summaryrefslogtreecommitdiff
path: root/gdb/mips-tdep.c
diff options
context:
space:
mode:
authorStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
committerStan Shebs <shebs@codesourcery.com>1999-04-16 01:35:26 +0000
commitc906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch)
treea0015aa5cedc19ccbab307251353a41722a3ae13 /gdb/mips-tdep.c
parentcd946cff9ede3f30935803403f06f6ed30cad136 (diff)
downloadbinutils-gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz
Initial creation of sourceware repositorygdb-4_18-branchpoint
Diffstat (limited to 'gdb/mips-tdep.c')
-rw-r--r--gdb/mips-tdep.c3259
1 files changed, 3259 insertions, 0 deletions
diff --git a/gdb/mips-tdep.c b/gdb/mips-tdep.c
new file mode 100644
index 00000000000..e4aa2bb297b
--- /dev/null
+++ b/gdb/mips-tdep.c
@@ -0,0 +1,3259 @@
+/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
+ Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998
+ Free Software Foundation, Inc.
+ Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
+ and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
+
+This file is part of GDB.
+
+This program is free software; you can redistribute it and/or modify
+it under the terms of the GNU General Public License as published by
+the Free Software Foundation; either version 2 of the License, or
+(at your option) any later version.
+
+This program is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with this program; if not, write to the Free Software
+Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
+
+#include "defs.h"
+#include "gdb_string.h"
+#include "frame.h"
+#include "inferior.h"
+#include "symtab.h"
+#include "value.h"
+#include "gdbcmd.h"
+#include "language.h"
+#include "gdbcore.h"
+#include "symfile.h"
+#include "objfiles.h"
+#include "gdbtypes.h"
+#include "target.h"
+
+#include "opcode/mips.h"
+
+/* Some MIPS boards don't support floating point, so we permit the
+ user to turn it off. */
+
+enum mips_fpu_type
+{
+ MIPS_FPU_DOUBLE, /* Full double precision floating point. */
+ MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
+ MIPS_FPU_NONE /* No floating point. */
+};
+
+#ifndef MIPS_DEFAULT_FPU_TYPE
+#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
+#endif
+static int mips_fpu_type_auto = 1;
+static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
+#define MIPS_FPU_TYPE mips_fpu_type
+
+
+#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
+
+/* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
+#define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
+
+#if 0
+static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
+#endif
+
+int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *));
+
+static void mips_print_register PARAMS ((int, int));
+
+static mips_extra_func_info_t
+heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *));
+
+static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR));
+
+static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int));
+
+void mips_set_processor_type_command PARAMS ((char *, int));
+
+int mips_set_processor_type PARAMS ((char *));
+
+static void mips_show_processor_type_command PARAMS ((char *, int));
+
+static void reinit_frame_cache_sfunc PARAMS ((char *, int,
+ struct cmd_list_element *));
+
+static mips_extra_func_info_t
+ find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame));
+
+static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc,
+ mips_extra_func_info_t proc_desc));
+
+/* This value is the model of MIPS in use. It is derived from the value
+ of the PrID register. */
+
+char *mips_processor_type;
+
+char *tmp_mips_processor_type;
+
+/* A set of original names, to be used when restoring back to generic
+ registers from a specific set. */
+
+char *mips_generic_reg_names[] = REGISTER_NAMES;
+
+/* Names of IDT R3041 registers. */
+
+char *mips_r3041_reg_names[] = {
+ "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
+ "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
+ "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
+ "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
+ "sr", "lo", "hi", "bad", "cause","pc",
+ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+ "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
+ "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
+ "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
+ "fsr", "fir", "fp", "",
+ "", "", "bus", "ccfg", "", "", "", "",
+ "", "", "port", "cmp", "", "", "epc", "prid",
+};
+
+/* Names of IDT R3051 registers. */
+
+char *mips_r3051_reg_names[] = {
+ "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
+ "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
+ "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
+ "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
+ "sr", "lo", "hi", "bad", "cause","pc",
+ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+ "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
+ "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
+ "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
+ "fsr", "fir", "fp", "",
+ "inx", "rand", "elo", "", "ctxt", "", "", "",
+ "", "", "ehi", "", "", "", "epc", "prid",
+};
+
+/* Names of IDT R3081 registers. */
+
+char *mips_r3081_reg_names[] = {
+ "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
+ "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
+ "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
+ "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
+ "sr", "lo", "hi", "bad", "cause","pc",
+ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
+ "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
+ "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
+ "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
+ "fsr", "fir", "fp", "",
+ "inx", "rand", "elo", "cfg", "ctxt", "", "", "",
+ "", "", "ehi", "", "", "", "epc", "prid",
+};
+
+/* Names of LSI 33k registers. */
+
+char *mips_lsi33k_reg_names[] = {
+ "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
+ "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
+ "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
+ "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
+ "epc", "hi", "lo", "sr", "cause","badvaddr",
+ "dcic", "bpc", "bda", "", "", "", "", "",
+ "", "", "", "", "", "", "", "",
+ "", "", "", "", "", "", "", "",
+ "", "", "", "", "", "", "", "",
+ "", "", "", "",
+ "", "", "", "", "", "", "", "",
+ "", "", "", "", "", "", "", "",
+};
+
+struct {
+ char *name;
+ char **regnames;
+} mips_processor_type_table[] = {
+ { "generic", mips_generic_reg_names },
+ { "r3041", mips_r3041_reg_names },
+ { "r3051", mips_r3051_reg_names },
+ { "r3071", mips_r3081_reg_names },
+ { "r3081", mips_r3081_reg_names },
+ { "lsi33k", mips_lsi33k_reg_names },
+ { NULL, NULL }
+};
+
+/* Table to translate MIPS16 register field to actual register number. */
+static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
+
+/* Heuristic_proc_start may hunt through the text section for a long
+ time across a 2400 baud serial line. Allows the user to limit this
+ search. */
+
+static unsigned int heuristic_fence_post = 0;
+
+#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
+#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
+#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
+#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
+#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
+#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
+#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
+#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
+#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
+#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
+#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
+#define _PROC_MAGIC_ 0x0F0F0F0F
+#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
+#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
+
+struct linked_proc_info
+{
+ struct mips_extra_func_info info;
+ struct linked_proc_info *next;
+} *linked_proc_desc_table = NULL;
+
+
+/* Should the upper word of 64-bit addresses be zeroed? */
+static int mask_address_p = 1;
+
+/* Should call_function allocate stack space for a struct return? */
+int
+mips_use_struct_convention (gcc_p, type)
+ int gcc_p;
+ struct type *type;
+{
+ if (MIPS_EABI)
+ return (TYPE_LENGTH (type) > 2 * MIPS_REGSIZE);
+ else
+ return 1; /* Structures are returned by ref in extra arg0 */
+}
+
+/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
+
+static int
+pc_is_mips16 (bfd_vma memaddr)
+{
+ struct minimal_symbol *sym;
+
+ /* If bit 0 of the address is set, assume this is a MIPS16 address. */
+ if (IS_MIPS16_ADDR (memaddr))
+ return 1;
+
+ /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
+ the high bit of the info field. Use this to decide if the function is
+ MIPS16 or normal MIPS. */
+ sym = lookup_minimal_symbol_by_pc (memaddr);
+ if (sym)
+ return MSYMBOL_IS_SPECIAL (sym);
+ else
+ return 0;
+}
+
+
+/* This returns the PC of the first inst after the prologue. If we can't
+ find the prologue, then return 0. */
+
+static CORE_ADDR
+after_prologue (pc, proc_desc)
+ CORE_ADDR pc;
+ mips_extra_func_info_t proc_desc;
+{
+ struct symtab_and_line sal;
+ CORE_ADDR func_addr, func_end;
+
+ if (!proc_desc)
+ proc_desc = find_proc_desc (pc, NULL);
+
+ if (proc_desc)
+ {
+ /* If function is frameless, then we need to do it the hard way. I
+ strongly suspect that frameless always means prologueless... */
+ if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
+ && PROC_FRAME_OFFSET (proc_desc) == 0)
+ return 0;
+ }
+
+ if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
+ return 0; /* Unknown */
+
+ sal = find_pc_line (func_addr, 0);
+
+ if (sal.end < func_end)
+ return sal.end;
+
+ /* The line after the prologue is after the end of the function. In this
+ case, tell the caller to find the prologue the hard way. */
+
+ return 0;
+}
+
+/* Decode a MIPS32 instruction that saves a register in the stack, and
+ set the appropriate bit in the general register mask or float register mask
+ to indicate which register is saved. This is a helper function
+ for mips_find_saved_regs. */
+
+static void
+mips32_decode_reg_save (inst, gen_mask, float_mask)
+ t_inst inst;
+ unsigned long *gen_mask;
+ unsigned long *float_mask;
+{
+ int reg;
+
+ if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
+ || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
+ || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
+ {
+ /* It might be possible to use the instruction to
+ find the offset, rather than the code below which
+ is based on things being in a certain order in the
+ frame, but figuring out what the instruction's offset
+ is relative to might be a little tricky. */
+ reg = (inst & 0x001f0000) >> 16;
+ *gen_mask |= (1 << reg);
+ }
+ else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
+ || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
+ || (inst & 0xffe00000) == 0xf7a00000)/* sdc1 freg,n($sp) */
+
+ {
+ reg = ((inst & 0x001f0000) >> 16);
+ *float_mask |= (1 << reg);
+ }
+}
+
+/* Decode a MIPS16 instruction that saves a register in the stack, and
+ set the appropriate bit in the general register or float register mask
+ to indicate which register is saved. This is a helper function
+ for mips_find_saved_regs. */
+
+static void
+mips16_decode_reg_save (inst, gen_mask)
+ t_inst inst;
+ unsigned long *gen_mask;
+{
+ if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
+ {
+ int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
+ *gen_mask |= (1 << reg);
+ }
+ else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
+ {
+ int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
+ *gen_mask |= (1 << reg);
+ }
+ else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
+ || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
+ *gen_mask |= (1 << RA_REGNUM);
+}
+
+
+/* Fetch and return instruction from the specified location. If the PC
+ is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
+
+static t_inst
+mips_fetch_instruction (addr)
+ CORE_ADDR addr;
+{
+ char buf[MIPS_INSTLEN];
+ int instlen;
+ int status;
+
+ if (pc_is_mips16 (addr))
+ {
+ instlen = MIPS16_INSTLEN;
+ addr = UNMAKE_MIPS16_ADDR (addr);
+ }
+ else
+ instlen = MIPS_INSTLEN;
+ status = read_memory_nobpt (addr, buf, instlen);
+ if (status)
+ memory_error (status, addr);
+ return extract_unsigned_integer (buf, instlen);
+}
+
+
+/* These the fields of 32 bit mips instructions */
+#define mips32_op(x) (x >> 25)
+#define itype_op(x) (x >> 25)
+#define itype_rs(x) ((x >> 21)& 0x1f)
+#define itype_rt(x) ((x >> 16) & 0x1f)
+#define itype_immediate(x) ( x & 0xffff)
+
+#define jtype_op(x) (x >> 25)
+#define jtype_target(x) ( x & 0x03fffff)
+
+#define rtype_op(x) (x >>25)
+#define rtype_rs(x) ((x>>21) & 0x1f)
+#define rtype_rt(x) ((x>>16) & 0x1f)
+#define rtype_rd(x) ((x>>11) & 0x1f)
+#define rtype_shamt(x) ((x>>6) & 0x1f)
+#define rtype_funct(x) (x & 0x3f )
+
+static CORE_ADDR
+mips32_relative_offset(unsigned long inst)
+{ long x ;
+ x = itype_immediate(inst) ;
+ if (x & 0x8000) /* sign bit set */
+ {
+ x |= 0xffff0000 ; /* sign extension */
+ }
+ x = x << 2 ;
+ return x ;
+}
+
+/* Determine whate to set a single step breakpoint while considering
+ branch prediction */
+CORE_ADDR
+mips32_next_pc(CORE_ADDR pc)
+{
+ unsigned long inst ;
+ int op ;
+ inst = mips_fetch_instruction(pc) ;
+ if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */
+ { if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */
+ { op = ((inst >> 25) & 0x03) ;
+ switch (op)
+ {
+ case 0 : goto equal_branch ; /* BEQL */
+ case 1 : goto neq_branch ; /* BNEZ */
+ case 2 : goto less_branch ; /* BLEZ */
+ case 3 : goto greater_branch ; /* BGTZ */
+ default : pc += 4 ;
+ }
+ }
+ else pc += 4 ; /* Not a branch, next instruction is easy */
+ }
+ else
+ { /* This gets way messy */
+
+ /* Further subdivide into SPECIAL, REGIMM and other */
+ switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */
+ {
+ case 0 : /* SPECIAL */
+ op = rtype_funct(inst) ;
+ switch (op)
+ {
+ case 8 : /* JR */
+ case 9 : /* JALR */
+ pc = read_register(rtype_rs(inst)) ; /* Set PC to that address */
+ break ;
+ default: pc += 4 ;
+ }
+
+ break ; /* end special */
+ case 1 : /* REGIMM */
+ {
+ op = jtype_op(inst) ; /* branch condition */
+ switch (jtype_op(inst))
+ {
+ case 0 : /* BLTZ */
+ case 2 : /* BLTXL */
+ case 16 : /* BLTZALL */
+ case 18 : /* BLTZALL */
+ less_branch:
+ if (read_register(itype_rs(inst)) < 0)
+ pc += mips32_relative_offset(inst) + 4 ;
+ else pc += 8 ; /* after the delay slot */
+ break ;
+ case 1 : /* GEZ */
+ case 3 : /* BGEZL */
+ case 17 : /* BGEZAL */
+ case 19 : /* BGEZALL */
+ greater_equal_branch:
+ if (read_register(itype_rs(inst)) >= 0)
+ pc += mips32_relative_offset(inst) + 4 ;
+ else pc += 8 ; /* after the delay slot */
+ break ;
+ /* All of the other intructions in the REGIMM catagory */
+ default: pc += 4 ;
+ }
+ }
+ break ; /* end REGIMM */
+ case 2 : /* J */
+ case 3 : /* JAL */
+ { unsigned long reg ;
+ reg = jtype_target(inst) << 2 ;
+ pc = reg + ((pc+4) & 0xf0000000) ;
+ /* Whats this mysterious 0xf000000 adjustment ??? */
+ }
+ break ;
+ /* FIXME case JALX :*/
+ { unsigned long reg ;
+ reg = jtype_target(inst) << 2 ;
+ pc = reg + ((pc+4) & 0xf0000000) + 1 ; /* yes, +1 */
+ /* Add 1 to indicate 16 bit mode - Invert ISA mode */
+ }
+ break ; /* The new PC will be alternate mode */
+ case 4 : /* BEQ , BEQL */
+ equal_branch :
+ if (read_register(itype_rs(inst)) ==
+ read_register(itype_rt(inst)))
+ pc += mips32_relative_offset(inst) + 4 ;
+ else pc += 8 ;
+ break ;
+ case 5 : /* BNE , BNEL */
+ neq_branch :
+ if (read_register(itype_rs(inst)) !=
+ read_register(itype_rs(inst)))
+ pc += mips32_relative_offset(inst) + 4 ;
+ else pc += 8 ;
+ break ;
+ case 6 : /* BLEZ , BLEZL */
+ less_zero_branch:
+ if (read_register(itype_rs(inst) <= 0))
+ pc += mips32_relative_offset(inst) + 4 ;
+ else pc += 8 ;
+ break ;
+ case 7 :
+ greater_branch : /* BGTZ BGTZL */
+ if (read_register(itype_rs(inst) > 0))
+ pc += mips32_relative_offset(inst) + 4 ;
+ else pc += 8 ;
+ break ;
+ default : pc += 8 ;
+ } /* switch */
+ } /* else */
+ return pc ;
+} /* mips32_next_pc */
+
+/* Decoding the next place to set a breakpoint is irregular for the
+ mips 16 variant, but fortunatly, there fewer instructions. We have to cope
+ ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
+ We dont want to set a single step instruction on the extend instruction
+ either.
