diff options
author | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:35:26 +0000 |
---|---|---|
committer | Stan Shebs <shebs@codesourcery.com> | 1999-04-16 01:35:26 +0000 |
commit | c906108c21474dfb4ed285bcc0ac6fe02cd400cc (patch) | |
tree | a0015aa5cedc19ccbab307251353a41722a3ae13 /gdb/mips-tdep.c | |
parent | cd946cff9ede3f30935803403f06f6ed30cad136 (diff) | |
download | binutils-gdb-c906108c21474dfb4ed285bcc0ac6fe02cd400cc.tar.gz |
Initial creation of sourceware repositorygdb-4_18-branchpoint
Diffstat (limited to 'gdb/mips-tdep.c')
-rw-r--r-- | gdb/mips-tdep.c | 3259 |
1 files changed, 3259 insertions, 0 deletions
diff --git a/gdb/mips-tdep.c b/gdb/mips-tdep.c new file mode 100644 index 00000000000..e4aa2bb297b --- /dev/null +++ b/gdb/mips-tdep.c @@ -0,0 +1,3259 @@ +/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger. + Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998 + Free Software Foundation, Inc. + Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU + and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin. + +This file is part of GDB. + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with this program; if not, write to the Free Software +Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ + +#include "defs.h" +#include "gdb_string.h" +#include "frame.h" +#include "inferior.h" +#include "symtab.h" +#include "value.h" +#include "gdbcmd.h" +#include "language.h" +#include "gdbcore.h" +#include "symfile.h" +#include "objfiles.h" +#include "gdbtypes.h" +#include "target.h" + +#include "opcode/mips.h" + +/* Some MIPS boards don't support floating point, so we permit the + user to turn it off. */ + +enum mips_fpu_type +{ + MIPS_FPU_DOUBLE, /* Full double precision floating point. */ + MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */ + MIPS_FPU_NONE /* No floating point. */ +}; + +#ifndef MIPS_DEFAULT_FPU_TYPE +#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE +#endif +static int mips_fpu_type_auto = 1; +static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE; +#define MIPS_FPU_TYPE mips_fpu_type + + +#define VM_MIN_ADDRESS (CORE_ADDR)0x400000 + +/* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */ +#define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8) + +#if 0 +static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR)); +#endif + +int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *)); + +static void mips_print_register PARAMS ((int, int)); + +static mips_extra_func_info_t +heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *)); + +static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR)); + +static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int)); + +void mips_set_processor_type_command PARAMS ((char *, int)); + +int mips_set_processor_type PARAMS ((char *)); + +static void mips_show_processor_type_command PARAMS ((char *, int)); + +static void reinit_frame_cache_sfunc PARAMS ((char *, int, + struct cmd_list_element *)); + +static mips_extra_func_info_t + find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info *next_frame)); + +static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc, + mips_extra_func_info_t proc_desc)); + +/* This value is the model of MIPS in use. It is derived from the value + of the PrID register. */ + +char *mips_processor_type; + +char *tmp_mips_processor_type; + +/* A set of original names, to be used when restoring back to generic + registers from a specific set. */ + +char *mips_generic_reg_names[] = REGISTER_NAMES; + +/* Names of IDT R3041 registers. */ + +char *mips_r3041_reg_names[] = { + "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", + "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", + "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", + "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", + "sr", "lo", "hi", "bad", "cause","pc", + "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", + "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", + "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", + "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", + "fsr", "fir", "fp", "", + "", "", "bus", "ccfg", "", "", "", "", + "", "", "port", "cmp", "", "", "epc", "prid", +}; + +/* Names of IDT R3051 registers. */ + +char *mips_r3051_reg_names[] = { + "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", + "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", + "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", + "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", + "sr", "lo", "hi", "bad", "cause","pc", + "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", + "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", + "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", + "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", + "fsr", "fir", "fp", "", + "inx", "rand", "elo", "", "ctxt", "", "", "", + "", "", "ehi", "", "", "", "epc", "prid", +}; + +/* Names of IDT R3081 registers. */ + +char *mips_r3081_reg_names[] = { + "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", + "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", + "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", + "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", + "sr", "lo", "hi", "bad", "cause","pc", + "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", + "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", + "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", + "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31", + "fsr", "fir", "fp", "", + "inx", "rand", "elo", "cfg", "ctxt", "", "", "", + "", "", "ehi", "", "", "", "epc", "prid", +}; + +/* Names of LSI 33k registers. */ + +char *mips_lsi33k_reg_names[] = { + "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3", + "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7", + "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", + "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra", + "epc", "hi", "lo", "sr", "cause","badvaddr", + "dcic", "bpc", "bda", "", "", "", "", "", + "", "", "", "", "", "", "", "", + "", "", "", "", "", "", "", "", + "", "", "", "", "", "", "", "", + "", "", "", "", + "", "", "", "", "", "", "", "", + "", "", "", "", "", "", "", "", +}; + +struct { + char *name; + char **regnames; +} mips_processor_type_table[] = { + { "generic", mips_generic_reg_names }, + { "r3041", mips_r3041_reg_names }, + { "r3051", mips_r3051_reg_names }, + { "r3071", mips_r3081_reg_names }, + { "r3081", mips_r3081_reg_names }, + { "lsi33k", mips_lsi33k_reg_names }, + { NULL, NULL } +}; + +/* Table to translate MIPS16 register field to actual register number. */ +static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 }; + +/* Heuristic_proc_start may hunt through the text section for a long + time across a 2400 baud serial line. Allows the user to limit this + search. */ + +static unsigned int heuristic_fence_post = 0; + +#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */ +#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */ +#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset) +#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg) +#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust) +#define PROC_REG_MASK(proc) ((proc)->pdr.regmask) +#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask) +#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset) +#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset) +#define PROC_PC_REG(proc) ((proc)->pdr.pcreg) +#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym) +#define _PROC_MAGIC_ 0x0F0F0F0F +#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_) +#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_) + +struct linked_proc_info +{ + struct mips_extra_func_info info; + struct linked_proc_info *next; +} *linked_proc_desc_table = NULL; + + +/* Should the upper word of 64-bit addresses be zeroed? */ +static int mask_address_p = 1; + +/* Should call_function allocate stack space for a struct return? */ +int +mips_use_struct_convention (gcc_p, type) + int gcc_p; + struct type *type; +{ + if (MIPS_EABI) + return (TYPE_LENGTH (type) > 2 * MIPS_REGSIZE); + else + return 1; /* Structures are returned by ref in extra arg0 */ +} + +/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */ + +static int +pc_is_mips16 (bfd_vma memaddr) +{ + struct minimal_symbol *sym; + + /* If bit 0 of the address is set, assume this is a MIPS16 address. */ + if (IS_MIPS16_ADDR (memaddr)) + return 1; + + /* A flag indicating that this is a MIPS16 function is stored by elfread.c in + the high bit of the info field. Use this to decide if the function is + MIPS16 or normal MIPS. */ + sym = lookup_minimal_symbol_by_pc (memaddr); + if (sym) + return MSYMBOL_IS_SPECIAL (sym); + else + return 0; +} + + +/* This returns the PC of the first inst after the prologue. If we can't + find the prologue, then return 0. */ + +static CORE_ADDR +after_prologue (pc, proc_desc) + CORE_ADDR pc; + mips_extra_func_info_t proc_desc; +{ + struct symtab_and_line sal; + CORE_ADDR func_addr, func_end; + + if (!proc_desc) + proc_desc = find_proc_desc (pc, NULL); + + if (proc_desc) + { + /* If function is frameless, then we need to do it the hard way. I + strongly suspect that frameless always means prologueless... */ + if (PROC_FRAME_REG (proc_desc) == SP_REGNUM + && PROC_FRAME_OFFSET (proc_desc) == 0) + return 0; + } + + if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end)) + return 0; /* Unknown */ + + sal = find_pc_line (func_addr, 0); + + if (sal.end < func_end) + return sal.end; + + /* The line after the prologue is after the end of the function. In this + case, tell the caller to find the prologue the hard way. */ + + return 0; +} + +/* Decode a MIPS32 instruction that saves a register in the stack, and + set the appropriate bit in the general register mask or float register mask + to indicate which register is saved. This is a helper function + for mips_find_saved_regs. */ + +static void +mips32_decode_reg_save (inst, gen_mask, float_mask) + t_inst inst; + unsigned long *gen_mask; + unsigned long *float_mask; +{ + int reg; + + if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */ + || (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */ + || (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */ + { + /* It might be possible to use the instruction to + find the offset, rather than the code below which + is based on things being in a certain order in the + frame, but figuring out what the instruction's offset + is relative to might be a little tricky. */ + reg = (inst & 0x001f0000) >> 16; + *gen_mask |= (1 << reg); + } + else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */ + || (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */ + || (inst & 0xffe00000) == 0xf7a00000)/* sdc1 freg,n($sp) */ + + { + reg = ((inst & 0x001f0000) >> 16); + *float_mask |= (1 << reg); + } +} + +/* Decode a MIPS16 instruction that saves a register in the stack, and + set the appropriate bit in the general register or float register mask + to indicate which register is saved. This is a helper function + for mips_find_saved_regs. */ + +static void +mips16_decode_reg_save (inst, gen_mask) + t_inst inst; + unsigned long *gen_mask; +{ + if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ + { + int reg = mips16_to_32_reg[(inst & 0x700) >> 8]; + *gen_mask |= (1 << reg); + } + else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ + { + int reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; + *gen_mask |= (1 << reg); + } + else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */ + || (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ + *gen_mask |= (1 << RA_REGNUM); +} + + +/* Fetch and return instruction from the specified location. If the PC + is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */ + +static t_inst +mips_fetch_instruction (addr) + CORE_ADDR addr; +{ + char buf[MIPS_INSTLEN]; + int instlen; + int status; + + if (pc_is_mips16 (addr)) + { + instlen = MIPS16_INSTLEN; + addr = UNMAKE_MIPS16_ADDR (addr); + } + else + instlen = MIPS_INSTLEN; + status = read_memory_nobpt (addr, buf, instlen); + if (status) + memory_error (status, addr); + return extract_unsigned_integer (buf, instlen); +} + + +/* These the fields of 32 bit mips instructions */ +#define mips32_op(x) (x >> 25) +#define itype_op(x) (x >> 25) +#define itype_rs(x) ((x >> 21)& 0x1f) +#define itype_rt(x) ((x >> 16) & 0x1f) +#define itype_immediate(x) ( x & 0xffff) + +#define jtype_op(x) (x >> 25) +#define jtype_target(x) ( x & 0x03fffff) + +#define rtype_op(x) (x >>25) +#define rtype_rs(x) ((x>>21) & 0x1f) +#define rtype_rt(x) ((x>>16) & 0x1f) +#define rtype_rd(x) ((x>>11) & 0x1f) +#define rtype_shamt(x) ((x>>6) & 0x1f) +#define rtype_funct(x) (x & 0x3f ) + +static CORE_ADDR +mips32_relative_offset(unsigned long inst) +{ long x ; + x = itype_immediate(inst) ; + if (x & 0x8000) /* sign bit set */ + { + x |= 0xffff0000 ; /* sign extension */ + } + x = x << 2 ; + return x ; +} + +/* Determine whate to set a single step breakpoint while considering + branch prediction */ +CORE_ADDR +mips32_next_pc(CORE_ADDR pc) +{ + unsigned long inst ; + int op ; + inst = mips_fetch_instruction(pc) ; + if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */ + { if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */ + { op = ((inst >> 25) & 0x03) ; + switch (op) + { + case 0 : goto equal_branch ; /* BEQL */ + case 1 : goto neq_branch ; /* BNEZ */ + case 2 : goto less_branch ; /* BLEZ */ + case 3 : goto greater_branch ; /* BGTZ */ + default : pc += 4 ; + } + } + else pc += 4 ; /* Not a branch, next instruction is easy */ + } + else + { /* This gets way messy */ + + /* Further subdivide into SPECIAL, REGIMM and other */ + switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */ + { + case 0 : /* SPECIAL */ + op = rtype_funct(inst) ; + switch (op) + { + case 8 : /* JR */ + case 9 : /* JALR */ + pc = read_register(rtype_rs(inst)) ; /* Set PC to that address */ + break ; + default: pc += 4 ; + } + + break ; /* end special */ + case 1 : /* REGIMM */ + { + op = jtype_op(inst) ; /* branch condition */ + switch (jtype_op(inst)) + { + case 0 : /* BLTZ */ + case 2 : /* BLTXL */ + case 16 : /* BLTZALL */ + case 18 : /* BLTZALL */ + less_branch: + if (read_register(itype_rs(inst)) < 0) + pc += mips32_relative_offset(inst) + 4 ; + else pc += 8 ; /* after the delay slot */ + break ; + case 1 : /* GEZ */ + case 3 : /* BGEZL */ + case 17 : /* BGEZAL */ + case 19 : /* BGEZALL */ + greater_equal_branch: + if (read_register(itype_rs(inst)) >= 0) + pc += mips32_relative_offset(inst) + 4 ; + else pc += 8 ; /* after the delay slot */ + break ; + /* All of the other intructions in the REGIMM catagory */ + default: pc += 4 ; + } + } + break ; /* end REGIMM */ + case 2 : /* J */ + case 3 : /* JAL */ + { unsigned long reg ; + reg = jtype_target(inst) << 2 ; + pc = reg + ((pc+4) & 0xf0000000) ; + /* Whats this mysterious 0xf000000 adjustment ??? */ + } + break ; + /* FIXME case JALX :*/ + { unsigned long reg ; + reg = jtype_target(inst) << 2 ; + pc = reg + ((pc+4) & 0xf0000000) + 1 ; /* yes, +1 */ + /* Add 1 to indicate 16 bit mode - Invert ISA mode */ + } + break ; /* The new PC will be alternate mode */ + case 4 : /* BEQ , BEQL */ + equal_branch : + if (read_register(itype_rs(inst)) == + read_register(itype_rt(inst))) + pc += mips32_relative_offset(inst) + 4 ; + else pc += 8 ; + break ; + case 5 : /* BNE , BNEL */ + neq_branch : + if (read_register(itype_rs(inst)) != + read_register(itype_rs(inst))) + pc += mips32_relative_offset(inst) + 4 ; + else pc += 8 ; + break ; + case 6 : /* BLEZ , BLEZL */ + less_zero_branch: + if (read_register(itype_rs(inst) <= 0)) + pc += mips32_relative_offset(inst) + 4 ; + else pc += 8 ; + break ; + case 7 : + greater_branch : /* BGTZ BGTZL */ + if (read_register(itype_rs(inst) > 0)) + pc += mips32_relative_offset(inst) + 4 ; + else pc += 8 ; + break ; + default : pc += 8 ; + } /* switch */ + } /* else */ + return pc ; +} /* mips32_next_pc */ + +/* Decoding the next place to set a breakpoint is irregular for the + mips 16 variant, but fortunatly, there fewer instructions. We have to cope + ith extensions for 16 bit instructions and a pair of actual 32 bit instructions. + We dont want to set a single step instruction on the extend instruction + either. + */ + +/* Lots of mips16 instruction formats */ +/* Predicting jumps requires itype,ritype,i8type + and their extensions extItype,extritype,extI8type + */ +enum mips16_inst_fmts +{ + itype, /* 0 immediate 5,10 */ + ritype, /* 1 5,3,8 */ + rrtype, /* 2 5,3,3,5 */ + rritype, /* 3 5,3,3,5 */ + rrrtype, /* 4 5,3,3,3,2 */ + rriatype, /* 5 5,3,3,1,4 */ + shifttype, /* 6 5,3,3,3,2 */ + i8type, /* 7 5,3,8 */ + i8movtype, /* 8 5,3,3,5 */ + i8mov32rtype, /* 9 5,3,5,3 */ + i64type, /* 10 5,3,8 */ + ri64type, /* 11 5,3,3,5 */ + jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */ + exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */ + extRitype, /* 14 5,6,5,5,3,1,1,1,5 */ + extRRItype, /* 15 5,5,5,5,3,3,5 */ + extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */ + EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */ + extI8type, /* 18 5,6,5,5,3,1,1,1,5 */ + extI64type, /* 19 5,6,5,5,3,1,1,1,5 */ + extRi64type, /* 20 5,6,5,5,3,3,5 */ + extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */ +} ; +/* I am heaping all the fields of the formats into one structure and then, + only the fields which are involved in instruction extension */ +struct upk_mips16 +{ + unsigned short inst ; + enum mips16_inst_fmts fmt ; + unsigned long offset ; + unsigned int regx ; /* Function in i8 type */ + unsigned int regy ; +} ; + + + +static void print_unpack(char * comment, + struct upk_mips16 * u) +{ + printf("%s %04x ,f(%d) off(%08x) (x(%x) y(%x)\n", + comment,u->inst,u->fmt,u->offset,u->regx,u->regy) ; +} + +/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same + format for the bits which make up the immediatate extension. + */ +static unsigned long +extended_offset(unsigned long extension) +{ + unsigned long value ; + value = (extension >> 21) & 0x3f ; /* * extract 15:11 */ + value = value << 6 ; + value |= (extension >> 16) & 0x1f ; /* extrace 10:5 */ + value = value << 5 ; + value |= extension & 0x01f ; /* extract 4:0 */ + return value ; +} + +/* Only call this function if you know that this is an extendable + instruction, It wont malfunction, but why make excess remote memory references? + If the immediate operands get sign extended or somthing, do it after + the extension is performed. + */ +/* FIXME: Every one of these cases needs to worry about sign extension + when the offset is to be used in relative addressing */ + + +static unsigned short fetch_mips_16(CORE_ADDR pc) +{ + char buf[8] ; + pc &= 0xfffffffe ; /* clear the low order bit */ + target_read_memory(pc,buf,2) ; + return extract_unsigned_integer(buf,2) ; +} + +static void +unpack_mips16(CORE_ADDR pc, + struct upk_mips16 * upk) +{ + CORE_ADDR extpc ; + unsigned long extension ; + int extended ; + extpc = (pc - 4) & ~0x01 ; /* Extensions are 32 bit instructions */ + /* Decrement to previous address and loose the 16bit mode flag */ + /* return if the instruction was extendable, but not actually extended */ + extended = ((mips32_op(extension) == 30) ? 