions in the array-bounds type TYPE. 0 + if TYPE is NULL. */ +static int +desc_arity (type) + struct type* type; +{ + type = desc_base_type (type); + + if (type != NULL) + return TYPE_NFIELDS (type) / 2; + return 0; +} + + +/* Non-zero iff type is a simple array type (or pointer to one). */ +int +ada_is_simple_array (type) + struct type* type; +{ + if (type == NULL) + return 0; + CHECK_TYPEDEF (type); + return (TYPE_CODE (type) == TYPE_CODE_ARRAY + || (TYPE_CODE (type) == TYPE_CODE_PTR + && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_ARRAY)); +} + +/* Non-zero iff type belongs to a GNAT array descriptor. */ +int +ada_is_array_descriptor (type) + struct type* type; +{ + struct type* data_type = desc_data_type (type); + + if (type == NULL) + return 0; + CHECK_TYPEDEF (type); + return + data_type != NULL + && ((TYPE_CODE (data_type) == TYPE_CODE_PTR + && TYPE_TARGET_TYPE (data_type) != NULL + && TYPE_CODE (TYPE_TARGET_TYPE (data_type)) == TYPE_CODE_ARRAY) + || + TYPE_CODE (data_type) == TYPE_CODE_ARRAY) + && desc_arity (desc_bounds_type (type)) > 0; +} + +/* Non-zero iff type is a partially mal-formed GNAT array + descriptor. (FIXME: This is to compensate for some problems with + debugging output from GNAT. Re-examine periodically to see if it + is still needed. */ +int +ada_is_bogus_array_descriptor (type) + struct type *type; +{ + return + type != NULL + && TYPE_CODE (type) == TYPE_CODE_STRUCT + && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL + || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL) + && ! ada_is_array_descriptor (type); +} + + +/* If ARR has a record type in the form of a standard GNAT array descriptor, + (fat pointer) returns the type of the array data described---specifically, + a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled + in from the descriptor; otherwise, they are left unspecified. If + the ARR denotes a null array descriptor and BOUNDS is non-zero, + returns NULL. The result is simply the type of ARR if ARR is not + a descriptor. */ +struct type* +ada_type_of_array (arr, bounds) + struct value* arr; + int bounds; +{ + if (ada_is_packed_array_type (VALUE_TYPE (arr))) + return decode_packed_array_type (VALUE_TYPE (arr)); + + if (! ada_is_array_descriptor (VALUE_TYPE (arr))) + return VALUE_TYPE (arr); + + if (! bounds) + return check_typedef (TYPE_TARGET_TYPE (desc_data_type (VALUE_TYPE (arr)))); + else + { + struct type* elt_type; + int arity; + struct value* descriptor; + struct objfile *objf = TYPE_OBJFILE (VALUE_TYPE (arr)); + + elt_type = ada_array_element_type (VALUE_TYPE (arr), -1); + arity = ada_array_arity (VALUE_TYPE (arr)); + + if (elt_type == NULL || arity == 0) + return check_typedef (VALUE_TYPE (arr)); + + descriptor = desc_bounds (arr); + if (value_as_long (descriptor) == 0) + return NULL; + while (arity > 0) { + struct type* range_type = alloc_type (objf); + struct type* array_type = alloc_type (objf); + struct value* low = desc_one_bound (descriptor, arity, 0); + struct value* high = desc_one_bound (descriptor, arity, 1); + arity -= 1; + + create_range_type (range_type, VALUE_TYPE (low), + (int) value_as_long (low), + (int) value_as_long (high)); + elt_type = create_array_type (array_type, elt_type, range_type); + } + + return lookup_pointer_type (elt_type); + } +} + +/* If ARR does not represent an array, returns ARR unchanged. + Otherwise, returns either a standard GDB array with bounds set + appropriately or, if ARR is a non-null fat pointer, a pointer to a standard + GDB array. Returns NULL if ARR is a null fat pointer. */ +struct value* +ada_coerce_to_simple_array_ptr (arr) + struct value* arr; +{ + if (ada_is_array_descriptor (VALUE_TYPE (arr))) + { + struct type* arrType = ada_type_of_array (arr, 1); + if (arrType == NULL) + return NULL; + return value_cast (arrType, value_copy (desc_data (arr))); + } + else if (ada_is_packed_array_type (VALUE_TYPE (arr))) + return decode_packed_array (arr); + else + return arr; +} + +/* If ARR does not represent an array, returns ARR unchanged. + Otherwise, returns a standard GDB array describing ARR (which may + be ARR itself if it already is in the proper form). */ +struct value* +ada_coerce_to_simple_array (arr) + struct value* arr; +{ + if (ada_is_array_descriptor (VALUE_TYPE (arr))) + { + struct value* arrVal = ada_coerce_to_simple_array_ptr (arr); + if (arrVal == NULL) + error ("Bounds unavailable for null array pointer."); + return value_ind (arrVal); + } + else if (ada_is_packed_array_type (VALUE_TYPE (arr))) + return decode_packed_array (arr); + else + return arr; +} + +/* If TYPE represents a GNAT array type, return it translated to an + ordinary GDB array type (possibly with BITSIZE fields indicating + packing). For other types, is the identity. */ +struct type* +ada_coerce_to_simple_array_type (type) + struct type* type; +{ + struct value* mark = value_mark (); + struct value* dummy = value_from_longest (builtin_type_long, 0); + struct type* result; + VALUE_TYPE (dummy) = type; + result = ada_type_of_array (dummy, 0); + value_free_to_mark (dummy); + return result; +} + +/* Non-zero iff TYPE represents a standard GNAT packed-array type. */ +int +ada_is_packed_array_type (type) + struct type* type; +{ + if (type == NULL) + return 0; + CHECK_TYPEDEF (type); + return + ada_type_name (type) != NULL + && strstr (ada_type_name (type), "___XP") != NULL; +} + +/* Given that TYPE is a standard GDB array type with all bounds filled + in, and that the element size of its ultimate scalar constituents + (that is, either its elements, or, if it is an array of arrays, its + elements' elements, etc.) is *ELT_BITS, return an identical type, + but with the bit sizes of its elements (and those of any + constituent arrays) recorded in the BITSIZE components of its + TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size + in bits. */ +static struct type* +packed_array_type (type, elt_bits) + struct type* type; + long* elt_bits; +{ + struct type* new_elt_type; + struct type* new_type; + LONGEST low_bound, high_bound; + + CHECK_TYPEDEF (type); + if (TYPE_CODE (type) != TYPE_CODE_ARRAY) + return type; + + new_type = alloc_type (TYPE_OBJFILE (type)); + new_elt_type = packed_array_type (check_typedef (TYPE_TARGET_TYPE (type)), + elt_bits); + create_array_type (new_type, new_elt_type, TYPE_FIELD_TYPE (type, 0)); + TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits; + TYPE_NAME (new_type) = ada_type_name (type); + + if (get_discrete_bounds (TYPE_FIELD_TYPE (type, 0), + &low_bound, &high_bound) < 0) + low_bound = high_bound = 0; + if (high_bound < low_bound) + *elt_bits = TYPE_LENGTH (new_type) = 0; + else + { + *elt_bits *= (high_bound - low_bound + 1); + TYPE_LENGTH (new_type) = + (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT; + } + + /* TYPE_FLAGS (new_type) |= TYPE_FLAG_FIXED_INSTANCE; */ + /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ + return new_type; +} + +/* The array type encoded by TYPE, where ada_is_packed_array_type (TYPE). + */ +static struct type* +decode_packed_array_type (type) + struct type* type; +{ + struct symbol** syms; + struct block** blocks; + const char* raw_name = ada_type_name (check_typedef (type)); + char* name = (char*) alloca (strlen (raw_name) + 1); + char* tail = strstr (raw_name, "___XP"); + struct type* shadow_type; + long bits; + int i, n; + + memcpy (name, raw_name, tail - raw_name); + name[tail - raw_name] = '\000'; + + /* NOTE: Use ada_lookup_symbol_list because of bug in some versions + * of gcc (Solaris, e.g.). FIXME when compiler is fixed. */ + n = ada_lookup_symbol_list (name, get_selected_block (NULL), + VAR_NAMESPACE, &syms, &blocks); + for (i = 0; i < n; i += 1) + if (syms[i] != NULL && SYMBOL_CLASS (syms[i]) == LOC_TYPEDEF + && STREQ (name, ada_type_name (SYMBOL_TYPE (syms[i])))) + break; + if (i >= n) + { + warning ("could not find bounds information on packed array"); + return NULL; + } + shadow_type = SYMBOL_TYPE (syms[i]); + + if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY) + { + warning ("could not understand bounds information on packed array"); + return NULL; + } + + if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1) + { + warning ("could not understand bit size information on packed array"); + return NULL; + } + + return packed_array_type (shadow_type, &bits); +} + +/* Given that ARR is a struct value* indicating a GNAT packed array, + returns a simple array that denotes that array. Its type is a + standard GDB array type except that the BITSIZEs of the array + target types are set to the number of bits in each element, and the + type length is set appropriately. */ + +static struct value* +decode_packed_array (arr) + struct value* arr; +{ + struct type* type = decode_packed_array_type (VALUE_TYPE (arr)); + + if (type == NULL) + { + error ("can't unpack array"); + return NULL; + } + else + return coerce_unspec_val_to_type (arr, 0, type); +} + + +/* The value of the element of packed array ARR at the ARITY indices + given in IND. ARR must be a simple array. */ + +static struct value* +value_subscript_packed (arr, arity, ind) + struct value* arr; + int arity; + struct value** ind; +{ + int i; + int bits, elt_off, bit_off; + long elt_total_bit_offset; + struct type* elt_type; + struct value* v; + + bits = 0; + elt_total_bit_offset = 0; + elt_type = check_typedef (VALUE_TYPE (arr)); + for (i = 0; i < arity; i += 1) + { + if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY + || TYPE_FIELD_BITSIZE (elt_type, 0) == 0) + error ("attempt to do packed indexing of something other than a packed array"); + else + { + struct type *range_type = TYPE_INDEX_TYPE (elt_type); + LONGEST lowerbound, upperbound; + LONGEST idx; + + if (get_discrete_bounds (range_type, &lowerbound, + &upperbound) < 0) + { + warning ("don't know bounds of array"); + lowerbound = upperbound = 0; + } + + idx = value_as_long (value_pos_atr (ind[i])); + if (idx < lowerbound || idx > upperbound) + warning ("packed array index %ld out of bounds", (long) idx); + bits = TYPE_FIELD_BITSIZE (elt_type, 0); + elt_total_bit_offset += (idx - lowerbound) * bits; + elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type)); + } + } + elt_off = elt_total_bit_offset / HOST_CHAR_BIT; + bit_off = elt_total_bit_offset % HOST_CHAR_BIT; + + v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off, + bits, elt_type); + if (VALUE_LVAL (arr) == lval_internalvar) + VALUE_LVAL (v) = lval_internalvar_component; + else + VALUE_LVAL (v) = VALUE_LVAL (arr); + return v; +} + +/* Non-zero iff TYPE includes negative integer values. */ + +static int +has_negatives (type) + struct type* type; +{ + switch (TYPE_CODE (type)) { + default: + return 0; + case TYPE_CODE_INT: + return ! TYPE_UNSIGNED (type); + case TYPE_CODE_RANGE: + return TYPE_LOW_BOUND (type) < 0; + } +} + + +/* Create a new value of type TYPE from the contents of OBJ starting + at byte OFFSET, and bit offset BIT_OFFSET within that byte, + proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then + assigning through the result will set the field fetched from. OBJ + may also be NULL, in which case, VALADDR+OFFSET must address the + start of storage containing the packed value. The value returned + in this case is never an lval. + Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */ + +struct value* +ada_value_primitive_packed_val (obj, valaddr, offset, bit_offset, + bit_size, type) + struct value* obj; + char* valaddr; + long offset; + int bit_offset; + int bit_size; + struct type* type; +{ + struct value* v; + int src, /* Index into the source area. */ + targ, /* Index into the target area. */ + i, + srcBitsLeft, /* Number of source bits left to move. */ + nsrc, ntarg, /* Number of source and target bytes. */ + unusedLS, /* Number of bits in next significant + * byte of source that are unused. */ + accumSize; /* Number of meaningful bits in accum */ + unsigned char* bytes; /* First byte containing data to unpack. */ + unsigned char* unpacked; + unsigned long accum; /* Staging area for bits being transferred */ + unsigned char sign; + int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8; + /* Transmit bytes from least to most significant; delta is the + * direction the indices move. */ + int delta = BITS_BIG_ENDIAN ? -1 : 1; + + CHECK_TYPEDEF (type); + + if (obj == NULL) + { + v = allocate_value (type); + bytes = (unsigned char*) (valaddr + offset); + } + else if (VALUE_LAZY (obj)) + { + v = value_at (type, + VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset, NULL); + bytes = (unsigned char*) alloca (len); + read_memory (VALUE_ADDRESS (v), bytes, len); + } + else + { + v = allocate_value (type); + bytes = (unsigned char*) VALUE_CONTENTS (obj) + offset; + } + + if (obj != NULL) + { + VALUE_LVAL (v) = VALUE_LVAL (obj); + if (VALUE_LVAL (obj) == lval_internalvar) + VALUE_LVAL (v) = lval_internalvar_component; + VALUE_ADDRESS (v) = VALUE_ADDRESS (obj) + VALUE_OFFSET (obj) + offset; + VALUE_BITPOS (v) = bit_offset + VALUE_BITPOS (obj); + VALUE_BITSIZE (v) = bit_size; + if (VALUE_BITPOS (v) >= HOST_CHAR_BIT) + { + VALUE_ADDRESS (v) += 1; + VALUE_BITPOS (v) -= HOST_CHAR_BIT; + } + } + else + VALUE_BITSIZE (v) = bit_size; + unpacked = (unsigned char*) VALUE_CONTENTS (v); + + srcBitsLeft = bit_size; + nsrc = len; + ntarg = TYPE_LENGTH (type); + sign = 0; + if (bit_size == 0) + { + memset (unpacked, 0, TYPE_LENGTH (type)); + return v; + } + else if (BITS_BIG_ENDIAN) + { + src = len-1; + if (has_negatives (type) && + ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT-1)))) + sign = ~0; + + unusedLS = + (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT) + % HOST_CHAR_BIT; + + switch (TYPE_CODE (type)) + { + case TYPE_CODE_ARRAY: + case TYPE_CODE_UNION: + case TYPE_CODE_STRUCT: + /* Non-scalar values must be aligned at a byte boundary. */ + accumSize = + (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT; + /* And are placed at the beginning (most-significant) bytes + * of the target. */ + targ = src; + break; + default: + accumSize = 0; + targ = TYPE_LENGTH (type) - 1; + break; + } + } + else + { + int sign_bit_offset = (bit_size + bit_offset - 1) % 8; + + src = targ = 0; + unusedLS = bit_offset; + accumSize = 0; + + if (has_negatives (type) && (bytes[len-1] & (1 << sign_bit_offset))) + sign = ~0; + } + + accum = 0; + while (nsrc > 0) + { + /* Mask for removing bits of the next source byte that are not + * part of the value. */ + unsigned int unusedMSMask = + (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft))-1; + /* Sign-extend bits for this byte. */ + unsigned int signMask = sign & ~unusedMSMask; + accum |= + (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize; + accumSize += HOST_CHAR_BIT - unusedLS; + if (accumSize >= HOST_CHAR_BIT) + { + unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); + accumSize -= HOST_CHAR_BIT; + accum >>= HOST_CHAR_BIT; + ntarg -= 1; + targ += delta; + } + srcBitsLeft -= HOST_CHAR_BIT - unusedLS; + unusedLS = 0; + nsrc -= 1; + src += delta; + } + while (ntarg > 0) + { + accum |= sign << accumSize; + unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT); + accumSize -= HOST_CHAR_BIT; + accum >>= HOST_CHAR_BIT; + ntarg -= 1; + targ += delta; + } + + return v; +} + +/* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to + TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must + not overlap. */ +static void +move_bits (char* target, int targ_offset, char* source, int src_offset, int n) +{ + unsigned int accum, mask; + int accum_bits, chunk_size; + + target += targ_offset / HOST_CHAR_BIT; + targ_offset %= HOST_CHAR_BIT; + source += src_offset / HOST_CHAR_BIT; + src_offset %= HOST_CHAR_BIT; + if (BITS_BIG_ENDIAN) + { + accum = (unsigned char) *source; + source += 1; + accum_bits = HOST_CHAR_BIT - src_offset; + + while (n > 0) + { + int unused_right; + accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source; + accum_bits += HOST_CHAR_BIT; + source += 1; + chunk_size = HOST_CHAR_BIT - targ_offset; + if (chunk_size > n) + chunk_size = n; + unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset); + mask = ((1 << chunk_size) - 1) << unused_right; + *target = + (*target & ~mask) + | ((accum >> (accum_bits - chunk_size - unused_right)) & mask); + n -= chunk_size; + accum_bits -= chunk_size; + target += 1; + targ_offset = 0; + } + } + else + { + accum = (unsigned char) *source >> src_offset; + source += 1; + accum_bits = HOST_CHAR_BIT - src_offset; + + while (n > 0) + { + accum = accum + ((unsigned char) *source << accum_bits); + accum_bits += HOST_CHAR_BIT; + source += 1; + chunk_size = HOST_CHAR_BIT - targ_offset; + if (chunk_size > n) + chunk_size = n; + mask = ((1 << chunk_size) - 1) << targ_offset; + *target = + (*target & ~mask) | ((accum << targ_offset) & mask); + n -= chunk_size; + accum_bits -= chunk_size; + accum >>= chunk_size; + target += 1; + targ_offset = 0; + } + } +} + + +/* Store the contents of FROMVAL into the location of TOVAL. + Return a new value with the location of TOVAL and contents of + FROMVAL. Handles assignment into packed fields that have + floating-point or non-scalar types. */ + +static struct value* +ada_value_assign (struct value* toval, struct value* fromval) +{ + struct type* type = VALUE_TYPE (toval); + int bits = VALUE_BITSIZE (toval); + + if (!toval->modifiable) + error ("Left operand of assignment is not a modifiable lvalue."); + + COERCE_REF (toval); + + if (VALUE_LVAL (toval) == lval_memory + && bits > 0 + && (TYPE_CODE (type) == TYPE_CODE_FLT + || TYPE_CODE (type) == TYPE_CODE_STRUCT)) + { + int len = + (VALUE_BITPOS (toval) + bits + HOST_CHAR_BIT - 1) + / HOST_CHAR_BIT; + char* buffer = (char*) alloca (len); + struct value* val; + + if (TYPE_CODE (type) == TYPE_CODE_FLT) + fromval = value_cast (type, fromval); + + read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer, len); + if (BITS_BIG_ENDIAN) + move_bits (buffer, VALUE_BITPOS (toval), + VALUE_CONTENTS (fromval), + TYPE_LENGTH (VALUE_TYPE (fromval)) * TARGET_CHAR_BIT - bits, + bits); + else + move_bits (buffer, VALUE_BITPOS (toval), VALUE_CONTENTS (fromval), + 0, bits); + write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval), buffer, len); + + val = value_copy (toval); + memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval), + TYPE_LENGTH (type)); + VALUE_TYPE (val) = type; + + return val; + } + + return value_assign (toval, fromval); +} + + +/* The value of the element of array ARR at the ARITY indices given in IND. + ARR may be either a simple array, GNAT array descriptor, or pointer + thereto. */ + +struct value* +ada_value_subscript (arr, arity, ind) + struct value* arr; + int arity; + struct value** ind; +{ + int k; + struct value* elt; + struct type* elt_type; + + elt = ada_coerce_to_simple_array (arr); + + elt_type = check_typedef (VALUE_TYPE (elt)); + if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY + && TYPE_FIELD_BITSIZE (elt_type, 0) > 0) + return value_subscript_packed (elt, arity, ind); + + for (k = 0; k < arity; k += 1) + { + if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY) + error("too many subscripts (%d expected)", k); + elt = value_subscript (elt, value_pos_atr (ind[k])); + } + return elt; +} + +/* Assuming ARR is a pointer to a standard GDB array of type TYPE, the + value of the element of *ARR at the ARITY indices given in + IND. Does not read the entire array into memory. */ + +struct value* +ada_value_ptr_subscript (arr, type, arity, ind) + struct value* arr; + struct type* type; + int arity; + struct value** ind; +{ + int k; + + for (k = 0; k < arity; k += 1) + { + LONGEST lwb, upb; + struct value* idx; + + if (TYPE_CODE (type) != TYPE_CODE_ARRAY) + error("too many subscripts (%d expected)", k); + arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)), + value_copy (arr)); + get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb); + if (lwb == 0) + idx = ind[k]; + else + idx = value_sub (ind[k], value_from_longest (builtin_type_int, lwb)); + arr = value_add (arr, idx); + type = TYPE_TARGET_TYPE (type); + } + + return value_ind (arr); +} + +/* If type is a record type in the form of a standard GNAT array + descriptor, returns the number of dimensions for type. If arr is a + simple array, returns the number of "array of"s that prefix its + type designation. Otherwise, returns 0. */ + +int +ada_array_arity (type) + struct type* type; +{ + int arity; + + if (type == NULL) + return 0; + + type = desc_base_type (type); + + arity = 0; + if (TYPE_CODE (type) == TYPE_CODE_STRUCT) + return desc_arity (desc_bounds_type (type)); + else + while (TYPE_CODE (type) == TYPE_CODE_ARRAY) + { + arity += 1; + type = check_typedef (TYPE_TARGET_TYPE (type)); + } + + return arity; +} + +/* If TYPE is a record type in the form of a standard GNAT array + descriptor or a simple array type, returns the element type for + TYPE after indexing by NINDICES indices, or by all indices if + NINDICES is -1. Otherwise, returns NULL. */ + +struct type* +ada_array_element_type (type, nindices) + struct type* type; + int nindices; +{ + type = desc_base_type (type); + + if (TYPE_CODE (type) == TYPE_CODE_STRUCT) + { + int k; + struct type* p_array_type; + + p_array_type = desc_data_type (type); + + k = ada_array_arity (type); + if (k == 0) + return NULL; + + /* Initially p_array_type = elt_type(*)[]...(k times)...