+ */
+
+/* Lots of mips16 instruction formats */
+/* Predicting jumps requires itype,ritype,i8type
+ and their extensions extItype,extritype,extI8type
+ */
+enum mips16_inst_fmts
+{
+ itype, /* 0 immediate 5,10 */
+ ritype, /* 1 5,3,8 */
+ rrtype, /* 2 5,3,3,5 */
+ rritype, /* 3 5,3,3,5 */
+ rrrtype, /* 4 5,3,3,3,2 */
+ rriatype, /* 5 5,3,3,1,4 */
+ shifttype, /* 6 5,3,3,3,2 */
+ i8type, /* 7 5,3,8 */
+ i8movtype, /* 8 5,3,3,5 */
+ i8mov32rtype, /* 9 5,3,5,3 */
+ i64type, /* 10 5,3,8 */
+ ri64type, /* 11 5,3,3,5 */
+ jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
+ exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
+ extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
+ extRRItype, /* 15 5,5,5,5,3,3,5 */
+ extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
+ EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
+ extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
+ extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
+ extRi64type, /* 20 5,6,5,5,3,3,5 */
+ extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
+} ;
+/* I am heaping all the fields of the formats into one structure and then,
+ only the fields which are involved in instruction extension */
+struct upk_mips16
+{
+ unsigned short inst ;
+ enum mips16_inst_fmts fmt ;
+ unsigned long offset ;
+ unsigned int regx ; /* Function in i8 type */
+ unsigned int regy ;
+} ;
+
+
+
+static void print_unpack(char * comment,
+ struct upk_mips16 * u)
+{
+ printf("%s %04x ,f(%d) off(%08x) (x(%x) y(%x)\n",
+ comment,u->inst,u->fmt,u->offset,u->regx,u->regy) ;
+}
+
+/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same
+ format for the bits which make up the immediatate extension.
+ */
+static unsigned long
+extended_offset(unsigned long extension)
+{
+ unsigned long value ;
+ value = (extension >> 21) & 0x3f ; /* * extract 15:11 */
+ value = value << 6 ;
+ value |= (extension >> 16) & 0x1f ; /* extrace 10:5 */
+ value = value << 5 ;
+ value |= extension & 0x01f ; /* extract 4:0 */
+ return value ;
+}
+
+/* Only call this function if you know that this is an extendable
+ instruction, It wont malfunction, but why make excess remote memory references?
+ If the immediate operands get sign extended or somthing, do it after
+ the extension is performed.
+ */
+/* FIXME: Every one of these cases needs to worry about sign extension
+ when the offset is to be used in relative addressing */
+
+
+static unsigned short fetch_mips_16(CORE_ADDR pc)
+{
+ char buf[8] ;
+ pc &= 0xfffffffe ; /* clear the low order bit */
+ target_read_memory(pc,buf,2) ;
+ return extract_unsigned_integer(buf,2) ;
+}
+
+static void
+unpack_mips16(CORE_ADDR pc,
+ struct upk_mips16 * upk)
+{
+ CORE_ADDR extpc ;
+ unsigned long extension ;
+ int extended ;
+ extpc = (pc - 4) & ~0x01 ; /* Extensions are 32 bit instructions */
+ /* Decrement to previous address and loose the 16bit mode flag */
+ /* return if the instruction was extendable, but not actually extended */
+ extended = ((mips32_op(extension) == 30) ? 1 : 0) ;
+ if (extended) { extension = mips_fetch_instruction(extpc) ;}
+ switch (upk->fmt)
+ {
+ case itype :
+ {
+ unsigned long value ;
+ if (extended)
+ { value = extended_offset(extension) ;
+ value = value << 11 ; /* rom for the original value */
+ value |= upk->inst & 0x7ff ; /* eleven bits from instruction */
+ }
+ else
+ { value = upk->inst & 0x7ff ;
+ /* FIXME : Consider sign extension */
+ }
+ upk->offset = value ;
+ }
+ break ;
+ case ritype :
+ case i8type :
+ { /* A register identifier and an offset */
+ /* Most of the fields are the same as I type but the
+ immediate value is of a different length */
+ unsigned long value ;
+ if (extended)
+ {
+ value = extended_offset(extension) ;
+ value = value << 8 ; /* from the original instruction */
+ value |= upk->inst & 0xff ; /* eleven bits from instruction */
+ upk->regx = (extension >> 8) & 0x07 ; /* or i8 funct */
+ if (value & 0x4000) /* test the sign bit , bit 26 */
+ { value &= ~ 0x3fff ; /* remove the sign bit */
+ value = -value ;
+ }
+ }
+ else {
+ value = upk->inst & 0xff ; /* 8 bits */
+ upk->regx = (upk->inst >> 8) & 0x07 ; /* or i8 funct */
+ /* FIXME: Do sign extension , this format needs it */
+ if (value & 0x80) /* THIS CONFUSES ME */
+ { value &= 0xef ; /* remove the sign bit */
+ value = -value ;
+ }
+
+ }
+ upk->offset = value ;
+ break ;
+ }
+ case jalxtype :
+ {
+ unsigned long value ;
+ unsigned short nexthalf ;
+ value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f) ;
+ value = value << 16 ;
+ nexthalf = mips_fetch_instruction(pc+2) ; /* low bit still set */
+ value |= nexthalf ;
+ upk->offset = value ;
+ break ;
+ }
+ default:
+ printf_filtered("Decoding unimplemented instruction format type\n") ;
+ break ;
+ }
+ /* print_unpack("UPK",upk) ; */
+}
+
+
+#define mips16_op(x) (x >> 11)
+
+/* This is a map of the opcodes which ae known to perform branches */
+static unsigned char map16[32] =
+{ 0,0,1,1,1,1,0,0,
+ 0,0,0,0,1,0,0,0,
+ 0,0,0,0,0,0,0,0,
+ 0,0,0,0,0,1,1,0
+} ;
+
+static CORE_ADDR add_offset_16(CORE_ADDR pc, int offset)
+{
+ return ((offset << 2) | ((pc + 2) & (0xf0000000))) ;
+
+}
+
+
+
+static struct upk_mips16 upk ;
+
+CORE_ADDR mips16_next_pc(CORE_ADDR pc)
+{
+ int op ;
+ t_inst inst ;
+ /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */
+ inst = fetch_mips_16(pc) ;
+ upk.inst = inst ;
+ op = mips16_op(upk.inst) ;
+ if (map16[op])
+ {
+ int reg ;
+ switch (op)
+ {
+ case 2 : /* Branch */
+ upk.fmt = itype ;
+ unpack_mips16(pc,&upk) ;
+ { long offset ;
+ offset = upk.offset ;
+ if (offset & 0x800)
+ { offset &= 0xeff ;
+ offset = - offset ;
+ }
+ pc += (offset << 1) + 2 ;
+ }
+ break ;
+ case 3 : /* JAL , JALX - Watch out, these are 32 bit instruction*/
+ upk.fmt = jalxtype ;
+ unpack_mips16(pc,&upk) ;
+ pc = add_offset_16(pc,upk.offset) ;
+ if ((upk.inst >> 10) & 0x01) /* Exchange mode */
+ pc = pc & ~ 0x01 ; /* Clear low bit, indicate 32 bit mode */
+ else pc |= 0x01 ;
+ break ;
+ case 4 : /* beqz */
+ upk.fmt = ritype ;
+ unpack_mips16(pc,&upk) ;
+ reg = read_register(upk.regx) ;
+ if (reg == 0)
+ pc += (upk.offset << 1) + 2 ;
+ else pc += 2 ;
+ break ;
+ case 5 : /* bnez */
+ upk.fmt = ritype ;
+ unpack_mips16(pc,&upk) ;
+ reg = read_register(upk.regx) ;
+ if (reg != 0)
+ pc += (upk.offset << 1) + 2 ;
+ else pc += 2 ;
+ break ;
+ case 12 : /* I8 Formats btez btnez */
+ upk.fmt = i8type ;
+ unpack_mips16(pc,&upk) ;
+ /* upk.regx contains the opcode */
+ reg = read_register(24) ; /* Test register is 24 */
+ if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
+ || ((upk.regx == 1 ) && (reg != 0))) /* BTNEZ */
+ /* pc = add_offset_16(pc,upk.offset) ; */
+ pc += (upk.offset << 1) + 2 ;
+ else pc += 2 ;
+ break ;
+ case 29 : /* RR Formats JR, JALR, JALR-RA */
+ upk.fmt = rrtype ;
+ op = upk.inst & 0x1f ;
+ if (op == 0)
+ {
+ upk.regx = (upk.inst >> 8) & 0x07 ;
+ upk.regy = (upk.inst >> 5) & 0x07 ;
+ switch (upk.regy)
+ {
+ case 0 : reg = upk.regx ; break ;
+ case 1 : reg = 31 ; break ; /* Function return instruction*/
+ case 2 : reg = upk.regx ; break ;
+ default: reg = 31 ; break ; /* BOGUS Guess */
+ }
+ pc = read_register(reg) ;
+ }
+ else pc += 2 ;
+ break ;
+ case 30 : /* This is an extend instruction */
+ pc += 4 ; /* Dont be setting breakpints on the second half */
+ break ;
+ default :
+ printf("Filtered - next PC probably incorrrect due to jump inst\n");
+ pc += 2 ;
+ break ;
+ }
+ }
+ else pc+= 2 ; /* just a good old instruction */
+ /* See if we CAN actually break on the next instruction */
+ /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */
+ return pc ;
+} /* mips16_next_pc */
+
+/* The mips_next_pc function supports single_tep when the remote target monitor or
+ stub is not developed enough to so a single_step.
+ It works by decoding the current instruction and predicting where a branch
+ will go. This isnt hard because all the data is available.