1 : 0) ; + if (extended) { extension = mips_fetch_instruction(extpc) ;} + switch (upk->fmt) + { + case itype : + { + unsigned long value ; + if (extended) + { value = extended_offset(extension) ; + value = value << 11 ; /* rom for the original value */ + value |= upk->inst & 0x7ff ; /* eleven bits from instruction */ + } + else + { value = upk->inst & 0x7ff ; + /* FIXME : Consider sign extension */ + } + upk->offset = value ; + } + break ; + case ritype : + case i8type : + { /* A register identifier and an offset */ + /* Most of the fields are the same as I type but the + immediate value is of a different length */ + unsigned long value ; + if (extended) + { + value = extended_offset(extension) ; + value = value << 8 ; /* from the original instruction */ + value |= upk->inst & 0xff ; /* eleven bits from instruction */ + upk->regx = (extension >> 8) & 0x07 ; /* or i8 funct */ + if (value & 0x4000) /* test the sign bit , bit 26 */ + { value &= ~ 0x3fff ; /* remove the sign bit */ + value = -value ; + } + } + else { + value = upk->inst & 0xff ; /* 8 bits */ + upk->regx = (upk->inst >> 8) & 0x07 ; /* or i8 funct */ + /* FIXME: Do sign extension , this format needs it */ + if (value & 0x80) /* THIS CONFUSES ME */ + { value &= 0xef ; /* remove the sign bit */ + value = -value ; + } + + } + upk->offset = value ; + break ; + } + case jalxtype : + { + unsigned long value ; + unsigned short nexthalf ; + value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f) ; + value = value << 16 ; + nexthalf = mips_fetch_instruction(pc+2) ; /* low bit still set */ + value |= nexthalf ; + upk->offset = value ; + break ; + } + default: + printf_filtered("Decoding unimplemented instruction format type\n") ; + break ; + } + /* print_unpack("UPK",upk) ; */ +} + + +#define mips16_op(x) (x >> 11) + +/* This is a map of the opcodes which ae known to perform branches */ +static unsigned char map16[32] = +{ 0,0,1,1,1,1,0,0, + 0,0,0,0,1,0,0,0, + 0,0,0,0,0,0,0,0, + 0,0,0,0,0,1,1,0 +} ; + +static CORE_ADDR add_offset_16(CORE_ADDR pc, int offset) +{ + return ((offset << 2) | ((pc + 2) & (0xf0000000))) ; + +} + + + +static struct upk_mips16 upk ; + +CORE_ADDR mips16_next_pc(CORE_ADDR pc) +{ + int op ; + t_inst inst ; + /* inst = mips_fetch_instruction(pc) ; - This doesnt always work */ + inst = fetch_mips_16(pc) ; + upk.inst = inst ; + op = mips16_op(upk.inst) ; + if (map16[op]) + { + int reg ; + switch (op) + { + case 2 : /* Branch */ + upk.fmt = itype ; + unpack_mips16(pc,&upk) ; + { long offset ; + offset = upk.offset ; + if (offset & 0x800) + { offset &= 0xeff ; + offset = - offset ; + } + pc += (offset << 1) + 2 ; + } + break ; + case 3 : /* JAL , JALX - Watch out, these are 32 bit instruction*/ + upk.fmt = jalxtype ; + unpack_mips16(pc,&upk) ; + pc = add_offset_16(pc,upk.offset) ; + if ((upk.inst >> 10) & 0x01) /* Exchange mode */ + pc = pc & ~ 0x01 ; /* Clear low bit, indicate 32 bit mode */ + else pc |= 0x01 ; + break ; + case 4 : /* beqz */ + upk.fmt = ritype ; + unpack_mips16(pc,&upk) ; + reg = read_register(upk.regx) ; + if (reg == 0) + pc += (upk.offset << 1) + 2 ; + else pc += 2 ; + break ; + case 5 : /* bnez */ + upk.fmt = ritype ; + unpack_mips16(pc,&upk) ; + reg = read_register(upk.regx) ; + if (reg != 0) + pc += (upk.offset << 1) + 2 ; + else pc += 2 ; + break ; + case 12 : /* I8 Formats btez btnez */ + upk.fmt = i8type ; + unpack_mips16(pc,&upk) ; + /* upk.regx contains the opcode */ + reg = read_register(24) ; /* Test register is 24 */ + if (((upk.regx == 0) && (reg == 0)) /* BTEZ */ + || ((upk.regx == 1 ) && (reg != 0))) /* BTNEZ */ + /* pc = add_offset_16(pc,upk.offset) ; */ + pc += (upk.offset << 1) + 2 ; + else pc += 2 ; + break ; + case 29 : /* RR Formats JR, JALR, JALR-RA */ + upk.fmt = rrtype ; + op = upk.inst & 0x1f ; + if (op == 0) + { + upk.regx = (upk.inst >> 8) & 0x07 ; + upk.regy = (upk.inst >> 5) & 0x07 ; + switch (upk.regy) + { + case 0 : reg = upk.regx ; break ; + case 1 : reg = 31 ; break ; /* Function return instruction*/ + case 2 : reg = upk.regx ; break ; + default: reg = 31 ; break ; /* BOGUS Guess */ + } + pc = read_register(reg) ; + } + else pc += 2 ; + break ; + case 30 : /* This is an extend instruction */ + pc += 4 ; /* Dont be setting breakpints on the second half */ + break ; + default : + printf("Filtered - next PC probably incorrrect due to jump inst\n"); + pc += 2 ; + break ; + } + } + else pc+= 2 ; /* just a good old instruction */ + /* See if we CAN actually break on the next instruction */ + /* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */ + return pc ; +} /* mips16_next_pc */ + +/* The mips_next_pc function supports single_tep when the remote target monitor or + stub is not developed enough to so a single_step. + It works by decoding the current instruction and predicting where a branch + will go. This isnt hard because all the data is available. + The MIPS32 and MIPS16 variants are quite different + */ +CORE_ADDR mips_next_pc(CORE_ADDR pc) +{ + t_inst inst ; + /* inst = mips_fetch_instruction(pc) ; */ + /* if (pc_is_mips16) <----- This is failing */ + if (pc & 0x01) + return mips16_next_pc(pc) ; + else return mips32_next_pc(pc) ; +} /* mips_next_pc */ + +/* Guaranteed to set fci->saved_regs to some values (it never leaves it + NULL). */ + +void +mips_find_saved_regs (fci) + struct frame_info *fci; +{ + int ireg; + CORE_ADDR reg_position; + /* r0 bit means kernel trap */ + int kernel_trap; + /* What registers have been saved? Bitmasks. */ + unsigned long gen_mask, float_mask; + mips_extra_func_info_t proc_desc; + t_inst inst; + + frame_saved_regs_zalloc (fci); + + /* If it is the frame for sigtramp, the saved registers are located + in a sigcontext structure somewhere on the stack. + If the stack layout for sigtramp changes we might have to change these + constants and the companion fixup_sigtramp in mdebugread.c */ +#ifndef SIGFRAME_BASE +/* To satisfy alignment restrictions, sigcontext is located 4 bytes + above the sigtramp frame. */ +#define SIGFRAME_BASE MIPS_REGSIZE +/* FIXME! Are these correct?? */ +#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE) +#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE) +#define SIGFRAME_FPREGSAVE_OFF \ + (SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE) +#endif +#ifndef SIGFRAME_REG_SIZE +/* FIXME! Is this correct?? */ +#define SIGFRAME_REG_SIZE MIPS_REGSIZE +#endif + if (fci->signal_handler_caller) + { + for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) + { + reg_position = fci->frame + SIGFRAME_REGSAVE_OFF + + ireg * SIGFRAME_REG_SIZE; + fci->saved_regs[ireg] = reg_position; + } + for (ireg = 0; ireg < MIPS_NUMREGS; ireg++) + { + reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF + + ireg * SIGFRAME_REG_SIZE; + fci->saved_regs[FP0_REGNUM + ireg] = reg_position; + } + fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF; + return; + } + + proc_desc = fci->proc_desc; + if (proc_desc == NULL) + /* I'm not sure how/whether this can happen. Normally when we can't + find a proc_desc, we "synthesize" one using heuristic_proc_desc + and set the saved_regs right away. */ + return; + + kernel_trap = PROC_REG_MASK(proc_desc) & 1; + gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK(proc_desc); + float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK(proc_desc); + + if (/* In any frame other than the innermost or a frame interrupted by + a signal, we assume that all registers have been saved. + This assumes that all register saves in a function happen before + the first function call. */ + (fci->next == NULL || fci->next->signal_handler_caller) + + /* In a dummy frame we know exactly where things are saved. */ + && !PROC_DESC_IS_DUMMY (proc_desc) + + /* Don't bother unless we are inside a function prologue. Outside the + prologue, we know where everything is. */ + + && in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc)) + + /* Not sure exactly what kernel_trap means, but if it means + the kernel saves the registers without a prologue doing it, + we better not examine the prologue to see whether registers + have been saved yet. */ + && !kernel_trap) + { + /* We