[] */ + if (nindices >= 0 && k > nindices) + k = nindices; + p_array_type = TYPE_TARGET_TYPE (p_array_type); + while (k > 0 && p_array_type != NULL) + { + p_array_type = check_typedef (TYPE_TARGET_TYPE (p_array_type)); + k -= 1; + } + return p_array_type; + } + else if (TYPE_CODE (type) == TYPE_CODE_ARRAY) + { + while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY) + { + type = TYPE_TARGET_TYPE (type); + nindices -= 1; + } + return type; + } + + return NULL; +} + +/* The type of nth index in arrays of given type (n numbering from 1). Does + not examine memory. */ + +struct type* +ada_index_type (type, n) + struct type* type; + int n; +{ + type = desc_base_type (type); + + if (n > ada_array_arity (type)) + return NULL; + + if (ada_is_simple_array (type)) + { + int i; + + for (i = 1; i < n; i += 1) + type = TYPE_TARGET_TYPE (type); + + return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 0)); + } + else + return desc_index_type (desc_bounds_type (type), n); +} + +/* Given that arr is an array type, returns the lower bound of the + Nth index (numbering from 1) if WHICH is 0, and the upper bound if + WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an + array-descriptor type. If TYPEP is non-null, *TYPEP is set to the + bounds type. It works for other arrays with bounds supplied by + run-time quantities other than discriminants. */ + +LONGEST +ada_array_bound_from_type (arr_type, n, which, typep) + struct type* arr_type; + int n; + int which; + struct type** typep; +{ + struct type* type; + struct type* index_type_desc; + + if (ada_is_packed_array_type (arr_type)) + arr_type = decode_packed_array_type (arr_type); + + if (arr_type == NULL || ! ada_is_simple_array (arr_type)) + { + if (typep != NULL) + *typep = builtin_type_int; + return (LONGEST) -which; + } + + if (TYPE_CODE (arr_type) == TYPE_CODE_PTR) + type = TYPE_TARGET_TYPE (arr_type); + else + type = arr_type; + + index_type_desc = ada_find_parallel_type (type, "___XA"); + if (index_type_desc == NULL) + { + struct type* range_type; + struct type* index_type; + + while (n > 1) + { + type = TYPE_TARGET_TYPE (type); + n -= 1; + } + + range_type = TYPE_INDEX_TYPE (type); + index_type = TYPE_TARGET_TYPE (range_type); + if (TYPE_CODE (index_type) == TYPE_CODE_UNDEF) + index_type = builtin_type_long; + if (typep != NULL) + *typep = index_type; + return + (LONGEST) (which == 0 + ? TYPE_LOW_BOUND (range_type) + : TYPE_HIGH_BOUND (range_type)); + } + else + { + struct type* index_type = + to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, n-1), + NULL, TYPE_OBJFILE (arr_type)); + if (typep != NULL) + *typep = TYPE_TARGET_TYPE (index_type); + return + (LONGEST) (which == 0 + ? TYPE_LOW_BOUND (index_type) + : TYPE_HIGH_BOUND (index_type)); + } +} + +/* Given that arr is an array value, returns the lower bound of the + nth index (numbering from 1) if which is 0, and the upper bound if + which is 1. This routine will also work for arrays with bounds + supplied by run-time quantities other than discriminants. */ + +struct value* +ada_array_bound (arr, n, which) + struct value* arr; + int n; + int which; +{ + struct type* arr_type = VALUE_TYPE (arr); + + if (ada_is_packed_array_type (arr_type)) + return ada_array_bound (decode_packed_array (arr), n, which); + else if (ada_is_simple_array (arr_type)) + { + struct type* type; + LONGEST v = ada_array_bound_from_type (arr_type, n, which, &type); + return value_from_longest (type, v); + } + else + return desc_one_bound (desc_bounds (arr), n, which); +} + +/* Given that arr is an array value, returns the length of the + nth index. This routine will also work for arrays with bounds + supplied by run-time quantities other than discriminants. Does not + work for arrays indexed by enumeration types with representation + clauses at the moment. */ + +struct value* +ada_array_length (arr, n) + struct value* arr; + int n; +{ + struct type* arr_type = check_typedef (VALUE_TYPE (arr)); + struct type* index_type_desc; + + if (ada_is_packed_array_type (arr_type)) + return ada_array_length (decode_packed_array (arr), n); + + if (ada_is_simple_array (arr_type)) + { + struct type* type; + LONGEST v = + ada_array_bound_from_type (arr_type, n, 1, &type) - + ada_array_bound_from_type (arr_type, n, 0, NULL) + 1; + return value_from_longest (type, v); + } + else + return + value_from_longest (builtin_type_ada_int, + value_as_long (desc_one_bound (desc_bounds (arr), + n, 1)) + - value_as_long (desc_one_bound (desc_bounds (arr), + n, 0)) + + 1); +} + + + /* Name resolution */ + +/* The "demangled" name for the user-definable Ada operator corresponding + to op. */ + +static const char* +ada_op_name (op) + enum exp_opcode op; +{ + int i; + + for (i = 0; ada_opname_table[i].mangled != NULL; i += 1) + { + if (ada_opname_table[i].op == op) + return ada_opname_table[i].demangled; + } + error ("Could not find operator name for opcode"); +} + + +/* Same as evaluate_type (*EXP), but resolves ambiguous symbol + references (OP_UNRESOLVED_VALUES) and converts operators that are + user-defined into appropriate function calls. If CONTEXT_TYPE is + non-null, it provides a preferred result type [at the moment, only + type void has any effect---causing procedures to be preferred over + functions in calls]. A null CONTEXT_TYPE indicates that a non-void + return type is preferred. The variable unresolved_names contains a list + of character strings referenced by expout that should be freed. + May change (expand) *EXP. */ + +void +ada_resolve (expp, context_type) + struct expression** expp; + struct type* context_type; +{ + int pc; + pc = 0; + ada_resolve_subexp (expp, &pc, 1, context_type); +} + +/* Resolve the operator of the subexpression beginning at + position *POS of *EXPP. "Resolving" consists of replacing + OP_UNRESOLVED_VALUE with an appropriate OP_VAR_VALUE, replacing + built-in operators with function calls to user-defined operators, + where appropriate, and (when DEPROCEDURE_P is non-zero), converting + function-valued variables into parameterless calls. May expand + EXP. The CONTEXT_TYPE functions as in ada_resolve, above. */ + +static struct value* +ada_resolve_subexp (expp, pos, deprocedure_p, context_type) + struct expression** expp; + int *pos; + int deprocedure_p; + struct type* context_type; +{ + int pc = *pos; + int i; + struct expression* exp; /* Convenience: == *expp */ + enum exp_opcode op = (*expp)->elts[pc].opcode; + struct value** argvec; /* Vector of operand types (alloca'ed). */ + int nargs; /* Number of operands */ + + argvec = NULL; + nargs = 0; + exp = *expp; + + /* Pass one: resolve operands, saving their types and updating *pos. */ + switch (op) + { + case OP_VAR_VALUE: + /* case OP_UNRESOLVED_VALUE:*/ + /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ + *pos += 4; + break; + + case OP_FUNCALL: + nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1; + /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ + /* if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE) + { + *pos += 7; + + argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 1)); + for (i = 0; i < nargs-1; i += 1) + argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL); + argvec[i] = NULL; + } + else + { + *pos += 3; + ada_resolve_subexp (expp, pos, 0, NULL); + for (i = 1; i < nargs; i += 1) + ada_resolve_subexp (expp, pos, 1, NULL); + } + */ + exp = *expp; + break; + + /* FIXME: UNOP_QUAL should be defined in expression.h */ + /* case UNOP_QUAL: + nargs = 1; + *pos += 3; + ada_resolve_subexp (expp, pos, 1, exp->elts[pc + 1].type); + exp = *expp; + break; + */ + /* FIXME: OP_ATTRIBUTE should be defined in expression.h */ + /* case OP_ATTRIBUTE: + nargs = longest_to_int (exp->elts[pc + 1].longconst) + 1; + *pos += 4; + for (i = 0; i < nargs; i += 1) + ada_resolve_subexp (expp, pos, 1, NULL); + exp = *expp; + break; + */ + case UNOP_ADDR: + nargs = 1; + *pos += 1; + ada_resolve_subexp (expp, pos, 0, NULL); + exp = *expp; + break; + + case BINOP_ASSIGN: + { + struct value* arg1; + nargs = 2; + *pos += 1; + arg1 = ada_resolve_subexp (expp, pos, 0, NULL); + if (arg1 == NULL) + ada_resolve_subexp (expp, pos, 1, NULL); + else + ada_resolve_subexp (expp, pos, 1, VALUE_TYPE (arg1)); + break; + } + + default: + switch (op) + { + default: + error ("Unexpected operator during name resolution"); + case UNOP_CAST: + /* case UNOP_MBR: + nargs = 1; + *pos += 3; + break; + */ + case BINOP_ADD: + case BINOP_SUB: + case BINOP_MUL: + case BINOP_DIV: + case BINOP_REM: + case BINOP_MOD: + case BINOP_EXP: + case BINOP_CONCAT: + case BINOP_LOGICAL_AND: + case BINOP_LOGICAL_OR: + case BINOP_BITWISE_AND: + case BINOP_BITWISE_IOR: + case BINOP_BITWISE_XOR: + + case BINOP_EQUAL: + case BINOP_NOTEQUAL: + case BINOP_LESS: + case BINOP_GTR: + case BINOP_LEQ: + case BINOP_GEQ: + + case BINOP_REPEAT: + case BINOP_SUBSCRIPT: + case BINOP_COMMA: + nargs = 2; + *pos += 1; + break; + + case UNOP_NEG: + case UNOP_PLUS: + case UNOP_LOGICAL_NOT: + case UNOP_ABS: + case UNOP_IND: + nargs = 1; + *pos += 1; + break; + + case OP_LONG: + case OP_DOUBLE: + case OP_VAR_VALUE: + *pos += 4; + break; + + case OP_TYPE: + case OP_BOOL: + case OP_LAST: + case OP_REGISTER: + case OP_INTERNALVAR: + *pos += 3; + break; + + case UNOP_MEMVAL: + *pos += 3; + nargs = 1; + break; + + case STRUCTOP_STRUCT: + case STRUCTOP_PTR: + nargs = 1; + *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1); + break; + + case OP_ARRAY: + *pos += 4; + nargs = longest_to_int (exp->elts[pc + 2].longconst) + 1; + nargs -= longest_to_int (exp->elts[pc + 1].longconst); + /* A null array contains one dummy element to give the type. */ + /* if (nargs == 0) + nargs = 1; + break;*/ + + case TERNOP_SLICE: + /* FIXME: TERNOP_MBR should be defined in expression.h */ + /* case TERNOP_MBR: + *pos += 1; + nargs = 3; + break; + */ + /* FIXME: BINOP_MBR should be defined in expression.h */ + /* case BINOP_MBR: + *pos += 3; + nargs = 2; + break;*/ + } + + argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 1)); + for (i = 0; i < nargs; i += 1) + argvec[i] = ada_resolve_subexp (expp, pos, 1, NULL); + argvec[i] = NULL; + exp = *expp; + break; + } + + /* Pass two: perform any resolution on principal operator. */ + switch (op) + { + default: + break; + + /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ + /* case OP_UNRESOLVED_VALUE: + { + struct symbol** candidate_syms; + struct block** candidate_blocks; + int n_candidates; + + n_candidates = ada_lookup_symbol_list (exp->elts[pc + 2].name, + exp->elts[pc + 1].block, + VAR_NAMESPACE, + &candidate_syms, + &candidate_blocks); + + if (n_candidates > 1) + {*/ + /* Types tend to get re-introduced locally, so if there + are any local symbols that are not types, first filter + out all types.*/ /* + int j; + for (j = 0; j < n_candidates; j += 1) + switch (SYMBOL_CLASS (candidate_syms[j])) + { + case LOC_REGISTER: + case LOC_ARG: + case LOC_REF_ARG: + case LOC_REGPARM: + case LOC_REGPARM_ADDR: + case LOC_LOCAL: + case LOC_LOCAL_ARG: + case LOC_BASEREG: + case LOC_BASEREG_ARG: + goto FoundNonType; + default: + break; + } + FoundNonType: + if (j < n_candidates) + { + j = 0; + while (j < n_candidates) + { + if (SYMBOL_CLASS (candidate_syms[j]) == LOC_TYPEDEF) + { + candidate_syms[j] = candidate_syms[n_candidates-1]; + candidate_blocks[j] = candidate_blocks[n_candidates-1]; + n_candidates -= 1; + } + else + j += 1; + } + } + } + + if (n_candidates == 0) + error ("No definition found for %s", + ada_demangle (exp->elts[pc + 2].name)); + else if (n_candidates == 1) + i = 0; + else if (deprocedure_p + && ! is_nonfunction (candidate_syms, n_candidates)) + { + i = ada_resolve_function (candidate_syms, candidate_blocks, + n_candidates, NULL, 0, + exp->elts[pc + 2].name, context_type); + if (i < 0) + error ("Could not find a match for %s", + ada_demangle (exp->elts[pc + 2].name)); + } + else + { + printf_filtered ("Multiple matches for %s\n", + ada_demangle (exp->elts[pc+2].name)); + user_select_syms (candidate_syms, candidate_blocks, + n_candidates, 1); + i = 0; + } + + exp->elts[pc].opcode = exp->elts[pc + 3].opcode = OP_VAR_VALUE; + exp->elts[pc + 1].block = candidate_blocks[i]; + exp->elts[pc + 2].symbol = candidate_syms[i]; + if (innermost_block == NULL || + contained_in (candidate_blocks[i], innermost_block)) + innermost_block = candidate_blocks[i]; + }*/ + /* FALL THROUGH */ + + case OP_VAR_VALUE: + if (deprocedure_p && + TYPE_CODE (SYMBOL_TYPE (exp->elts[pc+2].symbol)) == TYPE_CODE_FUNC) + { + replace_operator_with_call (expp, pc, 0, 0, + exp->elts[pc+2].symbol, + exp->elts[pc+1].block); + exp = *expp; + } + break; + + case OP_FUNCALL: + { + /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ + /* if (exp->elts[pc+3].opcode == OP_UNRESOLVED_VALUE) + { + struct symbol** candidate_syms; + struct block** candidate_blocks; + int n_candidates; + + n_candidates = ada_lookup_symbol_list (exp->elts[pc + 5].name, + exp->elts[pc + 4].block, + VAR_NAMESPACE, + &candidate_syms, + &candidate_blocks); + if (n_candidates == 1) + i = 0; + else + { + i = ada_resolve_function (candidate_syms, candidate_blocks, + n_candidates, argvec, nargs-1, + exp->elts[pc + 5].name, context_type); + if (i < 0) + error ("Could not find a match for %s", + ada_demangle (exp->elts[pc + 5].name)); + } + + exp->elts[pc + 3].opcode = exp->elts[pc + 6].opcode = OP_VAR_VALUE; + exp->elts[pc + 4].block = candidate_blocks[i]; + exp->elts[pc + 5].symbol = candidate_syms[i]; + if (innermost_block == NULL || + contained_in (candidate_blocks[i], innermost_block)) + innermost_block = candidate_blocks[i]; + }*/ + + } + break; + case BINOP_ADD: + case BINOP_SUB: + case BINOP_MUL: + case BINOP_DIV: + case BINOP_REM: + case BINOP_MOD: + case BINOP_CONCAT: + case BINOP_BITWISE_AND: + case BINOP_BITWISE_IOR: + case BINOP_BITWISE_XOR: + case BINOP_EQUAL: + case BINOP_NOTEQUAL: + case BINOP_LESS: + case BINOP_GTR: + case BINOP_LEQ: + case BINOP_GEQ: + case BINOP_EXP: + case UNOP_NEG: + case UNOP_PLUS: + case UNOP_LOGICAL_NOT: + case UNOP_ABS: + if (possible_user_operator_p (op, argvec)) + { + struct symbol** candidate_syms; + struct block** candidate_blocks; + int n_candidates; + + n_candidates = ada_lookup_symbol_list (ada_mangle (ada_op_name (op)), + (struct block*) NULL, + VAR_NAMESPACE, + &candidate_syms, + &candidate_blocks); + i = ada_resolve_function (candidate_syms, candidate_blocks, + n_candidates, argvec, nargs, + ada_op_name (op), NULL); + if (i < 0) + break; + + replace_operator_with_call (expp, pc, nargs, 1, + candidate_syms[i], candidate_blocks[i]); + exp = *expp; + } + break; + } + + *pos = pc; + return evaluate_subexp_type (exp, pos); +} + +/* Return non-zero if formal type FTYPE matches actual type ATYPE. If + MAY_DEREF is non-zero, the formal may be a pointer and the actual + a non-pointer. */ +/* The term "match" here is rather loose. The match is heuristic and + liberal. FIXME: TOO liberal, in fact. */ + +static int +ada_type_match (ftype, atype, may_deref) + struct type* ftype; + struct type* atype; + int may_deref; +{ + CHECK_TYPEDEF (ftype); + CHECK_TYPEDEF (atype); + + if (TYPE_CODE (ftype) == TYPE_CODE_REF) + ftype = TYPE_TARGET_TYPE (ftype); + if (TYPE_CODE (atype) == TYPE_CODE_REF) + atype = TYPE_TARGET_TYPE (atype); + + if (TYPE_CODE (ftype) == TYPE_CODE_VOID + || TYPE_CODE (atype) == TYPE_CODE_VOID) + return 1; + + switch (TYPE_CODE (ftype)) + { + default: + return 1; + case TYPE_CODE_PTR: + if (TYPE_CODE (atype) == TYPE_CODE_PTR) + return ada_type_match (TYPE_TARGET_TYPE (ftype), + TYPE_TARGET_TYPE (atype), 0); + else return (may_deref && + ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0)); + case TYPE_CODE_INT: + case TYPE_CODE_ENUM: + case TYPE_CODE_RANGE: + switch (TYPE_CODE (atype)) + { + case TYPE_CODE_INT: + case TYPE_CODE_ENUM: + case TYPE_CODE_RANGE: + return 1; + default: + return 0; + } + + case TYPE_CODE_ARRAY: + return (TYPE_CODE (atype) == TYPE_CODE_ARRAY + || ada_is_array_descriptor (atype)); + + case TYPE_CODE_STRUCT: + if (ada_is_array_descriptor (ftype)) + return (TYPE_CODE (atype) == TYPE_CODE_ARRAY + || ada_is_array_descriptor (atype)); + else + return (TYPE_CODE (atype) == TYPE_CODE_STRUCT + && ! ada_is_array_descriptor (atype)); + + case TYPE_CODE_UNION: + case TYPE_CODE_FLT: + return (TYPE_CODE (atype) == TYPE_CODE (ftype)); + } +} + +/* Return non-zero if the formals of FUNC "sufficiently match" the + vector of actual argument types ACTUALS of size N_ACTUALS. FUNC + may also be an enumeral, in which case it is treated as a 0- + argument function. */ + +static int +ada_args_match (func, actuals, n_actuals) + struct symbol* func; + struct value** actuals; + int n_actuals; +{ + int i; + struct type* func_type = SYMBOL_TYPE (func); + + if (SYMBOL_CLASS (func) == LOC_CONST && + TYPE_CODE (func_type) == TYPE_CODE_ENUM) + return (n_actuals == 0); + else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC) + return 0; + + if (TYPE_NFIELDS (func_type) != n_actuals) + return 0; + + for (i = 0; i < n_actuals; i += 1) + { + struct type* ftype = check_typedef (TYPE_FIELD_TYPE (func_type, i)); + struct type* atype = check_typedef (VALUE_TYPE (actuals[i])); + + if (! ada_type_match (TYPE_FIELD_TYPE (func_type, i), + VALUE_TYPE (actuals[i]), 1)) + return 0; + } + return 1; +} + +/* False iff function type FUNC_TYPE definitely does not produce a value + compatible with type CONTEXT_TYPE. Conservatively returns 1 if + FUNC_TYPE is not a valid function type with a non-null return type + or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */ + +static int +return_match (func_type, context_type) + struct type* func_type; + struct type* context_type; +{ + struct type* return_type; + + if (func_type == NULL) + return 1; + + /* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */ + /* if (TYPE_CODE (func_type) == TYPE_CODE_FUNC) + return_type = base_type (TYPE_TARGET_TYPE (func_type)); + else + return_type = base_type (func_type);*/ + if (return_type == NULL) + return 1; + + /* FIXME: base_type should be declared in gdbtypes.h, implemented in valarith.c */ + /* context_type = base_type (context_type);*/ + + if (TYPE_CODE (return_type) == TYPE_CODE_ENUM) + return context_type == NULL || return_type == context_type; + else if (context_type == NULL) + return TYPE_CODE (return_type) != TYPE_CODE_VOID; + else + return TYPE_CODE (return_type) == TYPE_CODE (context_type); +} + + +/* Return the index in SYMS[0..NSYMS-1] of symbol for the + function (if any) that matches the types of the NARGS arguments in + ARGS. If CONTEXT_TYPE is non-null, and there is at least one match + that returns type CONTEXT_TYPE, then eliminate other matches. If + CONTEXT_TYPE is null, prefer a non-void-returning function. + Asks the user if there is more than one match remaining. Returns -1 + if there is no such symbol or none is selected. NAME is used + solely for messages. May re-arrange and modify SYMS in + the process; the index returned is for the modified vector. BLOCKS + is modified in parallel to SYMS. */ + +int +ada_resolve_function (syms, blocks, nsyms, args, nargs, name, context_type) + struct symbol* syms[]; + struct block* blocks[]; + struct value** args; + int nsyms, nargs; + const char* name; + struct type* context_type; +{ + int k; + int m; /* Number of hits */ + struct type* fallback; + struct type* return_type; + + return_type = context_type; + if (context_type == NULL) + fallback = builtin_type_void; + else + fallback = NULL; + + m = 0; + while (1) + { + for (k = 0; k < nsyms; k += 1) + { + struct type* type = check_typedef (SYMBOL_TYPE (syms[k])); + + if (ada_args_match (syms[k], args, nargs) + && return_match (SYMBOL_TYPE (syms[k]), return_type)) + { + syms[m] = syms[k]; + if (blocks != NULL) + blocks[m] = blocks[k]; + m += 1; + } + } + if (m > 0 || return_type == fallback) + break; + else + return_type = fallback; + } + + if (m == 0) + return -1; + else if (m > 1) + { + printf_filtered ("Multiple matches for %s\n", name); + user_select_syms (syms, blocks, m, 1); + return 0; + } + return 0; +} + +/* Returns true (non-zero) iff demangled name N0 should appear before N1 */ +/* in a listing of choices during disambiguation (see sort_choices, below). */ +/* The idea is that overloadings of a subprogram name from the */ +/* same package should sort in their source order. We settle for ordering */ +/* such symbols by their trailing number (__N or $N). */ +static int +mangled_ordered_before (char* N0, char* N1) +{ + if (N1 == NULL) + return 0; + else if (N0 == NULL) + return 1; + else + { + int k0, k1; + for (k0 = strlen (N0)-1; k0 > 0 && isdigit (N0[k0]); k0 -= 1) + ; + for (k1 = strlen (N1)-1; k1 > 0 && isdigit (N1[k1]); k1 -= 1) + ; + if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0+1] != '\000' + && (N1[k1] == '_' || N1[k1] == '$') && N1[k1+1] != '\000') + { + int n0, n1; + n0 = k0; + while (N0[n0] == '_' && n0 > 0 && N0[n0-1] == '_') + n0 -= 1; + n1 = k1; + while (N1[n1] == '_' && n1 > 0 && N1[n1-1] == '_') + n1 -= 1; + if (n0 == n1 && STREQN (N0, N1, n0)) + return (atoi (N0+k0+1) < atoi (N1+k1+1)); + } + return (strcmp (N0, N1) < 0); + } +} + +/* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by their */ +/* mangled names, rearranging BLOCKS[0..NSYMS-1] according to the same */ +/* permutation. */ +static void +sort_choices (syms, blocks, nsyms) + struct symbol* syms[]; + struct block* blocks[]; + int nsyms; +{ + int i, j; + for (i = 1; i < nsyms; i += 1) + { + struct symbol* sym = syms[i]; + struct block* block = blocks[i]; + int j; + + for (j = i-1; j >= 0; j -= 1) + { + if (mangled_ordered_before (SYMBOL_NAME (syms[j]), + SYMBOL_NAME (sym))) + break; + syms[j+1] = syms[j]; + blocks[j+1] = blocks[j]; + } + syms[j+1] = sym; + blocks[j+1] = block; + } +} + +/* Given a list of NSYMS symbols in SYMS and corresponding blocks in */ +/* BLOCKS, select up to MAX_RESULTS>0 by asking the user (if */ +/* necessary), returning the number selected, and setting the first */ +/* elements of SYMS and BLOCKS to the selected symbols and */ +/* corresponding blocks. Error if no symbols selected. BLOCKS may */ +/* be NULL, in which case it is ignored. */ + +/* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought + to be re-integrated one of these days. */ + +int +user_select_syms (syms, blocks, nsyms, max_results) + struct symbol* syms[]; + struct block* blocks[]; + int nsyms; + int max_results; +{ + int i; + int* chosen = (int*) alloca (sizeof(int) * nsyms); + int n_chosen; + int first_choice = (max_results == 1) ? 1 : 2; + + if (max_results < 1) + error ("Request to select 0 symbols!"); + if (nsyms <= 1) + return nsyms; + + printf_unfiltered("[0] cancel\n"); + if (max_results > 1) + printf_unfiltered("[1] all\n"); + + sort_choices (syms, blocks, nsyms); + + for (i = 0; i < nsyms; i += 1) + { + if (syms[i] == NULL) + continue; + + if (SYMBOL_CLASS (syms[i]) == LOC_BLOCK) + { + struct symtab_and_line sal = find_function_start_sal (syms[i], 1); + printf_unfiltered ("[%d] %s at %s:%d\n", + i + first_choice, + SYMBOL_SOURCE_NAME (syms[i]), + sal.symtab == NULL + ? "<no source file available>" + : sal.symtab->filename, + sal.line); + continue; + } + else + { + int is_enumeral = + (SYMBOL_CLASS (syms[i]) == LOC_CONST + && SYMBOL_TYPE (syms[i]) != NULL + && TYPE_CODE (SYMBOL_TYPE (syms[i])) + == TYPE_CODE_ENUM); + struct symtab* symtab = symtab_for_sym (syms[i]); + + if (SYMBOL_LINE (syms[i]) != 0 && symtab != NULL) + printf_unfiltered ("[%d] %s at %s:%d\n", + i + first_choice, + SYMBOL_SOURCE_NAME (syms[i]), + symtab->filename, SYMBOL_LINE (syms[i])); + else if (is_enumeral && + TYPE_NAME (SYMBOL_TYPE (syms[i])) != NULL) + { + printf_unfiltered ("[%d] ", i + first_choice); + ada_print_type (SYMBOL_TYPE (syms[i]), NULL, gdb_stdout, -1, 0); + printf_unfiltered ("'(%s) (enumeral)\n", + SYMBOL_SOURCE_NAME (syms[i])); + } + else if (symtab != NULL) + printf_unfiltered (is_enumeral + ? "[%d] %s in %s (enumeral)\n" + : "[%d] %s at %s:?\n", + i + first_choice, + SYMBOL_SOURCE_NAME (syms[i]), + symtab->filename); + else + printf_unfiltered (is_enumeral + ? "[%d] %s (enumeral)\n" + : "[%d] %s at ?\n", + i + first_choice, SYMBOL_SOURCE_NAME (syms[i])); + } + } + + n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1, + "overload-choice"); + + for (i = 0; i < n_chosen; i += 1) + { + syms[i] = syms[chosen[i]]; + if (blocks != NULL) + blocks[i] = blocks[chosen[i]]; + } + + return n_chosen; +} + +/* Read and validate a set of numeric choices from the user in the + range 0 .. N_CHOICES-1. Place the results in increasing + order in CHOICES[0 .. N-1], and return N. + + The user types choices as a sequence of numbers on one line + separated by blanks, encoding them as follows: + + + A choice of 0 means to cancel the selection, throwing an error. + + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1. + + The user chooses k by typing k+IS_ALL_CHOICE+1. + + The user is not allowed to choose more than MAX_RESULTS values. + + ANNOTATION_SUFFIX, if present, is used to annotate the input + prompts (for use with the -f switch). */ + +int +get_selections (choices, n_choices, max_results, is_all_choice, + annotation_suffix) + int* choices; + int n_choices; + int max_results; + int is_all_choice; + char* annotation_suffix; +{ + int i; + char* args; + const char* prompt; + int n_chosen; + int first_choice = is_all_choice ? 