+ The MIPS32 and MIPS16 variants are quite different
+ */
+CORE_ADDR mips_next_pc(CORE_ADDR pc)
+{
+ t_inst inst ;
+ /* inst = mips_fetch_instruction(pc) ; */
+ /* if (pc_is_mips16) <----- This is failing */
+ if (pc & 0x01)
+ return mips16_next_pc(pc) ;
+ else return mips32_next_pc(pc) ;
+} /* mips_next_pc */
+
+/* Guaranteed to set fci->saved_regs to some values (it never leaves it
+ NULL). */
+
+void
+mips_find_saved_regs (fci)
+ struct frame_info *fci;
+{
+ int ireg;
+ CORE_ADDR reg_position;
+ /* r0 bit means kernel trap */
+ int kernel_trap;
+ /* What registers have been saved? Bitmasks. */
+ unsigned long gen_mask, float_mask;
+ mips_extra_func_info_t proc_desc;
+ t_inst inst;
+
+ frame_saved_regs_zalloc (fci);
+
+ /* If it is the frame for sigtramp, the saved registers are located
+ in a sigcontext structure somewhere on the stack.
+ If the stack layout for sigtramp changes we might have to change these
+ constants and the companion fixup_sigtramp in mdebugread.c */
+#ifndef SIGFRAME_BASE
+/* To satisfy alignment restrictions, sigcontext is located 4 bytes
+ above the sigtramp frame. */
+#define SIGFRAME_BASE MIPS_REGSIZE
+/* FIXME! Are these correct?? */
+#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
+#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
+#define SIGFRAME_FPREGSAVE_OFF \
+ (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
+#endif
+#ifndef SIGFRAME_REG_SIZE
+/* FIXME! Is this correct?? */
+#define SIGFRAME_REG_SIZE MIPS_REGSIZE
+#endif
+ if (fci->signal_handler_caller)
+ {
+ for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
+ {
+ reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
+ + ireg * SIGFRAME_REG_SIZE;
+ fci->saved_regs[ireg] = reg_position;
+ }
+ for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
+ {
+ reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
+ + ireg * SIGFRAME_REG_SIZE;
+ fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
+ }
+ fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
+ return;
+ }
+
+ proc_desc = fci->proc_desc;
+ if (proc_desc == NULL)
+ /* I'm not sure how/whether this can happen. Normally when we can't
+ find a proc_desc, we "synthesize" one using heuristic_proc_desc
+ and set the saved_regs right away. */
+ return;
+
+ kernel_trap = PROC_REG_MASK(proc_desc) & 1;
+ gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc);
+ float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc);
+
+ if (/* In any frame other than the innermost or a frame interrupted by
+ a signal, we assume that all registers have been saved.
+ This assumes that all register saves in a function happen before
+ the first function call. */
+ (fci->next == NULL || fci->next->signal_handler_caller)
+
+ /* In a dummy frame we know exactly where things are saved. */
+ && !PROC_DESC_IS_DUMMY (proc_desc)
+
+ /* Don't bother unless we are inside a function prologue. Outside the
+ prologue, we know where everything is. */
+
+ && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
+
+ /* Not sure exactly what kernel_trap means, but if it means
+ the kernel saves the registers without a prologue doing it,
+ we better not examine the prologue to see whether registers
+ have been saved yet. */
+ && !kernel_trap)
+ {
+ /* We need to figure out whether the registers that the proc_desc
+ claims are saved have been saved yet. */
+
+ CORE_ADDR addr;
+
+ /* Bitmasks; set if we have found a save for the register. */
+ unsigned long gen_save_found = 0;
+ unsigned long float_save_found = 0;
+ int instlen;
+
+ /* If the address is odd, assume this is MIPS16 code. */
+ addr = PROC_LOW_ADDR (proc_desc);
+ instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
+
+ /* Scan through this function's instructions preceding the current
+ PC, and look for those that save registers. */
+ while (addr < fci->pc)
+ {
+ inst = mips_fetch_instruction (addr);
+ if (pc_is_mips16 (addr))
+ mips16_decode_reg_save (inst, &gen_save_found);
+ else
+ mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
+ addr += instlen;
+ }
+ gen_mask = gen_save_found;
+ float_mask = float_save_found;
+ }
+
+ /* Fill in the offsets for the registers which gen_mask says
+ were saved. */
+ reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
+ for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1)
+ if (gen_mask & 0x80000000)
+ {
+ fci->saved_regs[ireg] = reg_position;
+ reg_position -= MIPS_REGSIZE;
+ }
+
+ /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
+ of that normally used by gcc. Therefore, we have to fetch the first
+ instruction of the function, and if it's an entry instruction that
+ saves $s0 or $s1, correct their saved addresses. */
+ if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
+ {
+ inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
+ if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
+ {
+ int reg;
+ int sreg_count = (inst >> 6) & 3;
+
+ /* Check if the ra register was pushed on the stack. */
+ reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
+ if (inst & 0x20)
+ reg_position -= MIPS_REGSIZE;
+
+ /* Check if the s0 and s1 registers were pushed on the stack. */
+ for (reg = 16; reg < sreg_count+16; reg++)
+ {
+ fci->saved_regs[reg] = reg_position;
+ reg_position -= MIPS_REGSIZE;
+ }
+ }
+ }
+
+ /* Fill in the offsets for the registers which float_mask says
+ were saved. */
+ reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
+
+ /* The freg_offset points to where the first *double* register
+ is saved. So skip to the high-order word. */
+ if (! GDB_TARGET_IS_MIPS64)
+ reg_position += MIPS_REGSIZE;
+
+ /* Fill in the offsets for the float registers which float_mask says
+ were saved. */
+ for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1)
+ if (float_mask & 0x80000000)
+ {
+ fci->saved_regs[FP0_REGNUM+ireg] = reg_position;
+ reg_position -= MIPS_REGSIZE;
+ }
+
+ fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
+}
+
+static CORE_ADDR
+read_next_frame_reg(fi, regno)
+ struct frame_info *fi;
+ int regno;
+{
+ for (; fi; fi = fi->next)
+ {
+ /* We have to get the saved sp from the sigcontext
+ if it is a signal handler frame. */
+ if (regno == SP_REGNUM && !fi->signal_handler_caller)
+ return fi->frame;
+ else
+ {
+ if (fi->saved_regs == NULL)
+ mips_find_saved_regs (fi);
+ if (fi->saved_regs[regno])
+ return read_memory_integer(fi->saved_regs[regno], MIPS_REGSIZE);
+ }
+ }
+ return read_register (regno);
+}
+
+/* mips_addr_bits_remove - remove useless address bits */
+
+CORE_ADDR
+mips_addr_bits_remove (addr)
+ CORE_ADDR addr;
+{
+#if GDB_TARGET_IS_MIPS64
+ if (mask_address_p && (addr >> 32 == (CORE_ADDR)0xffffffff))
+ {
+ /* This hack is a work-around for existing boards using PMON,
+ the simulator, and any other 64-bit targets that doesn't have
+ true 64-bit addressing. On these targets, the upper 32 bits
+ of addresses are ignored by the hardware. Thus, the PC or SP
+ are likely to have been sign extended to all 1s by instruction
+ sequences that load 32-bit addresses. For example, a typical
+ piece of code that loads an address is this:
+ lui $r2, <upper 16 bits>
+ ori $r2, <lower 16 bits>
+ But the lui sign-extends the value such that the upper 32 bits
+ may be all 1s. The workaround is simply to mask off these bits.
+ In the future, gcc may be changed to support true 64-bit
+ addressing, and this masking will have to be disabled. */
+ addr &= (CORE_ADDR)0xffffffff;
+ }
+#else
+ /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf),
+ BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits.
+ So we still have to mask off useless bits from addresses. */
+ addr &= (CORE_ADDR)0xffffffff;
+#endif
+
+ return addr;
+}
+
+void
+mips_init_frame_pc_first (fromleaf, prev)
+ int fromleaf;
+ struct frame_info *prev;
+{
+ CORE_ADDR pc, tmp;
+
+ pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
+ prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
+ tmp = mips_skip_stub (pc);
+ prev->pc = tmp ? tmp : pc;
+}
+
+
+CORE_ADDR
+mips_frame_saved_pc(frame)
+ struct frame_info *frame;
+{
+ CORE_ADDR saved_pc;
+ mips_extra_func_info_t proc_desc = frame->proc_desc;
+ /* We have to get the saved pc from the sigcontext
+ if it is a signal handler frame. */
+ int pcreg = frame->signal_handler_caller ? PC_REGNUM
+ : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM);
+
+ if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
+ saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE);
+ else
+ saved_pc = read_next_frame_reg(frame, pcreg);
+
+ return ADDR_BITS_REMOVE (saved_pc);
+}
+
+static struct mips_extra_func_info temp_proc_desc;
+static struct frame_saved_regs temp_saved_regs;
+
+/* Set a register's saved stack address in temp_saved_regs. If an address
+ has already been set for this register, do nothing; this way we will
+ only recognize the first save of a given register in a function prologue.
+ This is a helper function for mips{16,32}_heuristic_proc_desc. */
+
+static void
+set_reg_offset (regno, offset)
+ int regno;
+ CORE_ADDR offset;
+{
+ if (temp_saved_regs.regs[regno] == 0)
+ temp_saved_regs.regs[regno] = offset;
+}
+
+
+/* Test whether the PC points to the return instruction at the
+ end of a function. */
+
+static int
+mips_about_to_return (pc)
+ CORE_ADDR pc;
+{
+ if (pc_is_mips16 (pc))
+ /* This mips16 case isn't necessarily reliable. Sometimes the compiler
+ generates a "jr $ra"; other times it generates code to load
+ the return address from the stack to an accessible register (such
+ as $a3), then a "jr" using that register. This second case
+ is almost impossible to distinguish from an indirect jump
+ used for switch statements, so we don't even try. */
+ return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
+ else
+ return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
+}
+
+
+/* This fencepost looks highly suspicious to me. Removing it also
+ seems suspicious as it could affect remote debugging across serial
+ lines. */
+
+static CORE_ADDR
+heuristic_proc_start (pc)
+ CORE_ADDR pc;
+{
+ CORE_ADDR start_pc;
+ CORE_ADDR fence;
+ int instlen;
+ int seen_adjsp = 0;
+
+ pc = ADDR_BITS_REMOVE (pc);
+ start_pc = pc;
+ fence = start_pc - heuristic_fence_post;
+ if (start_pc == 0) return 0;
+
+ if (heuristic_fence_post == UINT_MAX
+ || fence < VM_MIN_ADDRESS)
+ fence = VM_MIN_ADDRESS;
+
+ instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
+
+ /* search back for previous return */
+ for (start_pc -= instlen; ; start_pc -= instlen)
+ if (start_pc < fence)
+ {
+ /* It's not clear to me why we reach this point when
+ stop_soon_quietly, but with this test, at least we
+ don't print out warnings for every child forked (eg, on
+ decstation). 22apr93 rich@cygnus.com. */
+ if (!stop_soon_quietly)
+ {
+ static int blurb_printed = 0;
+
+ if (fence == VM_MIN_ADDRESS)
+ warning("Hit beginning of text section without finding");
+ else
+ warning("Hit heuristic-fence-post without finding");
+
+ warning("enclosing function for address 0x%s", paddr_nz (pc));
+ if (!blurb_printed)
+ {
+ printf_filtered ("\
+This warning occurs if you are debugging a function without any symbols\n\
+(for example, in a stripped executable). In that case, you may wish to\n\
+increase the size of the search with the `set heuristic-fence-post' command.\n\
+\n\
+Otherwise, you told GDB there was a function where there isn't one, or\n\
+(more likely) you have encountered a bug in GDB.\n");
+ blurb_printed = 1;
+ }
+ }
+
+ return 0;
+ }
+ else if (pc_is_mips16 (start_pc))
+ {
+ unsigned short inst;
+
+ /* On MIPS16, any one of the following is likely to be the
+ start of a function:
+ entry
+ addiu sp,-n
+ daddiu sp,-n
+ extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
+ inst = mips_fetch_instruction (start_pc);
+ if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
+ || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
+ || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
+ || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
+ break;
+ else if ((inst & 0xff00) == 0x6300 /* addiu sp */
+ || (inst & 0xff00) == 0xfb00) /* daddiu sp */
+ seen_adjsp = 1;
+ else
+ seen_adjsp = 0;
+ }
+ else if (mips_about_to_return (start_pc))
+ {
+ start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
+ break;
+ }
+
+#if 0
+ /* skip nops (usually 1) 0 - is this */
+ while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0)
+ start_pc += MIPS_INSTLEN;
+#endif
+ return start_pc;
+}
+
+/* Fetch the immediate value from a MIPS16 instruction.