need to figure out whether the registers that the proc_desc + claims are saved have been saved yet. */ + + CORE_ADDR addr; + + /* Bitmasks; set if we have found a save for the register. */ + unsigned long gen_save_found = 0; + unsigned long float_save_found = 0; + int instlen; + + /* If the address is odd, assume this is MIPS16 code. */ + addr = PROC_LOW_ADDR (proc_desc); + instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN; + + /* Scan through this function's instructions preceding the current + PC, and look for those that save registers. */ + while (addr < fci->pc) + { + inst = mips_fetch_instruction (addr); + if (pc_is_mips16 (addr)) + mips16_decode_reg_save (inst, &gen_save_found); + else + mips32_decode_reg_save (inst, &gen_save_found, &float_save_found); + addr += instlen; + } + gen_mask = gen_save_found; + float_mask = float_save_found; + } + + /* Fill in the offsets for the registers which gen_mask says + were saved. */ + reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); + for (ireg= MIPS_NUMREGS-1; gen_mask; --ireg, gen_mask <<= 1) + if (gen_mask & 0x80000000) + { + fci->saved_regs[ireg] = reg_position; + reg_position -= MIPS_REGSIZE; + } + + /* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order + of that normally used by gcc. Therefore, we have to fetch the first + instruction of the function, and if it's an entry instruction that + saves $s0 or $s1, correct their saved addresses. */ + if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc))) + { + inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc)); + if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ + { + int reg; + int sreg_count = (inst >> 6) & 3; + + /* Check if the ra register was pushed on the stack. */ + reg_position = fci->frame + PROC_REG_OFFSET (proc_desc); + if (inst & 0x20) + reg_position -= MIPS_REGSIZE; + + /* Check if the s0 and s1 registers were pushed on the stack. */ + for (reg = 16; reg < sreg_count+16; reg++) + { + fci->saved_regs[reg] = reg_position; + reg_position -= MIPS_REGSIZE; + } + } + } + + /* Fill in the offsets for the registers which float_mask says + were saved. */ + reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc); + + /* The freg_offset points to where the first *double* register + is saved. So skip to the high-order word. */ + if (! GDB_TARGET_IS_MIPS64) + reg_position += MIPS_REGSIZE; + + /* Fill in the offsets for the float registers which float_mask says + were saved. */ + for (ireg = MIPS_NUMREGS-1; float_mask; --ireg, float_mask <<= 1) + if (float_mask & 0x80000000) + { + fci->saved_regs[FP0_REGNUM+ireg] = reg_position; + reg_position -= MIPS_REGSIZE; + } + + fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM]; +} + +static CORE_ADDR +read_next_frame_reg(fi, regno) + struct frame_info *fi; + int regno; +{ + for (; fi; fi = fi->next) + { + /* We have to get the saved sp from the sigcontext + if it is a signal handler frame. */ + if (regno == SP_REGNUM && !fi->signal_handler_caller) + return fi->frame; + else + { + if (fi->saved_regs == NULL) + mips_find_saved_regs (fi); + if (fi->saved_regs[regno]) + return read_memory_integer(fi->saved_regs[regno], MIPS_REGSIZE); + } + } + return read_register (regno); +} + +/* mips_addr_bits_remove - remove useless address bits */ + +CORE_ADDR +mips_addr_bits_remove (addr) + CORE_ADDR addr; +{ +#if GDB_TARGET_IS_MIPS64 + if (mask_address_p && (addr >> 32 == (CORE_ADDR)0xffffffff)) + { + /* This hack is a work-around for existing boards using PMON, + the simulator, and any other 64-bit targets that doesn't have + true 64-bit addressing. On these targets, the upper 32 bits + of addresses are ignored by the hardware. Thus, the PC or SP + are likely to have been sign extended to all 1s by instruction + sequences that load 32-bit addresses. For example, a typical + piece of code that loads an address is this: + lui $r2, <upper 16 bits> + ori $r2, <lower 16 bits> + But the lui sign-extends the value such that the upper 32 bits + may be all 1s. The workaround is simply to mask off these bits. + In the future, gcc may be changed to support true 64-bit + addressing, and this masking will have to be disabled. */ + addr &= (CORE_ADDR)0xffffffff; + } +#else + /* Even when GDB is configured for some 32-bit targets (e.g. mips-elf), + BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits. + So we still have to mask off useless bits from addresses. */ + addr &= (CORE_ADDR)0xffffffff; +#endif + + return addr; +} + +void +mips_init_frame_pc_first (fromleaf, prev) + int fromleaf; + struct frame_info *prev; +{ + CORE_ADDR pc, tmp; + + pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) : + prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ()); + tmp = mips_skip_stub (pc); + prev->pc = tmp ? tmp : pc; +} + + +CORE_ADDR +mips_frame_saved_pc(frame) + struct frame_info *frame; +{ + CORE_ADDR saved_pc; + mips_extra_func_info_t proc_desc = frame->proc_desc; + /* We have to get the saved pc from the sigcontext + if it is a signal handler frame. */ + int pcreg = frame->signal_handler_caller ? PC_REGNUM + : (proc_desc ? PROC_PC_REG(proc_desc) : RA_REGNUM); + + if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) + saved_pc = read_memory_integer(frame->frame - MIPS_REGSIZE, MIPS_REGSIZE); + else + saved_pc = read_next_frame_reg(frame, pcreg); + + return ADDR_BITS_REMOVE (saved_pc); +} + +static struct mips_extra_func_info temp_proc_desc; +static struct frame_saved_regs temp_saved_regs; + +/* Set a register's saved stack address in temp_saved_regs. If an address + has already been set for this register, do nothing; this way we will + only recognize the first save of a given register in a function prologue. + This is a helper function for mips{16,32}_heuristic_proc_desc. */ + +static void +set_reg_offset (regno, offset) + int regno; + CORE_ADDR offset; +{ + if (temp_saved_regs.regs[regno] == 0) + temp_saved_regs.regs[regno] = offset; +} + + +/* Test whether the PC points to the return instruction at the + end of a function. */ + +static int +mips_about_to_return (pc) + CORE_ADDR pc; +{ + if (pc_is_mips16 (pc)) + /* This mips16 case isn't necessarily reliable. Sometimes the compiler + generates a "jr $ra"; other times it generates code to load + the return address from the stack to an accessible register (such + as $a3), then a "jr" using that register. This second case + is almost impossible to distinguish from an indirect jump + used for switch statements, so we don't even try. */ + return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */ + else + return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */ +} + + +/* This fencepost looks highly suspicious to me. Removing it also + seems suspicious as it could affect remote debugging across serial + lines. */ + +static CORE_ADDR +heuristic_proc_start (pc) + CORE_ADDR pc; +{ + CORE_ADDR start_pc; + CORE_ADDR fence; + int instlen; + int seen_adjsp = 0; + + pc = ADDR_BITS_REMOVE (pc); + start_pc = pc; + fence = start_pc - heuristic_fence_post; + if (start_pc == 0) return 0; + + if (heuristic_fence_post == UINT_MAX + || fence < VM_MIN_ADDRESS) + fence = VM_MIN_ADDRESS; + + instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN; + + /* search back for previous return */ + for (start_pc -= instlen; ; start_pc -= instlen) + if (start_pc < fence) + { + /* It's not clear to me why we reach this point when + stop_soon_quietly, but with this test, at least we + don't print out warnings for every child forked (eg, on + decstation). 22apr93 rich@cygnus.com. */ + if (!stop_soon_quietly) + { + static int blurb_printed = 0; + + if (fence == VM_MIN_ADDRESS) + warning("Hit beginning of text section without finding"); + else + warning("Hit heuristic-fence-post without finding"); + + warning("enclosing function for address 0x%s", paddr_nz (pc)); + if (!blurb_printed) + { + printf_filtered ("\ +This warning occurs if you are debugging a function without any symbols\n\ +(for example, in a stripped executable). In that case, you may wish to\n\ +increase the size of the search with the `set heuristic-fence-post' command.\n\ +\n\ +Otherwise, you told GDB there was a function where there isn't one, or\n\ +(more likely) you have encountered a bug in GDB.