2 : 1; + + prompt = getenv ("PS2"); + if (prompt == NULL) + prompt = ">"; + + printf_unfiltered ("%s ", prompt); + gdb_flush (gdb_stdout); + + args = command_line_input ((char *) NULL, 0, annotation_suffix); + + if (args == NULL) + error_no_arg ("one or more choice numbers"); + + n_chosen = 0; + + /* Set choices[0 .. n_chosen-1] to the users' choices in ascending + order, as given in args. Choices are validated. */ + while (1) + { + char* args2; + int choice, j; + + while (isspace (*args)) + args += 1; + if (*args == '\0' && n_chosen == 0) + error_no_arg ("one or more choice numbers"); + else if (*args == '\0') + break; + + choice = strtol (args, &args2, 10); + if (args == args2 || choice < 0 || choice > n_choices + first_choice - 1) + error ("Argument must be choice number"); + args = args2; + + if (choice == 0) + error ("cancelled"); + + if (choice < first_choice) + { + n_chosen = n_choices; + for (j = 0; j < n_choices; j += 1) + choices[j] = j; + break; + } + choice -= first_choice; + + for (j = n_chosen-1; j >= 0 && choice < choices[j]; j -= 1) + {} + + if (j < 0 || choice != choices[j]) + { + int k; + for (k = n_chosen-1; k > j; k -= 1) + choices[k+1] = choices[k]; + choices[j+1] = choice; + n_chosen += 1; + } + } + + if (n_chosen > max_results) + error ("Select no more than %d of the above", max_results); + + return n_chosen; +} + +/* Replace the operator of length OPLEN at position PC in *EXPP with a call */ +/* on the function identified by SYM and BLOCK, and taking NARGS */ +/* arguments. Update *EXPP as needed to hold more space. */ + +static void +replace_operator_with_call (expp, pc, nargs, oplen, sym, block) + struct expression** expp; + int pc, nargs, oplen; + struct symbol* sym; + struct block* block; +{ + /* A new expression, with 6 more elements (3 for funcall, 4 for function + symbol, -oplen for operator being replaced). */ + struct expression* newexp = (struct expression*) + xmalloc (sizeof (struct expression) + + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen)); + struct expression* exp = *expp; + + newexp->nelts = exp->nelts + 7 - oplen; + newexp->language_defn = exp->language_defn; + memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc)); + memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen, + EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen)); + + newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL; + newexp->elts[pc + 1].longconst = (LONGEST) nargs; + + newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE; + newexp->elts[pc + 4].block = block; + newexp->elts[pc + 5].symbol = sym; + + *expp = newexp; + free (exp); +} + +/* Type-class predicates */ + +/* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type), or */ +/* FLOAT.) */ + +static int +numeric_type_p (type) + struct type* type; +{ + if (type == NULL) + return 0; + else { + switch (TYPE_CODE (type)) + { + case TYPE_CODE_INT: + case TYPE_CODE_FLT: + return 1; + case TYPE_CODE_RANGE: + return (type == TYPE_TARGET_TYPE (type) + || numeric_type_p (TYPE_TARGET_TYPE (type))); + default: + return 0; + } + } +} + +/* True iff TYPE is integral (an INT or RANGE of INTs). */ + +static int +integer_type_p (type) + struct type* type; +{ + if (type == NULL) + return 0; + else { + switch (TYPE_CODE (type)) + { + case TYPE_CODE_INT: + return 1; + case TYPE_CODE_RANGE: + return (type == TYPE_TARGET_TYPE (type) + || integer_type_p (TYPE_TARGET_TYPE (type))); + default: + return 0; + } + } +} + +/* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */ + +static int +scalar_type_p (type) + struct type* type; +{ + if (type == NULL) + return 0; + else { + switch (TYPE_CODE (type)) + { + case TYPE_CODE_INT: + case TYPE_CODE_RANGE: + case TYPE_CODE_ENUM: + case TYPE_CODE_FLT: + return 1; + default: + return 0; + } + } +} + +/* True iff TYPE is discrete (INT, RANGE, ENUM). */ + +static int +discrete_type_p (type) + struct type* type; +{ + if (type == NULL) + return 0; + else { + switch (TYPE_CODE (type)) + { + case TYPE_CODE_INT: + case TYPE_CODE_RANGE: + case TYPE_CODE_ENUM: + return 1; + default: + return 0; + } + } +} + +/* Returns non-zero if OP with operatands in the vector ARGS could be + a user-defined function. Errs on the side of pre-defined operators + (i.e., result 0). */ + +static int +possible_user_operator_p (op, args) + enum exp_opcode op; + struct value* args[]; +{ + struct type* type0 = check_typedef (VALUE_TYPE (args[0])); + struct type* type1 = + (args[1] == NULL) ? NULL : check_typedef (VALUE_TYPE (args[1])); + + switch (op) + { + default: + return 0; + + case BINOP_ADD: + case BINOP_SUB: + case BINOP_MUL: + case BINOP_DIV: + return (! (numeric_type_p (type0) && numeric_type_p (type1))); + + case BINOP_REM: + case BINOP_MOD: + case BINOP_BITWISE_AND: + case BINOP_BITWISE_IOR: + case BINOP_BITWISE_XOR: + return (! (integer_type_p (type0) && integer_type_p (type1))); + + case BINOP_EQUAL: + case BINOP_NOTEQUAL: + case BINOP_LESS: + case BINOP_GTR: + case BINOP_LEQ: + case BINOP_GEQ: + return (! (scalar_type_p (type0) && scalar_type_p (type1))); + + case BINOP_CONCAT: + return ((TYPE_CODE (type0) != TYPE_CODE_ARRAY && + (TYPE_CODE (type0) != TYPE_CODE_PTR || + TYPE_CODE (TYPE_TARGET_TYPE (type0)) + != TYPE_CODE_ARRAY)) + || (TYPE_CODE (type1) != TYPE_CODE_ARRAY && + (TYPE_CODE (type1) != TYPE_CODE_PTR || + TYPE_CODE (TYPE_TARGET_TYPE (type1)) + != TYPE_CODE_ARRAY))); + + case BINOP_EXP: + return (! (numeric_type_p (type0) && integer_type_p (type1))); + + case UNOP_NEG: + case UNOP_PLUS: + case UNOP_LOGICAL_NOT: + case UNOP_ABS: + return (! numeric_type_p (type0)); + + } +} + + /* Renaming */ + +/** NOTE: In the following, we assume that a renaming type's name may + * have an ___XD suffix. It would be nice if this went away at some + * point. */ + +/* If TYPE encodes a renaming, returns the renaming suffix, which + * is XR for an object renaming, XRP for a procedure renaming, XRE for + * an exception renaming, and XRS for a subprogram renaming. Returns + * NULL if NAME encodes none of these. */ +const char* +ada_renaming_type (type) + struct type* type; +{ + if (type != NULL && TYPE_CODE (type) == TYPE_CODE_ENUM) + { + const char* name = type_name_no_tag (type); + const char* suffix = (name == NULL) ? NULL : strstr (name, "___XR"); + if (suffix == NULL + || (suffix[5] != '\000' && strchr ("PES_", suffix[5]) == NULL)) + return NULL; + else + return suffix + 3; + } + else + return NULL; +} + +/* Return non-zero iff SYM encodes an object renaming. */ +int +ada_is_object_renaming (sym) + struct symbol* sym; +{ + const char* renaming_type = ada_renaming_type (SYMBOL_TYPE (sym)); + return renaming_type != NULL + && (renaming_type[2] == '\0' || renaming_type[2] == '_'); +} + +/* Assuming that SYM encodes a non-object renaming, returns the original + * name of the renamed entity. The name is good until the end of + * parsing. */ +const char* +ada_simple_renamed_entity (sym) + struct symbol* sym; +{ + struct type* type; + const char* raw_name; + int len; + char* result; + + type = SYMBOL_TYPE (sym); + if (type == NULL || TYPE_NFIELDS (type) < 1) + error ("Improperly encoded renaming."); + + raw_name = TYPE_FIELD_NAME (type, 0); + len = (raw_name == NULL ? 0 : strlen (raw_name)) - 5; + if (len <= 0) + error ("Improperly encoded renaming."); + + result = xmalloc (len + 1); + /* FIXME: add_name_string_cleanup should be defined in parse.c */ + /* add_name_string_cleanup (result);*/ + strncpy (result, raw_name, len); + result[len] = '\000'; + return result; +} + + + /* Evaluation: Function Calls */ + +/* Copy VAL onto the stack, using and updating *SP as the stack + pointer. Return VAL as an lvalue. */ + +static struct value* +place_on_stack (val, sp) + struct value* val; + CORE_ADDR* sp; +{ + CORE_ADDR old_sp = *sp; + +#ifdef STACK_ALIGN + *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val), + STACK_ALIGN (TYPE_LENGTH (check_typedef (VALUE_TYPE (val))))); +#else + *sp = push_bytes (*sp, VALUE_CONTENTS_RAW (val), + TYPE_LENGTH (check_typedef (VALUE_TYPE (val)))); +#endif + + VALUE_LVAL (val) = lval_memory; + if (INNER_THAN (1, 2)) + VALUE_ADDRESS (val) = *sp; + else + VALUE_ADDRESS (val) = old_sp; + + return val; +} + +/* Return the value ACTUAL, converted to be an appropriate value for a + formal of type FORMAL_TYPE. Use *SP as a stack pointer for + allocating any necessary descriptors (fat pointers), or copies of + values not residing in memory, updating it as needed. */ + +static struct value* +convert_actual (actual, formal_type0, sp) + struct value* actual; + struct type* formal_type0; + CORE_ADDR* sp; +{ + struct type* actual_type = check_typedef (VALUE_TYPE (actual)); + struct type* formal_type = check_typedef (formal_type0); + struct type* formal_target = + TYPE_CODE (formal_type) == TYPE_CODE_PTR + ? check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type; + struct type* actual_target = + TYPE_CODE (actual_type) == TYPE_CODE_PTR + ? check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type; + + if (ada_is_array_descriptor (formal_target) + && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY) + return make_array_descriptor (formal_type, actual, sp); + else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR) + { + if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY + && ada_is_array_descriptor (actual_target)) + return desc_data (actual); + else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR) + { + if (VALUE_LVAL (actual) != lval_memory) + { + struct value* val; + actual_type = check_typedef (VALUE_TYPE (actual)); + val = allocate_value (actual_type); + memcpy ((char*) VALUE_CONTENTS_RAW (val), + (char*) VALUE_CONTENTS (actual), + TYPE_LENGTH (actual_type)); + actual = place_on_stack (val, sp); + } + return value_addr (actual); + } + } + else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR) + return ada_value_ind (actual); + + return actual; +} + + +/* Push a descriptor of type TYPE for array value ARR on the stack at + *SP, updating *SP to reflect the new descriptor. Return either + an lvalue representing the new descriptor, or (if TYPE is a pointer- + to-descriptor type rather than a descriptor type), a struct value* + representing a pointer to this descriptor. */ + +static struct value* +make_array_descriptor (type, arr, sp) + struct type* type; + struct value* arr; + CORE_ADDR* sp; +{ + struct type* bounds_type = desc_bounds_type (type); + struct type* desc_type = desc_base_type (type); + struct value* descriptor = allocate_value (desc_type); + struct value* bounds = allocate_value (bounds_type); + CORE_ADDR bounds_addr; + int i; + + for (i = ada_array_arity (check_typedef (VALUE_TYPE (arr))); i > 0; i -= 1) + { + modify_general_field (VALUE_CONTENTS (bounds), + value_as_long (ada_array_bound (arr, i, 0)), + desc_bound_bitpos (bounds_type, i, 0), + desc_bound_bitsize (bounds_type, i, 0)); + modify_general_field (VALUE_CONTENTS (bounds), + value_as_long (ada_array_bound (arr, i, 1)), + desc_bound_bitpos (bounds_type, i, 1), + desc_bound_bitsize (bounds_type, i, 1)); + } + + bounds = place_on_stack (bounds, sp); + + modify_general_field (VALUE_CONTENTS (descriptor), + arr, + fat_pntr_data_bitpos (desc_type), + fat_pntr_data_bitsize (desc_type)); + modify_general_field (VALUE_CONTENTS (descriptor), + VALUE_ADDRESS (bounds), + fat_pntr_bounds_bitpos (desc_type), + fat_pntr_bounds_bitsize (desc_type)); + + descriptor = place_on_stack (descriptor, sp); + + if (TYPE_CODE (type) == TYPE_CODE_PTR) + return value_addr (descriptor); + else + return descriptor; +} + + +/* Assuming a dummy frame has been established on the target, perform any + conversions needed for calling function FUNC on the NARGS actual + parameters in ARGS, other than standard C conversions. Does + nothing if FUNC does not have Ada-style prototype data, or if NARGS + does not match the number of arguments expected. Use *SP as a + stack pointer for additional data that must be pushed, updating its + value as needed. */ + +void +ada_convert_actuals (func, nargs, args, sp) + struct value* func; + int nargs; + struct value* args[]; + CORE_ADDR* sp; +{ + int i; + + if (TYPE_NFIELDS (VALUE_TYPE (func)) == 0 + || nargs != TYPE_NFIELDS (VALUE_TYPE (func))) + return; + + for (i = 0; i < nargs; i += 1) + args[i] = + convert_actual (args[i], + TYPE_FIELD_TYPE (VALUE_TYPE (func), i), + sp); +} + + + /* Symbol Lookup */ + + +/* The vectors of symbols and blocks ultimately returned from */ +/* ada_lookup_symbol_list. */ + +/* Current size of defn_symbols and defn_blocks */ +static size_t defn_vector_size = 0; + +/* Current number of symbols found. */ +static int ndefns = 0; + +static struct symbol** defn_symbols = NULL; +static struct block** defn_blocks = NULL; + +/* Return the result of a standard (literal, C-like) lookup of NAME in + * given NAMESPACE. */ + +static struct symbol* +standard_lookup (name, namespace) + const char* name; + namespace_enum namespace; +{ + struct symbol* sym; + struct symtab* symtab; + sym = lookup_symbol (name, (struct block*) NULL, namespace, 0, &symtab); + return sym; +} + + +/* Non-zero iff there is at least one non-function/non-enumeral symbol */ +/* in SYMS[0..N-1]. We treat enumerals as functions, since they */ +/* contend in overloading in the same way. */ +static int +is_nonfunction (syms, n) + struct symbol* syms[]; + int n; +{ + int i; + + for (i = 0; i < n; i += 1) + if (TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_FUNC + && TYPE_CODE (SYMBOL_TYPE (syms[i])) != TYPE_CODE_ENUM) + return 1; + + return 0; +} + +/* If true (non-zero), then TYPE0 and TYPE1 represent equivalent + struct types. Otherwise, they may not. */ + +static int +equiv_types (type0, type1) + struct type* type0; + struct type* type1; +{ + if (type0 == type1) + return 1; + if (type0 == NULL || type1 == NULL + || TYPE_CODE (type0) != TYPE_CODE (type1)) + return 0; + if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT + || TYPE_CODE (type0) == TYPE_CODE_ENUM) + && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL + && STREQ (ada_type_name (type0), ada_type_name (type1))) + return 1; + + return 0; +} + +/* True iff SYM0 represents the same entity as SYM1, or one that is + no more defined than that of SYM1. */ + +static int +lesseq_defined_than (sym0, sym1) + struct symbol* sym0; + struct symbol* sym1; +{ + if (sym0 == sym1) + return 1; + if (SYMBOL_NAMESPACE (sym0) != SYMBOL_NAMESPACE (sym1) + || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1)) + return 0; + + switch (SYMBOL_CLASS (sym0)) + { + case LOC_UNDEF: + return 1; + case LOC_TYPEDEF: + { + struct type* type0 = SYMBOL_TYPE (sym0); + struct type* type1 = SYMBOL_TYPE (sym1); + char* name0 = SYMBOL_NAME (sym0); + char* name1 = SYMBOL_NAME (sym1); + int len0 = strlen (name0); + return + TYPE_CODE (type0) == TYPE_CODE (type1) + && (equiv_types (type0, type1) + || (len0 < strlen (name1) && STREQN (name0, name1, len0) + && STREQN (name1 + len0, "___XV", 5))); + } + case LOC_CONST: + return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1) + && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1)); + default: + return 0; + } +} + +/* Append SYM to the end of defn_symbols, and BLOCK to the end of + defn_blocks, updating ndefns, and expanding defn_symbols and + defn_blocks as needed. Do not include SYM if it is a duplicate. */ + +static void +add_defn_to_vec (sym, block) + struct symbol* sym; + struct block* block; +{ + int i; + size_t tmp; + + if (SYMBOL_TYPE (sym) != NULL) + CHECK_TYPEDEF (SYMBOL_TYPE (sym)); + for (i = 0; i < ndefns; i += 1) + { + if (lesseq_defined_than (sym, defn_symbols[i])) + return; + else if (lesseq_defined_than (defn_symbols[i], sym)) + { + defn_symbols[i] = sym; + defn_blocks[i] = block; + return; + } + } + + tmp = defn_vector_size; + GROW_VECT (defn_symbols, tmp, ndefns+2); + GROW_VECT (defn_blocks, defn_vector_size, ndefns+2); + + defn_symbols[ndefns] = sym; + defn_blocks[ndefns] = block; + ndefns += 1; +} + +/* Look, in partial_symtab PST, for symbol NAME in given namespace. + Check the global symbols if GLOBAL, the static symbols if not. Do + wild-card match if WILD. */ + +static struct partial_symbol * +ada_lookup_partial_symbol (pst, name, global, namespace, wild) + struct partial_symtab *pst; + const char *name; + int global; + namespace_enum namespace; + int wild; +{ + struct partial_symbol **start; + int name_len = strlen (name); + int length = (global ? pst->n_global_syms : pst->n_static_syms); + int i; + + if (length == 0) + { + return (NULL); + } + + start = (global ? + pst->objfile->global_psymbols.list + pst->globals_offset : + pst->objfile->static_psymbols.list + pst->statics_offset ); + + if (wild) + { + for (i = 0; i < length; i += 1) + { + struct partial_symbol* psym = start[i]; + + if (SYMBOL_NAMESPACE (psym) == namespace && + wild_match (name, name_len, SYMBOL_NAME (psym))) + return psym; + } + return NULL; + } + else + { + if (global) + { + int U; + i = 0; U = length-1; + while (U - i > 4) + { + int M = (U+i) >> 1; + struct partial_symbol* psym = start[M]; + if (SYMBOL_NAME (psym)[0] < name[0]) + i = M+1; + else if (SYMBOL_NAME (psym)[0] > name[0]) + U = M-1; + else if (strcmp (SYMBOL_NAME (psym), name) < 0) + i = M+1; + else + U = M; + } + } + else + i = 0; + + while (i < length) + { + struct partial_symbol *psym = start[i]; + + if (SYMBOL_NAMESPACE (psym) == namespace) + { + int cmp = strncmp (name, SYMBOL_NAME (psym), name_len); + + if (cmp < 0) + { + if (global) + break; + } + else if (cmp == 0 + && is_name_suffix (SYMBOL_NAME (psym) + name_len)) + return psym; + } + i += 1; + } + + if (global) + { + int U; + i = 0; U = length-1; + while (U - i > 4) + { + int M = (U+i) >> 1; + struct partial_symbol *psym = start[M]; + if (SYMBOL_NAME (psym)[0] < '_') + i = M+1; + else if (SYMBOL_NAME (psym)[0] > '_') + U = M-1; + else if (strcmp (SYMBOL_NAME (psym), "_ada_") < 0) + i = M+1; + else + U = M; + } + } + else + i = 0; + + while (i < length) + { + struct partial_symbol* psym = start[i]; + + if (SYMBOL_NAMESPACE (psym) == namespace) + { + int cmp; + + cmp = (int) '_' - (int) SYMBOL_NAME (psym)[0]; + if (cmp == 0) + { + cmp = strncmp ("_ada_", SYMBOL_NAME (psym), 5); + if (cmp == 0) + cmp = strncmp (name, SYMBOL_NAME (psym) + 5, name_len); + } + + if (cmp < 0) + { + if (global) + break; + } + else if (cmp == 0 + && is_name_suffix (SYMBOL_NAME (psym) + name_len + 5)) + return psym; + } + i += 1; + } + + } + return NULL; +} + + +/* Find a symbol table containing symbol SYM or NULL if none. */ +static struct symtab* +symtab_for_sym (sym) + struct symbol* sym; +{ + struct symtab* s; + struct objfile *objfile; + struct block *b; + int i, j; + + ALL_SYMTABS (objfile, s) + { + switch (SYMBOL_CLASS (sym)) + { + case LOC_CONST: + case LOC_STATIC: + case LOC_TYPEDEF: + case LOC_REGISTER: + case LOC_LABEL: + case LOC_BLOCK: + case LOC_CONST_BYTES: + b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK); + for (i = 0; i < BLOCK_NSYMS (b); i += 1) + if (sym == BLOCK_SYM (b, i)) + return s; + b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK); + for (i = 0; i < BLOCK_NSYMS (b); i += 1) + if (sym == BLOCK_SYM (b, i)) + return s; + break; + default: + break; + } + switch (SYMBOL_CLASS (sym)) + { + case LOC_REGISTER: + case LOC_ARG: + case LOC_REF_ARG: + case LOC_REGPARM: + case LOC_REGPARM_ADDR: + case LOC_LOCAL: + case LOC_TYPEDEF: + case LOC_LOCAL_ARG: + case LOC_BASEREG: + case LOC_BASEREG_ARG: + for (j = FIRST_LOCAL_BLOCK; + j < BLOCKVECTOR_NBLOCKS (BLOCKVECTOR (s)); j += 1) + { + b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), j); + for (i = 0; i < BLOCK_NSYMS (b); i += 1) + if (sym == BLOCK_SYM (b, i)) + return s; + } + break; + default: + break; + } + } + return NULL; +} + +/* Return a minimal symbol matching NAME according to Ada demangling + rules. Returns NULL if there is no such minimal symbol. */ + +struct minimal_symbol* +ada_lookup_minimal_symbol (name) + const char* name; +{ + struct objfile* objfile; + struct minimal_symbol* msymbol; + int wild_match = (strstr (name, "__") == NULL); + + ALL_MSYMBOLS (objfile, msymbol) + { + if (ada_match_name (SYMBOL_NAME (msymbol), name, wild_match) + && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline) + return msymbol; + } + + return NULL; +} + +/* For all subprograms that statically enclose the subprogram of the + * selected frame, add symbols matching identifier NAME in NAMESPACE + * and their blocks to vectors *defn_symbols and *defn_blocks, as for + * ada_add_block_symbols (q.v.). If WILD, treat as NAME with a + * wildcard prefix. At the moment, this function uses a heuristic to + * find the frames of enclosing subprograms: it treats the + * pointer-sized value at location 0 from the local-variable base of a + * frame as a static link, and then searches up the call stack for a + * frame with that same local-variable base. */ +static void +add_symbols_from_enclosing_procs (name, namespace, wild_match) + const char* name; + namespace_enum namespace; + int wild_match; +{ +#ifdef i386 + static struct symbol static_link_sym; + static struct symbol *static_link; + + struct cleanup* old_chain = make_cleanup (null_cleanup, NULL); + struct frame_info* frame; + struct frame_info* target_frame; + + if (static_link == NULL) + { + /* Initialize the local variable symbol that stands for the + * static link (when it exists). */ + static_link = &static_link_sym; + SYMBOL_NAME (static_link) = ""; + SYMBOL_LANGUAGE (static_link) = language_unknown; + SYMBOL_CLASS (static_link) = LOC_LOCAL; + SYMBOL_NAMESPACE (static_link) = VAR_NAMESPACE; + SYMBOL_TYPE (static_link) = lookup_pointer_type (builtin_type_void); + SYMBOL_VALUE (static_link) = + - (long) TYPE_LENGTH (SYMBOL_TYPE (static_link)); + } + + frame = selected_frame; + while (frame != NULL && ndefns == 0) + { + struct block* block; + struct value* target_link_val = read_var_value (static_link, frame); + CORE_ADDR target_link; + + if (target_link_val == NULL) + break; + QUIT; + + target_link = target_link_val; + do { + QUIT; + frame = get_prev_frame (frame); + } while (frame != NULL && FRAME_LOCALS_ADDRESS (frame) != target_link); + + if (frame == NULL) + break; + + block = get_frame_block (frame, 0); + while (block != NULL && block_function (block) != NULL && ndefns == 0) + { + ada_add_block_symbols (block, name, namespace, NULL, wild_match); + + block = BLOCK_SUPERBLOCK (block); + } + } + + do_cleanups (old_chain); +#endif +} + +/* True if TYPE is definitely an artificial type supplied to a symbol + * for which no debugging information was given in the symbol file. */ +static int +is_nondebugging_type (type) + struct type* type; +{ + char* name = ada_type_name (type); + return (name != NULL && STREQ (name, "<variable, no debug info>")); +} + +/* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely + * duplicate other symbols in the list. (The only case I know of where + * this happens is when object files containing stabs-in-ecoff are + * linked with files containing ordinary ecoff debugging symbols (or no + * debugging symbols)). Modifies SYMS to squeeze out deleted symbols, + * and applies the same modification to BLOCKS to maintain the + * correspondence between SYMS[i] and BLOCKS[i]. Returns the number + * of symbols in the modified list. */ +static int +remove_extra_symbols (syms, blocks, nsyms) + struct symbol** syms; + struct block** blocks; + int nsyms; +{ + int i, j; + + i = 0; + while (i < nsyms) + { + if (SYMBOL_NAME (syms[i]) != NULL && SYMBOL_CLASS (syms[i]) == LOC_STATIC + && is_nondebugging_type (SYMBOL_TYPE (syms[i]))) + { + for (j = 0; j < nsyms; j += 1) + { + if (i != j + && SYMBOL_NAME (syms[j]) != NULL + && STREQ (SYMBOL_NAME (syms[i]), SYMBOL_NAME (syms[j])) + && SYMBOL_CLASS (syms[i]) == SYMBOL_CLASS (syms[j]) + && SYMBOL_VALUE_ADDRESS (syms[i]) + == SYMBOL_VALUE_ADDRESS (syms[j])) + { + int k; + for (k = i+1; k < nsyms; k += 1) + { + syms[k-1] = syms[k]; + blocks[k-1] = blocks[k]; + } + nsyms -= 1; + goto NextSymbol; + } + } + } + i += 1; + NextSymbol: + ; + } + return nsyms; +} + +/* Find symbols in NAMESPACE matching NAME, in BLOCK0 and enclosing + scope and in global scopes, returning the number of matches. Sets + *SYMS to point to a vector of matching symbols, with *BLOCKS + pointing to the vector of corresponding blocks in which those + symbols reside. These two vectors are transient---good only to the + next call of ada_lookup_symbol_list. Any non-function/non-enumeral symbol + match within the nest of blocks whose innermost member is BLOCK0, + is the outermost match returned (no other matches in that or + enclosing blocks is returned). If there are any matches in or + surrounding BLOCK0, then these alone are returned. */ + +int +ada_lookup_symbol_list (name, block0, namespace, syms, blocks) + const char *name; + struct block *block0; + namespace_enum namespace; + struct symbol*** syms; + struct block*** blocks; +{ + struct symbol *sym; + struct symtab *s; + struct partial_symtab *ps; + struct blockvector *bv; + struct objfile *objfile; + struct block *b; + struct block *block; + struct minimal_symbol *msymbol; + int wild_match = (strstr (name, "__") == NULL); + int cacheIfUnique; + +#ifdef TIMING + markTimeStart (0); +#endif + + ndefns = 0; + cacheIfUnique = 0; + + /* Search specified block and its superiors. */ + + block = block0; + while (block != NULL) + { + ada_add_block_symbols (block, name, namespace, NULL, wild_match); + + /* If we found a non-function match, assume that's the one. */ + if (is_nonfunction (defn_symbols, ndefns)) + goto done; + + block = BLOCK_SUPERBLOCK (block); + } + + /* If we found ANY matches in the specified BLOCK, we're done. */ + + if (ndefns > 0) + goto done; + + cacheIfUnique = 1; + + /* Now add symbols from all global blocks: symbol tables, minimal symbol + tables, and psymtab's */ + + ALL_SYMTABS (objfile, s) + { + QUIT; + if (! s->primary) + continue; + bv = BLOCKVECTOR (s); + block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); + ada_add_block_symbols (block, name, namespace, objfile, wild_match); + } + + if (namespace == VAR_NAMESPACE) + { + ALL_MSYMBOLS (objfile, msymbol) + { + if (ada_match_name (SYMBOL_NAME (msymbol), name, wild_match)) + { + switch (MSYMBOL_TYPE (msymbol)) + { + case mst_solib_trampoline: + break; + default: + s = find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)); + if (s != NULL) + { + int old_ndefns = ndefns; + QUIT; + bv = BLOCKVECTOR (s); + block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); + ada_add_block_symbols (block, + SYMBOL_NAME (msymbol), + namespace, objfile, wild_match); + if (ndefns == old_ndefns) + { + block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); + ada_add_block_symbols (block, + SYMBOL_NAME (msymbol), + namespace, objfile, + wild_match); + } + } + } + } + } + } + + ALL_PSYMTABS (objfile, ps) + { + QUIT; + if (!ps->readin + && ada_lookup_partial_symbol (ps, name, 1, namespace, wild_match)) + { + s = PSYMTAB_TO_SYMTAB (ps); + if (! s->primary) + continue; + bv = BLOCKVECTOR (s); + block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK); + ada_add_block_symbols (block, name, namespace, objfile, wild_match); + } + } + + /* Now add symbols from all per-file blocks if we've gotten no hits. + (Not strictly correct, but perhaps better than an error). + Do the symtabs first, then check the psymtabs */ + + if (ndefns == 0) + { + + ALL_SYMTABS (objfile, s) + { + QUIT; + if (! s->primary) + continue; + bv = BLOCKVECTOR (s); + block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); + ada_add_block_symbols (block, name, namespace, objfile, wild_match); + } + + ALL_PSYMTABS (objfile, ps) + { + QUIT; + if (!ps->readin + && ada_lookup_partial_symbol (ps, name, 0, namespace, wild_match)) + { + s = PSYMTAB_TO_SYMTAB(ps); + bv = BLOCKVECTOR (s); + if (! s->primary) + continue; + block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK); + ada_add_block_symbols (block, name, namespace, + objfile, wild_match); + } + } + } + + /* Finally, we try to find NAME as a local symbol in some lexically + enclosing block. We do this last, expecting this case to be + rare. */ + if (ndefns == 0) + { + add_symbols_from_enclosing_procs (name, namespace, wild_match); + if (ndefns > 0) + goto done; + } + + done: + ndefns = remove_extra_symbols (defn_symbols, defn_blocks, ndefns); + + + *syms = defn_symbols; + *blocks = defn_blocks; +#ifdef TIMING + markTimeStop (0); +#endif + return ndefns; +} + +/* Return a symbol in NAMESPACE matching NAME, in BLOCK0 and enclosing + * scope and in global scopes, or NULL if none. NAME is folded to + * lower case first, unless it is surrounded in single quotes. + * Otherwise, the result is as for ada_lookup_symbol_list, but is + * disambiguated by user query if needed. */ + +struct symbol* +ada_lookup_symbol (name, block0, namespace) + const char *name; + struct block *block0; + namespace_enum namespace; +{ + struct symbol** candidate_syms; + struct block** candidate_blocks; + int n_candidates; + + n_candidates = ada_lookup_symbol_list (name, + block0, namespace, + &candidate_syms, &candidate_blocks); + + if (n_candidates == 0) + return NULL; + else if (n_candidates != 1) + user_select_syms (candidate_syms, candidate_blocks, n_candidates, 1); + + return candidate_syms[0]; +} + + +/* True iff STR is a possible encoded suffix of a normal Ada name + * that is to be ignored for matching purposes. Suffixes of parallel + * names (e.g., XVE) are not included here. Currently, the possible suffixes + * are given by the regular expression: + * (X[nb]*)?