+ If the previous instruction was an EXTEND, use it to extend
+ the upper bits of the immediate value. This is a helper function
+ for mips16_heuristic_proc_desc. */
+
+static int
+mips16_get_imm (prev_inst, inst, nbits, scale, is_signed)
+ unsigned short prev_inst; /* previous instruction */
+ unsigned short inst; /* current instruction */
+ int nbits; /* number of bits in imm field */
+ int scale; /* scale factor to be applied to imm */
+ int is_signed; /* is the imm field signed? */
+{
+ int offset;
+
+ if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
+ {
+ offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
+ if (offset & 0x8000) /* check for negative extend */
+ offset = 0 - (0x10000 - (offset & 0xffff));
+ return offset | (inst & 0x1f);
+ }
+ else
+ {
+ int max_imm = 1 << nbits;
+ int mask = max_imm - 1;
+ int sign_bit = max_imm >> 1;
+
+ offset = inst & mask;
+ if (is_signed && (offset & sign_bit))
+ offset = 0 - (max_imm - offset);
+ return offset * scale;
+ }
+}
+
+
+/* Fill in values in temp_proc_desc based on the MIPS16 instruction
+ stream from start_pc to limit_pc. */
+
+static void
+mips16_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
+ CORE_ADDR start_pc, limit_pc;
+ struct frame_info *next_frame;
+ CORE_ADDR sp;
+{
+ CORE_ADDR cur_pc;
+ CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
+ unsigned short prev_inst = 0; /* saved copy of previous instruction */
+ unsigned inst = 0; /* current instruction */
+ unsigned entry_inst = 0; /* the entry instruction */
+ int reg, offset;
+
+ PROC_FRAME_OFFSET(&temp_proc_desc) = 0; /* size of stack frame */
+ PROC_FRAME_ADJUST(&temp_proc_desc) = 0; /* offset of FP from SP */
+
+ for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
+ {
+ /* Save the previous instruction. If it's an EXTEND, we'll extract
+ the immediate offset extension from it in mips16_get_imm. */
+ prev_inst = inst;
+
+ /* Fetch and decode the instruction. */
+ inst = (unsigned short) mips_fetch_instruction (cur_pc);
+ if ((inst & 0xff00) == 0x6300 /* addiu sp */
+ || (inst & 0xff00) == 0xfb00) /* daddiu sp */
+ {
+ offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
+ if (offset < 0) /* negative stack adjustment? */
+ PROC_FRAME_OFFSET(&temp_proc_desc) -= offset;
+ else
+ /* Exit loop if a positive stack adjustment is found, which
+ usually means that the stack cleanup code in the function
+ epilogue is reached. */
+ break;
+ }
+ else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
+ {
+ offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
+ reg = mips16_to_32_reg[(inst & 0x700) >> 8];
+ PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
+ set_reg_offset (reg, sp + offset);
+ }
+ else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
+ {
+ offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
+ reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
+ PROC_REG_MASK(&temp_proc_desc) |= (1 << reg);
+ set_reg_offset (reg, sp + offset);
+ }
+ else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
+ {
+ offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
+ PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM);
+ set_reg_offset (RA_REGNUM, sp + offset);
+ }
+ else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
+ {
+ offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
+ PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM);
+ set_reg_offset (RA_REGNUM, sp + offset);
+ }
+ else if (inst == 0x673d) /* move $s1, $sp */
+ {
+ frame_addr = sp;
+ PROC_FRAME_REG (&temp_proc_desc) = 17;
+ }
+ else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
+ {
+ offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
+ frame_addr = sp + offset;
+ PROC_FRAME_REG (&temp_proc_desc) = 17;
+ PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
+ }
+ else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
+ {
+ offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
+ reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
+ PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
+ set_reg_offset (reg, frame_addr + offset);
+ }
+ else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
+ {
+ offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
+ reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
+ PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
+ set_reg_offset (reg, frame_addr + offset);
+ }
+ else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
+ entry_inst = inst; /* save for later processing */
+ else if ((inst & 0xf800) == 0x1800) /* jal(x) */
+ cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
+ }
+
+ /* The entry instruction is typically the first instruction in a function,
+ and it stores registers at offsets relative to the value of the old SP
+ (before the prologue). But the value of the sp parameter to this
+ function is the new SP (after the prologue has been executed). So we
+ can't calculate those offsets until we've seen the entire prologue,
+ and can calculate what the old SP must have been. */
+ if (entry_inst != 0)
+ {
+ int areg_count = (entry_inst >> 8) & 7;
+ int sreg_count = (entry_inst >> 6) & 3;
+
+ /* The entry instruction always subtracts 32 from the SP. */
+ PROC_FRAME_OFFSET(&temp_proc_desc) += 32;
+
+ /* Now we can calculate what the SP must have been at the
+ start of the function prologue. */
+ sp += PROC_FRAME_OFFSET(&temp_proc_desc);
+
+ /* Check if a0-a3 were saved in the caller's argument save area. */
+ for (reg = 4, offset = 0; reg < areg_count+4; reg++)
+ {
+ PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
+ set_reg_offset (reg, sp + offset);
+ offset += MIPS_REGSIZE;
+ }
+
+ /* Check if the ra register was pushed on the stack. */
+ offset = -4;
+ if (entry_inst & 0x20)
+ {
+ PROC_REG_MASK(&temp_proc_desc) |= 1 << RA_REGNUM;
+ set_reg_offset (RA_REGNUM, sp + offset);
+ offset -= MIPS_REGSIZE;
+ }
+
+ /* Check if the s0 and s1 registers were pushed on the stack. */
+ for (reg = 16; reg < sreg_count+16; reg++)
+ {
+ PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
+ set_reg_offset (reg, sp + offset);
+ offset -= MIPS_REGSIZE;
+ }
+ }
+}
+
+static void
+mips32_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp)
+ CORE_ADDR start_pc, limit_pc;
+ struct frame_info *next_frame;
+ CORE_ADDR sp;
+{
+ CORE_ADDR cur_pc;
+ CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
+restart:
+ memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
+ PROC_FRAME_OFFSET(&temp_proc_desc) = 0;
+ PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
+ for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
+ {
+ unsigned long inst, high_word, low_word;
+ int reg;
+
+ /* Fetch the instruction. */
+ inst = (unsigned long) mips_fetch_instruction (cur_pc);
+
+ /* Save some code by pre-extracting some useful fields. */
+ high_word = (inst >> 16) & 0xffff;
+ low_word = inst & 0xffff;
+ reg = high_word & 0x1f;
+
+ if (high_word == 0x27bd /* addiu $sp,$sp,-i */
+ || high_word == 0x23bd /* addi $sp,$sp,-i */
+ || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
+ {
+ if (low_word & 0x8000) /* negative stack adjustment? */
+ PROC_FRAME_OFFSET(&temp_proc_desc) += 0x10000 - low_word;
+ else
+ /* Exit loop if a positive stack adjustment is found, which
+ usually means that the stack cleanup code in the function
+ epilogue is reached. */
+ break;
+ }
+ else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
+ {
+ PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
+ set_reg_offset (reg, sp + low_word);
+ }
+ else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
+ {
+ /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
+ but the register size used is only 32 bits. Make the address
+ for the saved register point to the lower 32 bits. */
+ PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
+ set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
+ }
+ else if (high_word == 0x27be) /* addiu $30,$sp,size */
+ {
+ /* Old gcc frame, r30 is virtual frame pointer. */
+ if ((long)low_word != PROC_FRAME_OFFSET(&temp_proc_desc))
+ frame_addr = sp + low_word;
+ else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
+ {
+ unsigned alloca_adjust;
+ PROC_FRAME_REG (&temp_proc_desc) = 30;
+ frame_addr = read_next_frame_reg(next_frame, 30);
+ alloca_adjust = (unsigned)(frame_addr - (sp + low_word));
+ if (alloca_adjust > 0)
+ {
+ /* FP > SP + frame_size. This may be because
+ * of an alloca or somethings similar.
+ * Fix sp to "pre-alloca" value, and try again.
+ */
+ sp += alloca_adjust;
+ goto restart;
+ }
+ }
+ }
+ /* move $30,$sp. With different versions of gas this will be either
+ `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
+ Accept any one of these. */
+ else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
+ {
+ /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
+ if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
+ {
+ unsigned alloca_adjust;
+ PROC_FRAME_REG (&temp_proc_desc) = 30;
+ frame_addr = read_next_frame_reg(next_frame, 30);
+ alloca_adjust = (unsigned)(frame_addr - sp);
+ if (alloca_adjust > 0)
+ {
+ /* FP > SP + frame_size. This may be because
+ * of an alloca or somethings similar.
+ * Fix sp to "pre-alloca" value, and try again.
+ */
+ sp += alloca_adjust;
+ goto restart;
+ }
+ }
+ }
+ else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
+ {
+ PROC_REG_MASK(&temp_proc_desc) |= 1 << reg;
+ set_reg_offset (reg, frame_addr + low_word);
+ }
+ }
+}
+
+static mips_extra_func_info_t
+heuristic_proc_desc(start_pc, limit_pc, next_frame)
+ CORE_ADDR start_pc, limit_pc;
+ struct frame_info *next_frame;
+{
+ CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
+
+ if (start_pc == 0) return NULL;
+ memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc));
+ memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs));
+ PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
+ PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
+ PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
+
+ if (start_pc + 200 < limit_pc)
+ limit_pc = start_pc + 200;
+ if (pc_is_mips16 (start_pc))
+ mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
+ else
+ mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
+ return &temp_proc_desc;
+}
+
+static mips_extra_func_info_t
+non_heuristic_proc_desc (pc, addrptr)
+ CORE_ADDR pc;
+ CORE_ADDR *addrptr;
+{
+ CORE_ADDR startaddr;
+ mips_extra_func_info_t proc_desc;
+ struct block *b = block_for_pc(pc);
+ struct symbol *sym;
+
+ find_pc_partial_function (pc, NULL, &startaddr, NULL);
+ if (addrptr)
+ *addrptr = startaddr;
+ if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
+ sym = NULL;
+ else
+ {
+ if (startaddr > BLOCK_START (b))
+ /* This is the "pathological" case referred to in a comment in
+ print_frame_info. It might be better to move this check into
+ symbol reading. */
+ sym = NULL;
+ else
+ sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
+ }
+
+ /* If we never found a PDR for this function in symbol reading, then
+ examine prologues to find the information. */
+ if (sym)
+ {
+ proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
+ if (PROC_FRAME_REG (proc_desc) == -1)
+ return NULL;
+ else
+ return proc_desc;
+ }
+ else
+ return NULL;
+}
+
+
+static mips_extra_func_info_t
+find_proc_desc (pc, next_frame)
+ CORE_ADDR pc;
+ struct frame_info *next_frame;
+{
+ mips_extra_func_info_t proc_desc;
+ CORE_ADDR startaddr;
+
+ proc_desc = non_heuristic_proc_desc (pc, &startaddr);
+
+ if (proc_desc)
+ {
+ /* IF this is the topmost frame AND
+ * (this proc does not have debugging information OR
+ * the PC is in the procedure prologue)
+ * THEN create a "heuristic" proc_desc (by analyzing
+ * the actual code) to replace the "official" proc_desc.
+ */
+ if (next_frame == NULL)
+ {
+ struct symtab_and_line val;
+ struct symbol *proc_symbol =
+ PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc);
+
+ if (proc_symbol)
+ {
+ val = find_pc_line (BLOCK_START
+ (SYMBOL_BLOCK_VALUE(proc_symbol)),
+ 0);
+ val.pc = val.end ? val.end : pc;
+ }
+ if (!proc_symbol || pc < val.pc)
+ {
+ mips_extra_func_info_t found_heuristic =
+ heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
+ pc, next_frame);
+ if (found_heuristic)
+ proc_desc = found_heuristic;
+ }
+ }
+ }
+ else
+ {
+ /* Is linked_proc_desc_table really necessary? It only seems to be used
+ by procedure call dummys. However, the procedures being called ought
+ to have their own proc_descs, and even if they don't,
+ heuristic_proc_desc knows how to create them! */
+
+ register struct linked_proc_info *link;
+
+ for (link = linked_proc_desc_table; link; link = link->next)
+ if (PROC_LOW_ADDR(&link->info) <= pc
+ && PROC_HIGH_ADDR(&link->info) > pc)
+ return &link->info;
+
+ if (startaddr == 0)
+ startaddr = heuristic_proc_start (pc);
+
+ proc_desc =
+ heuristic_proc_desc (startaddr, pc, next_frame);
+ }
+ return proc_desc;
+}
+
+static CORE_ADDR
+get_frame_pointer(frame, proc_desc)
+ struct frame_info *frame;
+ mips_extra_func_info_t proc_desc;
+{
+ return ADDR_BITS_REMOVE (
+ read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
+ PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
+}
+
+mips_extra_func_info_t cached_proc_desc;
+
+CORE_ADDR
+mips_frame_chain(frame)
+ struct frame_info *frame;
+{
+ mips_extra_func_info_t proc_desc;
+ CORE_ADDR tmp;
+ CORE_ADDR saved_pc = FRAME_SAVED_PC(frame);
+
+ if (saved_pc == 0 || inside_entry_file (saved_pc))
+ return 0;
+
+ /* Check if the PC is inside a call stub. If it is, fetch the
+ PC of the caller of that stub. */
+ if ((tmp = mips_skip_stub (saved_pc)) != 0)
+ saved_pc = tmp;
+
+ /* Look up the procedure descriptor for this PC. */
+ proc_desc = find_proc_desc(saved_pc, frame);
+ if (!proc_desc)
+ return 0;
+
+ cached_proc_desc = proc_desc;
+
+ /* If no frame pointer and frame size is zero, we must be at end
+ of stack (or otherwise hosed). If we don't check frame size,
+ we loop forever if we see a zero size frame. */
+ if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
+ && PROC_FRAME_OFFSET (proc_desc) == 0
+ /* The previous frame from a sigtramp frame might be frameless
+ and have frame size zero. */
+ && !frame->signal_handler_caller)
+ return 0;
+ else
+ return get_frame_pointer (frame, proc_desc);
+}
+
+void
+init_extra_frame_info(fci)
+ struct frame_info *fci;
+{
+ int regnum;
+
+ /* Use proc_desc calculated in frame_chain */
+ mips_extra_func_info_t proc_desc =
+ fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next);
+
+ fci->saved_regs = NULL;
+ fci->proc_desc =
+ proc_desc == &temp_proc_desc ? 0 : proc_desc;
+ if (proc_desc)
+ {
+ /* Fixup frame-pointer - only needed for top frame */
+ /* This may not be quite right, if proc has a real frame register.