\n"); + blurb_printed = 1; + } + } + + return 0; + } + else if (pc_is_mips16 (start_pc)) + { + unsigned short inst; + + /* On MIPS16, any one of the following is likely to be the + start of a function: + entry + addiu sp,-n + daddiu sp,-n + extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */ + inst = mips_fetch_instruction (start_pc); + if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ + || (inst & 0xff80) == 0x6380 /* addiu sp,-n */ + || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */ + || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */ + break; + else if ((inst & 0xff00) == 0x6300 /* addiu sp */ + || (inst & 0xff00) == 0xfb00) /* daddiu sp */ + seen_adjsp = 1; + else + seen_adjsp = 0; + } + else if (mips_about_to_return (start_pc)) + { + start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */ + break; + } + +#if 0 + /* skip nops (usually 1) 0 - is this */ + while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0) + start_pc += MIPS_INSTLEN; +#endif + return start_pc; +} + +/* Fetch the immediate value from a MIPS16 instruction. + If the previous instruction was an EXTEND, use it to extend + the upper bits of the immediate value. This is a helper function + for mips16_heuristic_proc_desc. */ + +static int +mips16_get_imm (prev_inst, inst, nbits, scale, is_signed) + unsigned short prev_inst; /* previous instruction */ + unsigned short inst; /* current instruction */ + int nbits; /* number of bits in imm field */ + int scale; /* scale factor to be applied to imm */ + int is_signed; /* is the imm field signed? */ +{ + int offset; + + if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */ + { + offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0); + if (offset & 0x8000) /* check for negative extend */ + offset = 0 - (0x10000 - (offset & 0xffff)); + return offset | (inst & 0x1f); + } + else + { + int max_imm = 1 << nbits; + int mask = max_imm - 1; + int sign_bit = max_imm >> 1; + + offset = inst & mask; + if (is_signed && (offset & sign_bit)) + offset = 0 - (max_imm - offset); + return offset * scale; + } +} + + +/* Fill in values in temp_proc_desc based on the MIPS16 instruction + stream from start_pc to limit_pc. */ + +static void +mips16_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp) + CORE_ADDR start_pc, limit_pc; + struct frame_info *next_frame; + CORE_ADDR sp; +{ + CORE_ADDR cur_pc; + CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */ + unsigned short prev_inst = 0; /* saved copy of previous instruction */ + unsigned inst = 0; /* current instruction */ + unsigned entry_inst = 0; /* the entry instruction */ + int reg, offset; + + PROC_FRAME_OFFSET(&temp_proc_desc) = 0; /* size of stack frame */ + PROC_FRAME_ADJUST(&temp_proc_desc) = 0; /* offset of FP from SP */ + + for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN) + { + /* Save the previous instruction. If it's an EXTEND, we'll extract + the immediate offset extension from it in mips16_get_imm. */ + prev_inst = inst; + + /* Fetch and decode the instruction. */ + inst = (unsigned short) mips_fetch_instruction (cur_pc); + if ((inst & 0xff00) == 0x6300 /* addiu sp */ + || (inst & 0xff00) == 0xfb00) /* daddiu sp */ + { + offset = mips16_get_imm (prev_inst, inst, 8, 8, 1); + if (offset < 0) /* negative stack adjustment? */ + PROC_FRAME_OFFSET(&temp_proc_desc) -= offset; + else + /* Exit loop if a positive stack adjustment is found, which + usually means that the stack cleanup code in the function + epilogue is reached. */ + break; + } + else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */ + { + offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); + reg = mips16_to_32_reg[(inst & 0x700) >> 8]; + PROC_REG_MASK(&temp_proc_desc) |= (1 << reg); + set_reg_offset (reg, sp + offset); + } + else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */ + { + offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); + reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; + PROC_REG_MASK(&temp_proc_desc) |= (1 << reg); + set_reg_offset (reg, sp + offset); + } + else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */ + { + offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); + PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM); + set_reg_offset (RA_REGNUM, sp + offset); + } + else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */ + { + offset = mips16_get_imm (prev_inst, inst, 8, 8, 0); + PROC_REG_MASK(&temp_proc_desc) |= (1 << RA_REGNUM); + set_reg_offset (RA_REGNUM, sp + offset); + } + else if (inst == 0x673d) /* move $s1, $sp */ + { + frame_addr = sp; + PROC_FRAME_REG (&temp_proc_desc) = 17; + } + else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */ + { + offset = mips16_get_imm (prev_inst, inst, 8, 4, 0); + frame_addr = sp + offset; + PROC_FRAME_REG (&temp_proc_desc) = 17; + PROC_FRAME_ADJUST (&temp_proc_desc) = offset; + } + else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */ + { + offset = mips16_get_imm (prev_inst, inst, 5, 4, 0); + reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; + PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; + set_reg_offset (reg, frame_addr + offset); + } + else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */ + { + offset = mips16_get_imm (prev_inst, inst, 5, 8, 0); + reg = mips16_to_32_reg[(inst & 0xe0) >> 5]; + PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; + set_reg_offset (reg, frame_addr + offset); + } + else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */ + entry_inst = inst; /* save for later processing */ + else if ((inst & 0xf800) == 0x1800) /* jal(x) */ + cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */ + } + + /* The entry instruction is typically the first instruction in a function, + and it stores registers at offsets relative to the value of the old SP + (before the prologue). But the value of the sp parameter to this + function is the new SP (after the prologue has been executed). So we + can't calculate those offsets until we've seen the entire prologue, + and can calculate what the old SP must have been. */ + if (entry_inst != 0) + { + int areg_count = (entry_inst >> 8) & 7; + int sreg_count = (entry_inst >> 6) & 3; + + /* The entry instruction always subtracts 32 from the SP. */ + PROC_FRAME_OFFSET(&temp_proc_desc) += 32; + + /* Now we can calculate what the SP must have been at the + start of the function prologue. */ + sp += PROC_FRAME_OFFSET(&temp_proc_desc); + + /* Check if a0-a3 were saved in the caller's argument save area. */ + for (reg = 4, offset = 0; reg < areg_count+4; reg++) + { + PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; + set_reg_offset (reg, sp + offset); + offset += MIPS_REGSIZE; + } + + /* Check if the ra register was pushed on the stack. */ + offset = -4; + if (entry_inst & 0x20) + { + PROC_REG_MASK(&temp_proc_desc) |= 1 << RA_REGNUM; + set_reg_offset (RA_REGNUM, sp + offset); + offset -= MIPS_REGSIZE; + } + + /* Check if the s0 and s1 registers were pushed on the stack. */ + for (reg = 16; reg < sreg_count+16; reg++) + { + PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; + set_reg_offset (reg, sp + offset); + offset -= MIPS_REGSIZE; + } + } +} + +static void +mips32_heuristic_proc_desc(start_pc, limit_pc, next_frame, sp) + CORE_ADDR start_pc, limit_pc; + struct frame_info *next_frame; + CORE_ADDR sp; +{ + CORE_ADDR cur_pc; + CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */ +restart: + memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs)); + PROC_FRAME_OFFSET(&temp_proc_desc) = 0; + PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */ + for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN) + { + unsigned long inst, high_word, low_word; + int reg; + + /* Fetch the instruction. */ + inst = (unsigned long) mips_fetch_instruction (cur_pc); + + /* Save some code by pre-extracting some useful fields. */ + high_word = (inst >> 16) & 0xffff; + low_word = inst & 0xffff; + reg = high_word & 0x1f; + + if (high_word == 0x27bd /* addiu $sp,$sp,-i */ + || high_word == 0x23bd /* addi $sp,$sp,-i */ + || high_word == 0x67bd) /* daddiu $sp,$sp,-i */ + { + if (low_word & 0x8000) /* negative stack adjustment? */ + PROC_FRAME_OFFSET(&temp_proc_desc) += 0x10000 - low_word; + else + /* Exit loop if a positive stack adjustment is found, which + usually means that the stack cleanup code in the function + epilogue is reached. */ + break; + } + else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */ + { + PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; + set_reg_offset (reg, sp + low_word); + } + else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */ + { + /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra, + but the register size used is only 32 bits. Make the address + for the saved register point to the lower 32 bits. */ + PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; + set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE); + } + else if (high_word == 0x27be) /* addiu $30,$sp,size */ + { + /* Old gcc frame, r30 is virtual frame pointer. */ + if ((long)low_word != PROC_FRAME_OFFSET(&temp_proc_desc)) + frame_addr = sp + low_word; + else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) + { + unsigned alloca_adjust; + PROC_FRAME_REG (&temp_proc_desc) = 30; + frame_addr = read_next_frame_reg(next_frame, 30); + alloca_adjust = (unsigned)(frame_addr - (sp + low_word)); + if (alloca_adjust > 0) + { + /* FP > SP + frame_size. This may be because + * of an alloca or somethings similar. + * Fix sp to "pre-alloca" value, and try again. + */ + sp += alloca_adjust; + goto restart; + } + } + } + /* move $30,$sp. With different versions of gas this will be either + `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'. + Accept any one of these. */ + else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) + { + /* New gcc frame, virtual frame pointer is at r30 + frame_size. */ + if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM) + { + unsigned alloca_adjust; + PROC_FRAME_REG (&temp_proc_desc) = 30; + frame_addr = read_next_frame_reg(next_frame, 