(__[0-9]+|\$[0-9]+|___(LJM|X([FDBUP].*|R[^T]?)))?$ + * + */ +static int +is_name_suffix (str) + const char* str; +{ + int k; + if (str[0] == 'X') + { + str += 1; + while (str[0] != '_' && str[0] != '\0') + { + if (str[0] != 'n' && str[0] != 'b') + return 0; + str += 1; + } + } + if (str[0] == '\000') + return 1; + if (str[0] == '_') + { + if (str[1] != '_' || str[2] == '\000') + return 0; + if (str[2] == '_') + { + if (STREQ (str+3, "LJM")) + return 1; + if (str[3] != 'X') + return 0; + if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B' || + str[4] == 'U' || str[4] == 'P') + return 1; + if (str[4] == 'R' && str[5] != 'T') + return 1; + return 0; + } + for (k = 2; str[k] != '\0'; k += 1) + if (!isdigit (str[k])) + return 0; + return 1; + } + if (str[0] == '$' && str[1] != '\000') + { + for (k = 1; str[k] != '\0'; k += 1) + if (!isdigit (str[k])) + return 0; + return 1; + } + return 0; +} + +/* True if NAME represents a name of the form A1.A2....An, n>=1 and + * PATN[0..PATN_LEN-1] = Ak.Ak+1.....An for some k >= 1. Ignores + * informational suffixes of NAME (i.e., for which is_name_suffix is + * true). */ +static int +wild_match (patn, patn_len, name) + const char* patn; + int patn_len; + const char* name; +{ + int name_len; + int s, e; + + name_len = strlen (name); + if (name_len >= patn_len+5 && STREQN (name, "_ada_", 5) + && STREQN (patn, name+5, patn_len) + && is_name_suffix (name+patn_len+5)) + return 1; + + while (name_len >= patn_len) + { + if (STREQN (patn, name, patn_len) + && is_name_suffix (name+patn_len)) + return 1; + do { + name += 1; name_len -= 1; + } while (name_len > 0 + && name[0] != '.' && (name[0] != '_' || name[1] != '_')); + if (name_len <= 0) + return 0; + if (name[0] == '_') + { + if (! islower (name[2])) + return 0; + name += 2; name_len -= 2; + } + else + { + if (! islower (name[1])) + return 0; + name += 1; name_len -= 1; + } + } + + return 0; +} + + +/* Add symbols from BLOCK matching identifier NAME in NAMESPACE to + vector *defn_symbols, updating *defn_symbols (if necessary), *SZ (the size of + the vector *defn_symbols), and *ndefns (the number of symbols + currently stored in *defn_symbols). If WILD, treat as NAME with a + wildcard prefix. OBJFILE is the section containing BLOCK. */ + +static void +ada_add_block_symbols (block, name, namespace, objfile, wild) + struct block* block; + const char* name; + namespace_enum namespace; + struct objfile* objfile; + int wild; +{ + int i; + int name_len = strlen (name); + /* A matching argument symbol, if any. */ + struct symbol *arg_sym; + /* Set true when we find a matching non-argument symbol */ + int found_sym; + int is_sorted = BLOCK_SHOULD_SORT (block); + + arg_sym = NULL; found_sym = 0; + if (wild) + { + for (i = 0; i < BLOCK_NSYMS (block); i += 1) + { + struct symbol *sym = BLOCK_SYM (block, i); + + if (SYMBOL_NAMESPACE (sym) == namespace && + wild_match (name, name_len, SYMBOL_NAME (sym))) + { + switch (SYMBOL_CLASS (sym)) + { + case LOC_ARG: + case LOC_LOCAL_ARG: + case LOC_REF_ARG: + case LOC_REGPARM: + case LOC_REGPARM_ADDR: + case LOC_BASEREG_ARG: + arg_sym = sym; + break; + case LOC_UNRESOLVED: + continue; + default: + found_sym = 1; + fill_in_ada_prototype (sym); + add_defn_to_vec (fixup_symbol_section (sym, objfile), block); + break; + } + } + } + } + else + { + if (is_sorted) + { + int U; + i = 0; U = BLOCK_NSYMS (block)-1; + while (U - i > 4) + { + int M = (U+i) >> 1; + struct symbol *sym = BLOCK_SYM (block, M); + if (SYMBOL_NAME (sym)[0] < name[0]) + i = M+1; + else if (SYMBOL_NAME (sym)[0] > name[0]) + U = M-1; + else if (strcmp (SYMBOL_NAME (sym), name) < 0) + i = M+1; + else + U = M; + } + } + else + i = 0; + + for (; i < BLOCK_NSYMS (block); i += 1) + { + struct symbol *sym = BLOCK_SYM (block, i); + + if (SYMBOL_NAMESPACE (sym) == namespace) + { + int cmp = strncmp (name, SYMBOL_NAME (sym), name_len); + + if (cmp < 0) + { + if (is_sorted) + break; + } + else if (cmp == 0 + && is_name_suffix (SYMBOL_NAME (sym) + name_len)) + { + switch (SYMBOL_CLASS (sym)) + { + case LOC_ARG: + case LOC_LOCAL_ARG: + case LOC_REF_ARG: + case LOC_REGPARM: + case LOC_REGPARM_ADDR: + case LOC_BASEREG_ARG: + arg_sym = sym; + break; + case LOC_UNRESOLVED: + break; + default: + found_sym = 1; + fill_in_ada_prototype (sym); + add_defn_to_vec (fixup_symbol_section (sym, objfile), + block); + break; + } + } + } + } + } + + if (! found_sym && arg_sym != NULL) + { + fill_in_ada_prototype (arg_sym); + add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block); + } + + if (! wild) + { + arg_sym = NULL; found_sym = 0; + if (is_sorted) + { + int U; + i = 0; U = BLOCK_NSYMS (block)-1; + while (U - i > 4) + { + int M = (U+i) >> 1; + struct symbol *sym = BLOCK_SYM (block, M); + if (SYMBOL_NAME (sym)[0] < '_') + i = M+1; + else if (SYMBOL_NAME (sym)[0] > '_') + U = M-1; + else if (strcmp (SYMBOL_NAME (sym), "_ada_") < 0) + i = M+1; + else + U = M; + } + } + else + i = 0; + + for (; i < BLOCK_NSYMS (block); i += 1) + { + struct symbol *sym = BLOCK_SYM (block, i); + + if (SYMBOL_NAMESPACE (sym) == namespace) + { + int cmp; + + cmp = (int) '_' - (int) SYMBOL_NAME (sym)[0]; + if (cmp == 0) + { + cmp = strncmp ("_ada_", SYMBOL_NAME (sym), 5); + if (cmp == 0) + cmp = strncmp (name, SYMBOL_NAME (sym) + 5, name_len); + } + + if (cmp < 0) + { + if (is_sorted) + break; + } + else if (cmp == 0 + && is_name_suffix (SYMBOL_NAME (sym) + name_len + 5)) + { + switch (SYMBOL_CLASS (sym)) + { + case LOC_ARG: + case LOC_LOCAL_ARG: + case LOC_REF_ARG: + case LOC_REGPARM: + case LOC_REGPARM_ADDR: + case LOC_BASEREG_ARG: + arg_sym = sym; + break; + case LOC_UNRESOLVED: + break; + default: + found_sym = 1; + fill_in_ada_prototype (sym); + add_defn_to_vec (fixup_symbol_section (sym, objfile), + block); + break; + } + } + } + } + + /* NOTE: This really shouldn't be needed for _ada_ symbols. + They aren't parameters, right? */ + if (! found_sym && arg_sym != NULL) + { + fill_in_ada_prototype (arg_sym); + add_defn_to_vec (fixup_symbol_section (arg_sym, objfile), block); + } + } +} + + + /* Function Types */ + +/* Assuming that SYM is the symbol for a function, fill in its type + with prototype information, if it is not already there. */ + +static void +fill_in_ada_prototype (func) + struct symbol* func; +{ + struct block* b; + int nargs, nsyms; + int i; + struct type* ftype; + struct type* rtype; + size_t max_fields; + + if (func == NULL + || TYPE_CODE (SYMBOL_TYPE (func)) != TYPE_CODE_FUNC + || TYPE_FIELDS (SYMBOL_TYPE (func)) != NULL) + return; + + /* We make each function type unique, so that each may have its own */ + /* parameter types. This particular way of doing so wastes space: */ + /* it would be nicer to build the argument types while the original */ + /* function type is being built (FIXME). */ + rtype = check_typedef (TYPE_TARGET_TYPE (SYMBOL_TYPE (func))); + ftype = alloc_type (TYPE_OBJFILE (SYMBOL_TYPE (func))); + make_function_type (rtype, &ftype); + SYMBOL_TYPE (func) = ftype; + + b = SYMBOL_BLOCK_VALUE (func); + nsyms = BLOCK_NSYMS (b); + + nargs = 0; + max_fields = 8; + TYPE_FIELDS (ftype) = + (struct field*) xmalloc (sizeof (struct field) * max_fields); + for (i = 0; i < nsyms; i += 1) + { + struct symbol *sym = BLOCK_SYM (b, i); + + GROW_VECT (TYPE_FIELDS (ftype), max_fields, nargs+1); + + switch (SYMBOL_CLASS (sym)) + { + case LOC_REF_ARG: + case LOC_REGPARM_ADDR: + TYPE_FIELD_BITPOS (ftype, nargs) = nargs; + TYPE_FIELD_BITSIZE (ftype, nargs) = 0; + TYPE_FIELD_TYPE (ftype, nargs) = + lookup_pointer_type (check_typedef (SYMBOL_TYPE (sym))); + TYPE_FIELD_NAME (ftype, nargs) = SYMBOL_NAME (sym); + nargs += 1; + + break; + + case LOC_ARG: + case LOC_REGPARM: + case LOC_LOCAL_ARG: + case LOC_BASEREG_ARG: + TYPE_FIELD_BITPOS (ftype, nargs) = nargs; + TYPE_FIELD_BITSIZE (ftype, nargs) = 0; + TYPE_FIELD_TYPE (ftype, nargs) = check_typedef (SYMBOL_TYPE (sym)); + TYPE_FIELD_NAME (ftype, nargs) = SYMBOL_NAME (sym); + nargs += 1; + + break; + + default: + break; + } + } + + /* Re-allocate fields vector; if there are no fields, make the */ + /* fields pointer non-null anyway, to mark that this function type */ + /* has been filled in. */ + + TYPE_NFIELDS (ftype) = nargs; + if (nargs == 0) + { + static struct field dummy_field = {0, 0, 0, 0}; + free (TYPE_FIELDS (ftype)); + TYPE_FIELDS (ftype) = &dummy_field; + } + else + { + struct field* fields = + (struct field*) TYPE_ALLOC (ftype, nargs * sizeof (struct field)); + memcpy ((char*) fields, + (char*) TYPE_FIELDS (ftype), + nargs * sizeof (struct field)); + free (TYPE_FIELDS (ftype)); + TYPE_FIELDS (ftype) = fields; + } +} + + + /* Breakpoint-related */ + +char no_symtab_msg[] = "No symbol table is loaded. Use the \"file\" command."; + +/* Assuming that LINE is pointing at the beginning of an argument to + 'break', return a pointer to the delimiter for the initial segment + of that name. This is the first ':', ' ', or end of LINE. +*/ +char* +ada_start_decode_line_1 (line) + char* line; +{ + /* [NOTE: strpbrk would be more elegant, but I am reluctant to be + the first to use such a library function in GDB code.] */ + char* p; + for (p = line; *p != '\000' && *p != ' ' && *p != ':'; p += 1) + ; + return p; +} + +/* *SPEC points to a function and line number spec (as in a break + command), following any initial file name specification. + + Return all symbol table/line specfications (sals) consistent with the + information in *SPEC and FILE_TABLE in the + following sense: + + FILE_TABLE is null, or the sal refers to a line in the file + named by FILE_TABLE. + + If *SPEC points to an argument with a trailing ':LINENUM', + then the sal refers to that line (or one following it as closely as + possible). + + If *SPEC does not start with '*', the sal is in a function with + that name. + + Returns with 0 elements if no matching non-minimal symbols found. + + If *SPEC begins with a function name of the form <NAME>, then NAME + is taken as a literal name; otherwise the function name is subject + to the usual mangling. + + *SPEC is updated to point after the function/line number specification. + + FUNFIRSTLINE is non-zero if we desire the first line of real code + in each function (this is ignored in the presence of a LINENUM spec.). + + If CANONICAL is non-NULL, and if any of the sals require a + 'canonical line spec', then *CANONICAL is set to point to an array + of strings, corresponding to and equal in length to the returned + list of sals, such that (*CANONICAL)[i] is non-null and contains a + canonical line spec for the ith returned sal, if needed. If no + canonical line specs are required and CANONICAL is non-null, + *CANONICAL is set to NULL. + + A 'canonical line spec' is simply a name (in the format of the + breakpoint command) that uniquely identifies a breakpoint position, + with no further contextual information or user selection. It is + needed whenever the file name, function name, and line number + information supplied is insufficient for this unique + identification. Currently overloaded functions, the name '*', + or static functions without a filename yield a canonical line spec. + The array and the line spec strings are allocated on the heap; it + is the caller's responsibility to free them. */ + +struct symtabs_and_lines +ada_finish_decode_line_1 (spec, file_table, funfirstline, canonical) + char** spec; + struct symtab* file_table; + int funfirstline; + char*** canonical; +{ + struct symbol** symbols; + struct block** blocks; + struct block* block; + int n_matches, i, line_num; + struct symtabs_and_lines selected; + struct cleanup* old_chain = make_cleanup (null_cleanup, NULL); + char* name; + + int len; + char* lower_name; + char* unquoted_name; + + if (file_table == NULL) + block = get_selected_block (NULL); + else + block = BLOCKVECTOR_BLOCK (BLOCKVECTOR (file_table), STATIC_BLOCK); + + if (canonical != NULL) + *canonical = (char**) NULL; + + name = *spec; + if (**spec == '*') + *spec += 1; + else + { + while (**spec != '\000' && + ! strchr (ada_completer_word_break_characters, **spec)) + *spec += 1; + } + len = *spec - name; + + line_num = -1; + if (file_table != NULL && (*spec)[0] == ':' && isdigit ((*spec)[1])) + { + line_num = strtol (*spec + 1, spec, 10); + while (**spec == ' ' || **spec == '\t') + *spec += 1; + } + + if (name[0] == '*') + { + if (line_num == -1) + error ("Wild-card function with no line number or file name."); + + return all_sals_for_line (file_table->filename, line_num, canonical); + } + + if (name[0] == '\'') + { + name += 1; + len -= 2; + } + + if (name[0] == '<') + { + unquoted_name = (char*) alloca (len-1); + memcpy (unquoted_name, name+1, len-2); + unquoted_name[len-2] = '\000'; + lower_name = NULL; + } + else + { + unquoted_name = (char*) alloca (len+1); + memcpy (unquoted_name, name, len); + unquoted_name[len] = '\000'; + lower_name = (char*) alloca (len + 1); + for (i = 0; i < len; i += 1) + lower_name[i] = tolower (name[i]); + lower_name[len] = '\000'; + } + + n_matches = 0; + if (lower_name != NULL) + n_matches = ada_lookup_symbol_list (ada_mangle (lower_name), block, + VAR_NAMESPACE, &symbols, &blocks); + if (n_matches == 0) + n_matches = ada_lookup_symbol_list (unquoted_name, block, + VAR_NAMESPACE, &symbols, &blocks); + if (n_matches == 0 && line_num >= 0) + error ("No line number information found for %s.", unquoted_name); + else if (n_matches == 0) + { +#ifdef HPPA_COMPILER_BUG + /* FIXME: See comment in symtab.c::decode_line_1 */ +#undef volatile + volatile struct symtab_and_line val; +#define volatile /*nothing*/ +#else + struct symtab_and_line val; +#endif + struct minimal_symbol* msymbol; + + INIT_SAL (&val); + + msymbol = NULL; + if (lower_name != NULL) + msymbol = ada_lookup_minimal_symbol (ada_mangle (lower_name)); + if (msymbol == NULL) + msymbol = ada_lookup_minimal_symbol (unquoted_name); + if (msymbol != NULL) + { + val.pc = SYMBOL_VALUE_ADDRESS (msymbol); + val.section = SYMBOL_BFD_SECTION (msymbol); + if (funfirstline) + { + val.pc += FUNCTION_START_OFFSET; + SKIP_PROLOGUE (val.pc); + } + selected.sals = (struct symtab_and_line *) + xmalloc (sizeof (struct symtab_and_line)); + selected.sals[0] = val; + selected.nelts = 1; + return selected; + } + + if (!have_full_symbols () && + !have_partial_symbols () && !have_minimal_symbols ()) + error (no_symtab_msg); + + error ("Function \"%s\" not defined.", unquoted_name); + return selected; /* for lint */ + } + + if (line_num >= 0) + { + return + find_sal_from_funcs_and_line (file_table->filename, line_num, + symbols, n_matches); + } + else + { + selected.nelts = user_select_syms (symbols, blocks, n_matches, n_matches); + } + + selected.sals = (struct symtab_and_line*) + xmalloc (sizeof (struct symtab_and_line) * selected.nelts); + memset (selected.sals, 0, selected.nelts * sizeof (selected.sals[i])); + make_cleanup (free, selected.sals); + + i = 0; + while (i < selected.nelts) + { + if (SYMBOL_CLASS (symbols[i]) == LOC_BLOCK) + selected.sals[i] = find_function_start_sal (symbols[i], funfirstline); + else if (SYMBOL_LINE (symbols[i]) != 0) + { + selected.sals[i].symtab = symtab_for_sym (symbols[i]); + selected.sals[i].line = SYMBOL_LINE (symbols[i]); + } + else if (line_num >= 0) + { + /* Ignore this choice */ + symbols[i] = symbols[selected.nelts-1]; + blocks[i] = blocks[selected.nelts-1]; + selected.nelts -= 1; + continue; + } + else + error ("Line number not known for symbol \"%s\"", unquoted_name); + i += 1; + } + + if (canonical != NULL && (line_num >= 0 || n_matches > 1)) + { + *canonical = (char**) xmalloc (sizeof(char*) * selected.nelts); + for (i = 0; i < selected.nelts; i += 1) + (*canonical)[i] = + extended_canonical_line_spec (selected.sals[i], + SYMBOL_SOURCE_NAME (symbols[i])); + } + + discard_cleanups (old_chain); + return selected; +} + +/* The (single) sal corresponding to line LINE_NUM in a symbol table + with file name FILENAME that occurs in one of the functions listed + in SYMBOLS[0 .. NSYMS-1]. */ +static struct symtabs_and_lines +find_sal_from_funcs_and_line (filename, line_num, symbols, nsyms) + const char* filename; + int line_num; + struct symbol** symbols; + int nsyms; +{ + struct symtabs_and_lines sals; + int best_index, best; + struct linetable* best_linetable; + struct objfile* objfile; + struct symtab* s; + struct symtab* best_symtab; + + read_all_symtabs (filename); + + best_index = 0; best_linetable = NULL; best_symtab = NULL; + best = 0; + ALL_SYMTABS (objfile, s) + { + struct linetable *l; + int ind, exact; + + QUIT; + + if (!STREQ (filename, s->filename)) + continue; + l = LINETABLE (s); + ind = find_line_in_linetable (l, line_num, symbols, nsyms, &exact); + if (ind >= 0) + { + if (exact) + { + best_index = ind; + best_linetable = l; + best_symtab = s; + goto done; + } + if (best == 0 || l->item[ind].line < best) + { + best = l->item[ind].line; + best_index = ind; + best_linetable = l; + best_symtab = s; + } + } + } + + if (best == 0) + error ("Line number not found in designated function."); + + done: + + sals.nelts = 1; + sals.sals = (struct symtab_and_line*) xmalloc (sizeof (sals.sals[0])); + + INIT_SAL (&sals.sals[0]); + + sals.sals[0].line = best_linetable->item[best_index].line; + sals.sals[0].pc = best_linetable->item[best_index].pc; + sals.sals[0].symtab = best_symtab; + + return sals; +} + +/* Return the index in LINETABLE of the best match for LINE_NUM whose + pc falls within one of the functions denoted by SYMBOLS[0..NSYMS-1]. + Set *EXACTP to the 1 if the match is exact, and 0 otherwise. */ +static int +find_line_in_linetable (linetable, line_num, symbols, nsyms, exactp) + struct linetable* linetable; + int line_num; + struct symbol** symbols; + int nsyms; + int* exactp; +{ + int i, len, best_index, best; + + if (line_num <= 0 || linetable == NULL) + return -1; + + len = linetable->nitems; + for (i = 0, best_index = -1, best = 0; i < len; i += 1) + { + int k; + struct linetable_entry* item = &(linetable->item[i]); + + for (k = 0; k < nsyms; k += 1) + { + if (symbols[k] != NULL && SYMBOL_CLASS (symbols[k]) == LOC_BLOCK + && item->pc >= BLOCK_START (SYMBOL_BLOCK_VALUE (symbols[k])) + && item->pc < BLOCK_END (SYMBOL_BLOCK_VALUE (symbols[k]))) + goto candidate; + } + continue; + + candidate: + + if (item->line == line_num) + { + *exactp = 1; + return i; + } + + if (item->line > line_num && (best == 0 || item->line < best)) + { + best = item->line; + best_index = i; + } + } + + *exactp = 0; + return best_index; +} + +/* Find the smallest k >= LINE_NUM such that k is a line number in + LINETABLE, and k falls strictly within a named function that begins at + or before LINE_NUM. Return -1 if there is no such k. */ +static int +nearest_line_number_in_linetable (linetable, line_num) + struct linetable* linetable; + int line_num; +{ + int i, len, best; + + if (line_num <= 0 || linetable == NULL || linetable->nitems == 0) + return -1; + len = linetable->nitems; + + i = 0; best = INT_MAX; + while (i < len) + { + int k; + struct linetable_entry* item = &(linetable->item[i]); + + if (item->line >= line_num && item->line < best) + { + char* func_name; + CORE_ADDR start, end; + + func_name = NULL; + find_pc_partial_function (item->pc, &func_name, &start, &end); + + if (func_name != NULL && item->pc < end) + { + if (item->line == line_num) + return line_num; + else + { + struct symbol* sym = + standard_lookup (func_name, VAR_NAMESPACE); + if (is_plausible_func_for_line (sym, line_num)) + best = item->line; + else + { + do + i += 1; + while (i < len && linetable->item[i].pc < end); + continue; + } + } + } + } + + i += 1; + } + + return (best == INT_MAX) ? -1 : best; +} + + +/* Return the next higher index, k, into LINETABLE such that k > IND, + entry k in LINETABLE has a line number equal to LINE_NUM, k + corresponds to a PC that is in a function different from that + corresponding to IND, and falls strictly within a named function + that begins at a line at or preceding STARTING_LINE. + Return -1 if there is no such k. + IND == -1 corresponds to no function. */ + +static int +find_next_line_in_linetable (linetable, line_num, starting_line, ind) + struct linetable* linetable; + int line_num; + int starting_line; + int ind; +{ + int i, len; + + if (line_num <= 0 || linetable == NULL || ind >= linetable->nitems) + return -1; + len = linetable->nitems; + + if (ind >= 0) + { + CORE_ADDR start, end; + + if (find_pc_partial_function (linetable->item[ind].pc, + (char**) NULL, &start, &end)) + { + while (ind < len && linetable->item[ind].pc < end) + ind += 1; + } + else + ind += 1; + } + else + ind = 0; + + i = ind; + while (i < len) + { + int k; + struct linetable_entry* item = &(linetable->item[i]); + + if (item->line >= line_num) + { + char* func_name; + CORE_ADDR start, end; + + func_name = NULL; + find_pc_partial_function (item->pc, &func_name, &start, &end); + + if (func_name != NULL && item->pc < end) + { + if (item->line == line_num) + { + struct symbol* sym = + standard_lookup (func_name, VAR_NAMESPACE); + if (is_plausible_func_for_line (sym, starting_line)) + return i; + else + { + while ((i+1) < len && linetable->item[i+1].pc < end) + i += 1; + } + } + } + } + i += 1; + } + + return -1; +} + +/* True iff function symbol SYM starts somewhere at or before line # + LINE_NUM. */ +static int +is_plausible_func_for_line (sym, line_num) + struct symbol* sym; + int line_num; +{ + struct symtab_and_line start_sal; + + if (sym == NULL) + return 0; + + start_sal = find_function_start_sal (sym, 0); + + return (start_sal.line != 0 && line_num >= start_sal.line); +} + +static void +debug_print_lines (lt) + struct linetable* lt; +{ + int i; + + if (lt == NULL) + return; + + fprintf (stderr, "\t"); + for (i = 0; i < lt->nitems; i += 1) + fprintf (stderr, "(%d->%p) ", lt->item[i].line, (void *) lt->item[i].pc); + fprintf (stderr, "\n"); +} + +static void +debug_print_block (b) + struct block* b; +{ + int i; + fprintf (stderr, "Block: %p; [0x%lx, 0x%lx]", + b, BLOCK_START(b), BLOCK_END(b)); + if (BLOCK_FUNCTION(b) != NULL) + fprintf (stderr, " Function: %s", SYMBOL_NAME (BLOCK_FUNCTION(b))); + fprintf (stderr, "\n"); + fprintf (stderr, "\t Superblock: %p\n", BLOCK_SUPERBLOCK(b)); + fprintf (stderr, "\t Symbols:"); + for (i = 0; i < BLOCK_NSYMS (b); i += 1) + { + if (i > 0 && i % 4 == 0) + fprintf (stderr, "\n\t\t "); + fprintf (stderr, " %s", SYMBOL_NAME (BLOCK_SYM (b, i))); + } + fprintf (stderr, "\n"); +} + +static void +debug_print_blocks (bv) + struct blockvector* bv; +{ + int i; + + if (bv == NULL) + return; + for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); i += 1) { + fprintf (stderr, "%6d. ", i); + debug_print_block (BLOCKVECTOR_BLOCK (bv, i)); + } +} + +static void +debug_print_symtab (s) + struct symtab* s; +{ + fprintf (stderr, "Symtab %p\n File: %s; Dir: %s\n", s, + s->filename, s->dirname); + fprintf (stderr, " Blockvector: %p, Primary: %d\n", + BLOCKVECTOR(s), s->primary); + debug_print_blocks (BLOCKVECTOR(s)); + fprintf (stderr, " Line table: %p\n", LINETABLE (s)); + debug_print_lines (LINETABLE(s)); +} + +/* Read in all symbol tables corresponding to partial symbol tables + with file name FILENAME. */ +static void +read_all_symtabs (filename) + const char* filename; +{ + struct partial_symtab* ps; + struct objfile* objfile; + + ALL_PSYMTABS (objfile, ps) + { + QUIT; + + if (STREQ (filename, ps->filename)) + PSYMTAB_TO_SYMTAB (ps); + } +} + +/* All sals corresponding to line LINE_NUM in a symbol table from file + FILENAME, as filtered by the user. If CANONICAL is not null, set + it to a corresponding array of canonical line specs. */ +static struct symtabs_and_lines +all_sals_for_line (filename, line_num, canonical) + const char* filename; + int line_num; + char*** canonical; +{ + struct symtabs_and_lines result; + struct objfile* objfile; + struct symtab* s; + struct cleanup* old_chain = make_cleanup (null_cleanup, NULL); + size_t len; + + read_all_symtabs (filename); + + result.sals = (struct symtab_and_line*) xmalloc (4 * sizeof (result.sals[0])); + result.nelts = 0; + len = 4; + make_cleanup (free_current_contents, &result.sals); + + ALL_SYMTABS (objfile, s) + { + int ind, target_line_num; + + QUIT; + + if (!STREQ (s->filename, filename)) + continue; + + target_line_num = + nearest_line_number_in_linetable (LINETABLE (s), line_num); + if (target_line_num == -1) + continue; + + ind = -1; + while (1) + { + ind = + find_next_line_in_linetable (LINETABLE (s), + target_line_num, line_num, ind); + + if (ind < 0) + break; + + GROW_VECT (result.sals, len, result.nelts+1); + INIT_SAL (&result.sals[result.nelts]); + result.sals[result.nelts].line = LINETABLE(s)->item[ind].line; + result.sals[result.nelts].pc = LINETABLE(s)->item[ind].pc; + result.sals[result.nelts].symtab = s; + result.nelts += 1; + } + } + + if (canonical != NULL || result.nelts > 1) + { + int k; + char** func_names = (char**) alloca (result.nelts * sizeof (char*)); + int first_choice = (result.nelts > 1) ? 