+ Get the value of the frame relative sp, procedure might have been
+ interrupted by a signal at it's very start. */
+ if (fci->pc == PROC_LOW_ADDR (proc_desc)
+ && !PROC_DESC_IS_DUMMY (proc_desc))
+ fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
+ else
+ fci->frame = get_frame_pointer (fci->next, proc_desc);
+
+ if (proc_desc == &temp_proc_desc)
+ {
+ char *name;
+
+ /* Do not set the saved registers for a sigtramp frame,
+ mips_find_saved_registers will do that for us.
+ We can't use fci->signal_handler_caller, it is not yet set. */
+ find_pc_partial_function (fci->pc, &name,
+ (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
+ if (!IN_SIGTRAMP (fci->pc, name))
+ {
+ fci->saved_regs = (CORE_ADDR*)
+ frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
+ memcpy (fci->saved_regs, temp_saved_regs.regs, SIZEOF_FRAME_SAVED_REGS);
+ fci->saved_regs[PC_REGNUM]
+ = fci->saved_regs[RA_REGNUM];
+ }
+ }
+
+ /* hack: if argument regs are saved, guess these contain args */
+ fci->num_args = -1; /* assume we can't tell how many args for now */
+ for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
+ {
+ if (PROC_REG_MASK(proc_desc) & (1 << regnum))
+ {
+ fci->num_args = regnum - A0_REGNUM + 1;
+ break;
+ }
+ }
+ }
+}
+
+/* MIPS stack frames are almost impenetrable. When execution stops,
+ we basically have to look at symbol information for the function
+ that we stopped in, which tells us *which* register (if any) is
+ the base of the frame pointer, and what offset from that register
+ the frame itself is at.
+
+ This presents a problem when trying to examine a stack in memory
+ (that isn't executing at the moment), using the "frame" command. We
+ don't have a PC, nor do we have any registers except SP.
+
+ This routine takes two arguments, SP and PC, and tries to make the
+ cached frames look as if these two arguments defined a frame on the
+ cache. This allows the rest of info frame to extract the important
+ arguments without difficulty. */
+
+struct frame_info *
+setup_arbitrary_frame (argc, argv)
+ int argc;
+ CORE_ADDR *argv;
+{
+ if (argc != 2)
+ error ("MIPS frame specifications require two arguments: sp and pc");
+
+ return create_new_frame (argv[0], argv[1]);
+}
+
+/*
+ * STACK_ARGSIZE -- how many bytes does a pushed function arg take up on the stack?
+ *
+ * For n32 ABI, eight.
+ * For all others, he same as the size of a general register.
+ */
+#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
+#define MIPS_NABI32 1
+#define STACK_ARGSIZE 8
+#else
+#define MIPS_NABI32 0
+#define STACK_ARGSIZE MIPS_REGSIZE
+#endif
+
+CORE_ADDR
+mips_push_arguments(nargs, args, sp, struct_return, struct_addr)
+ int nargs;
+ value_ptr *args;
+ CORE_ADDR sp;
+ int struct_return;
+ CORE_ADDR struct_addr;
+{
+ int argreg;
+ int float_argreg;
+ int argnum;
+ int len = 0;
+ int stack_offset = 0;
+
+ /* Macros to round N up or down to the next A boundary; A must be
+ a power of two. */
+#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
+#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
+
+ /* First ensure that the stack and structure return address (if any)
+ are properly aligned. The stack has to be at least 64-bit aligned
+ even on 32-bit machines, because doubles must be 64-bit aligned.
+ On at least one MIPS variant, stack frames need to be 128-bit
+ aligned, so we round to this widest known alignment. */
+ sp = ROUND_DOWN (sp, 16);
+ struct_addr = ROUND_DOWN (struct_addr, MIPS_REGSIZE);
+
+ /* Now make space on the stack for the args. We allocate more
+ than necessary for EABI, because the first few arguments are
+ passed in registers, but that's OK. */
+ for (argnum = 0; argnum < nargs; argnum++)
+ len += ROUND_UP (TYPE_LENGTH(VALUE_TYPE(args[argnum])), MIPS_REGSIZE);
+ sp -= ROUND_UP (len, 16);
+
+ /* Initialize the integer and float register pointers. */
+ argreg = A0_REGNUM;
+ float_argreg = FPA0_REGNUM;
+
+ /* the struct_return pointer occupies the first parameter-passing reg */
+ if (struct_return)
+ write_register (argreg++, struct_addr);
+
+ /* Now load as many as possible of the first arguments into
+ registers, and push the rest onto the stack. Loop thru args
+ from first to last. */
+ for (argnum = 0; argnum < nargs; argnum++)
+ {
+ char *val;
+ char valbuf[MAX_REGISTER_RAW_SIZE];
+ value_ptr arg = args[argnum];
+ struct type *arg_type = check_typedef (VALUE_TYPE (arg));
+ int len = TYPE_LENGTH (arg_type);
+ enum type_code typecode = TYPE_CODE (arg_type);
+
+ /* The EABI passes structures that do not fit in a register by
+ reference. In all other cases, pass the structure by value. */
+ if (MIPS_EABI && len > MIPS_REGSIZE &&
+ (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
+ {
+ store_address (valbuf, MIPS_REGSIZE, VALUE_ADDRESS (arg));
+ typecode = TYPE_CODE_PTR;
+ len = MIPS_REGSIZE;
+ val = valbuf;
+ }
+ else
+ val = (char *)VALUE_CONTENTS (arg);
+
+ /* 32-bit ABIs always start floating point arguments in an
+ even-numbered floating point register. */
+ if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT
+ && (float_argreg & 1))
+ float_argreg++;
+
+ /* Floating point arguments passed in registers have to be
+ treated specially. On 32-bit architectures, doubles
+ are passed in register pairs; the even register gets
+ the low word, and the odd register gets the high word.
+ On non-EABI processors, the first two floating point arguments are
+ also copied to general registers, because MIPS16 functions
+ don't use float registers for arguments. This duplication of
+ arguments in general registers can't hurt non-MIPS16 functions
+ because those registers are normally skipped. */
+ if (typecode == TYPE_CODE_FLT
+ && float_argreg <= MIPS_LAST_FP_ARG_REGNUM
+ && MIPS_FPU_TYPE != MIPS_FPU_NONE)
+ {
+ if (!FP_REGISTER_DOUBLE && len == 8)
+ {
+ int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
+ unsigned long regval;
+
+ /* Write the low word of the double to the even register(s). */
+ regval = extract_unsigned_integer (val+low_offset, 4);
+ write_register (float_argreg++, regval);
+ if (!MIPS_EABI)
+ write_register (argreg+1, regval);
+
+ /* Write the high word of the double to the odd register(s). */
+ regval = extract_unsigned_integer (val+4-low_offset, 4);
+ write_register (float_argreg++, regval);
+ if (!MIPS_EABI)
+ {
+ write_register (argreg, regval);
+ argreg += 2;
+ }
+
+ }
+ else
+ {
+ /* This is a floating point value that fits entirely
+ in a single register. */
+ CORE_ADDR regval = extract_address (val, len);
+ write_register (float_argreg++, regval);
+ if (!MIPS_EABI)
+ {
+ write_register (argreg, regval);
+ argreg += FP_REGISTER_DOUBLE ? 1 : 2;
+ }
+ }
+ }
+ else
+ {
+ /* Copy the argument to general registers or the stack in
+ register-sized pieces. Large arguments are split between
+ registers and stack. */
+ /* Note: structs whose size is not a multiple of MIPS_REGSIZE
+ are treated specially: Irix cc passes them in registers
+ where gcc sometimes puts them on the stack. For maximum
+ compatibility, we will put them in both places. */
+
+ int odd_sized_struct = ((len > MIPS_REGSIZE) &&
+ (len % MIPS_REGSIZE != 0));
+ while (len > 0)
+ {
+ int partial_len = len < MIPS_REGSIZE ? len : MIPS_REGSIZE;
+
+ if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct)
+ {
+ /* Write this portion of the argument to the stack. */
+ /* Should shorter than int integer values be
+ promoted to int before being stored? */
+
+ int longword_offset = 0;
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ if (STACK_ARGSIZE == 8 &&
+ (typecode == TYPE_CODE_INT ||
+ typecode == TYPE_CODE_PTR ||
+ typecode == TYPE_CODE_FLT) && len <= 4)
+ longword_offset = STACK_ARGSIZE - len;
+ else if ((typecode == TYPE_CODE_STRUCT ||
+ typecode == TYPE_CODE_UNION) &&
+ TYPE_LENGTH (arg_type) < STACK_ARGSIZE)
+ longword_offset = STACK_ARGSIZE - len;
+
+ write_memory (sp + stack_offset + longword_offset,
+ val, partial_len);
+ }
+
+ /* Note!!! This is NOT an else clause.
+ Odd sized structs may go thru BOTH paths. */
+ if (argreg <= MIPS_LAST_ARG_REGNUM)
+ {
+ CORE_ADDR regval = extract_address (val, partial_len);
+
+ /* A non-floating-point argument being passed in a
+ general register. If a struct or union, and if
+ the remaining length is smaller than the register
+ size, we have to adjust the register value on
+ big endian targets.
+
+ It does not seem to be necessary to do the
+ same for integral types.
+
+ Also don't do this adjustment on EABI and O64
+ binaries. */
+
+ if (!MIPS_EABI
+ && (MIPS_REGSIZE < 8)
+ && TARGET_BYTE_ORDER == BIG_ENDIAN
+ && (partial_len < MIPS_REGSIZE)
+ && (typecode == TYPE_CODE_STRUCT ||
+ typecode == TYPE_CODE_UNION))
+ regval <<= ((MIPS_REGSIZE - partial_len) *
+ TARGET_CHAR_BIT);
+
+ write_register (argreg, regval);
+ argreg++;
+
+ /* If this is the old ABI, prevent subsequent floating
+ point arguments from being passed in floating point
+ registers. */
+ if (!MIPS_EABI)
+ float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
+ }
+
+ len -= partial_len;
+ val += partial_len;
+
+ /* The offset onto the stack at which we will start
+ copying parameters (after the registers are used up)
+ begins at (4 * MIPS_REGSIZE) in the old ABI. This
+ leaves room for the "home" area for register parameters.
+
+ In the new EABI (and the NABI32), the 8 register parameters
+ do not have "home" stack space reserved for them, so the
+ stack offset does not get incremented until after
+ we have used up the 8 parameter registers. */
+
+ if (!(MIPS_EABI || MIPS_NABI32) ||
+ argnum >= 8)
+ stack_offset += ROUND_UP (partial_len, STACK_ARGSIZE);
+ }
+ }
+ }
+
+ /* Set the return address register to point to the entry
+ point of the program, where a breakpoint lies in wait. */
+ write_register (RA_REGNUM, CALL_DUMMY_ADDRESS());
+
+ /* Return adjusted stack pointer. */
+ return sp;
+}
+
+static void
+mips_push_register(CORE_ADDR *sp, int regno)
+{
+ char buffer[MAX_REGISTER_RAW_SIZE];
+ int regsize = REGISTER_RAW_SIZE (regno);
+
+ *sp -= regsize;
+ read_register_gen (regno, buffer);
+ write_memory (*sp, buffer, regsize);
+}
+
+/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
+#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
+
+void
+mips_push_dummy_frame()
+{
+ int ireg;
+ struct linked_proc_info *link = (struct linked_proc_info*)
+ xmalloc(sizeof(struct linked_proc_info));
+ mips_extra_func_info_t proc_desc = &link->info;
+ CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM));
+ CORE_ADDR old_sp = sp;
+ link->next = linked_proc_desc_table;
+ linked_proc_desc_table = link;
+
+/* FIXME! are these correct ? */
+#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
+#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
+#define FLOAT_REG_SAVE_MASK MASK(0,19)
+#define FLOAT_SINGLE_REG_SAVE_MASK \
+ ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
+ /*
+ * The registers we must save are all those not preserved across
+ * procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
+ * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
+ * and FP Control/Status registers.