30); + alloca_adjust = (unsigned)(frame_addr - sp); + if (alloca_adjust > 0) + { + /* FP > SP + frame_size. This may be because + * of an alloca or somethings similar. + * Fix sp to "pre-alloca" value, and try again. + */ + sp += alloca_adjust; + goto restart; + } + } + } + else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */ + { + PROC_REG_MASK(&temp_proc_desc) |= 1 << reg; + set_reg_offset (reg, frame_addr + low_word); + } + } +} + +static mips_extra_func_info_t +heuristic_proc_desc(start_pc, limit_pc, next_frame) + CORE_ADDR start_pc, limit_pc; + struct frame_info *next_frame; +{ + CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM); + + if (start_pc == 0) return NULL; + memset (&temp_proc_desc, '\0', sizeof(temp_proc_desc)); + memset (&temp_saved_regs, '\0', sizeof(struct frame_saved_regs)); + PROC_LOW_ADDR (&temp_proc_desc) = start_pc; + PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM; + PROC_PC_REG (&temp_proc_desc) = RA_REGNUM; + + if (start_pc + 200 < limit_pc) + limit_pc = start_pc + 200; + if (pc_is_mips16 (start_pc)) + mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); + else + mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp); + return &temp_proc_desc; +} + +static mips_extra_func_info_t +non_heuristic_proc_desc (pc, addrptr) + CORE_ADDR pc; + CORE_ADDR *addrptr; +{ + CORE_ADDR startaddr; + mips_extra_func_info_t proc_desc; + struct block *b = block_for_pc(pc); + struct symbol *sym; + + find_pc_partial_function (pc, NULL, &startaddr, NULL); + if (addrptr) + *addrptr = startaddr; + if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0)) + sym = NULL; + else + { + if (startaddr > BLOCK_START (b)) + /* This is the "pathological" case referred to in a comment in + print_frame_info. It might be better to move this check into + symbol reading. */ + sym = NULL; + else + sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL); + } + + /* If we never found a PDR for this function in symbol reading, then + examine prologues to find the information. */ + if (sym) + { + proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym); + if (PROC_FRAME_REG (proc_desc) == -1) + return NULL; + else + return proc_desc; + } + else + return NULL; +} + + +static mips_extra_func_info_t +find_proc_desc (pc, next_frame) + CORE_ADDR pc; + struct frame_info *next_frame; +{ + mips_extra_func_info_t proc_desc; + CORE_ADDR startaddr; + + proc_desc = non_heuristic_proc_desc (pc, &startaddr); + + if (proc_desc) + { + /* IF this is the topmost frame AND + * (this proc does not have debugging information OR + * the PC is in the procedure prologue) + * THEN create a "heuristic" proc_desc (by analyzing + * the actual code) to replace the "official" proc_desc. + */ + if (next_frame == NULL) + { + struct symtab_and_line val; + struct symbol *proc_symbol = + PROC_DESC_IS_DUMMY(proc_desc) ? 0 : PROC_SYMBOL(proc_desc); + + if (proc_symbol) + { + val = find_pc_line (BLOCK_START + (SYMBOL_BLOCK_VALUE(proc_symbol)), + 0); + val.pc = val.end ? val.end : pc; + } + if (!proc_symbol || pc < val.pc) + { + mips_extra_func_info_t found_heuristic = + heuristic_proc_desc (PROC_LOW_ADDR (proc_desc), + pc, next_frame); + if (found_heuristic) + proc_desc = found_heuristic; + } + } + } + else + { + /* Is linked_proc_desc_table really necessary? It only seems to be used + by procedure call dummys. However, the procedures being called ought + to have their own proc_descs, and even if they don't, + heuristic_proc_desc knows how to create them! */ + + register struct linked_proc_info *link; + + for (link = linked_proc_desc_table; link; link = link->next) + if (PROC_LOW_ADDR(&link->info) <= pc + && PROC_HIGH_ADDR(&link->info) > pc) + return &link->info; + + if (startaddr == 0) + startaddr = heuristic_proc_start (pc); + + proc_desc = + heuristic_proc_desc (startaddr, pc, next_frame); + } + return proc_desc; +} + +static CORE_ADDR +get_frame_pointer(frame, proc_desc) + struct frame_info *frame; + mips_extra_func_info_t proc_desc; +{ + return ADDR_BITS_REMOVE ( + read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) + + PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc)); +} + +mips_extra_func_info_t cached_proc_desc; + +CORE_ADDR +mips_frame_chain(frame) + struct frame_info *frame; +{ + mips_extra_func_info_t proc_desc; + CORE_ADDR tmp; + CORE_ADDR saved_pc = FRAME_SAVED_PC(frame); + + if (saved_pc == 0 || inside_entry_file (saved_pc)) + return 0; + + /* Check if the PC is inside a call stub. If it is, fetch the + PC of the caller of that stub. */ + if ((tmp = mips_skip_stub (saved_pc)) != 0) + saved_pc = tmp; + + /* Look up the procedure descriptor for this PC. */ + proc_desc = find_proc_desc(saved_pc, frame); + if (!proc_desc) + return 0; + + cached_proc_desc = proc_desc; + + /* If no frame pointer and frame size is zero, we must be at end + of stack (or otherwise hosed). If we don't check frame size, + we loop forever if we see a zero size frame. */ + if (PROC_FRAME_REG (proc_desc) == SP_REGNUM + && PROC_FRAME_OFFSET (proc_desc) == 0 + /* The previous frame from a sigtramp frame might be frameless + and have frame size zero. */ + && !frame->signal_handler_caller) + return 0; + else + return get_frame_pointer (frame, proc_desc); +} + +void +init_extra_frame_info(fci) + struct frame_info *fci; +{ + int regnum; + + /* Use proc_desc calculated in frame_chain */ + mips_extra_func_info_t proc_desc = + fci->next ? cached_proc_desc : find_proc_desc(fci->pc, fci->next); + + fci->saved_regs = NULL; + fci->proc_desc = + proc_desc == &temp_proc_desc ? 0 : proc_desc; + if (proc_desc) + { + /* Fixup frame-pointer - only needed for top frame */ + /* This may not be quite right, if proc has a real frame register. + Get the value of the frame relative sp, procedure might have been + interrupted by a signal at it's very start. */ + if (fci->pc == PROC_LOW_ADDR (proc_desc) + && !PROC_DESC_IS_DUMMY (proc_desc)) + fci->frame = read_next_frame_reg (fci->next, SP_REGNUM); + else + fci->frame = get_frame_pointer (fci->next, proc_desc); + + if (proc_desc == &temp_proc_desc) + { + char *name; + + /* Do not set the saved registers for a sigtramp frame, + mips_find_saved_registers will do that for us. + We can't use fci->signal_handler_caller, it is not yet set. */ + find_pc_partial_function (fci->pc, &name, + (CORE_ADDR *)NULL,(CORE_ADDR *)NULL); + if (!IN_SIGTRAMP (fci->pc, name)) + { + fci->saved_regs = (CORE_ADDR*) + frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS); + memcpy (fci->saved_regs, temp_saved_regs.regs, SIZEOF_FRAME_SAVED_REGS); + fci->saved_regs[PC_REGNUM] + = fci->saved_regs[RA_REGNUM]; + } + } + + /* hack: if argument regs are saved, guess these contain args */ + fci->num_args = -1; /* assume we can't tell how many args for now */ + for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--) + { + if (PROC_REG_MASK(proc_desc) & (1 << regnum)) + { + fci->num_args = regnum - A0_REGNUM + 1; + break; + } + } + } +} + +/* MIPS stack frames are almost impenetrable. When execution stops, + we basically have to look at symbol information for the function + that we stopped in, which tells us *which* register (if any) is + the base of the frame pointer, and what offset from that register + the frame itself is at. + + This presents a problem when trying to examine a stack in memory + (that isn't executing at the moment), using the "frame" command. We + don't have a PC, nor do we have any registers except SP. + + This routine takes two arguments, SP and PC, and tries to make the + cached frames look as if these two arguments defined a frame on the + cache. This allows the rest of info frame to extract the important + arguments without difficulty. */ + +struct frame_info * +setup_arbitrary_frame (argc, argv) + int argc; + CORE_ADDR *argv; +{ + if (argc != 2) + error ("MIPS frame specifications require two arguments: sp and pc"); + + return create_new_frame (argv[0], argv[1]); +} + +/* + * STACK_ARGSIZE -- how many bytes does a pushed function arg take up on the stack? + * + * For n32 ABI, eight. + * For all others, he same as the size of a general register. + */ +#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32 +#define MIPS_NABI32 1 +#define STACK_ARGSIZE 8 +#else +#define MIPS_NABI32 0 +#define STACK_ARGSIZE MIPS_REGSIZE +#endif + +CORE_ADDR +mips_push_arguments(nargs, args, sp, struct_return, struct_addr) + int nargs; + value_ptr *args; + CORE_ADDR sp; + int struct_return; + CORE_ADDR struct_addr; +{ + int argreg; + int float_argreg; + int argnum; + int len = 0; + int stack_offset = 0; + + /* Macros to round N up or down to the next A boundary; A must be + a power of two. */ +#define ROUND_DOWN(n,a) ((n) & ~((a)-1)) +#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1)) + + /* First ensure that the stack and structure return address (if any) + are properly aligned. The stack has to be at least 64-bit aligned + even on 32-bit machines, because doubles must be 64-bit aligned. + On at least one MIPS variant, stack frames need to be 128-bit + aligned, so we round to this widest known alignment. */ + sp = ROUND_DOWN (sp, 16); + struct_addr = ROUND_DOWN (struct_addr, MIPS_REGSIZE); + + /* Now make space on the stack for the args. We allocate more + than necessary for EABI, because the first few arguments are + passed in registers, but that's OK. */ + for (argnum = 0; argnum < nargs; argnum++) + len += ROUND_UP (TYPE_LENGTH(VALUE_TYPE(args[argnum])), MIPS_REGSIZE); + sp -= ROUND_UP (len, 16); + + /* Initialize the integer and float register pointers. */ + argreg = A0_REGNUM; + float_argreg = FPA0_REGNUM; + + /* the struct_return pointer occupies the first parameter-passing reg */ + if (struct_return) + write_register (argreg++, struct_addr); + + /* Now load as many as possible of the first arguments into + registers, and push the rest onto the stack. Loop thru args + from first to last. */ + for (argnum = 0; argnum < nargs; argnum++) + { + char *val; + char valbuf[MAX_REGISTER_RAW_SIZE]; + value_ptr arg = args[argnum]; + struct type *arg_type = check_typedef (VALUE_TYPE (arg)); + int len = TYPE_LENGTH (arg_type); + enum type_code typecode = TYPE_CODE (arg_type); + + /* The EABI passes structures that do not fit in a register by + reference. In all other cases, pass the structure by value. */ + if (MIPS_EABI && len > MIPS_REGSIZE && + (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)) + { + store_address (valbuf, MIPS_REGSIZE, VALUE_ADDRESS (arg)); + typecode = TYPE_CODE_PTR; + len = MIPS_REGSIZE; + val = valbuf; + } + else + val = (char *)VALUE_CONTENTS (arg); + + /* 32-bit ABIs always start floating point arguments in an + even-numbered floating point register. */ + if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT + && (float_argreg & 1)) + float_argreg++; + + /* Floating point arguments passed in registers have to be + treated specially. On 32-bit architectures, doubles + are passed in register pairs; the even register gets + the low word, and the odd register gets the high word. + On non-EABI processors, the first two floating point arguments are + also copied to general registers, because MIPS16 functions + don't use float registers for arguments. This duplication of + arguments in general registers can't hurt non-MIPS16 functions + because those registers are normally skipped. */ + if (typecode == TYPE_CODE_FLT + && float_argreg <= MIPS_LAST_FP_ARG_REGNUM + && MIPS_FPU_TYPE != MIPS_FPU_NONE) + { + if (!FP_REGISTER_DOUBLE && len == 8) + { + int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0; + unsigned long regval; + + /* Write the low word of the double to the even register(s). */ + regval = extract_unsigned_integer (val+low_offset, 4); + write_register (float_argreg++, regval); + if (!MIPS_EABI) + write_register (argreg+1, regval); + + /* Write the high word of the double to the odd register(s). */ + regval = extract_unsigned_integer (val+4-low_offset, 4); + write_register (float_argreg++, regval); + if (!MIPS_EABI) + { + write_register (argreg, regval); + argreg += 2; + } + + } + else + { + /* This is a floating point value that fits entirely + in a single register. */ + CORE_ADDR regval = extract_address (val, len); + write_register (float_argreg++, regval); + if (!MIPS_EABI) + { + write_register (argreg, regval); + argreg += FP_REGISTER_DOUBLE ? 1 : 2; + } + } + } + else + { + /* Copy the argument to general registers or the stack in + register-sized pieces. Large arguments are split between + registers and stack. */ + /* Note: structs whose size is not a multiple of MIPS_REGSIZE + are treated specially: Irix cc passes them in registers + where gcc sometimes puts them on the stack. For maximum + compatibility, we will put them in both places. */ + + int odd_sized_struct = ((len > MIPS_REGSIZE) && + (len % MIPS_REGSIZE != 0)); + while (len > 0) + { + int partial_len = len < MIPS_REGSIZE ? len : MIPS_REGSIZE; + + if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct) + { + /* Write this portion of the argument to the stack. */ + /* Should shorter than int integer values be + promoted to int before being stored? */ + + int longword_offset = 0; + if (TARGET_BYTE_ORDER == BIG_ENDIAN) + if (STACK_ARGSIZE == 8 && + (typecode == TYPE_CODE_INT || + typecode == TYPE_CODE_PTR || + typecode == TYPE_CODE_FLT) && len <= 4) + longword_offset = STACK_ARGSIZE - len; + else if ((typecode == TYPE_CODE_STRUCT || + typecode == TYPE_CODE_UNION) && + TYPE_LENGTH (arg_type) < STACK_ARGSIZE) + longword_offset = STACK_ARGSIZE - len; + + write_memory (sp + stack_offset + longword_offset, + val, partial_len); + } + + /* Note!!! This is NOT an else clause. + Odd sized structs may go thru BOTH paths. */ + if (argreg <= MIPS_LAST_ARG_REGNUM) + { + CORE_ADDR regval = extract_address (val, partial_len); + + /* A non-floating-point argument being passed in a + general register. If a struct or union, and if + the remaining length is smaller than the register + size, we have to adjust the register value on + big endian targets. + + It does not seem to be necessary to do the + same for integral types. + + Also don't do this adjustment on EABI and O64 + binaries. */ + + if (!MIPS_EABI + && (MIPS_REGSIZE < 8) + && TARGET_BYTE_ORDER == BIG_ENDIAN + && (partial_len < MIPS_REGSIZE) + && (typecode == TYPE_CODE_STRUCT || + typecode == TYPE_CODE_UNION)) + regval <<= ((MIPS_REGSIZE - partial_len) * + TARGET_CHAR_BIT); + + write_register (argreg, regval); + argreg++; + + /* If this is the old ABI, prevent subsequent floating + point arguments from being passed in floating point + registers. */ + if (!MIPS_EABI) + float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1; + } + + len -= partial_len; + val += partial_len; + + /* The offset onto the stack at which we will start + copying parameters (after the registers are used up) + begins at (4 * MIPS_REGSIZE) in the old ABI. This + leaves room for the "home" area for register parameters. + + In the new EABI (and the NABI32), the 8 register parameters + do not have "home" stack space reserved for them, so the + stack offset does not get incremented until after + we have used up the 8 parameter registers. */ + + if (!(MIPS_EABI || MIPS_NABI32) || + argnum >= 8) + stack_offset += ROUND_UP (partial_len, STACK_ARGSIZE); + } + } + } + + /* Set the return address register to point to the entry + point of the program, where a breakpoint lies in wait. */ + write_register (RA_REGNUM, CALL_DUMMY_ADDRESS()); + + /* Return adjusted stack pointer. */ + return sp; +} + +static void +mips_push_register(CORE_ADDR *sp, int regno) +{ + char buffer[MAX_REGISTER_RAW_SIZE]; + int regsize = REGISTER_RAW_SIZE (regno); + + *sp -= regsize; + read_register_gen (regno, buffer); + write_memory (*sp, buffer, regsize); +} + +/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */ +#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1)) + +void +mips_push_dummy_frame() +{ + int ireg; + struct linked_proc_info *link = (struct linked_proc_info*) + xmalloc(sizeof(struct linked_proc_info)); + mips_extra_func_info_t proc_desc = &link->info; + CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM)); + CORE_ADDR old_sp = sp; + link->next = linked_proc_desc_table; + linked_proc_desc_table = link; + +/* FIXME! are these correct ? */ +#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */ +#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1)) +#define FLOAT_REG_SAVE_MASK MASK(0,19) +#define FLOAT_SINGLE_REG_SAVE_MASK \ + ((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0)) + /* + * The registers we must save are all those not preserved across + * procedure calls. Dest_Reg (see tm-mips.h) must also be saved. + * In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI + * and FP Control/Status registers. + * + * + * Dummy frame layout: + * (high memory) + * Saved PC + * Saved MMHI, MMLO, FPC_CSR + * Saved R31 + * Saved R28 + * ... + * Saved R1 + * Saved D18 (i.e. F19, F18) + * ... + * Saved D0 (i.e. F1, F0) + * Argument build area and stack arguments written via mips_push_arguments + * (low memory) + */ + + /* Save special registers (PC, MMHI, MMLO, FPC_CSR) */ + PROC_FRAME_REG(proc_desc) = PUSH_FP_REGNUM; + PROC_FRAME_OFFSET(proc_desc) = 0; + PROC_FRAME_ADJUST(proc_desc) = 0; + mips_push_register (&sp, PC_REGNUM); + mips_push_register (&sp, HI_REGNUM); + mips_push_register (&sp, LO_REGNUM); + mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM); + + /* Save general CPU registers */ + PROC_REG_MASK(proc_desc) = GEN_REG_SAVE_MASK; + /* PROC_REG_OFFSET is the offset of the first saved register from FP. */ + PROC_REG_OFFSET(proc_desc) = sp - old_sp - MIPS_REGSIZE; + for (ireg = 32; --ireg >= 0; ) + if (PROC_REG_MASK(proc_desc) & (1 << ireg)) + mips_push_register (&sp, ireg); + + /* Save floating point registers starting with high order word */ + PROC_FREG_MASK(proc_desc) = + MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK + : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0; + /* PROC_FREG_OFFSET is the offset of the first saved *double* register + from FP. */ + PROC_FREG_OFFSET(proc_desc) = sp - old_sp - 8; + for (ireg = 32; --ireg >= 0; ) + if (PROC_FREG_MASK(proc_desc) & (1 << ireg)) + mips_push_register (&sp, ireg + FP0_REGNUM); + + /* Update the frame pointer for the call dummy and the