2 : 1; + int n; + int* choices = (int*) alloca (result.nelts * sizeof (int)); + + for (k = 0; k < result.nelts; k += 1) + { + find_pc_partial_function (result.sals[k].pc, &func_names[k], + (CORE_ADDR*) NULL, (CORE_ADDR*) NULL); + if (func_names[k] == NULL) + error ("Could not find function for one or more breakpoints."); + } + + if (result.nelts > 1) + { + printf_unfiltered("[0] cancel\n"); + if (result.nelts > 1) + printf_unfiltered("[1] all\n"); + for (k = 0; k < result.nelts; k += 1) + printf_unfiltered ("[%d] %s\n", k + first_choice, + ada_demangle (func_names[k])); + + n = get_selections (choices, result.nelts, result.nelts, + result.nelts > 1, "instance-choice"); + + for (k = 0; k < n; k += 1) + { + result.sals[k] = result.sals[choices[k]]; + func_names[k] = func_names[choices[k]]; + } + result.nelts = n; + } + + if (canonical != NULL) + { + *canonical = (char**) xmalloc (result.nelts * sizeof (char**)); + make_cleanup (free, *canonical); + for (k = 0; k < result.nelts; k += 1) + { + (*canonical)[k] = + extended_canonical_line_spec (result.sals[k], func_names[k]); + if ((*canonical)[k] == NULL) + error ("Could not locate one or more breakpoints."); + make_cleanup (free, (*canonical)[k]); + } + } + } + + discard_cleanups (old_chain); + return result; +} + + +/* A canonical line specification of the form FILE:NAME:LINENUM for + symbol table and line data SAL. NULL if insufficient + information. The caller is responsible for releasing any space + allocated. */ + +static char* +extended_canonical_line_spec (sal, name) + struct symtab_and_line sal; + const char* name; +{ + char* r; + + if (sal.symtab == NULL || sal.symtab->filename == NULL || + sal.line <= 0) + return NULL; + + r = (char*) xmalloc (strlen (name) + strlen (sal.symtab->filename) + + sizeof(sal.line)*3 + 3); + sprintf (r, "%s:'%s':%d", sal.symtab->filename, name, sal.line); + return r; +} + +#if 0 +int begin_bnum = -1; +#endif +int begin_annotate_level = 0; + +static void +begin_cleanup (void* dummy) +{ + begin_annotate_level = 0; +} + +static void +begin_command (args, from_tty) + char *args; + int from_tty; +{ + struct minimal_symbol *msym; + CORE_ADDR main_program_name_addr; + char main_program_name[1024]; + struct cleanup* old_chain = make_cleanup (begin_cleanup, NULL); + begin_annotate_level = 2; + + /* Check that there is a program to debug */ + if (!have_full_symbols () && !have_partial_symbols ()) + error ("No symbol table is loaded. Use the \"file\" command."); + + /* Check that we are debugging an Ada program */ + /* if (ada_update_initial_language (language_unknown, NULL) != language_ada) + error ("Cannot find the Ada initialization procedure. Is this an Ada main program?"); + */ + /* FIXME: language_ada should be defined in defs.h */ + + /* Get the address of the name of the main procedure */ + msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL); + + if (msym != NULL) + { + main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym); + if (main_program_name_addr == 0) + error ("Invalid address for Ada main program name."); + + /* Read the name of the main procedure */ + extract_string (main_program_name_addr, main_program_name); + + /* Put a temporary breakpoint in the Ada main program and run */ + do_command ("tbreak ", main_program_name, 0); + do_command ("run ", args, 0); + } + else + { + /* If we could not find the symbol containing the name of the + main program, that means that the compiler that was used to build + was not recent enough. In that case, we fallback to the previous + mechanism, which is a little bit less reliable, but has proved to work + in most cases. The only cases where it will fail is when the user + has set some breakpoints which will be hit before the end of the + begin command processing (eg in the initialization code). + + The begining of the main Ada subprogram is located by breaking + on the adainit procedure. Since we know that the binder generates + the call to this procedure exactly 2 calls before the call to the + Ada main subprogram, it is then easy to put a breakpoint on this + Ada main subprogram once we hit adainit. + */ + do_command ("tbreak adainit", 0); + do_command ("run ", args, 0); + do_command ("up", 0); + do_command ("tbreak +2", 0); + do_command ("continue", 0); + do_command ("step", 0); + } + + do_cleanups (old_chain); +} + +int +is_ada_runtime_file (filename) + char *filename; +{ + return (STREQN (filename, "s-", 2) || + STREQN (filename, "a-", 2) || + STREQN (filename, "g-", 2) || + STREQN (filename, "i-", 2)); +} + +/* find the first frame that contains debugging information and that is not + part of the Ada run-time, starting from fi and moving upward. */ + +int +find_printable_frame (fi, level) + struct frame_info *fi; + int level; +{ + struct symtab_and_line sal; + + for (; fi != NULL; level += 1, fi = get_prev_frame (fi)) + { + /* If fi is not the innermost frame, that normally means that fi->pc + points to *after* the call instruction, and we want to get the line + containing the call, never the next line. But if the next frame is + a signal_handler_caller or a dummy frame, then the next frame was + not entered as the result of a call, and we want to get the line + containing fi->pc. */ + sal = + find_pc_line (fi->pc, + fi->next != NULL + && !fi->next->signal_handler_caller + && !frame_in_dummy (fi->next)); + if (sal.symtab && !is_ada_runtime_file (sal.symtab->filename)) + { +#if defined(__alpha__) && defined(__osf__) && !defined(VXWORKS_TARGET) + /* libpthread.so contains some debugging information that prevents us + from finding the right frame */ + + if (sal.symtab->objfile && + STREQ (sal.symtab->objfile->name, "/usr/shlib/libpthread.so")) + continue; +#endif + selected_frame = fi; + break; + } + } + + return level; +} + +void +ada_report_exception_break (b) + struct breakpoint *b; +{ +#ifdef UI_OUT + /* FIXME: break_on_exception should be defined in breakpoint.h */ + /* if (b->break_on_exception == 1) + { + /* Assume that cond has 16 elements, the 15th + being the exception */ /* + if (b->cond && b->cond->nelts == 16) + { + ui_out_text (uiout, "on "); + ui_out_field_string (uiout, "exception", + SYMBOL_NAME (b->cond->elts[14].symbol)); + } + else + ui_out_text (uiout, "on all exceptions"); + } + else if (b->break_on_exception == 2) + ui_out_text (uiout, "on unhandled exception"); + else if (b->break_on_exception == 3) + ui_out_text (uiout, "on assert failure"); +#else + if (b->break_on_exception == 1) + {*/ + /* Assume that cond has 16 elements, the 15th + being the exception */ /* + if (b->cond && b->cond->nelts == 16) + { + fputs_filtered ("on ", gdb_stdout); + fputs_filtered (SYMBOL_NAME + (b->cond->elts[14].symbol), gdb_stdout); + } + else + fputs_filtered ("on all exceptions", gdb_stdout); + } + else if (b->break_on_exception == 2) + fputs_filtered ("on unhandled exception", gdb_stdout); + else if (b->break_on_exception == 3) + fputs_filtered ("on assert failure", gdb_stdout); +*/ +#endif +} + +int +ada_is_exception_sym (struct symbol* sym) +{ + char *type_name = type_name_no_tag (SYMBOL_TYPE (sym)); + + return (SYMBOL_CLASS (sym) != LOC_TYPEDEF + && SYMBOL_CLASS (sym) != LOC_BLOCK + && SYMBOL_CLASS (sym) != LOC_CONST + && type_name != NULL + && STREQ (type_name, "exception")); +} + +int +ada_maybe_exception_partial_symbol (struct partial_symbol* sym) +{ + return (SYMBOL_CLASS (sym) != LOC_TYPEDEF + && SYMBOL_CLASS (sym) != LOC_BLOCK + && SYMBOL_CLASS (sym) != LOC_CONST); +} + +/* If ARG points to an Ada exception or assert breakpoint, rewrite + into equivalent form. Return resulting argument string. Set + *BREAK_ON_EXCEPTIONP to 1 for ordinary break on exception, 2 for + break on unhandled, 3 for assert, 0 otherwise. */ +char* ada_breakpoint_rewrite (char* arg, int* break_on_exceptionp) +{ + if (arg == NULL) + return arg; + *break_on_exceptionp = 0; + /* FIXME: language_ada should be defined in defs.h */ + /* if (current_language->la_language == language_ada + && STREQN (arg, "exception", 9) && + (arg[9] == ' ' || arg[9] == '\t' || arg[9] == '\0')) + { + char *tok, *end_tok; + int toklen; + + *break_on_exceptionp = 1; + + tok = arg+9; + while (*tok == ' ' || *tok == '\t') + tok += 1; + + end_tok = tok; + + while (*end_tok != ' ' && *end_tok != '\t' && *end_tok != '\000') + end_tok += 1; + + toklen = end_tok - tok; + + arg = (char*) xmalloc (sizeof ("__gnat_raise_nodefer_with_msg if " + "long_integer(e) = long_integer(&)") + + toklen + 1); + make_cleanup (free, arg); + if (toklen == 0) + strcpy (arg, "__gnat_raise_nodefer_with_msg"); + else if (STREQN (tok, "unhandled", toklen)) + { + *break_on_exceptionp = 2; + strcpy (arg, "__gnat_unhandled_exception"); + } + else + { + sprintf (arg, "__gnat_raise_nodefer_with_msg if " + "long_integer(e) = long_integer(&%.*s)", + toklen, tok); + } + } + else if (current_language->la_language == language_ada + && STREQN (arg, "assert", 6) && + (arg[6] == ' ' || arg[6] == '\t' || arg[6] == '\0')) + { + char *tok = arg + 6; + + *break_on_exceptionp = 3; + + arg = (char*) + xmalloc (sizeof ("system__assertions__raise_assert_failure") + + strlen (tok) + 1); + make_cleanup (free, arg); + sprintf (arg, "system__assertions__raise_assert_failure%s", tok); + } + */ + return arg; +} + + + /* Field Access */ + +/* True if field number FIELD_NUM in struct or union type TYPE is supposed + to be invisible to users. */ + +int +ada_is_ignored_field (type, field_num) + struct type *type; + int field_num; +{ + if (field_num < 0 || field_num > TYPE_NFIELDS (type)) + return 1; + else + { + const char* name = TYPE_FIELD_NAME (type, field_num); + return (name == NULL + || (name[0] == '_' && ! STREQN (name, "_parent", 7))); + } +} + +/* True iff structure type TYPE has a tag field. */ + +int +ada_is_tagged_type (type) + struct type *type; +{ + if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) + return 0; + + return (ada_lookup_struct_elt_type (type, "_tag", 1, NULL) != NULL); +} + +/* The type of the tag on VAL. */ + +struct type* +ada_tag_type (val) + struct value* val; +{ + return ada_lookup_struct_elt_type (VALUE_TYPE (val), "_tag", 0, NULL); +} + +/* The value of the tag on VAL. */ + +struct value* +ada_value_tag (val) + struct value* val; +{ + return ada_value_struct_elt (val, "_tag", "record"); +} + +/* The parent type of TYPE, or NULL if none. */ + +struct type* +ada_parent_type (type) + struct type *type; +{ + int i; + + CHECK_TYPEDEF (type); + + if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT) + return NULL; + + for (i = 0; i < TYPE_NFIELDS (type); i += 1) + if (ada_is_parent_field (type, i)) + return check_typedef (TYPE_FIELD_TYPE (type, i)); + + return NULL; +} + +/* True iff field number FIELD_NUM of structure type TYPE contains the + parent-type (inherited) fields of a derived type. Assumes TYPE is + a structure type with at least FIELD_NUM+1 fields. */ + +int +ada_is_parent_field (type, field_num) + struct type *type; + int field_num; +{ + const char* name = TYPE_FIELD_NAME (check_typedef (type), field_num); + return (name != NULL && + (STREQN (name, "PARENT", 6) || STREQN (name, "_parent", 7))); +} + +/* True iff field number FIELD_NUM of structure type TYPE is a + transparent wrapper field (which should be silently traversed when doing + field selection and flattened when printing). Assumes TYPE is a + structure type with at least FIELD_NUM+1 fields. Such fields are always + structures. */ + +int +ada_is_wrapper_field (type, field_num) + struct type *type; + int field_num; +{ + const char* name = TYPE_FIELD_NAME (type, field_num); + return (name != NULL + && (STREQN (name, "PARENT", 6) || STREQ (name, "REP") + || STREQN (name, "_parent", 7) + || name[0] == 'S' || name[0] == 'R' || name[0] == 'O')); +} + +/* True iff field number FIELD_NUM of structure or union type TYPE + is a variant wrapper. Assumes TYPE is a structure type with at least + FIELD_NUM+1 fields. */ + +int +ada_is_variant_part (type, field_num) + struct type *type; + int field_num; +{ + struct type* field_type = TYPE_FIELD_TYPE (type, field_num); + return (TYPE_CODE (field_type) == TYPE_CODE_UNION + || (is_dynamic_field (type, field_num) + && TYPE_CODE (TYPE_TARGET_TYPE (field_type)) == TYPE_CODE_UNION)); +} + +/* Assuming that VAR_TYPE is a variant wrapper (type of the variant part) + whose discriminants are contained in the record type OUTER_TYPE, + returns the type of the controlling discriminant for the variant. */ + +struct type* +ada_variant_discrim_type (var_type, outer_type) + struct type *var_type; + struct type *outer_type; +{ + char* name = ada_variant_discrim_name (var_type); + struct type *type = + ada_lookup_struct_elt_type (outer_type, name, 1, NULL); + if (type == NULL) + return builtin_type_int; + else + return type; +} + +/* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a + valid field number within it, returns 1 iff field FIELD_NUM of TYPE + represents a 'when others' clause; otherwise 0. */ + +int +ada_is_others_clause (type, field_num) + struct type *type; + int field_num; +{ + const char* name = TYPE_FIELD_NAME (type, field_num); + return (name != NULL && name[0] == 'O'); +} + +/* Assuming that TYPE0 is the type of the variant part of a record, + returns the name of the discriminant controlling the variant. The + value is valid until the next call to ada_variant_discrim_name. */ + +char * +ada_variant_discrim_name (type0) + struct type *type0; +{ + static char* result = NULL; + static size_t result_len = 0; + struct type* type; + const char* name; + const char* discrim_end; + const char* discrim_start; + + if (TYPE_CODE (type0) == TYPE_CODE_PTR) + type = TYPE_TARGET_TYPE (type0); + else + type = type0; + + name = ada_type_name (type); + + if (name == NULL || name[0] == '\000') + return ""; + + for (discrim_end = name + strlen (name) - 6; discrim_end != name; + discrim_end -= 1) + { + if (STREQN (discrim_end, "___XVN", 6)) + break; + } + if (discrim_end == name) + return ""; + + for (discrim_start = discrim_end; discrim_start != name+3; + discrim_start -= 1) + { + if (discrim_start == name+1) + return ""; + if ((discrim_start > name+3 && STREQN (discrim_start-3, "___", 3)) + || discrim_start[-1] == '.') + break; + } + + GROW_VECT (result, result_len, discrim_end - discrim_start + 1); + strncpy (result, discrim_start, discrim_end - discrim_start); + result[discrim_end-discrim_start] = '\0'; + return result; +} + +/* Scan STR for a subtype-encoded number, beginning at position K. Put the + position of the character just past the number scanned in *NEW_K, + if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL. Return 1 + if there was a valid number at the given position, and 0 otherwise. A + "subtype-encoded" number consists of the absolute value in decimal, + followed by the letter 'm' to indicate a negative number. Assumes 0m + does not occur. */ + +int +ada_scan_number (str, k, R, new_k) + const char str[]; + int k; + LONGEST *R; + int *new_k; +{ + ULONGEST RU; + + if (! isdigit (str[k])) + return 0; + + /* Do it the hard way so as not to make any assumption about + the relationship of unsigned long (%lu scan format code) and + LONGEST. */ + RU = 0; + while (isdigit (str[k])) + { + RU = RU*10 + (str[k] - '0'); + k += 1; + } + + if (str[k] == 'm') + { + if (R != NULL) + *R = (- (LONGEST) (RU-1)) - 1; + k += 1; + } + else if (R != NULL) + *R = (LONGEST) RU; + + /* NOTE on the above: Technically, C does not say what the results of + - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive + number representable as a LONGEST (although either would probably work + in most implementations). When RU>0, the locution in the then branch + above is always equivalent to the negative of RU. */ + + if (new_k != NULL) + *new_k = k; + return 1; +} + +/* Assuming that TYPE is a variant part wrapper type (a VARIANTS field), + and FIELD_NUM is a valid field number within it, returns 1 iff VAL is + in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */ + +int +ada_in_variant (val, type, field_num) + LONGEST val; + struct type *type; + int field_num; +{ + const char* name = TYPE_FIELD_NAME (type, field_num); + int p; + + p = 0; + while (1) + { + switch (name[p]) + { + case '\0': + return 0; + case 'S': + { + LONGEST W; + if (! ada_scan_number (name, p + 1, &W, &p)) + return 0; + if (val == W) + return 1; + break; + } + case 'R': + { + LONGEST L, U; + if (! ada_scan_number (name, p + 1, &L, &p) + || name[p] != 'T' + || ! ada_scan_number (name, p + 1, &U, &p)) + return 0; + if (val >= L && val <= U) + return 1; + break; + } + case 'O': + return 1; + default: + return 0; + } + } +} + +/* Given a value ARG1 (offset by OFFSET bytes) + of a struct or union type ARG_TYPE, + extract and return the value of one of its (non-static) fields. + FIELDNO says which field. Differs from value_primitive_field only + in that it can handle packed values of arbitrary type. */ + +struct value* +ada_value_primitive_field (arg1, offset, fieldno, arg_type) + struct value* arg1; + int offset; + int fieldno; + struct type *arg_type; +{ + struct value* v; + struct type *type; + + CHECK_TYPEDEF (arg_type); + type = TYPE_FIELD_TYPE (arg_type, fieldno); + + /* Handle packed fields */ + + if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0) + { + int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno); + int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno); + + return ada_value_primitive_packed_val (arg1, VALUE_CONTENTS (arg1), + offset + bit_pos/8, bit_pos % 8, + bit_size, type); + } + else + return value_primitive_field (arg1, offset, fieldno, arg_type); +} + + +/* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes, + and search in it assuming it has (class) type TYPE. + If found, return value, else return NULL. + + Searches recursively through wrapper fields (e.g., '_parent'). */ + +struct value* +ada_search_struct_field (name, arg, offset, type) + char *name; + struct value* arg; + int offset; + struct type *type; +{ + int i; + CHECK_TYPEDEF (type); + + for (i = TYPE_NFIELDS (type)-1; i >= 0; i -= 1) + { + char *t_field_name = TYPE_FIELD_NAME (type, i); + + if (t_field_name == NULL) + continue; + + else if (field_name_match (t_field_name, name)) + return ada_value_primitive_field (arg, offset, i, type); + + else if (ada_is_wrapper_field (type, i)) + { + struct value* v = + ada_search_struct_field (name, arg, + offset + TYPE_FIELD_BITPOS (type, i) / 8, + TYPE_FIELD_TYPE (type, i)); + if (v != NULL) + return v; + } + + else if (ada_is_variant_part (type, i)) + { + int j; + struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i)); + int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8; + + for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) + { + struct value* v = + ada_search_struct_field (name, arg, + var_offset + + TYPE_FIELD_BITPOS (field_type, j)/8, + TYPE_FIELD_TYPE (field_type, j)); + if (v != NULL) + return v; + } + } + } + return NULL; +} + +/* Given ARG, a value of type (pointer to a)* structure/union, + extract the component named NAME from the ultimate target structure/union + and return it as a value with its appropriate type. + + The routine searches for NAME among all members of the structure itself + and (recursively) among all members of any wrapper members + (e.g., '_parent'). + + ERR is a name (for use in error messages) that identifies the class + of entity that ARG is supposed to be. */ + +struct value* +ada_value_struct_elt (arg, name, err) + struct value* arg; + char *name; + char *err; +{ + struct type *t; + struct value* v; + + arg = ada_coerce_ref (arg); + t = check_typedef (VALUE_TYPE (arg)); + + /* Follow pointers until we get to a non-pointer. */ + + while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF) + { + arg = ada_value_ind (arg); + t = check_typedef (VALUE_TYPE (arg)); + } + + if ( TYPE_CODE (t) != TYPE_CODE_STRUCT + && TYPE_CODE (t) != TYPE_CODE_UNION) + error ("Attempt to extract a component of a value that is not a %s.", err); + + v = ada_search_struct_field (name, arg, 0, t); + if (v == NULL) + error ("There is no member named %s.", name); + + return v; +} + +/* Given a type TYPE, look up the type of the component of type named NAME. + If DISPP is non-null, add its byte displacement from the beginning of a + structure (pointed to by a value) of type TYPE to *DISPP (does not + work for packed fields). + + Matches any field whose name has NAME as a prefix, possibly + followed by "___". + + TYPE can be either a struct or union, or a pointer or reference to + a struct or union. If it is a pointer or reference, its target + type is automatically used. + + Looks recursively into variant clauses and parent types. + + If NOERR is nonzero, return NULL if NAME is not suitably defined. */ + +struct type * +ada_lookup_struct_elt_type (type, name, noerr, dispp) + struct type *type; + char *name; + int noerr; + int *dispp; +{ + int i; + + if (name == NULL) + goto BadName; + + while (1) + { + CHECK_TYPEDEF (type); + if (TYPE_CODE (type) != TYPE_CODE_PTR + && TYPE_CODE (type) != TYPE_CODE_REF) + break; + type = TYPE_TARGET_TYPE (type); + } + + if (TYPE_CODE (type) != TYPE_CODE_STRUCT && + TYPE_CODE (type) != TYPE_CODE_UNION) + { + target_terminal_ours (); + gdb_flush (gdb_stdout); + fprintf_unfiltered (gdb_stderr, "Type "); + type_print (type, "", gdb_stderr, -1); + error (" is not a structure or union type"); + } + + type = to_static_fixed_type (type); + + for (i = 0; i < TYPE_NFIELDS (type); i += 1) + { + char *t_field_name = TYPE_FIELD_NAME (type, i); + struct type *t; + int disp; + + if (t_field_name == NULL) + continue; + + else if (field_name_match (t_field_name, name)) + { + if (dispp != NULL) + *dispp += TYPE_FIELD_BITPOS (type, i) / 8; + return check_typedef (TYPE_FIELD_TYPE (type, i)); + } + + else if (ada_is_wrapper_field (type, i)) + { + disp = 0; + t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, + 1, &disp); + if (t != NULL) + { + if (dispp != NULL) + *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; + return t; + } + } + + else if (ada_is_variant_part (type, i)) + { + int j; + struct type *field_type = check_typedef (TYPE_FIELD_TYPE (type, i)); + + for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1) + { + disp = 0; + t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type, j), + name, 1, &disp); + if (t != NULL) + { + if (dispp != NULL) + *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8; + return t; + } + } + } + + } + +BadName: + if (! noerr) + { + target_terminal_ours (); + gdb_flush (gdb_stdout); + fprintf_unfiltered (gdb_stderr, "Type "); + type_print (type, "", gdb_stderr, -1); + fprintf_unfiltered (gdb_stderr, " has no component named "); + error ("%s", name == NULL ? "<null>" : name); + } + + return NULL; +} + +/* Assuming that VAR_TYPE is the type of a variant part of a record (a union), + within a value of type OUTER_TYPE that is stored in GDB at + OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE, + numbering from 0) is applicable. Returns -1 if none are. */ + +int +ada_which_variant_applies (var_type, outer_type, outer_valaddr) + struct type *var_type; + struct type *outer_type; + char* outer_valaddr; +{ + int others_clause; + int i; + int disp; + struct type* discrim_type; + char* discrim_name = ada_variant_discrim_name (var_type); + LONGEST discrim_val; + + disp = 0; + discrim_type = + ada_lookup_struct_elt_type (outer_type, discrim_name, 1, &disp); + if (discrim_type == NULL) + return -1; + discrim_val = unpack_long (discrim_type, outer_valaddr + disp); + + others_clause = -1; + for (i = 0; i < TYPE_NFIELDS (var_type); i += 1) + { + if (ada_is_others_clause (var_type, i)) + others_clause = i; + else if (ada_in_variant (discrim_val, var_type, i)) + return i; + } + + return others_clause; +} + + + + /* Dynamic-Sized Records */ + +/* Strategy: The type ostensibly attached to a value with dynamic size + (i.e., a size that is not statically recorded in the debugging + data) does not accurately reflect the size or layout of the value. + Our strategy is to convert these values to values with accurate, + conventional types that are constructed on the fly. */ + +/* There is a subtle and tricky problem here. In general, we cannot + determine the size of dynamic records without its data. However, + the 'struct value' data structure, which GDB uses to represent + quantities in the inferior process (the target), requires the size + of the type at the time of its allocation in order to reserve space + for GDB's internal copy of the data. That's why the + 'to_fixed_xxx_type' routines take (target) addresses as parameters, + rather than struct value*s. + + However, GDB's internal history variables ($1, $2, etc.) are + struct value*s containing internal copies of the data that are not, in + general, the same as the data at their corresponding addresses in + the target. Fortunately, the types we give to these values are all + conventional, fixed-size types (as per the strategy described + above), so that we don't usually have to perform the + 'to_fixed_xxx_type' conversions to look at their values. + Unfortunately, there is one exception: if one of the internal + history variables is an array whose elements are unconstrained + records, then we will need to create distinct fixed types for each + element selected. */ + +/* The upshot of all of this is that many routines take a (type, host + address, target address) triple as arguments to represent a value. + The host address, if non-null, is supposed to contain an internal + copy of the relevant data; otherwise, the program is to consult the + target at the target address. */ + +/* Assuming that VAL0 represents a pointer value, the result of + dereferencing it. Differs from value_ind in its treatment of + dynamic-sized types. */ + +struct value* +ada_value_ind (val0) + struct value* val0; +{ + struct value* val = unwrap_value (value_ind (val0)); + return ada_to_fixed_value (VALUE_TYPE (val), 0, + VALUE_ADDRESS (val) + VALUE_OFFSET (val), + val); +} + +/* The value resulting from dereferencing any "reference to" + * qualifiers on VAL0. */ +static struct value* +ada_coerce_ref (val0) + struct value* val0; +{ + if (TYPE_CODE (VALUE_TYPE (val0)) == TYPE_CODE_REF) { + struct value* val = val0; + COERCE_REF (val); + val = unwrap_value (val); + return ada_to_fixed_value (VALUE_TYPE (val), 0, + VALUE_ADDRESS (val) + VALUE_OFFSET (val), + val); + } else + return val0; +} + +/* Return OFF rounded upward if necessary to a multiple of + ALIGNMENT (a power of 2). */ + +static unsigned int +align_value (off, alignment) + unsigned int off; + unsigned int alignment; +{ + return (off + alignment - 1) & ~(alignment - 1); +} + +/* Return the additional bit offset required by field F of template + type TYPE. */ + +static unsigned int +field_offset (type, f) + struct type *type; + int f; +{ + int n = TYPE_FIELD_BITPOS (type, f); + /* Kludge (temporary?) to fix problem with dwarf output. */ + if (n < 0) + return (unsigned int) n & 0xffff; + else + return n; +} + + +/* Return the bit alignment required for field #F of template type TYPE. */ + +static unsigned int +field_alignment (type, f) + struct type *type; + int f; +{ + const char* name = TYPE_FIELD_NAME (type, f); + int len = (name == NULL) ? 