+ *
+ *
+ * Dummy frame layout:
+ * (high memory)
+ * Saved PC
+ * Saved MMHI, MMLO, FPC_CSR
+ * Saved R31
+ * Saved R28
+ * ...
+ * Saved R1
+ * Saved D18 (i.e. F19, F18)
+ * ...
+ * Saved D0 (i.e. F1, F0)
+ * Argument build area and stack arguments written via mips_push_arguments
+ * (low memory)
+ */
+
+ /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
+ PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM;
+ PROC_FRAME_OFFSET(proc_desc) = 0;
+ PROC_FRAME_ADJUST(proc_desc) = 0;
+ mips_push_register (&sp, PC_REGNUM);
+ mips_push_register (&sp, HI_REGNUM);
+ mips_push_register (&sp, LO_REGNUM);
+ mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
+
+ /* Save general CPU registers */
+ PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK;
+ /* PROC_REG_OFFSET is the offset of the first saved register from FP. */
+ PROC_REG_OFFSET(proc_desc) = sp - old_sp - MIPS_REGSIZE;
+ for (ireg = 32; --ireg >= 0; )
+ if (PROC_REG_MASK(proc_desc) & (1 << ireg))
+ mips_push_register (&sp, ireg);
+
+ /* Save floating point registers starting with high order word */
+ PROC_FREG_MASK(proc_desc) =
+ MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
+ : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
+ /* PROC_FREG_OFFSET is the offset of the first saved *double* register
+ from FP. */
+ PROC_FREG_OFFSET(proc_desc) = sp - old_sp - 8;
+ for (ireg = 32; --ireg >= 0; )
+ if (PROC_FREG_MASK(proc_desc) & (1 << ireg))
+ mips_push_register (&sp, ireg + FP0_REGNUM);
+
+ /* Update the frame pointer for the call dummy and the stack pointer.
+ Set the procedure's starting and ending addresses to point to the
+ call dummy address at the entry point. */
+ write_register (PUSH_FP_REGNUM, old_sp);
+ write_register (SP_REGNUM, sp);
+ PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS();
+ PROC_HIGH_ADDR(proc_desc) = CALL_DUMMY_ADDRESS() + 4;
+ SET_PROC_DESC_IS_DUMMY(proc_desc);
+ PROC_PC_REG(proc_desc) = RA_REGNUM;
+}
+
+void
+mips_pop_frame()
+{
+ register int regnum;
+ struct frame_info *frame = get_current_frame ();
+ CORE_ADDR new_sp = FRAME_FP (frame);
+
+ mips_extra_func_info_t proc_desc = frame->proc_desc;
+
+ write_register (PC_REGNUM, FRAME_SAVED_PC(frame));
+ if (frame->saved_regs == NULL)
+ mips_find_saved_regs (frame);
+ for (regnum = 0; regnum < NUM_REGS; regnum++)
+ {
+ if (regnum != SP_REGNUM && regnum != PC_REGNUM
+ && frame->saved_regs[regnum])
+ write_register (regnum,
+ read_memory_integer (frame->saved_regs[regnum],
+ MIPS_REGSIZE));
+ }
+ write_register (SP_REGNUM, new_sp);
+ flush_cached_frames ();
+
+ if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc))
+ {
+ struct linked_proc_info *pi_ptr, *prev_ptr;
+
+ for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
+ pi_ptr != NULL;
+ prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
+ {
+ if (&pi_ptr->info == proc_desc)
+ break;
+ }
+
+ if (pi_ptr == NULL)
+ error ("Can't locate dummy extra frame info\n");
+
+ if (prev_ptr != NULL)
+ prev_ptr->next = pi_ptr->next;
+ else
+ linked_proc_desc_table = pi_ptr->next;
+
+ free (pi_ptr);
+
+ write_register (HI_REGNUM,
+ read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE));
+ write_register (LO_REGNUM,
+ read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE));
+ if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
+ write_register (FCRCS_REGNUM,
+ read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE));
+ }
+}
+
+static void
+mips_print_register (regnum, all)
+ int regnum, all;
+{
+ char raw_buffer[MAX_REGISTER_RAW_SIZE];
+
+ /* Get the data in raw format. */
+ if (read_relative_register_raw_bytes (regnum, raw_buffer))
+ {
+ printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
+ return;
+ }
+
+ /* If an even floating point register, also print as double. */
+ if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
+ && !((regnum-FP0_REGNUM) & 1))
+ if (REGISTER_RAW_SIZE(regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
+ {
+ char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
+
+ read_relative_register_raw_bytes (regnum, dbuffer);
+ read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE);
+ REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
+
+ printf_filtered ("(d%d: ", regnum-FP0_REGNUM);
+ val_print (builtin_type_double, dbuffer, 0, 0,
+ gdb_stdout, 0, 1, 0, Val_pretty_default);
+ printf_filtered ("); ");
+ }
+ fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
+
+ /* The problem with printing numeric register names (r26, etc.) is that
+ the user can't use them on input. Probably the best solution is to
+ fix it so that either the numeric or the funky (a2, etc.) names
+ are accepted on input. */
+ if (regnum < MIPS_NUMREGS)
+ printf_filtered ("(r%d): ", regnum);
+ else
+ printf_filtered (": ");
+
+ /* If virtual format is floating, print it that way. */
+ if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
+ if (FP_REGISTER_DOUBLE)
+ { /* show 8-byte floats as float AND double: */
+ int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
+
+ printf_filtered (" (float) ");
+ val_print (builtin_type_float, raw_buffer + offset, 0, 0,
+ gdb_stdout, 0, 1, 0, Val_pretty_default);
+ printf_filtered (", (double) ");
+ val_print (builtin_type_double, raw_buffer, 0, 0,
+ gdb_stdout, 0, 1, 0, Val_pretty_default);
+ }
+ else
+ val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
+ gdb_stdout, 0, 1, 0, Val_pretty_default);
+ /* Else print as integer in hex. */
+ else
+ print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum),
+ 'x', 0, gdb_stdout);
+}
+
+/* Replacement for generic do_registers_info.
+ Print regs in pretty columns. */
+
+static int
+do_fp_register_row (regnum)
+ int regnum;
+{ /* do values for FP (float) regs */
+ char *raw_buffer[2];
+ char *dbl_buffer;
+ /* use HI and LO to control the order of combining two flt regs */
+ int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
+ int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
+ double doub, flt1, flt2; /* doubles extracted from raw hex data */
+ int inv1, inv2, inv3;
+
+ raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
+ raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
+ dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
+
+ /* Get the data in raw format. */
+ if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
+ error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
+ if (REGISTER_RAW_SIZE(regnum) == 4)
+ {
+ /* 4-byte registers: we can fit two registers per row. */
+ /* Also print every pair of 4-byte regs as an 8-byte double. */
+ if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
+ error ("can't read register %d (%s)",
+ regnum + 1, REGISTER_NAME (regnum + 1));
+
+ /* copy the two floats into one double, and unpack both */
+ memcpy (dbl_buffer, raw_buffer, sizeof(dbl_buffer));
+ flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
+ flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
+ doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
+
+ printf_filtered (inv1 ? " %-5s: <invalid float>" :
+ " %-5s%-17.9g", REGISTER_NAME (regnum), flt1);
+ printf_filtered (inv2 ? " %-5s: <invalid float>" :
+ " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2);
+ printf_filtered (inv3 ? " dbl: <invalid double>\n" :
+ " dbl: %-24.17g\n", doub);
+ /* may want to do hex display here (future enhancement) */
+ regnum +=2;
+ }
+ else
+ { /* eight byte registers: print each one as float AND as double. */
+ int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
+
+ memcpy (dbl_buffer, raw_buffer[HI], sizeof(dbl_buffer));
+ flt1 = unpack_double (builtin_type_float,
+ &raw_buffer[HI][offset], &inv1);
+ doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
+
+ printf_filtered (inv1 ? " %-5s: <invalid float>" :
+ " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1);
+ printf_filtered (inv3 ? " dbl: <invalid double>\n" :
+ " dbl: %-24.17g\n", doub);
+ /* may want to do hex display here (future enhancement) */
+ regnum++;
+ }
+ return regnum;
+}
+
+/* Print a row's worth of GP (int) registers, with name labels above */
+
+static int
+do_gp_register_row (regnum)
+ int regnum;
+{
+ /* do values for GP (int) regs */
+ char raw_buffer[MAX_REGISTER_RAW_SIZE];
+ int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
+ int col, byte;
+ int start_regnum = regnum;
+ int numregs = NUM_REGS;
+
+
+ /* For GP registers, we print a separate row of names above the vals */
+ printf_filtered (" ");
+ for (col = 0; col < ncols && regnum < numregs; regnum++)
+ {
+ if (*REGISTER_NAME (regnum) == '\0')
+ continue; /* unused register */
+ if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
+ break; /* end the row: reached FP register */
+ printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
+ REGISTER_NAME (regnum));
+ col++;
+ }
+ printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
+ start_regnum); /* print the R0 to R31 names */
+
+ regnum = start_regnum; /* go back to start of row */
+ /* now print the values in hex, 4 or 8 to the row */
+ for (col = 0; col < ncols && regnum < numregs; regnum++)
+ {
+ if (*REGISTER_NAME (regnum) == '\0')
+ continue; /* unused register */
+ if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
+ break; /* end row: reached FP register */
+ /* OK: get the data in raw format. */
+ if (read_relative_register_raw_bytes (regnum, raw_buffer))
+ error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
+ /* pad small registers */
+ for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_RAW_SIZE (regnum)); byte++)
+ printf_filtered (" ");
+ /* Now print the register value in hex, endian order. */
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ for (byte = 0; byte < REGISTER_RAW_SIZE (regnum); byte++)
+ printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
+ else
+ for (byte = REGISTER_RAW_SIZE (regnum) - 1; byte >= 0; byte--)
+ printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
+ printf_filtered (" ");
+ col++;
+ }
+ if (col > 0) /* ie. if we actually printed anything... */
+ printf_filtered ("\n");
+
+ return regnum;
+}
+
+/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
+
+void
+mips_do_registers_info (regnum, fpregs)
+ int regnum;
+ int fpregs;
+{
+ if (regnum != -1) /* do one specified register */
+ {
+ if (*(REGISTER_NAME (regnum)) == '\0')
+ error ("Not a valid register for the current processor type");
+
+ mips_print_register (regnum, 0);
+ printf_filtered ("\n");
+ }
+ else /* do all (or most) registers */
+ {
+ regnum = 0;
+ while (regnum < NUM_REGS)
+ {
+ if (TYPE_CODE(REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
+ if (fpregs) /* true for "INFO ALL-REGISTERS" command */
+ regnum = do_fp_register_row (regnum); /* FP regs */
+ else
+ regnum += MIPS_NUMREGS; /* skip floating point regs */
+ else
+ regnum = do_gp_register_row (regnum); /* GP (int) regs */
+ }
+ }
+}
+
+/* Return number of args passed to a frame. described by FIP.
+ Can return -1, meaning no way to tell. */
+
+int
+mips_frame_num_args (frame)
+ struct frame_info *frame;
+{
+#if 0 /* FIXME Use or lose this! */
+ struct chain_info_t *p;
+
+ p = mips_find_cached_frame (FRAME_FP (frame));
+ if (p->valid)
+ return p->the_info.numargs;
+#endif
+ return -1;
+}
+
+/* Is this a branch with a delay slot? */
+
+static int is_delayed PARAMS ((unsigned long));
+
+static int
+is_delayed (insn)
+ unsigned long insn;
+{
+ int i;
+ for (i = 0; i < NUMOPCODES; ++i)
+ if (mips_opcodes[i].pinfo != INSN_MACRO
+ && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
+ break;
+ return (i < NUMOPCODES
+ && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
+ | INSN_COND_BRANCH_DELAY
+ | INSN_COND_BRANCH_LIKELY)));
+}
+
+int
+mips_step_skips_delay (pc)
+ CORE_ADDR pc;
+{
+ char buf[MIPS_INSTLEN];
+
+ /* There is no branch delay slot on MIPS16. */
+ if (pc_is_mips16 (pc))
+ return 0;
+
+ if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
+ /* If error reading memory, guess that it is not a delayed branch. */
+ return 0;
+ return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN));
+}
+
+
+/* Skip the PC past function prologue instructions (32-bit version).
+ This is a helper function for mips_skip_prologue. */
+
+static CORE_ADDR
+mips32_skip_prologue (pc, lenient)
+ CORE_ADDR pc; /* starting PC to search from */
+ int lenient;
+{
+ t_inst inst;
+ CORE_ADDR end_pc;
+ int seen_sp_adjust = 0;
+ int load_immediate_bytes = 0;
+
+ /* Skip the typical prologue instructions. These are the stack adjustment
+ instruction and the instructions that save registers on the stack
+ or in the gcc frame. */
+ for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
+ {
+ unsigned long high_word;
+
+ inst = mips_fetch_instruction (pc);
+ high_word = (inst >> 16) & 0xffff;
+
+#if 0
+ if (lenient && is_delayed (inst))
+ continue;
+#endif
+
+ if (high_word == 0x27bd /* addiu $sp,$sp,offset */
+ || high_word == 0x67bd) /* daddiu $sp,$sp,offset */
+ seen_sp_adjust = 1;
+ else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
+ inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
+ seen_sp_adjust = 1;
+ else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
+ || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
+ && (inst & 0x001F0000)) /* reg != $zero */
+ continue;
+
+ else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
+ continue;
+ else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
+ /* sx reg,n($s8) */
+ continue; /* reg != $zero */
+
+ /* move $s8,$sp. With different versions of gas this will be either
+ `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
+ Accept any one of these. */
+ else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
+ continue;
+
+ else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
+ continue;
+ else if (high_word == 0x3c1c) /* lui $gp,n */
+ continue;
+ else if (high_word == 0x279c) /* addiu $gp,$gp,n */
+ continue;
+ else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
+ || inst == 0x033ce021) /* addu $gp,$t9,$gp */
+ continue;
+ /* The following instructions load $at or $t0 with an immediate
+ value in preparation for a stack adjustment via
+ subu $sp,$sp,[$at,$t0]. These instructions could also initialize
+ a local variable, so we accept them only before a stack adjustment
+ instruction was seen. */
+ else if (!seen_sp_adjust)
+ {
+ if (high_word == 0x3c01 || /* lui $at,n */
+ high_word == 0x3c08) /* lui $t0,n */
+ {
+ load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
+ continue;
+ }
+ else if (high_word == 0x3421 || /* ori $at,$at,n */
+ high_word == 0x3508 || /* ori $t0,$t0,n */
+ high_word == 0x3401 || /* ori $at,$zero,n */
+ high_word == 0x3408) /* ori $t0,$zero,n */
+ {
+ load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
+ continue;
+ }
+ else
+ break;
+ }
+ else
+ break;
+ }
+
+ /* In a frameless function, we might have incorrectly
+ skipped some load immediate instructions. Undo the skipping
+ if the load immediate was not followed by a stack adjustment. */
+ if (load_immediate_bytes && !seen_sp_adjust)
+ pc -= load_immediate_bytes;
+ return pc;
+}
+
+/* Skip the PC past function prologue instructions (16-bit version).
+ This is a helper function for mips_skip_prologue. */
+
+static CORE_ADDR
+mips16_skip_prologue (pc, lenient)
+ CORE_ADDR pc; /* starting PC to search from */
+ int lenient;
+{
+ CORE_ADDR end_pc;
+ int extend_bytes = 0;
+ int prev_extend_bytes;
+
+ /* Table of instructions likely to be found in a function prologue. */
+ static struct
+ {
+ unsigned short inst;
+ unsigned short mask;
+ } table[] =
+ {
+ { 0x6300, 0xff00 }, /* addiu $sp,offset */
+ { 0xfb00, 0xff00 }, /* daddiu $sp,offset */
+ { 0xd000, 0xf800 }, /* sw reg,n($sp) */
+ { 0xf900, 0xff00 }, /* sd reg,n($sp) */
+ { 0x6200, 0xff00 }, /* sw $ra,n($sp) */
+ { 0xfa00, 0xff00 }, /* sd $ra,n($sp) */
+ { 0x673d, 0xffff }, /* move $s1,sp */
+ { 0xd980, 0xff80 }, /* sw $a0-$a3,n($s1) */
+ { 0x6704, 0xff1c }, /* move reg,$a0-$a3 */
+ { 0xe809, 0xf81f }, /* entry pseudo-op */
+ { 0x0100, 0xff00 }, /* addiu $s1,$sp,n */
+ { 0, 0 } /* end of table marker */
+ };
+
+ /* Skip the typical prologue instructions. These are the stack adjustment
+ instruction and the instructions that save registers on the stack
+ or in the gcc frame. */
+ for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
+ {
+ unsigned short inst;
+ int i;
+
+ inst = mips_fetch_instruction (pc);
+
+ /* Normally we ignore an extend instruction. However, if it is
+ not followed by a valid prologue instruction, we must adjust
+ the pc back over the extend so that it won't be considered
+ part of the prologue. */
+ if ((inst & 0xf800) == 0xf000) /* extend */
+ {
+ extend_bytes = MIPS16_INSTLEN;
+ continue;
+ }
+ prev_extend_bytes = extend_bytes;
+ extend_bytes = 0;
+
+ /* Check for other valid prologue instructions besides extend. */
+ for (i = 0; table[i].mask != 0; i++)
+ if ((inst & table[i].mask) == table[i].inst) /* found, get out */
+ break;
+ if (table[i].mask != 0) /* it was in table? */
+ continue; /* ignore it */
+ else /* non-prologue */
+ {
+ /* Return the current pc, adjusted backwards by 2 if
+ the previous instruction was an extend. */
+ return pc - prev_extend_bytes;
+ }
+ }
+ return pc;
+}
+
+/* To skip prologues, I use this predicate. Returns either PC itself
+ if the code at PC does not look like a function prologue; otherwise
+ returns an address that (if we're lucky) follows the prologue. If
+ LENIENT, then we must skip everything which is involved in setting
+ up the frame (it's OK to skip more, just so long as we don't skip
+ anything which might clobber the registers which are being saved.
+ We must skip more in the case where part of the prologue is in the
+ delay slot of a non-prologue instruction). */
+
+CORE_ADDR
+mips_skip_prologue (pc, lenient)
+ CORE_ADDR pc;
+ int lenient;
+{
+ /* See if we can determine the end of the prologue via the symbol table.
+ If so, then return either PC, or the PC after the prologue, whichever
+ is greater. */
+
+ CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
+
+ if (post_prologue_pc != 0)
+ return max (pc, post_prologue_pc);
+
+ /* Can't determine prologue from the symbol table, need to examine
+ instructions. */
+
+ if (pc_is_mips16 (pc))
+ return mips16_skip_prologue (pc, lenient);
+ else
+ return mips32_skip_prologue (pc, lenient);
+}
+
+#if 0
+/* The lenient prologue stuff should be superseded by the code in
+ init_extra_frame_info which looks to see whether the stores mentioned
+ in the proc_desc have actually taken place. */
+
+/* Is address PC in the prologue (loosely defined) for function at
+ STARTADDR? */
+
+static int
+mips_in_lenient_prologue (startaddr, pc)
+ CORE_ADDR startaddr;
+ CORE_ADDR pc;
+{
+ CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
+ return pc >= startaddr && pc < end_prologue;
+}
+#endif
+
+/* Given a return value in `regbuf' with a type `valtype',
+ extract and copy its value into `valbuf'. */
+void
+mips_extract_return_value (valtype, regbuf, valbuf)
+ struct type *valtype;
+ char regbuf[REGISTER_BYTES];
+ char *valbuf;
+{
+ int regnum;
+ int offset = 0;
+ int len = TYPE_LENGTH (valtype);
+
+ regnum = 2;
+ if (TYPE_CODE (valtype) == TYPE_CODE_FLT
+ && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
+ || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
+ && len <= MIPS_FPU_SINGLE_REGSIZE)))
+ regnum = FP0_REGNUM;
+
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ { /* "un-left-justify" the value from the register */
+ if (len < REGISTER_RAW_SIZE (regnum))
+ offset = REGISTER_RAW_SIZE (regnum) - len;
+ if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
+ len < REGISTER_RAW_SIZE (regnum) * 2 &&
+ (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
+ TYPE_CODE (valtype) == TYPE_CODE_UNION))
+ offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
+ }
+ memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len);
+ REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf);
+}
+
+/* Given a return value in `regbuf' with a type `valtype',
+ write it's value into the appropriate register. */
+void
+mips_store_return_value (valtype, valbuf)
+ struct type *valtype;
+ char *valbuf;
+{
+ int regnum;
+ int offset = 0;
+ int len = TYPE_LENGTH (valtype);
+ char raw_buffer[MAX_REGISTER_RAW_SIZE];
+
+ regnum = 2;
+ if (TYPE_CODE (valtype) == TYPE_CODE_FLT
+ && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
+ || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
+ && len <= MIPS_REGSIZE)))
+ regnum = FP0_REGNUM;
+
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ { /* "left-justify" the value in the register */
+ if (len < REGISTER_RAW_SIZE (regnum))
+ offset = REGISTER_RAW_SIZE (regnum) - len;
+ if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
+ len < REGISTER_RAW_SIZE (regnum) * 2 &&
+ (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
+ TYPE_CODE (valtype) == TYPE_CODE_UNION))
+ offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
+ }
+ memcpy(raw_buffer + offset, valbuf, len);
+ REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer);
+ write_register_bytes(REGISTER_BYTE (regnum), raw_buffer,
+ len > REGISTER_RAW_SIZE (regnum) ?
+ len : REGISTER_RAW_SIZE (regnum));
+}
+
+/* Exported procedure: Is PC in the signal trampoline code */
+
+int
+in_sigtramp (pc, ignore)
+ CORE_ADDR pc;
+ char *ignore; /* function name */
+{
+ if (sigtramp_address == 0)
+ fixup_sigtramp ();
+ return (pc >= sigtramp_address && pc < sigtramp_end);
+}
+
+/* Commands to show/set the MIPS FPU type. */
+
+static void show_mipsfpu_command PARAMS ((char *, int));
+static void
+show_mipsfpu_command (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ char *msg;
+ char *fpu;
+ switch (MIPS_FPU_TYPE)
+ {
+ case MIPS_FPU_SINGLE:
+ fpu = "single-precision";
+ break;
+ case MIPS_FPU_DOUBLE:
+ fpu = "double-precision";
+ break;
+ case MIPS_FPU_NONE:
+ fpu = "absent (none)";
+ break;
+ }
+ if (mips_fpu_type_auto)
+ printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
+ fpu);
+ else
+ printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
+ fpu);
+}
+
+
+static void set_mipsfpu_command PARAMS ((char *, int));
+static void
+set_mipsfpu_command (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
+ show_mipsfpu_command (args, from_tty);
+}
+
+static void set_mipsfpu_single_command PARAMS ((char *, int));
+static void
+set_mipsfpu_single_command (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ mips_fpu_type = MIPS_FPU_SINGLE;
+ mips_fpu_type_auto = 0;
+}
+
+static void set_mipsfpu_double_command PARAMS ((char *, int));
+static void
+set_mipsfpu_double_command (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ mips_fpu_type = MIPS_FPU_DOUBLE;
+ mips_fpu_type_auto = 0;
+}
+
+static void set_mipsfpu_none_command PARAMS ((char *, int));
+static void
+set_mipsfpu_none_command (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ mips_fpu_type = MIPS_FPU_NONE;
+ mips_fpu_type_auto = 0;
+}
+
+static void set_mipsfpu_auto_command PARAMS ((char *, int));
+static void
+set_mipsfpu_auto_command (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ mips_fpu_type_auto = 1;
+}
+
+/* Command to set the processor type. */
+
+void
+mips_set_processor_type_command (args, from_tty)
+ char *args;
+ int from_tty;
+{
+ int i;
+
+ if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
+ {
+ printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
+ for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
+ printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
+
+ /* Restore the value. */
+ tmp_mips_processor_type = strsave (mips_processor_type);
+
+ return;
+ }
+
+ if (!mips_set_processor_type (tmp_mips_processor_type))
+ {
+ error ("Unknown processor type `%s'.", tmp_mips_processor_type);
+ /* Restore its value. */
+ tmp_mips_processor_type = strsave (mips_processor_type);
+ }
+}
+
+static void
+mips_show_processor_type_command (args, from_tty)
+ char *args;
+ int from_tty;
+{
+}
+
+/* Modify the actual processor type. */
+
+int
+mips_set_processor_type (str)
+ char *str;
+{
+ int i, j;
+
+ if (str == NULL)
+ return 0;
+
+ for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
+ {
+ if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
+ {
+ mips_processor_type = str;
+
+ for (j = 0; j < NUM_REGS; ++j)
+ /* FIXME - MIPS should be defining REGISTER_NAME() instead */
+ gdb_register_names[j] = mips_processor_type_table[i].regnames[j];
+
+ return 1;
+
+ /* FIXME tweak fpu flag too */
+ }
+ }
+
+ return 0;
+}
+
+/* Attempt to identify the particular processor model by reading the
+ processor id. */
+
+char *
+mips_read_processor_type ()
+{
+ CORE_ADDR prid;
+
+ prid = read_register (PRID_REGNUM);
+
+ if ((prid & ~0xf) == 0x700)
+ return savestring ("r3041", strlen("r3041"));
+
+ return NULL;
+}
+
+/* Just like reinit_frame_cache, but with the right arguments to be
+ callable as an sfunc. */
+
+static void
+reinit_frame_cache_sfunc (args, from_tty, c)
+ char *args;
+ int from_tty;
+ struct cmd_list_element *c;
+{
+ reinit_frame_cache ();
+}
+
+int
+gdb_print_insn_mips (memaddr, info)
+ bfd_vma memaddr;
+ disassemble_info *info;
+{
+ mips_extra_func_info_t proc_desc;
+
+ /* Search for the function containing this address. Set the low bit
+ of the address when searching, in case we were given an even address
+ that is the start of a 16-bit function. If we didn't do this,
+ the search would fail because the symbol table says the function
+ starts at an odd address, i.e. 1 byte past the given address. */
+ memaddr = ADDR_BITS_REMOVE (memaddr);
+ proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
+
+ /* Make an attempt to determine if this is a 16-bit function. If
+ the procedure descriptor exists and the address therein is odd,
+ it's definitely a 16-bit function. Otherwise, we have to just
+ guess that if the address passed in is odd, it's 16-bits. */
+ if (proc_desc)
+ info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH;
+ else
+ info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH;
+
+ /* Round down the instruction address to the appropriate boundary. */
+ memaddr &= (info->mach == 16 ? ~1 : ~3);
+
+ /* Call the appropriate disassembler based on the target endian-ness. */
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ return print_insn_big_mips (memaddr, info);
+ else
+ return print_insn_little_mips (memaddr, info);
+}
+
+/* Old-style breakpoint macros.