0 : strlen (name); + int align_offset; + + if (len < 8 || ! isdigit (name[len-1])) + return TARGET_CHAR_BIT; + + if (isdigit (name[len-2])) + align_offset = len - 2; + else + align_offset = len - 1; + + if (align_offset < 7 || ! STREQN ("___XV", name+align_offset-6, 5)) + return TARGET_CHAR_BIT; + + return atoi (name+align_offset) * TARGET_CHAR_BIT; +} + +/* Find a type named NAME. Ignores ambiguity. */ +struct type* +ada_find_any_type (name) + const char *name; +{ + struct symbol* sym; + + sym = standard_lookup (name, VAR_NAMESPACE); + if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF) + return SYMBOL_TYPE (sym); + + sym = standard_lookup (name, STRUCT_NAMESPACE); + if (sym != NULL) + return SYMBOL_TYPE (sym); + + return NULL; +} + +/* Because of GNAT encoding conventions, several GDB symbols may match a + given type name. If the type denoted by TYPE0 is to be preferred to + that of TYPE1 for purposes of type printing, return non-zero; + otherwise return 0. */ +int +ada_prefer_type (type0, type1) + struct type* type0; + struct type* type1; +{ + if (type1 == NULL) + return 1; + else if (type0 == NULL) + return 0; + else if (TYPE_CODE (type1) == TYPE_CODE_VOID) + return 1; + else if (TYPE_CODE (type0) == TYPE_CODE_VOID) + return 0; + else if (ada_is_packed_array_type (type0)) + return 1; + else if (ada_is_array_descriptor (type0) && ! ada_is_array_descriptor (type1)) + return 1; + else if (ada_renaming_type (type0) != NULL + && ada_renaming_type (type1) == NULL) + return 1; + return 0; +} + +/* The name of TYPE, which is either its TYPE_NAME, or, if that is + null, its TYPE_TAG_NAME. Null if TYPE is null. */ +char* +ada_type_name (type) + struct type* type; +{ + if (type == NULL) + return NULL; + else if (TYPE_NAME (type) != NULL) + return TYPE_NAME (type); + else + return TYPE_TAG_NAME (type); +} + +/* Find a parallel type to TYPE whose name is formed by appending + SUFFIX to the name of TYPE. */ + +struct type* +ada_find_parallel_type (type, suffix) + struct type *type; + const char *suffix; +{ + static char* name; + static size_t name_len = 0; + struct symbol** syms; + struct block** blocks; + int nsyms; + int len; + char* typename = ada_type_name (type); + + if (typename == NULL) + return NULL; + + len = strlen (typename); + + GROW_VECT (name, name_len, len+strlen (suffix)+1); + + strcpy (name, typename); + strcpy (name + len, suffix); + + return ada_find_any_type (name); +} + + +/* If TYPE is a variable-size record type, return the corresponding template + type describing its fields. Otherwise, return NULL. */ + +static struct type* +dynamic_template_type (type) + struct type* type; +{ + CHECK_TYPEDEF (type); + + if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT + || ada_type_name (type) == NULL) + return NULL; + else + { + int len = strlen (ada_type_name (type)); + if (len > 6 && STREQ (ada_type_name (type) + len - 6, "___XVE")) + return type; + else + return ada_find_parallel_type (type, "___XVE"); + } +} + +/* Assuming that TEMPL_TYPE is a union or struct type, returns + non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */ + +static int +is_dynamic_field (templ_type, field_num) + struct type* templ_type; + int field_num; +{ + const char *name = TYPE_FIELD_NAME (templ_type, field_num); + return name != NULL + && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR + && strstr (name, "___XVL") != NULL; +} + +/* Assuming that TYPE is a struct type, returns non-zero iff TYPE + contains a variant part. */ + +static int +contains_variant_part (type) + struct type* type; +{ + int f; + + if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT + || TYPE_NFIELDS (type) <= 0) + return 0; + return ada_is_variant_part (type, TYPE_NFIELDS (type) - 1); +} + +/* A record type with no fields, . */ +static struct type* +empty_record (objfile) + struct objfile* objfile; +{ + struct type* type = alloc_type (objfile); + TYPE_CODE (type) = TYPE_CODE_STRUCT; + TYPE_NFIELDS (type) = 0; + TYPE_FIELDS (type) = NULL; + TYPE_NAME (type) = "<empty>"; + TYPE_TAG_NAME (type) = NULL; + TYPE_FLAGS (type) = 0; + TYPE_LENGTH (type) = 0; + return type; +} + +/* An ordinary record type (with fixed-length fields) that describes + the value of type TYPE at VALADDR or ADDRESS (see comments at + the beginning of this section) VAL according to GNAT conventions. + DVAL0 should describe the (portion of a) record that contains any + necessary discriminants. It should be NULL if VALUE_TYPE (VAL) is + an outer-level type (i.e., as opposed to a branch of a variant.) A + variant field (unless unchecked) is replaced by a particular branch + of the variant. */ +/* NOTE: Limitations: For now, we assume that dynamic fields and + * variants occupy whole numbers of bytes. However, they need not be + * byte-aligned. */ + +static struct type* +template_to_fixed_record_type (type, valaddr, address, dval0) + struct type* type; + char* valaddr; + CORE_ADDR address; + struct value* dval0; + +{ + struct value* mark = value_mark(); + struct value* dval; + struct type* rtype; + int nfields, bit_len; + long off; + int f; + + nfields = TYPE_NFIELDS (type); + rtype = alloc_type (TYPE_OBJFILE (type)); + TYPE_CODE (rtype) = TYPE_CODE_STRUCT; + INIT_CPLUS_SPECIFIC (rtype); + TYPE_NFIELDS (rtype) = nfields; + TYPE_FIELDS (rtype) = (struct field*) + TYPE_ALLOC (rtype, nfields * sizeof (struct field)); + memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields); + TYPE_NAME (rtype) = ada_type_name (type); + TYPE_TAG_NAME (rtype) = NULL; + /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in + gdbtypes.h */ + /* TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE;*/ + + off = 0; bit_len = 0; + for (f = 0; f < nfields; f += 1) + { + int fld_bit_len, bit_incr; + off = + align_value (off, field_alignment (type, f))+TYPE_FIELD_BITPOS (type,f); + /* NOTE: used to use field_offset above, but that causes + * problems with really negative bit positions. So, let's + * rediscover why we needed field_offset and fix it properly. */ + TYPE_FIELD_BITPOS (rtype, f) = off; + TYPE_FIELD_BITSIZE (rtype, f) = 0; + + if (ada_is_variant_part (type, f)) + { + struct type *branch_type; + + if (dval0 == NULL) + dval = + value_from_contents_and_address (rtype, valaddr, address); + else + dval = dval0; + + branch_type = + to_fixed_variant_branch_type + (TYPE_FIELD_TYPE (type, f), + cond_offset_host (valaddr, off / TARGET_CHAR_BIT), + cond_offset_target (address, off / TARGET_CHAR_BIT), + dval); + if (branch_type == NULL) + TYPE_NFIELDS (rtype) -= 1; + else + { + TYPE_FIELD_TYPE (rtype, f) = branch_type; + TYPE_FIELD_NAME (rtype, f) = "S"; + } + bit_incr = 0; + fld_bit_len = + TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; + } + else if (is_dynamic_field (type, f)) + { + if (dval0 == NULL) + dval = + value_from_contents_and_address (rtype, valaddr, address); + else + dval = dval0; + + TYPE_FIELD_TYPE (rtype, f) = + ada_to_fixed_type + (ada_get_base_type + (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f))), + cond_offset_host (valaddr, off / TARGET_CHAR_BIT), + cond_offset_target (address, off / TARGET_CHAR_BIT), + dval); + TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); + bit_incr = fld_bit_len = + TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT; + } + else + { + TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f); + TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f); + if (TYPE_FIELD_BITSIZE (type, f) > 0) + bit_incr = fld_bit_len = + TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f); + else + bit_incr = fld_bit_len = + TYPE_LENGTH (TYPE_FIELD_TYPE (type, f)) * TARGET_CHAR_BIT; + } + if (off + fld_bit_len > bit_len) + bit_len = off + fld_bit_len; + off += bit_incr; + TYPE_LENGTH (rtype) = bit_len / TARGET_CHAR_BIT; + } + TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype), TYPE_LENGTH (type)); + + value_free_to_mark (mark); + if (TYPE_LENGTH (rtype) > varsize_limit) + error ("record type with dynamic size is larger than varsize-limit"); + return rtype; +} + +/* As for template_to_fixed_record_type, but uses no run-time values. + As a result, this type can only be approximate, but that's OK, + since it is used only for type determinations. Works on both + structs and unions. + Representation note: to save space, we memoize the result of this + function in the TYPE_TARGET_TYPE of the template type. */ + +static struct type* +template_to_static_fixed_type (templ_type) + struct type* templ_type; +{ + struct type *type; + int nfields; + int f; + + if (TYPE_TARGET_TYPE (templ_type) != NULL) + return TYPE_TARGET_TYPE (templ_type); + + nfields = TYPE_NFIELDS (templ_type); + TYPE_TARGET_TYPE (templ_type) = type = alloc_type (TYPE_OBJFILE (templ_type)); + TYPE_CODE (type) = TYPE_CODE (templ_type); + INIT_CPLUS_SPECIFIC (type); + TYPE_NFIELDS (type) = nfields; + TYPE_FIELDS (type) = (struct field*) + TYPE_ALLOC (type, nfields * sizeof (struct field)); + memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields); + TYPE_NAME (type) = ada_type_name (templ_type); + TYPE_TAG_NAME (type) = NULL; + /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ + /* TYPE_FLAGS (type) |= TYPE_FLAG_FIXED_INSTANCE; */ + TYPE_LENGTH (type) = 0; + + for (f = 0; f < nfields; f += 1) + { + TYPE_FIELD_BITPOS (type, f) = 0; + TYPE_FIELD_BITSIZE (type, f) = 0; + + if (is_dynamic_field (templ_type, f)) + { + TYPE_FIELD_TYPE (type, f) = + to_static_fixed_type (TYPE_TARGET_TYPE + (TYPE_FIELD_TYPE (templ_type, f))); + TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f); + } + else + { + TYPE_FIELD_TYPE (type, f) = + check_typedef (TYPE_FIELD_TYPE (templ_type, f)); + TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (templ_type, f); + } + } + + return type; +} + +/* A revision of TYPE0 -- a non-dynamic-sized record with a variant + part -- in which the variant part is replaced with the appropriate + branch. */ +static struct type* +to_record_with_fixed_variant_part (type, valaddr, address, dval) + struct type* type; + char* valaddr; + CORE_ADDR address; + struct value* dval; +{ + struct value* mark = value_mark(); + struct type* rtype; + struct type *branch_type; + int nfields = TYPE_NFIELDS (type); + + if (dval == NULL) + return type; + + rtype = alloc_type (TYPE_OBJFILE (type)); + TYPE_CODE (rtype) = TYPE_CODE_STRUCT; + INIT_CPLUS_SPECIFIC (type); + TYPE_NFIELDS (rtype) = TYPE_NFIELDS (type); + TYPE_FIELDS (rtype) = + (struct field*) TYPE_ALLOC (rtype, nfields * sizeof (struct field)); + memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type), + sizeof (struct field) * nfields); + TYPE_NAME (rtype) = ada_type_name (type); + TYPE_TAG_NAME (rtype) = NULL; + /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ + /* TYPE_FLAGS (rtype) |= TYPE_FLAG_FIXED_INSTANCE; */ + TYPE_LENGTH (rtype) = TYPE_LENGTH (type); + + branch_type = + to_fixed_variant_branch_type + (TYPE_FIELD_TYPE (type, nfields - 1), + cond_offset_host (valaddr, + TYPE_FIELD_BITPOS (type, nfields-1) / TARGET_CHAR_BIT), + cond_offset_target (address, + TYPE_FIELD_BITPOS (type, nfields-1) / TARGET_CHAR_BIT), + dval); + if (branch_type == NULL) + { + TYPE_NFIELDS (rtype) -= 1; + TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1)); + } + else + { + TYPE_FIELD_TYPE (rtype, nfields-1) = branch_type; + TYPE_FIELD_NAME (rtype, nfields-1) = "S"; + TYPE_FIELD_BITSIZE (rtype, nfields-1) = 0; + TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type); + - TYPE_LENGTH (TYPE_FIELD_TYPE (type, nfields - 1)); + } + + return rtype; +} + +/* An ordinary record type (with fixed-length fields) that describes + the value at (TYPE0, VALADDR, ADDRESS) [see explanation at + beginning of this section]. Any necessary discriminants' values + should be in DVAL, a record value; it should be NULL if the object + at ADDR itself contains any necessary discriminant values. A + variant field (unless unchecked) is replaced by a particular branch + of the variant. */ + +static struct type* +to_fixed_record_type (type0, valaddr, address, dval) + struct type* type0; + char* valaddr; + CORE_ADDR address; + struct value* dval; +{ + struct type* templ_type; + + /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ + /* if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE) + return type0; + */ + templ_type = dynamic_template_type (type0); + + if (templ_type != NULL) + return template_to_fixed_record_type (templ_type, valaddr, address, dval); + else if (contains_variant_part (type0)) + return to_record_with_fixed_variant_part (type0, valaddr, address, dval); + else + { + /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ + /* TYPE_FLAGS (type0) |= TYPE_FLAG_FIXED_INSTANCE; */ + return type0; + } + +} + +/* An ordinary record type (with fixed-length fields) that describes + the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a + union type. Any necessary discriminants' values should be in DVAL, + a record value. That is, this routine selects the appropriate + branch of the union at ADDR according to the discriminant value + indicated in the union's type name. */ + +static struct type* +to_fixed_variant_branch_type (var_type0, valaddr, address, dval) + struct type* var_type0; + char* valaddr; + CORE_ADDR address; + struct value* dval; +{ + int which; + struct type* templ_type; + struct type* var_type; + + if (TYPE_CODE (var_type0) == TYPE_CODE_PTR) + var_type = TYPE_TARGET_TYPE (var_type0); + else + var_type = var_type0; + + templ_type = ada_find_parallel_type (var_type, "___XVU"); + + if (templ_type != NULL) + var_type = templ_type; + + which = + ada_which_variant_applies (var_type, + VALUE_TYPE (dval), VALUE_CONTENTS (dval)); + + if (which < 0) + return empty_record (TYPE_OBJFILE (var_type)); + else if (is_dynamic_field (var_type, which)) + return + to_fixed_record_type + (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)), + valaddr, address, dval); + else if (contains_variant_part (TYPE_FIELD_TYPE (var_type, which))) + return + to_fixed_record_type + (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval); + else + return TYPE_FIELD_TYPE (var_type, which); +} + +/* Assuming that TYPE0 is an array type describing the type of a value + at ADDR, and that DVAL describes a record containing any + discriminants used in TYPE0, returns a type for the value that + contains no dynamic components (that is, no components whose sizes + are determined by run-time quantities). Unless IGNORE_TOO_BIG is + true, gives an error message if the resulting type's size is over + varsize_limit. +*/ + +static struct type* +to_fixed_array_type (type0, dval, ignore_too_big) + struct type* type0; + struct value* dval; + int ignore_too_big; +{ + struct type* index_type_desc; + struct type* result; + + /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ + /* if (ada_is_packed_array_type (type0) /* revisit? */ /* + || (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE)) + return type0;*/ + + index_type_desc = ada_find_parallel_type (type0, "___XA"); + if (index_type_desc == NULL) + { + struct type *elt_type0 = check_typedef (TYPE_TARGET_TYPE (type0)); + /* NOTE: elt_type---the fixed version of elt_type0---should never + * depend on the contents of the array in properly constructed + * debugging data. */ + struct type *elt_type = + ada_to_fixed_type (elt_type0, 0, 0, dval); + + if (elt_type0 == elt_type) + result = type0; + else + result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), + elt_type, TYPE_INDEX_TYPE (type0)); + } + else + { + int i; + struct type *elt_type0; + + elt_type0 = type0; + for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1) + elt_type0 = TYPE_TARGET_TYPE (elt_type0); + + /* NOTE: result---the fixed version of elt_type0---should never + * depend on the contents of the array in properly constructed + * debugging data. */ + result = + ada_to_fixed_type (check_typedef (elt_type0), 0, 0, dval); + for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1) + { + struct type *range_type = + to_fixed_range_type (TYPE_FIELD_NAME (index_type_desc, i), + dval, TYPE_OBJFILE (type0)); + result = create_array_type (alloc_type (TYPE_OBJFILE (type0)), + result, range_type); + } + if (! ignore_too_big && TYPE_LENGTH (result) > varsize_limit) + error ("array type with dynamic size is larger than varsize-limit"); + } + +/* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ +/* TYPE_FLAGS (result) |= TYPE_FLAG_FIXED_INSTANCE; */ + return result; +} + + +/* A standard type (containing no dynamically sized components) + corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS) + DVAL describes a record containing any discriminants used in TYPE0, + and may be NULL if there are none. */ + +struct type* +ada_to_fixed_type (type, valaddr, address, dval) + struct type* type; + char* valaddr; + CORE_ADDR address; + struct value* dval; +{ + CHECK_TYPEDEF (type); + switch (TYPE_CODE (type)) { + default: + return type; + case TYPE_CODE_STRUCT: + return to_fixed_record_type (type, valaddr, address, NULL); + case TYPE_CODE_ARRAY: + return to_fixed_array_type (type, dval, 0); + case TYPE_CODE_UNION: + if (dval == NULL) + return type; + else + return to_fixed_variant_branch_type (type, valaddr, address, dval); + } +} + +/* A standard (static-sized) type corresponding as well as possible to + TYPE0, but based on no runtime data. */ + +static struct type* +to_static_fixed_type (type0) + struct type* type0; +{ + struct type* type; + + if (type0 == NULL) + return NULL; + + /* FIXME: TYPE_FLAG_FIXED_INSTANCE should be defined in gdbtypes.h */ + /* if (TYPE_FLAGS (type0) & TYPE_FLAG_FIXED_INSTANCE) + return type0; + */ + CHECK_TYPEDEF (type0); + + switch (TYPE_CODE (type0)) + { + default: + return type0; + case TYPE_CODE_STRUCT: + type = dynamic_template_type (type0); + if (type != NULL) + return template_to_static_fixed_type (type); + return type0; + case TYPE_CODE_UNION: + type = ada_find_parallel_type (type0, "___XVU"); + if (type != NULL) + return template_to_static_fixed_type (type); + return type0; + } +} + +/* A static approximation of TYPE with all type wrappers removed. */ +static struct type* +static_unwrap_type (type) + struct type* type; +{ + if (ada_is_aligner_type (type)) + { + struct type* type1 = TYPE_FIELD_TYPE (check_typedef (type), 0); + if (ada_type_name (type1) == NULL) + TYPE_NAME (type1) = ada_type_name (type); + + return static_unwrap_type (type1); + } + else + { + struct type* raw_real_type = ada_get_base_type (type); + if (raw_real_type == type) + return type; + else + return to_static_fixed_type (raw_real_type); + } +} + +/* In some cases, incomplete and private types require + cross-references that are not resolved as records (for example, + type Foo; + type FooP is access Foo; + V: FooP; + type Foo is array ...; + ). In these cases, since there is no mechanism for producing + cross-references to such types, we instead substitute for FooP a + stub enumeration type that is nowhere resolved, and whose tag is + the name of the actual type. Call these types "non-record stubs". */ + +/* A type equivalent to TYPE that is not a non-record stub, if one + exists, otherwise TYPE. */ +struct type* +ada_completed_type (type) + struct type* type; +{ + CHECK_TYPEDEF (type); + if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM + || (TYPE_FLAGS (type) & TYPE_FLAG_STUB) == 0 + || TYPE_TAG_NAME (type) == NULL) + return type; + else + { + char* name = TYPE_TAG_NAME (type); + struct type* type1 = ada_find_any_type (name); + return (type1 == NULL) ? type : type1; + } +} + +/* A value representing the data at VALADDR/ADDRESS as described by + type TYPE0, but with a standard (static-sized) type that correctly + describes it. If VAL0 is not NULL and TYPE0 already is a standard + type, then return VAL0 [this feature is simply to avoid redundant + creation of struct values]. */ + +struct value* +ada_to_fixed_value (type0, valaddr, address, val0) + struct type* type0; + char* valaddr; + CORE_ADDR address; + struct value* val0; +{ + struct type* type = ada_to_fixed_type (type0, valaddr, address, NULL); + if (type == type0 && val0 != NULL) + return val0; + else return value_from_contents_and_address (type, valaddr, address); +} + +/* A value representing VAL, but with a standard (static-sized) type + chosen to approximate the real type of VAL as well as possible, but + without consulting any runtime values. For Ada dynamic-sized + types, therefore, the type of the result is likely to be inaccurate. */ + +struct value* +ada_to_static_fixed_value (val) + struct value* val; +{ + struct type *type = + to_static_fixed_type (static_unwrap_type (VALUE_TYPE (val))); + if (type == VALUE_TYPE (val)) + return val; + else + return coerce_unspec_val_to_type (val, 0, type); +} + + + + + +/* Attributes */ + +/* Table mapping attribute numbers to names */ +/* NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h */ + +static const char* attribute_names[] = { + "<?