+ The IDT board uses an unusual breakpoint value, and sometimes gets
+ confused when it sees the usual MIPS breakpoint instruction. */
+
+#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
+#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
+#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
+#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
+#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
+#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
+#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
+#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
+
+/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
+ counter value to determine whether a 16- or 32-bit breakpoint should be
+ used. It returns a pointer to a string of bytes that encode a breakpoint
+ instruction, stores the length of the string to *lenptr, and adjusts pc
+ (if necessary) to point to the actual memory location where the
+ breakpoint should be inserted. */
+
+unsigned char *mips_breakpoint_from_pc (pcptr, lenptr)
+ CORE_ADDR *pcptr;
+ int *lenptr;
+{
+ if (TARGET_BYTE_ORDER == BIG_ENDIAN)
+ {
+ if (pc_is_mips16 (*pcptr))
+ {
+ static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
+ *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
+ *lenptr = sizeof(mips16_big_breakpoint);
+ return mips16_big_breakpoint;
+ }
+ else
+ {
+ static char big_breakpoint[] = BIG_BREAKPOINT;
+ static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
+ static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
+
+ *lenptr = sizeof(big_breakpoint);
+
+ if (strcmp (target_shortname, "mips") == 0)
+ return idt_big_breakpoint;
+ else if (strcmp (target_shortname, "ddb") == 0
+ || strcmp (target_shortname, "pmon") == 0
+ || strcmp (target_shortname, "lsi") == 0)
+ return pmon_big_breakpoint;
+ else
+ return big_breakpoint;
+ }
+ }
+ else
+ {
+ if (pc_is_mips16 (*pcptr))
+ {
+ static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
+ *pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
+ *lenptr = sizeof(mips16_little_breakpoint);
+ return mips16_little_breakpoint;
+ }
+ else
+ {
+ static char little_breakpoint[] = LITTLE_BREAKPOINT;
+ static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
+ static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
+
+ *lenptr = sizeof(little_breakpoint);
+
+ if (strcmp (target_shortname, "mips") == 0)
+ return idt_little_breakpoint;
+ else if (strcmp (target_shortname, "ddb") == 0
+ || strcmp (target_shortname, "pmon") == 0
+ || strcmp (target_shortname, "lsi") == 0)
+ return pmon_little_breakpoint;
+ else
+ return little_breakpoint;
+ }
+ }
+}
+
+/* If PC is in a mips16 call or return stub, return the address of the target
+ PC, which is either the callee or the caller. There are several
+ cases which must be handled:
+
+ * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
+ target PC is in $31 ($ra).
+ * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
+ and the target PC is in $2.
+ * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
+ before the jal instruction, this is effectively a call stub
+ and the the target PC is in $2. Otherwise this is effectively
+ a return stub and the target PC is in $18.
+
+ See the source code for the stubs in gcc/config/mips/mips16.S for
+ gory details.
+
+ This function implements the SKIP_TRAMPOLINE_CODE macro.
+*/
+
+CORE_ADDR
+mips_skip_stub (pc)
+ CORE_ADDR pc;
+{
+ char *name;
+ CORE_ADDR start_addr;
+
+ /* Find the starting address and name of the function containing the PC. */
+ if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
+ return 0;
+
+ /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
+ target PC is in $31 ($ra). */
+ if (strcmp (name, "__mips16_ret_sf") == 0
+ || strcmp (name, "__mips16_ret_df") == 0)
+ return read_register (RA_REGNUM);
+
+ if (strncmp (name, "__mips16_call_stub_", 19) == 0)
+ {
+ /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
+ and the target PC is in $2. */
+ if (name[19] >= '0' && name[19] <= '9')
+ return read_register (2);
+
+ /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
+ before the jal instruction, this is effectively a call stub
+ and the the target PC is in $2. Otherwise this is effectively
+ a return stub and the target PC is in $18. */
+ else if (name[19] == 's' || name[19] == 'd')
+ {
+ if (pc == start_addr)
+ {
+ /* Check if the target of the stub is a compiler-generated
+ stub. Such a stub for a function bar might have a name
+ like __fn_stub_bar, and might look like this:
+ mfc1 $4,$f13
+ mfc1 $5,$f12
+ mfc1 $6,$f15
+ mfc1 $7,$f14
+ la $1,bar (becomes a lui/addiu pair)
+ jr $1
+ So scan down to the lui/addi and extract the target
+ address from those two instructions. */
+
+ CORE_ADDR target_pc = read_register (2);
+ t_inst inst;
+ int i;
+
+ /* See if the name of the target function is __fn_stub_*. */
+ if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
+ return target_pc;
+ if (strncmp (name, "__fn_stub_", 10) != 0
+ && strcmp (name, "etext") != 0
+ && strcmp (name, "_etext") != 0)
+ return target_pc;
+
+ /* Scan through this _fn_stub_ code for the lui/addiu pair.
+ The limit on the search is arbitrarily set to 20
+ instructions. FIXME. */
+ for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
+ {
+ inst = mips_fetch_instruction (target_pc);
+ if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
+ pc = (inst << 16) & 0xffff0000; /* high word */
+ else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
+ return pc | (inst & 0xffff); /* low word */
+ }
+
+ /* Couldn't find the lui/addui pair, so return stub address. */
+ return target_pc;
+ }
+ else
+ /* This is the 'return' part of a call stub. The return
+ address is in $r18. */
+ return read_register (18);
+ }
+ }
+ return 0; /* not a stub */
+}
+
+
+/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
+ This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
+
+int
+mips_in_call_stub (pc, name)
+ CORE_ADDR pc;
+ char *name;
+{
+ CORE_ADDR start_addr;
+
+ /* Find the starting address of the function containing the PC. If the
+ caller didn't give us a name, look it up at the same time. */
+ if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
+ return 0;
+
+ if (strncmp (name, "__mips16_call_stub_", 19) == 0)
+ {
+ /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
+ if (name[19] >= '0' && name[19] <= '9')
+ return 1;
+ /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
+ before the jal instruction, this is effectively a call stub. */
+ else if (name[19] == 's' || name[19] == 'd')
+ return pc == start_addr;
+ }
+
+ return 0; /* not a stub */
+}
+
+
+/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
+ This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
+
+int
+mips_in_return_stub (pc, name)
+ CORE_ADDR pc;
+ char *name;
+{
+ CORE_ADDR start_addr;
+
+ /* Find the starting address of the function containing the PC. */
+ if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
+ return 0;
+
+ /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
+ if (strcmp (name, "__mips16_ret_sf") == 0
+ || strcmp (name, "__mips16_ret_df") == 0)
+ return 1;
+
+ /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
+ i.e. after the jal instruction, this is effectively a return stub. */
+ if (strncmp (name, "__mips16_call_stub_", 19) == 0
+ && (name[19] == 's' || name[19] == 'd')
+ && pc != start_addr)
+ return 1;
+
+ return 0; /* not a stub */
+}
+
+
+/* Return non-zero if the PC is in a library helper function that should
+ be ignored. This implements the IGNORE_HELPER_CALL macro. */
+
+int
+mips_ignore_helper (pc)
+ CORE_ADDR pc;
+{
+ char *name;
+
+ /* Find the starting address and name of the function containing the PC. */
+ if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
+ return 0;
+
+ /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
+ that we want to ignore. */
+ return (strcmp (name, "__mips16_ret_sf") == 0
+ || strcmp (name, "__mips16_ret_df") == 0);
+}
+
+
+/* Return a location where we can set a breakpoint that will be hit
+ when an inferior function call returns. This is normally the
+ program's entry point. Executables that don't have an entry
+ point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
+ whose address is the location where the breakpoint should be placed. */
+
+CORE_ADDR
+mips_call_dummy_address ()
+{
+ struct minimal_symbol *sym;
+
+ sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
+ if (sym)
+ return SYMBOL_VALUE_ADDRESS (sym);
+ else
+ return entry_point_address ();
+}
+
+
+void
+_initialize_mips_tdep ()
+{
+ static struct cmd_list_element *mipsfpulist = NULL;
+ struct cmd_list_element *c;
+
+ if (!tm_print_insn) /* Someone may have already set it */
+ tm_print_insn = gdb_print_insn_mips;
+
+ /* Let the user turn off floating point and set the fence post for
+ heuristic_proc_start. */
+
+ add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
+ "Set use of MIPS floating-point coprocessor.",
+ &mipsfpulist, "set mipsfpu ", 0, &setlist);
+ add_cmd ("single", class_support, set_mipsfpu_single_command,
+ "Select single-precision MIPS floating-point coprocessor.",
+ &mipsfpulist);
+ add_cmd ("double", class_support, set_mipsfpu_double_command,
+ "Select double-precision MIPS floating-point coprocessor .",
+ &mipsfpulist);
+ add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
+ add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
+ add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
+ add_cmd ("none", class_support, set_mipsfpu_none_command,
+ "Select no MIPS floating-point coprocessor.",
+ &mipsfpulist);
+ add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
+ add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
+ add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
+ add_cmd ("auto", class_support, set_mipsfpu_auto_command,
+ "Select MIPS floating-point coprocessor automatically.",
+ &mipsfpulist);
+ add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
+ "Show current use of MIPS floating-point coprocessor target.",
+ &showlist);
+
+ c = add_set_cmd ("processor", class_support, var_string_noescape,
+ (char *) &tmp_mips_processor_type,
+ "Set the type of MIPS processor in use.\n\
+Set this to be able to access processor-type-specific registers.\n\
+",
+ &setlist);
+ c->function.cfunc = mips_set_processor_type_command;
+ c = add_show_from_set (c, &showlist);
+ c->function.cfunc = mips_show_processor_type_command;
+
+ tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
+ mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
+
+ /* We really would like to have both "0" and "unlimited" work, but
+ command.c doesn't deal with that. So make it a var_zinteger
+ because the user can always use "999999" or some such for unlimited. */
+ c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
+ (char *) &heuristic_fence_post,
+ "\
+Set the distance searched for the start of a function.\n\
+If you are debugging a stripped executable, GDB needs to search through the\n\
+program for the start of a function. This command sets the distance of the\n\
+search. The only need to set it is when debugging a stripped executable.",
+ &setlist);
+ /* We need to throw away the frame cache when we set this, since it
+ might change our ability to get backtraces. */
+ c->function.sfunc = reinit_frame_cache_sfunc;
+ add_show_from_set (c, &showlist);
+
+ /* Allow the user to control whether the upper bits of 64-bit
+ addresses should be zeroed. */
+ add_show_from_set
+ (add_set_cmd ("mask-address", no_class, var_boolean, (char *)&mask_address_p,
+ "Set zeroing of upper 32 bits of 64-bit addresses.\n\
+Use \"on\" to enable the masking, and \"off\" to disable it.\n\
+Without an argument, zeroing of upper address bits is enabled.", &setlist),
+ &showlist);
+}