>", + + "first", + "last", + "length", + "image", + "img", + "max", + "min", + "pos" + "tag", + "val", + + 0 +}; + +const char* +ada_attribute_name (n) + int n; +{ + if (n > 0 && n < (int) ATR_END) + return attribute_names[n]; + else + return attribute_names[0]; +} + +/* Evaluate the 'POS attribute applied to ARG. */ + +static struct value* +value_pos_atr (arg) + struct value* arg; +{ + struct type *type = VALUE_TYPE (arg); + + if (! discrete_type_p (type)) + error ("'POS only defined on discrete types"); + + if (TYPE_CODE (type) == TYPE_CODE_ENUM) + { + int i; + LONGEST v = value_as_long (arg); + + for (i = 0; i < TYPE_NFIELDS (type); i += 1) + { + if (v == TYPE_FIELD_BITPOS (type, i)) + return value_from_longest (builtin_type_ada_int, i); + } + error ("enumeration value is invalid: can't find 'POS"); + } + else + return value_from_longest (builtin_type_ada_int, value_as_long (arg)); +} + +/* Evaluate the TYPE'VAL attribute applied to ARG. */ + +static struct value* +value_val_atr (type, arg) + struct type *type; + struct value* arg; +{ + if (! discrete_type_p (type)) + error ("'VAL only defined on discrete types"); + if (! integer_type_p (VALUE_TYPE (arg))) + error ("'VAL requires integral argument"); + + if (TYPE_CODE (type) == TYPE_CODE_ENUM) + { + long pos = value_as_long (arg); + if (pos < 0 || pos >= TYPE_NFIELDS (type)) + error ("argument to 'VAL out of range"); + return + value_from_longest (type, TYPE_FIELD_BITPOS (type, pos)); + } + else + return value_from_longest (type, value_as_long (arg)); +} + + + /* Evaluation */ + +/* True if TYPE appears to be an Ada character type. + * [At the moment, this is true only for Character and Wide_Character; + * It is a heuristic test that could stand improvement]. */ + +int +ada_is_character_type (type) + struct type* type; +{ + const char* name = ada_type_name (type); + return + name != NULL + && (TYPE_CODE (type) == TYPE_CODE_CHAR + || TYPE_CODE (type) == TYPE_CODE_INT + || TYPE_CODE (type) == TYPE_CODE_RANGE) + && (STREQ (name, "character") || STREQ (name, "wide_character") + || STREQ (name, "unsigned char")); +} + +/* True if TYPE appears to be an Ada string type. */ + +int +ada_is_string_type (type) + struct type *type; +{ + CHECK_TYPEDEF (type); + if (type != NULL + && TYPE_CODE (type) != TYPE_CODE_PTR + && (ada_is_simple_array (type) || ada_is_array_descriptor (type)) + && ada_array_arity (type) == 1) + { + struct type *elttype = ada_array_element_type (type, 1); + + return ada_is_character_type (elttype); + } + else + return 0; +} + + +/* True if TYPE is a struct type introduced by the compiler to force the + alignment of a value. Such types have a single field with a + distinctive name. */ + +int +ada_is_aligner_type (type) + struct type *type; +{ + CHECK_TYPEDEF (type); + return (TYPE_CODE (type) == TYPE_CODE_STRUCT + && TYPE_NFIELDS (type) == 1 + && STREQ (TYPE_FIELD_NAME (type, 0), "F")); +} + +/* If there is an ___XVS-convention type parallel to SUBTYPE, return + the parallel type. */ + +struct type* +ada_get_base_type (raw_type) + struct type* raw_type; +{ + struct type* real_type_namer; + struct type* raw_real_type; + struct type* real_type; + + if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT) + return raw_type; + + real_type_namer = ada_find_parallel_type (raw_type, "___XVS"); + if (real_type_namer == NULL + || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT + || TYPE_NFIELDS (real_type_namer) != 1) + return raw_type; + + raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0)); + if (raw_real_type == NULL) + return raw_type; + else + return raw_real_type; +} + +/* The type of value designated by TYPE, with all aligners removed. */ + +struct type* +ada_aligned_type (type) + struct type* type; +{ + if (ada_is_aligner_type (type)) + return ada_aligned_type (TYPE_FIELD_TYPE (type, 0)); + else + return ada_get_base_type (type); +} + + +/* The address of the aligned value in an object at address VALADDR + having type TYPE. Assumes ada_is_aligner_type (TYPE). */ + +char* +ada_aligned_value_addr (type, valaddr) + struct type *type; + char *valaddr; +{ + if (ada_is_aligner_type (type)) + return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0), + valaddr + + TYPE_FIELD_BITPOS (type, 0)/TARGET_CHAR_BIT); + else + return valaddr; +} + +/* The printed representation of an enumeration literal with encoded + name NAME. The value is good to the next call of ada_enum_name. */ +const char* +ada_enum_name (name) + const char* name; +{ + char* tmp; + + while (1) + { + if ((tmp = strstr (name, "__")) != NULL) + name = tmp+2; + else if ((tmp = strchr (name, '.')) != NULL) + name = tmp+1; + else + break; + } + + if (name[0] == 'Q') + { + static char result[16]; + int v; + if (name[1] == 'U' || name[1] == 'W') + { + if (sscanf (name+2, "%x", &v) != 1) + return name; + } + else + return name; + + if (isascii (v) && isprint (v)) + sprintf (result, "'%c'", v); + else if (name[1] == 'U') + sprintf (result, "[\"%02x\"]", v); + else + sprintf (result, "[\"%04x\"]", v); + + return result; + } + else + return name; +} + +static struct value* +evaluate_subexp (expect_type, exp, pos, noside) + struct type *expect_type; + struct expression *exp; + int *pos; + enum noside noside; +{ + return (*exp->language_defn->evaluate_exp) (expect_type, exp, pos, noside); +} + +/* Evaluate the subexpression of EXP starting at *POS as for + evaluate_type, updating *POS to point just past the evaluated + expression. */ + +static struct value* +evaluate_subexp_type (exp, pos) + struct expression* exp; + int* pos; +{ + return (*exp->language_defn->evaluate_exp) + (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS); +} + +/* If VAL is wrapped in an aligner or subtype wrapper, return the + value it wraps. */ + +static struct value* +unwrap_value (val) + struct value* val; +{ + struct type* type = check_typedef (VALUE_TYPE (val)); + if (ada_is_aligner_type (type)) + { + struct value* v = value_struct_elt (&val, NULL, "F", + NULL, "internal structure"); + struct type* val_type = check_typedef (VALUE_TYPE (v)); + if (ada_type_name (val_type) == NULL) + TYPE_NAME (val_type) = ada_type_name (type); + + return unwrap_value (v); + } + else + { + struct type* raw_real_type = + ada_completed_type (ada_get_base_type (type)); + + if (type == raw_real_type) + return val; + + return + coerce_unspec_val_to_type + (val, 0, ada_to_fixed_type (raw_real_type, 0, + VALUE_ADDRESS (val) + VALUE_OFFSET (val), + NULL)); + } +} + +static struct value* +cast_to_fixed (type, arg) + struct type *type; + struct value* arg; +{ + LONGEST val; + + if (type == VALUE_TYPE (arg)) + return arg; + else if (ada_is_fixed_point_type (VALUE_TYPE (arg))) + val = ada_float_to_fixed (type, + ada_fixed_to_float (VALUE_TYPE (arg), + value_as_long (arg))); + else + { + DOUBLEST argd = + value_as_double (value_cast (builtin_type_double, value_copy (arg))); + val = ada_float_to_fixed (type, argd); + } + + return value_from_longest (type, val); +} + +static struct value* +cast_from_fixed_to_double (arg) + struct value* arg; +{ + DOUBLEST val = ada_fixed_to_float (VALUE_TYPE (arg), + value_as_long (arg)); + return value_from_double (builtin_type_double, val); +} + +/* Coerce VAL as necessary for assignment to an lval of type TYPE, and + * return the converted value. */ +static struct value* +coerce_for_assign (type, val) + struct type* type; + struct value* val; +{ + struct type* type2 = VALUE_TYPE (val); + if (type == type2) + return val; + + CHECK_TYPEDEF (type2); + CHECK_TYPEDEF (type); + + if (TYPE_CODE (type2) == TYPE_CODE_PTR && TYPE_CODE (type) == TYPE_CODE_ARRAY) + { + val = ada_value_ind (val); + type2 = VALUE_TYPE (val); + } + + if (TYPE_CODE (type2) == TYPE_CODE_ARRAY + && TYPE_CODE (type) == TYPE_CODE_ARRAY) + { + if (TYPE_LENGTH (type2) != TYPE_LENGTH (type) + || TYPE_LENGTH (TYPE_TARGET_TYPE (type2)) + != TYPE_LENGTH (TYPE_TARGET_TYPE (type2))) + error ("Incompatible types in assignment"); + VALUE_TYPE (val) = type; + } + return val; +} + +struct value* +ada_evaluate_subexp (expect_type, exp, pos, noside) + struct type *expect_type; + struct expression *exp; + int *pos; + enum noside noside; +{ + enum exp_opcode op; + enum ada_attribute atr; + int tem, tem2, tem3; + int pc; + struct value *arg1 = NULL, *arg2 = NULL, *arg3; + struct type *type; + int nargs; + struct value* *argvec; + + pc = *pos; *pos += 1; + op = exp->elts[pc].opcode; + + switch (op) + { + default: + *pos -= 1; + return unwrap_value (evaluate_subexp_standard (expect_type, exp, pos, noside)); + + case UNOP_CAST: + (*pos) += 2; + type = exp->elts[pc + 1].type; + arg1 = evaluate_subexp (type, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + if (type != check_typedef (VALUE_TYPE (arg1))) + { + if (ada_is_fixed_point_type (type)) + arg1 = cast_to_fixed (type, arg1); + else if (ada_is_fixed_point_type (VALUE_TYPE (arg1))) + arg1 = value_cast (type, cast_from_fixed_to_double (arg1)); + else if (VALUE_LVAL (arg1) == lval_memory) + { + /* This is in case of the really obscure (and undocumented, + but apparently expected) case of (Foo) Bar.all, where Bar + is an integer constant and Foo is a dynamic-sized type. + If we don't do this, ARG1 will simply be relabeled with + TYPE. */ + if (noside == EVAL_AVOID_SIDE_EFFECTS) + return value_zero (to_static_fixed_type (type), not_lval); + arg1 = + ada_to_fixed_value + (type, 0, VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1), 0); + } + else + arg1 = value_cast (type, arg1); + } + return arg1; + + /* FIXME: UNOP_QUAL should be defined in expression.h */ + /* case UNOP_QUAL: + (*pos) += 2; + type = exp->elts[pc + 1].type; + return ada_evaluate_subexp (type, exp, pos, noside); + */ + case BINOP_ASSIGN: + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + arg2 = evaluate_subexp (VALUE_TYPE (arg1), exp, pos, noside); + if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS) + return arg1; + if (binop_user_defined_p (op, arg1, arg2)) + return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL); + else + { + if (ada_is_fixed_point_type (VALUE_TYPE (arg1))) + arg2 = cast_to_fixed (VALUE_TYPE (arg1), arg2); + else if (ada_is_fixed_point_type (VALUE_TYPE (arg2))) + error ("Fixed-point values must be assigned to fixed-point variables"); + else + arg2 = coerce_for_assign (VALUE_TYPE (arg1), arg2); + return ada_value_assign (arg1, arg2); + } + + case BINOP_ADD: + arg1 = evaluate_subexp_with_coercion (exp, pos, noside); + arg2 = evaluate_subexp_with_coercion (exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + if (binop_user_defined_p (op, arg1, arg2)) + return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL); + else + { + if ((ada_is_fixed_point_type (VALUE_TYPE (arg1)) + || ada_is_fixed_point_type (VALUE_TYPE (arg2))) + && VALUE_TYPE (arg1) != VALUE_TYPE (arg2)) + error ("Operands of fixed-point addition must have the same type"); + return value_cast (VALUE_TYPE (arg1), value_add (arg1, arg2)); + } + + case BINOP_SUB: + arg1 = evaluate_subexp_with_coercion (exp, pos, noside); + arg2 = evaluate_subexp_with_coercion (exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + if (binop_user_defined_p (op, arg1, arg2)) + return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL); + else + { + if ((ada_is_fixed_point_type (VALUE_TYPE (arg1)) + || ada_is_fixed_point_type (VALUE_TYPE (arg2))) + && VALUE_TYPE (arg1) != VALUE_TYPE (arg2)) + error ("Operands of fixed-point subtraction must have the same type"); + return value_cast (VALUE_TYPE (arg1), value_sub (arg1, arg2)); + } + + case BINOP_MUL: + case BINOP_DIV: + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + if (binop_user_defined_p (op, arg1, arg2)) + return value_x_binop (arg1, arg2, op, OP_NULL, EVAL_NORMAL); + else + if (noside == EVAL_AVOID_SIDE_EFFECTS + && (op == BINOP_DIV || op == BINOP_REM || op == BINOP_MOD)) + return value_zero (VALUE_TYPE (arg1), not_lval); + else + { + if (ada_is_fixed_point_type (VALUE_TYPE (arg1))) + arg1 = cast_from_fixed_to_double (arg1); + if (ada_is_fixed_point_type (VALUE_TYPE (arg2))) + arg2 = cast_from_fixed_to_double (arg2); + return value_binop (arg1, arg2, op); + } + + case UNOP_NEG: + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + if (unop_user_defined_p (op, arg1)) + return value_x_unop (arg1, op, EVAL_NORMAL); + else if (ada_is_fixed_point_type (VALUE_TYPE (arg1))) + return value_cast (VALUE_TYPE (arg1), value_neg (arg1)); + else + return value_neg (arg1); + + /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ + /* case OP_UNRESOLVED_VALUE: + /* Only encountered when an unresolved symbol occurs in a + context other than a function call, in which case, it is + illegal. *//* + (*pos) += 3; + if (noside == EVAL_SKIP) + goto nosideret; + else + error ("Unexpected unresolved symbol, %s, during evaluation", + ada_demangle (exp->elts[pc + 2].name)); + */ + case OP_VAR_VALUE: + *pos -= 1; + if (noside == EVAL_SKIP) + { + *pos += 4; + goto nosideret; + } + else if (noside == EVAL_AVOID_SIDE_EFFECTS) + { + *pos += 4; + return value_zero + (to_static_fixed_type + (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc+2].symbol))), + not_lval); + } + else + { + arg1 = unwrap_value (evaluate_subexp_standard (expect_type, exp, pos, + noside)); + return ada_to_fixed_value (VALUE_TYPE (arg1), 0, + VALUE_ADDRESS (arg1) + VALUE_OFFSET(arg1), + arg1); + } + + case OP_ARRAY: + (*pos) += 3; + tem2 = longest_to_int (exp->elts[pc + 1].longconst); + tem3 = longest_to_int (exp->elts[pc + 2].longconst); + nargs = tem3 - tem2 + 1; + type = expect_type ? check_typedef (expect_type) : NULL_TYPE; + + argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 1)); + for (tem = 0; tem == 0 || tem < nargs; tem += 1) + /* At least one element gets inserted for the type */ + { + /* Ensure that array expressions are coerced into pointer objects. */ + argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside); + } + if (noside == EVAL_SKIP) + goto nosideret; + return value_array (tem2, tem3, argvec); + + case OP_FUNCALL: + (*pos) += 2; + + /* Allocate arg vector, including space for the function to be + called in argvec[0] and a terminating NULL */ + nargs = longest_to_int (exp->elts[pc + 1].longconst); + argvec = (struct value* *) alloca (sizeof (struct value*) * (nargs + 2)); + + /* FIXME: OP_UNRESOLVED_VALUE should be defined in expression.h */ + /* FIXME: name should be defined in expresion.h */ + /* if (exp->elts[*pos].opcode == OP_UNRESOLVED_VALUE) + error ("Unexpected unresolved symbol, %s, during evaluation", + ada_demangle (exp->elts[pc + 5].name)); + */ + if (0) + { + error ("unexpected code path, FIXME"); + } + else + { + for (tem = 0; tem <= nargs; tem += 1) + argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside); + argvec[tem] = 0; + + if (noside == EVAL_SKIP) + goto nosideret; + } + + if (TYPE_CODE (VALUE_TYPE (argvec[0])) == TYPE_CODE_REF) + argvec[0] = value_addr (argvec[0]); + + if (ada_is_packed_array_type (VALUE_TYPE (argvec[0]))) + argvec[0] = ada_coerce_to_simple_array (argvec[0]); + + type = check_typedef (VALUE_TYPE (argvec[0])); + if (TYPE_CODE (type) == TYPE_CODE_PTR) + { + switch (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (type)))) + { + case TYPE_CODE_FUNC: + type = check_typedef (TYPE_TARGET_TYPE (type)); + break; + case TYPE_CODE_ARRAY: + break; + case TYPE_CODE_STRUCT: + if (noside != EVAL_AVOID_SIDE_EFFECTS) + argvec[0] = ada_value_ind (argvec[0]); + type = check_typedef (TYPE_TARGET_TYPE (type)); + break; + default: + error ("cannot subscript or call something of type `%s'", + ada_type_name (VALUE_TYPE (argvec[0]))); + break; + } + } + + switch (TYPE_CODE (type)) + { + case TYPE_CODE_FUNC: + if (noside == EVAL_AVOID_SIDE_EFFECTS) + return allocate_value (TYPE_TARGET_TYPE (type)); + return call_function_by_hand (argvec[0], nargs, argvec + 1); + case TYPE_CODE_STRUCT: + { + int arity = ada_array_arity (type); + type = ada_array_element_type (type, nargs); + if (type == NULL) + error ("cannot subscript or call a record"); + if (arity != nargs) + error ("wrong number of subscripts; expecting %d", arity); + if (noside == EVAL_AVOID_SIDE_EFFECTS) + return allocate_value (ada_aligned_type (type)); + return unwrap_value (ada_value_subscript (argvec[0], nargs, argvec+1)); + } + case TYPE_CODE_ARRAY: + if (noside == EVAL_AVOID_SIDE_EFFECTS) + { + type = ada_array_element_type (type, nargs); + if (type == NULL) + error ("element type of array unknown"); + else + return allocate_value (ada_aligned_type (type)); + } + return + unwrap_value (ada_value_subscript + (ada_coerce_to_simple_array (argvec[0]), + nargs, argvec+1)); + case TYPE_CODE_PTR: /* Pointer to array */ + type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1); + if (noside == EVAL_AVOID_SIDE_EFFECTS) + { + type = ada_array_element_type (type, nargs); + if (type == NULL) + error ("element type of array unknown"); + else + return allocate_value (ada_aligned_type (type)); + } + return + unwrap_value (ada_value_ptr_subscript (argvec[0], type, + nargs, argvec+1)); + + default: + error ("Internal error in evaluate_subexp"); + } + + case TERNOP_SLICE: + { + struct value* array = evaluate_subexp (NULL_TYPE, exp, pos, noside); + int lowbound + = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); + int upper + = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside)); + if (noside == EVAL_SKIP) + goto nosideret; + + /* If this is a reference to an array, then dereference it */ + if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_REF + && TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL + && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) == + TYPE_CODE_ARRAY + && !ada_is_array_descriptor (check_typedef (VALUE_TYPE + (array)))) + { + array = ada_coerce_ref (array); + } + + if (noside == EVAL_AVOID_SIDE_EFFECTS && + ada_is_array_descriptor (check_typedef (VALUE_TYPE (array)))) + { + /* Try to dereference the array, in case it is an access to array */ + struct type * arrType = ada_type_of_array (array, 0); + if (arrType != NULL) + array = value_at_lazy (arrType, 0, NULL); + } + if (ada_is_array_descriptor (VALUE_TYPE (array))) + array = ada_coerce_to_simple_array (array); + + /* If at this point we have a pointer to an array, it means that + it is a pointer to a simple (non-ada) array. We just then + dereference it */ + if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_PTR + && TYPE_TARGET_TYPE (VALUE_TYPE (array)) != NULL + && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (array))) == + TYPE_CODE_ARRAY) + { + array = ada_value_ind (array); + } + + if (noside == EVAL_AVOID_SIDE_EFFECTS) + /* The following will get the bounds wrong, but only in contexts + where the value is not being requested (FIXME?). */ + return array; + else + return value_slice (array, lowbound, upper - lowbound + 1); + } + + /* FIXME: UNOP_MBR should be defined in expression.h */ + /* case UNOP_MBR: + (*pos) += 2; + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + type = exp->elts[pc + 1].type; + + if (noside == EVAL_SKIP) + goto nosideret; + + switch (TYPE_CODE (type)) + { + default: + warning ("Membership test incompletely implemented; always returns true"); + return value_from_longest (builtin_type_int, (LONGEST) 1); + + case TYPE_CODE_RANGE: + arg2 = value_from_longest (builtin_type_int, + (LONGEST) TYPE_LOW_BOUND (type)); + arg3 = value_from_longest (builtin_type_int, + (LONGEST) TYPE_HIGH_BOUND (type)); + return + value_from_longest (builtin_type_int, + (value_less (arg1,arg3) + || value_equal (arg1,arg3)) + && (value_less (arg2,arg1) + || value_equal (arg2,arg1))); + } + */ + /* FIXME: BINOP_MBR should be defined in expression.h */ + /* case BINOP_MBR: + (*pos) += 2; + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + + if (noside == EVAL_SKIP) + goto nosideret; + + if (noside == EVAL_AVOID_SIDE_EFFECTS) + return value_zero (builtin_type_int, not_lval); + + tem = longest_to_int (exp->elts[pc + 1].longconst); + + if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg2))) + error ("invalid dimension number to '%s", "range"); + + arg3 = ada_array_bound (arg2, tem, 1); + arg2 = ada_array_bound (arg2, tem, 0); + + return + value_from_longest (builtin_type_int, + (value_less (arg1,arg3) + || value_equal (arg1,arg3)) + && (value_less (arg2,arg1) + || value_equal (arg2,arg1))); + */ + /* FIXME: TERNOP_MBR should be defined in expression.h */ + /* case TERNOP_MBR: + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + + if (noside == EVAL_SKIP) + goto nosideret; + + return + value_from_longest (builtin_type_int, + (value_less (arg1,arg3) + || value_equal (arg1,arg3)) + && (value_less (arg2,arg1) + || value_equal (arg2,arg1))); + */ + /* FIXME: OP_ATTRIBUTE should be defined in expression.h */ + /* case OP_ATTRIBUTE: + *pos += 3; + atr = (enum ada_attribute) longest_to_int (exp->elts[pc + 2].longconst); + switch (atr) + { + default: + error ("unexpected attribute encountered"); + + case ATR_FIRST: + case ATR_LAST: + case ATR_LENGTH: + { + struct type* type_arg; + if (exp->elts[*pos].opcode == OP_TYPE) + { + evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); + arg1 = NULL; + type_arg = exp->elts[pc + 5].type; + } + else + { + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + type_arg = NULL; + } + + if (exp->elts[*pos].opcode != OP_LONG) + error ("illegal operand to '%s", ada_attribute_name (atr)); + tem = longest_to_int (exp->elts[*pos+2].longconst); + *pos += 4; + + if (noside == EVAL_SKIP) + goto nosideret; + + if (type_arg == NULL) + { + arg1 = ada_coerce_ref (arg1); + + if (ada_is_packed_array_type (VALUE_TYPE (arg1))) + arg1 = ada_coerce_to_simple_array (arg1); + + if (tem < 1 || tem > ada_array_arity (VALUE_TYPE (arg1))) + error ("invalid dimension number to '%s", + ada_attribute_name (atr)); + + if (noside == EVAL_AVOID_SIDE_EFFECTS) + { + type = ada_index_type (VALUE_TYPE (arg1), tem); + if (type == NULL) + error ("attempt to take bound of something that is not an array"); + return allocate_value (type); + } + + switch (atr) + { + default: + error ("unexpected attribute encountered"); + case ATR_FIRST: + return ada_array_bound (arg1, tem, 0); + case ATR_LAST: + return ada_array_bound (arg1, tem, 1); + case ATR_LENGTH: + return ada_array_length (arg1, tem); + } + } + else if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE + || TYPE_CODE (type_arg) == TYPE_CODE_INT) + { + struct type* range_type; + char* name = ada_type_name (type_arg); + if (name == NULL) + { + if (TYPE_CODE (type_arg) == TYPE_CODE_RANGE) + range_type = type_arg; + else + error ("unimplemented type attribute"); + } + else + range_type = + to_fixed_range_type (name, NULL, TYPE_OBJFILE (type_arg)); + switch (atr) + { + default: + error ("unexpected attribute encountered"); + case ATR_FIRST: + return value_from_longest (TYPE_TARGET_TYPE (range_type), + TYPE_LOW_BOUND (range_type)); + case ATR_LAST: + return value_from_longest (TYPE_TARGET_TYPE (range_type), + TYPE_HIGH_BOUND (range_type)); + } + } + else if (TYPE_CODE (type_arg) == TYPE_CODE_ENUM) + { + switch (atr) + { + default: + error ("unexpected attribute encountered"); + case ATR_FIRST: + return value_from_longest + (type_arg, TYPE_FIELD_BITPOS (type_arg, 0)); + case ATR_LAST: + return value_from_longest + (type_arg, + TYPE_FIELD_BITPOS (type_arg, + TYPE_NFIELDS (type_arg) - 1)); + } + } + else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT) + error ("unimplemented type attribute"); + else + { + LONGEST low, high; + + if (ada_is_packed_array_type (type_arg)) + type_arg = decode_packed_array_type (type_arg); + + if (tem < 1 || tem > ada_array_arity (type_arg)) + error ("invalid dimension number to '%s", + ada_attribute_name (atr)); + + if (noside == EVAL_AVOID_SIDE_EFFECTS) + { + type = ada_index_type (type_arg, tem); + if (type == NULL) + error ("attempt to take bound of something that is not an array"); + return allocate_value (type); + } + + switch (atr) + { + default: + error ("unexpected attribute encountered"); + case ATR_FIRST: + low = ada_array_bound_from_type (type_arg, tem, 0, &type); + return value_from_longest (type, low); + case ATR_LAST: + high = ada_array_bound_from_type (type_arg, tem, 1, &type); + return value_from_longest (type, high); + case ATR_LENGTH: + low = ada_array_bound_from_type (type_arg, tem, 0, &type); + high = ada_array_bound_from_type (type_arg, tem, 1, NULL); + return value_from_longest (type, high-low+1); + } + } + } + + case ATR_TAG: + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + + if (noside == EVAL_AVOID_SIDE_EFFECTS) + return + value_zero (ada_tag_type (arg1), not_lval); + + return ada_value_tag (arg1); + + case ATR_MIN: + case ATR_MAX: + evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + else if (noside == EVAL_AVOID_SIDE_EFFECTS) + return value_zero (VALUE_TYPE (arg1), not_lval); + else + return value_binop (arg1, arg2, + atr == ATR_MIN ? BINOP_MIN : BINOP_MAX); + + case ATR_MODULUS: + { + struct type* type_arg = exp->elts[pc + 5].type; + evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); + *pos += 4; + + if (noside == EVAL_SKIP) + goto nosideret; + + if (! ada_is_modular_type (type_arg)) + error ("'modulus must be applied to modular type"); + + return value_from_longest (TYPE_TARGET_TYPE (type_arg), + ada_modulus (type_arg)); + } + + + case ATR_POS: + evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + else if (noside == EVAL_AVOID_SIDE_EFFECTS) + return value_zero (builtin_type_ada_int, not_lval); + else + return value_pos_atr (arg1); + + case ATR_SIZE: + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + else if (noside == EVAL_AVOID_SIDE_EFFECTS) + return value_zero (builtin_type_ada_int, not_lval); + else + return value_from_longest (builtin_type_ada_int, + TARGET_CHAR_BIT + * TYPE_LENGTH (VALUE_TYPE (arg1))); + + case ATR_VAL: + evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP); + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + type = exp->elts[pc + 5].type; + if (noside == EVAL_SKIP) + goto nosideret; + else if (noside == EVAL_AVOID_SIDE_EFFECTS) + return value_zero (type, not_lval); + else + return value_val_atr (type, arg1); + }*/ + case BINOP_EXP: + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + if (binop_user_defined_p (op, arg1, arg2)) + return unwrap_value (value_x_binop (arg1, arg2, op, OP_NULL, + EVAL_NORMAL)); + else + if (noside == EVAL_AVOID_SIDE_EFFECTS) + return value_zero (VALUE_TYPE (arg1), not_lval); + else + return value_binop (arg1, arg2, op); + + case UNOP_PLUS: + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + if (unop_user_defined_p (op, arg1)) + return unwrap_value (value_x_unop (arg1, op, EVAL_NORMAL)); + else + return arg1; + + case UNOP_ABS: + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + if (value_less (arg1, value_zero (VALUE_TYPE (arg1), not_lval))) + return value_neg (arg1); + else + return arg1; + + case UNOP_IND: + if (expect_type && TYPE_CODE (expect_type) == TYPE_CODE_PTR) + expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type)); + arg1 = evaluate_subexp (expect_type, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + type = check_typedef (VALUE_TYPE (arg1)); + if (noside == EVAL_AVOID_SIDE_EFFECTS) + { + if (ada_is_array_descriptor (type)) + /* GDB allows dereferencing GNAT array descriptors. */ + { + struct type* arrType = ada_type_of_array (arg1, 0); + if (arrType == NULL) + error ("Attempt to dereference null array pointer."); + return value_at_lazy (arrType, 0, NULL); + } + else if (TYPE_CODE (type) == TYPE_CODE_PTR + || TYPE_CODE (type) == TYPE_CODE_REF + /* In C you can dereference an array to get the 1st elt. */ + || TYPE_CODE (type) == TYPE_CODE_ARRAY + ) + return + value_zero + (to_static_fixed_type + (ada_aligned_type (check_typedef (TYPE_TARGET_TYPE (type)))), + lval_memory); + else if (TYPE_CODE (type) == TYPE_CODE_INT) + /* GDB allows dereferencing an int. */ + return value_zero (builtin_type_int, lval_memory); + else + error ("Attempt to take contents of a non-pointer value."); + } + arg1 = ada_coerce_ref (arg1); + type = check_typedef (VALUE_TYPE (arg1)); + + if (ada_is_array_descriptor (type)) + /* GDB allows dereferencing GNAT array descriptors. */ + return ada_coerce_to_simple_array (arg1); + else + return ada_value_ind (arg1); + + case STRUCTOP_STRUCT: + tem = longest_to_int (exp->elts[pc + 1].longconst); + (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + if (noside == EVAL_AVOID_SIDE_EFFECTS) + return value_zero (ada_aligned_type + (ada_lookup_struct_elt_type (VALUE_TYPE (arg1), + &exp->elts[pc + 2].string, + 0, NULL)), + lval_memory); + else + return unwrap_value (ada_value_struct_elt (arg1, + &exp->elts[pc + 2].string, + "record")); + case OP_TYPE: + /* The value is not supposed to be used. This is here to make it + easier to accommodate expressions that contain types. */ + (*pos) += 2; + if (noside == EVAL_SKIP) + goto nosideret; + else if (noside == EVAL_AVOID_SIDE_EFFECTS) + return allocate_value (builtin_type_void); + else + error ("Attempt to use a type name as an expression"); + + case STRUCTOP_PTR: + tem = longest_to_int (exp->elts[pc + 1].longconst); + (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1); + arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside); + if (noside == EVAL_SKIP) + goto nosideret; + if (noside == EVAL_AVOID_SIDE_EFFECTS) + return value_zero (ada_aligned_type + (ada_lookup_struct_elt_type (VALUE_TYPE (arg1), + &exp->elts[pc + 2].string, + 0, NULL)), + lval_memory); + else + return unwrap_value (ada_value_struct_elt (arg1, + &exp->elts[pc + 2].string, + "record access")); + } + +nosideret: + return value_from_longest (builtin_type_long, (LONGEST) 1); +} + + + /* Fixed point */ + +/* If TYPE encodes an Ada fixed-point type, return the suffix of the + type name that encodes the 'small and 'delta information. + Otherwise, return NULL. */ + +static const char* +fixed_type_info (type) + struct type *type; +{ + const char* name = ada_type_name (type); + enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type); + + if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) + && name != NULL) + { + const char *tail = strstr (name, "___XF_"); + if (tail == NULL) + return NULL; + else + return tail + 5; + } + else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type) + return fixed_type_info (TYPE_TARGET_TYPE (type)); + else + return NULL; +} + +/* Returns non-zero iff TYPE represents an Ada fixed-point type. */ + +int +ada_is_fixed_point_type (type) + struct type *type; +{ + return fixed_type_info (type) != NULL; +} + +/* Assuming that TYPE is the representation of an Ada fixed-point + type, return its delta, or -1 if the type is malformed and the + delta cannot be determined. */ + +DOUBLEST +ada_delta (type) + struct type *type; +{ + const char *encoding = fixed_type_info (type); + long num, den; + + if (sscanf (encoding, "_%ld_%ld", &num, &den) < 2) + return -1.0; + else + return (DOUBLEST) num / (DOUBLEST) den; +} + +/* Assuming that ada_is_fixed_point_type (TYPE), return the scaling + factor ('SMALL value) associated with the type. */ + +static DOUBLEST +scaling_factor (type) + struct type *type; +{ + const char *encoding = fixed_type_info (type); + unsigned long num0, den0, num1, den1; + int n; + + n = sscanf (encoding, "_%lu_%lu_%lu_%lu", &num0, &den0, &num1, &den1); + + if (n < 2) + return 1.0; + else if (n == 4) + return (DOUBLEST) num1 / (DOUBLEST) den1; + else + return (DOUBLEST) num0 / (DOUBLEST) den0; +} + + +/* Assuming that X is the representation of a value of fixed-point + type TYPE, return its floating-point equivalent. */ + +DOUBLEST +ada_fixed_to_float (type, x) + struct type *type; + LONGEST x; +{ + return (DOUBLEST) x * scaling_factor (type); +} + +/* The representation of a fixed-point value of type TYPE + corresponding to the value X. */ + +LONGEST +ada_float_to_fixed (type, x) + struct type *type; + DOUBLEST x; +{ + return (LONGEST) (x / scaling_factor (type) + 0.5); +} + + + /* VAX floating formats */ + +/* Non-zero iff TYPE represents one of the special VAX floating-point + types. */ +int +ada_is_vax_floating_type (type) + struct type* type; +{ + int name_len = + (ada_type_name (type) == NULL) ? 0 : strlen (ada_type_name (type)); + return + name_len > 6 + && (TYPE_CODE (type) == TYPE_CODE_INT + || TYPE_CODE (type) == TYPE_CODE_RANGE) + && STREQN (ada_type_name (type) + name_len - 6, "___XF", 5); +} + +/* The type of special VAX floating-point type this is, assuming + ada_is_vax_floating_point */ +int +ada_vax_float_type_suffix (type) + struct type* type; +{ + return ada_type_name (type)[strlen (ada_type_name (type))-1]; +} + +/* A value representing the special debugging function that outputs + VAX floating-point values of the type represented by TYPE. Assumes + ada_is_vax_floating_type (TYPE). */ +struct value* +ada_vax_float_print_function (type) + + struct type* type; +{ + switch (ada_vax_float_type_suffix (type)) { + case 'F': + return + get_var_value ("DEBUG_STRING_F", 0); + case 'D': + return + get_var_value ("DEBUG_STRING_D", 0); + case 'G': + return + get_var_value ("DEBUG_STRING_G", 0); + default: + error ("invalid VAX floating-point type"); + } +} + + + /* Range types */ + +/* Scan STR beginning at position K for a discriminant name, and + return the value of that discriminant field of DVAL in *PX. If + PNEW_K is not null, put the position of the character beyond the + name scanned in *PNEW_K. Return 1 if successful; return 0 and do + not alter *PX and *PNEW_K if unsuccessful. */ + +static int +scan_discrim_bound (str, k, dval, px, pnew_k) + char *str; + int k; + struct value* dval; + LONGEST *px; + int *pnew_k; +{ + static char *bound_buffer = NULL; + static size_t bound_buffer_len = 0; + char *bound; + char *pend; + struct value* bound_val; + + if (dval == NULL || str == NULL || str[k] == '\0') + return 0; + + pend = strstr (str+k, "__"); + if (pend == NULL) + { + bound = str+k; + k += strlen (bound); + } + else + { + GROW_VECT (bound_buffer, bound_buffer_len, pend - (str+k) + 1); + bound = bound_buffer; + strncpy (bound_buffer, str+k, pend-(str+k)); + bound[pend-(str+k)] = '\0'; + k = pend-str; + } + + bound_val = + ada_search_struct_field (bound, dval, 0, VALUE_TYPE (dval)); + if (bound_val == NULL) + return 0; + + *px = value_as_long (bound_val); + if (pnew_k != NULL) + *pnew_k = k; + return 1; +} + +/* Value of variable named NAME in the current environment. If + no such variable found, then if ERR_MSG is null, returns 0, and + otherwise causes an error with message ERR_MSG. */ +static struct value* +get_var_value (name, err_msg) + char* name; + char* err_msg; +{ + struct symbol** syms; + struct block** blocks; + int nsyms; + + nsyms = ada_lookup_symbol_list (name, get_selected_block (NULL), VAR_NAMESPACE, + &syms, &blocks); + + if (nsyms != 1) + { + if (err_msg == NULL) + return 0; + else + error ("%s", err_msg); + } + + return value_of_variable (syms[0], blocks[0]); +} + +/* Value of integer variable named NAME in the current environment. If + no such variable found, then if ERR_MSG is null, returns 0, and sets + *FLAG to 0. If successful, sets *FLAG to 1. */ +LONGEST +get_int_var_value (name, err_msg, flag) + char* name; + char* err_msg; + int* flag; +{ + struct value* var_val = get_var_value (name, err_msg); + + if (var_val == 0) + { + if (flag != NULL) + *flag = 0; + return 0; + } + else + { + if (flag != NULL) + *flag = 1; + return value_as_long (var_val); + } +} + + +/* Return a range type whose base type is that of the range type named + NAME in the current environment, and whose bounds are calculated + from NAME according to the GNAT range encoding conventions. + Extract discriminant values, if needed, from DVAL. If a new type + must be created, allocate in OBJFILE's space. The bounds + information, in general, is encoded in NAME, the base type given in + the named range type. */ + +static struct type* +to_fixed_range_type (name, dval, objfile) + char *name; + struct value *dval; + struct objfile *objfile; +{ + struct type *raw_type = ada_find_any_type (name); + struct type *base_type; + LONGEST low, high; + char* subtype_info; + + if (raw_type == NULL) + base_type = builtin_type_int; + else if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE) + base_type = TYPE_TARGET_TYPE (raw_type); + else + base_type = raw_type; + + subtype_info = strstr (name, "___XD"); + if (subtype_info == NULL) + return raw_type; + else + { + static char *name_buf = NULL; + static size_t name_len = 0; + int prefix_len = subtype_info - name; + LONGEST L, U; + struct type *type; + char *bounds_str; + int n; + + GROW_VECT (name_buf, name_len, prefix_len + 5); + strncpy (name_buf, name, prefix_len); + name_buf[prefix_len] = '\0'; + + subtype_info += 5; + bounds_str = strchr (subtype_info, '_'); + n = 1; + + if (*subtype_info == 'L') + { + if (! ada_scan_number (bounds_str, n, &L, &n) + && ! scan_discrim_bound (bounds_str, n, dval, &L, &n)) + return raw_type; + if (bounds_str[n] == '_') + n += 2; + else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */ + n += 1; + subtype_info += 1; + } + else + { + strcpy (name_buf+prefix_len, "___L"); + L = get_int_var_value (name_buf, "Index bound unknown.", NULL); + } + + if (*subtype_info == 'U') + { + if (! ada_scan_number (bounds_str, n, &U, &n) + && !scan_discrim_bound (bounds_str, n, dval, &U, &n)) + return raw_type; + } + else + { + strcpy (name_buf+prefix_len, "___U"); + U = get_int_var_value (name_buf, "Index bound unknown.", NULL); + } + + if (objfile == NULL) + objfile = TYPE_OBJFILE (base_type); + type = create_range_type (alloc_type (objfile), base_type, L, U); + TYPE_NAME (type) = name; + return type; + } +} + +/* True iff NAME is the name of a range type. */ +int +ada_is_range_type_name (name) + const char* name; +{ + return (name != NULL && strstr (name, "___XD")); +} + + + /* Modular types */ + +/* True iff TYPE is an Ada modular type. */ +int +ada_is_modular_type (type) + struct type* type; +{ + /* FIXME: base_type should be declared in gdbtypes.h, implemented in + valarith.c */ + struct type* subranged_type; /* = base_type (type);*/ + + return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE + && TYPE_CODE (subranged_type) != TYPE_CODE_ENUM + && TYPE_UNSIGNED (subranged_type)); +} + +/* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */ +LONGEST +ada_modulus (type) + struct type* type; +{ + return TYPE_HIGH_BOUND (type) + 1; +} + + + + /* Operators */ + +/* Table mapping opcodes into strings for printing operators + and precedences of the operators. */ + +static const struct op_print ada_op_print_tab[] = + { + {":=", BINOP_ASSIGN, PREC_ASSIGN, 1}, + {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0}, + {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0}, + {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0}, + {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0}, + {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0}, + {"=", BINOP_EQUAL, PREC_EQUAL, 0}, + {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0}, + {"<=", BINOP_LEQ, PREC_ORDER, 0}, + {">=", BINOP_GEQ, PREC_ORDER, 0}, + {">", BINOP_GTR, PREC_ORDER, 0}, + {"<", BINOP_LESS, PREC_ORDER, 0}, + {">>", BINOP_RSH, PREC_SHIFT, 0}, + {"<<", BINOP_LSH, PREC_SHIFT, 0}, + {"+", BINOP_ADD, PREC_ADD, 0}, + {"-", BINOP_SUB, PREC_ADD, 0}, + {"&", BINOP_CONCAT, PREC_ADD, 0}, + {"*", BINOP_MUL, PREC_MUL, 0}, + {"/", BINOP_DIV, PREC_MUL, 0}, + {"rem", BINOP_REM, PREC_MUL, 0}, + {"mod", BINOP_MOD, PREC_MUL, 0}, + {"**", BINOP_EXP, PREC_REPEAT, 0 }, + {"@", BINOP_REPEAT, PREC_REPEAT, 0}, + {"-", UNOP_NEG, PREC_PREFIX, 0}, + {"+", UNOP_PLUS, PREC_PREFIX, 0}, + {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0}, + {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0}, + {"abs ", UNOP_ABS, PREC_PREFIX, 0}, + {".all", UNOP_IND, PREC_SUFFIX, 1}, /* FIXME: postfix .ALL */ + {"'access", UNOP_ADDR, PREC_SUFFIX, 1}, /* FIXME: postfix 'ACCESS */ + {NULL, 0, 0, 0} +}; + + /* Assorted Types and Interfaces */ + +struct type* builtin_type_ada_int; +struct type* builtin_type_ada_short; +struct type* builtin_type_ada_long; +struct type* builtin_type_ada_long_long; +struct type* builtin_type_ada_char; +struct type* builtin_type_ada_float; +struct type* builtin_type_ada_double; +struct type* builtin_type_ada_long_double; +struct type* builtin_type_ada_natural; +struct type* builtin_type_ada_positive; +struct type* builtin_type_ada_system_address; + +struct type ** const (ada_builtin_types[]) = +{ + + &builtin_type_ada_int, + &builtin_type_ada_long, + &builtin_type_ada_short, + &builtin_type_ada_char, + &builtin_type_ada_float, + &builtin_type_ada_double, + &builtin_type_ada_long_long, + &builtin_type_ada_long_double, + &builtin_type_ada_natural, + &builtin_type_ada_positive, + + /* The following types are carried over from C for convenience. */ + &builtin_type_int, + &builtin_type_long, + &builtin_type_short, + &builtin_type_char, + &builtin_type_float, + &builtin_type_double, + &builtin_type_long_long, + &builtin_type_void, + &builtin_type_signed_char, + &builtin_type_unsigned_char, + &builtin_type_unsigned_short, + &builtin_type_unsigned_int, + &builtin_type_unsigned_long, + &builtin_type_unsigned_long_long, + &builtin_type_long_double, + &builtin_type_complex, + &builtin_type_double_complex, + 0 +}; + +/* Not really used, but needed in the ada_language_defn. */ +static void emit_char (int c, struct ui_file* stream, int quoter) +{ + ada_emit_char (c, stream, quoter, 1); +} + +const struct language_defn ada_language_defn = { + "ada", /* Language name */ + /* language_ada, */ + language_unknown, + /* FIXME: language_ada should be defined in defs.h */ + ada_builtin_types, + range_check_off, + type_check_off, + case_sensitive_on, /* Yes, Ada is case-insensitive, but + * that's not quite what this means. */ + ada_parse, + ada_error, + ada_evaluate_subexp, + ada_printchar, /* Print a character constant */ + ada_printstr, /* Function to print string constant */ + emit_char, /* Function to print single char (not used) */ + ada_create_fundamental_type, /* Create fundamental type in this language */ + ada_print_type, /* Print a type using appropriate syntax */ + ada_val_print, /* Print a value using appropriate syntax */ + ada_value_print, /* Print a top-level value */ + {"", "", "", ""}, /* Binary format info */ +#if 0 + {"8#%lo#", "8#", "o", "#"}, /* Octal format info */ + {"%ld", "", "d", ""}, /* Decimal format info */ + {"16#%lx#", "16#", "x", "#"}, /* Hex format info */ +#else + /* Copied from c-lang.c. */ + {"0%lo", "0", "o", ""}, /* Octal format info */ + {"%ld", "", "d", ""}, /* Decimal format info */ + {"0x%lx", "0x", "x", ""}, /* Hex format info */ +#endif + ada_op_print_tab, /* expression operators for printing */ + 1, /* c-style arrays (FIXME?) */ + 0, /* String lower bound (FIXME?) */ + &builtin_type_ada_char, + LANG_MAGIC +}; + +void +_initialize_ada_language () +{ + builtin_type_ada_int = + init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, + 0, + "integer", (struct objfile *) NULL); + builtin_type_ada_long = + init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT, + 0, + "long_integer", (struct objfile *) NULL); + builtin_type_ada_short = + init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT, + 0, + "short_integer", (struct objfile *) NULL); + builtin_type_ada_char = + init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT, + 0, + "character", (struct objfile *) NULL); + builtin_type_ada_float = + init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT, + 0, + "float", (struct objfile *) NULL); + builtin_type_ada_double = + init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, + 0, + "long_float", (struct objfile *) NULL); + builtin_type_ada_long_long = + init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, + 0, + "long_long_integer", (struct objfile *) NULL); + builtin_type_ada_long_double = + init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT, + 0, + "long_long_float", (struct objfile *) NULL); + builtin_type_ada_natural = + init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, + 0, + "natural", (struct objfile *) NULL); + builtin_type_ada_positive = + init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT, + 0, + "positive", (struct objfile *) NULL); + + + builtin_type_ada_system_address = + lookup_pointer_type (init_type (TYPE_CODE_VOID, 1, 0, "void", + (struct objfile *) NULL)); + TYPE_NAME (builtin_type_ada_system_address) = "system__address"; + + add_language (&ada_language_defn); + + add_show_from_set + (add_set_cmd ("varsize-limit", class_support, var_uinteger, + (char*) &varsize_limit, + "Set maximum bytes in dynamic-sized object.", + &setlist), + &showlist); + varsize_limit = 65536; + + add_com ("begin", class_breakpoint, begin_command, + "Start the debugged program, stopping at the beginning of the\n\ +main program. You may specify command-line arguments to give it, as for\n\ +the \"run\" command (q.v.)."); +} + + +/* Create a fundamental Ada type using default reasonable for the current + target machine. + + Some object/debugging file formats (DWARF version 1, COFF, etc) do not + define fundamental types such as "int" or "double". Others (stabs or + DWARF version 2, etc) do define fundamental types. For the formats which + don't provide fundamental types, gdb can create such types using this + function. + + FIXME: Some compilers distinguish explicitly signed integral types + (signed short, signed int, signed long) from "regular" integral types + (short, int, long) in the debugging information. There is some dis- + agreement as to how useful this feature is. In particular, gcc does + not support this. Also, only some debugging formats allow the + distinction to be passed on to a debugger. For now, we always just + use "short", "int", or "long" as the type name, for both the implicit + and explicitly signed types. This also makes life easier for the + gdb test suite since we don't have to account for the differences + in output depending upon what the compiler and debugging format + support. We will probably have to re-examine the issue when gdb + starts taking it's fundamental type information directly from the + debugging information supplied by the compiler. fnf@cygnus.com */ + +static struct type * +ada_create_fundamental_type (objfile, typeid) + struct objfile *objfile; + int typeid; +{ + struct type *type = NULL; + + switch (typeid) + { + default: + /* FIXME: For now, if we are asked to produce a type not in this + language, create the equivalent of a C integer type with the + name "<?type?>". When all the dust settles from the type + reconstruction work, this should probably become an error. */ + type = init_type (TYPE_CODE_INT, + TARGET_INT_BIT / TARGET_CHAR_BIT, + 0, "<?type?>", objfile); + warning ("internal error: no Ada fundamental type %d", typeid); + break; + case FT_VOID: + type = init_type (TYPE_CODE_VOID, + TARGET_CHAR_BIT / TARGET_CHAR_BIT, + 0, "void", objfile); + break; + case FT_CHAR: + type = init_type (TYPE_CODE_INT, + TARGET_CHAR_BIT / TARGET_CHAR_BIT, + 0, "character", objfile); + break; + case FT_SIGNED_CHAR: + type = init_type (TYPE_CODE_INT, + TARGET_CHAR_BIT / TARGET_CHAR_BIT, + 0, "signed char", objfile); + break; + case FT_UNSIGNED_CHAR: + type = init_type (TYPE_CODE_INT, + TARGET_CHAR_BIT / TARGET_CHAR_BIT, + TYPE_FLAG_UNSIGNED, "unsigned char", objfile); + break; + case FT_SHORT: + type = init_type (TYPE_CODE_INT, + TARGET_SHORT_BIT / TARGET_CHAR_BIT, + 0, "short_integer", objfile); + break; + case FT_SIGNED_SHORT: + type = init_type (TYPE_CODE_INT, + TARGET_SHORT_BIT / TARGET_CHAR_BIT, + 0, "short_integer", objfile); + break; + case FT_UNSIGNED_SHORT: + type = init_type (TYPE_CODE_INT, + TARGET_SHORT_BIT / TARGET_CHAR_BIT, + TYPE_FLAG_UNSIGNED, "unsigned short", objfile); + break; + case FT_INTEGER: + type = init_type (TYPE_CODE_INT, + TARGET_INT_BIT / TARGET_CHAR_BIT, + 0, "integer", objfile); + break; + case FT_SIGNED_INTEGER: + type = init_type (TYPE_CODE_INT, + TARGET_INT_BIT / TARGET_CHAR_BIT, + 0, "integer", objfile); /* FIXME -fnf */ + break; + case FT_UNSIGNED_INTEGER: + type = init_type (TYPE_CODE_INT, + TARGET_INT_BIT / TARGET_CHAR_BIT, + TYPE_FLAG_UNSIGNED, "unsigned int", objfile); + break; + case FT_LONG: + type = init_type (TYPE_CODE_INT, + TARGET_LONG_BIT / TARGET_CHAR_BIT, + 0, "long_integer", objfile); + break; + case FT_SIGNED_LONG: + type = init_type (TYPE_CODE_INT, + TARGET_LONG_BIT / TARGET_CHAR_BIT, + 0, "long_integer", objfile); + break; + case FT_UNSIGNED_LONG: + type = init_type (TYPE_CODE_INT, + TARGET_LONG_BIT / TARGET_CHAR_BIT, + TYPE_FLAG_UNSIGNED, "unsigned long", objfile); + break; + case FT_LONG_LONG: + type = init_type (TYPE_CODE_INT, + TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, + 0, "long_long_integer", objfile); + break; + case FT_SIGNED_LONG_LONG: + type = init_type (TYPE_CODE_INT, + TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, + 0, "long_long_integer", objfile); + break; + case FT_UNSIGNED_LONG_LONG: + type = init_type (TYPE_CODE_INT, + TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT, + TYPE_FLAG_UNSIGNED, "unsigned long long", objfile); + break; + case FT_FLOAT: + type = init_type (TYPE_CODE_FLT, + TARGET_FLOAT_BIT / TARGET_CHAR_BIT, + 0, "float", objfile); + break; + case FT_DBL_PREC_FLOAT: + type = init_type (TYPE_CODE_FLT, + TARGET_DOUBLE_BIT / TARGET_CHAR_BIT, + 0, "long_float", objfile); + break; + case FT_EXT_PREC_FLOAT: + type = init_type (TYPE_CODE_FLT, + TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT, + 0, "long_long_float", objfile); + break; + } + return (type); +} + +void ada_dump_symtab (struct symtab* s) +{ + int i; + fprintf (stderr, "New symtab: [\n"); + fprintf (stderr, " Name: %s/%s;\n", + s->dirname ? s->dirname : "?", + s->filename ? s->filename : "?"); + fprintf (stderr, " Format: %s;\n", s->debugformat); + if (s->linetable != NULL) + { + fprintf (stderr, " Line table (section %d):\n", s->block_line_section); + for (i = 0; i < s->linetable->nitems; i += 1) + { + struct linetable_entry* e = s->linetable->item + i; + fprintf (stderr, " %4ld: %8lx\n", (long) e->line, (long) e->pc); + } + } + fprintf (stderr, "]\n"); +} + |