stack pointer. + Set the procedure's starting and ending addresses to point to the + call dummy address at the entry point. */ + write_register (PUSH_FP_REGNUM, old_sp); + write_register (SP_REGNUM, sp); + PROC_LOW_ADDR(proc_desc) = CALL_DUMMY_ADDRESS(); + PROC_HIGH_ADDR(proc_desc) = CALL_DUMMY_ADDRESS() + 4; + SET_PROC_DESC_IS_DUMMY(proc_desc); + PROC_PC_REG(proc_desc) = RA_REGNUM; +} + +void +mips_pop_frame() +{ + register int regnum; + struct frame_info *frame = get_current_frame (); + CORE_ADDR new_sp = FRAME_FP (frame); + + mips_extra_func_info_t proc_desc = frame->proc_desc; + + write_register (PC_REGNUM, FRAME_SAVED_PC(frame)); + if (frame->saved_regs == NULL) + mips_find_saved_regs (frame); + for (regnum = 0; regnum < NUM_REGS; regnum++) + { + if (regnum != SP_REGNUM && regnum != PC_REGNUM + && frame->saved_regs[regnum]) + write_register (regnum, + read_memory_integer (frame->saved_regs[regnum], + MIPS_REGSIZE)); + } + write_register (SP_REGNUM, new_sp); + flush_cached_frames (); + + if (proc_desc && PROC_DESC_IS_DUMMY(proc_desc)) + { + struct linked_proc_info *pi_ptr, *prev_ptr; + + for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL; + pi_ptr != NULL; + prev_ptr = pi_ptr, pi_ptr = pi_ptr->next) + { + if (&pi_ptr->info == proc_desc) + break; + } + + if (pi_ptr == NULL) + error ("Can't locate dummy extra frame info\n"); + + if (prev_ptr != NULL) + prev_ptr->next = pi_ptr->next; + else + linked_proc_desc_table = pi_ptr->next; + + free (pi_ptr); + + write_register (HI_REGNUM, + read_memory_integer (new_sp - 2*MIPS_REGSIZE, MIPS_REGSIZE)); + write_register (LO_REGNUM, + read_memory_integer (new_sp - 3*MIPS_REGSIZE, MIPS_REGSIZE)); + if (MIPS_FPU_TYPE != MIPS_FPU_NONE) + write_register (FCRCS_REGNUM, + read_memory_integer (new_sp - 4*MIPS_REGSIZE, MIPS_REGSIZE)); + } +} + +static void +mips_print_register (regnum, all) + int regnum, all; +{ + char raw_buffer[MAX_REGISTER_RAW_SIZE]; + + /* Get the data in raw format. */ + if (read_relative_register_raw_bytes (regnum, raw_buffer)) + { + printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum)); + return; + } + + /* If an even floating point register, also print as double. */ + if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT + && !((regnum-FP0_REGNUM) & 1)) + if (REGISTER_RAW_SIZE(regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */ + { + char dbuffer[2 * MAX_REGISTER_RAW_SIZE]; + + read_relative_register_raw_bytes (regnum, dbuffer); + read_relative_register_raw_bytes (regnum+1, dbuffer+MIPS_REGSIZE); + REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer); + + printf_filtered ("(d%d: ", regnum-FP0_REGNUM); + val_print (builtin_type_double, dbuffer, 0, 0, + gdb_stdout, 0, 1, 0, Val_pretty_default); + printf_filtered ("); "); + } + fputs_filtered (REGISTER_NAME (regnum), gdb_stdout); + + /* The problem with printing numeric register names (r26, etc.) is that + the user can't use them on input. Probably the best solution is to + fix it so that either the numeric or the funky (a2, etc.) names + are accepted on input. */ + if (regnum < MIPS_NUMREGS) + printf_filtered ("(r%d): ", regnum); + else + printf_filtered (": "); + + /* If virtual format is floating, print it that way. */ + if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) + if (FP_REGISTER_DOUBLE) + { /* show 8-byte floats as float AND double: */ + int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); + + printf_filtered (" (float) "); + val_print (builtin_type_float, raw_buffer + offset, 0, 0, + gdb_stdout, 0, 1, 0, Val_pretty_default); + printf_filtered (", (double) "); + val_print (builtin_type_double, raw_buffer, 0, 0, + gdb_stdout, 0, 1, 0, Val_pretty_default); + } + else + val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0, + gdb_stdout, 0, 1, 0, Val_pretty_default); + /* Else print as integer in hex. */ + else + print_scalar_formatted (raw_buffer, REGISTER_VIRTUAL_TYPE (regnum), + 'x', 0, gdb_stdout); +} + +/* Replacement for generic do_registers_info. + Print regs in pretty columns. */ + +static int +do_fp_register_row (regnum) + int regnum; +{ /* do values for FP (float) regs */ + char *raw_buffer[2]; + char *dbl_buffer; + /* use HI and LO to control the order of combining two flt regs */ + int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN); + int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN); + double doub, flt1, flt2; /* doubles extracted from raw hex data */ + int inv1, inv2, inv3; + + raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); + raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM)); + dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM)); + + /* Get the data in raw format. */ + if (read_relative_register_raw_bytes (regnum, raw_buffer[HI])) + error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); + if (REGISTER_RAW_SIZE(regnum) == 4) + { + /* 4-byte registers: we can fit two registers per row. */ + /* Also print every pair of 4-byte regs as an 8-byte double. */ + if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO])) + error ("can't read register %d (%s)", + regnum + 1, REGISTER_NAME (regnum + 1)); + + /* copy the two floats into one double, and unpack both */ + memcpy (dbl_buffer, raw_buffer, sizeof(dbl_buffer)); + flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1); + flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2); + doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); + + printf_filtered (inv1 ? " %-5s: <invalid float>" : + " %-5s%-17.9g", REGISTER_NAME (regnum), flt1); + printf_filtered (inv2 ? " %-5s: <invalid float>" : + " %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2); + printf_filtered (inv3 ? " dbl: <invalid double>\n" : + " dbl: %-24.17g\n", doub); + /* may want to do hex display here (future enhancement) */ + regnum +=2; + } + else + { /* eight byte registers: print each one as float AND as double. */ + int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN); + + memcpy (dbl_buffer, raw_buffer[HI], sizeof(dbl_buffer)); + flt1 = unpack_double (builtin_type_float, + &raw_buffer[HI][offset], &inv1); + doub = unpack_double (builtin_type_double, dbl_buffer, &inv3); + + printf_filtered (inv1 ? " %-5s: <invalid float>" : + " %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1); + printf_filtered (inv3 ? " dbl: <invalid double>\n" : + " dbl: %-24.17g\n", doub); + /* may want to do hex display here (future enhancement) */ + regnum++; + } + return regnum; +} + +/* Print a row's worth of GP (int) registers, with name labels above */ + +static int +do_gp_register_row (regnum) + int regnum; +{ + /* do values for GP (int) regs */ + char raw_buffer[MAX_REGISTER_RAW_SIZE]; + int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */ + int col, byte; + int start_regnum = regnum; + int numregs = NUM_REGS; + + + /* For GP registers, we print a separate row of names above the vals */ + printf_filtered (" "); + for (col = 0; col < ncols && regnum < numregs; regnum++) + { + if (*REGISTER_NAME (regnum) == '\0') + continue; /* unused register */ + if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) + break; /* end the row: reached FP register */ + printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s", + REGISTER_NAME (regnum)); + col++; + } + printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ", + start_regnum); /* print the R0 to R31 names */ + + regnum = start_regnum; /* go back to start of row */ + /* now print the values in hex, 4 or 8 to the row */ + for (col = 0; col < ncols && regnum < numregs; regnum++) + { + if (*REGISTER_NAME (regnum) == '\0') + continue; /* unused register */ + if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) + break; /* end row: reached FP register */ + /* OK: get the data in raw format. */ + if (read_relative_register_raw_bytes (regnum, raw_buffer)) + error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum)); + /* pad small registers */ + for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_RAW_SIZE (regnum)); byte++) + printf_filtered (" "); + /* Now print the register value in hex, endian order. */ + if (TARGET_BYTE_ORDER == BIG_ENDIAN) + for (byte = 0; byte < REGISTER_RAW_SIZE (regnum); byte++) + printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); + else + for (byte = REGISTER_RAW_SIZE (regnum) - 1; byte >= 0; byte--) + printf_filtered ("%02x", (unsigned char) raw_buffer[byte]); + printf_filtered (" "); + col++; + } + if (col > 0) /* ie. if we actually printed anything... */ + printf_filtered ("\n"); + + return regnum; +} + +/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */ + +void +mips_do_registers_info (regnum, fpregs) + int regnum; + int fpregs; +{ + if (regnum != -1) /* do one specified register */ + { + if (*(REGISTER_NAME (regnum)) == '\0') + error ("Not a valid register for the current processor type"); + + mips_print_register (regnum, 0); + printf_filtered ("\n"); + } + else /* do all (or most) registers */ + { + regnum = 0; + while (regnum < NUM_REGS) + { + if (TYPE_CODE(REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT) + if (fpregs) /* true for "INFO ALL-REGISTERS" command */ + regnum = do_fp_register_row (regnum); /* FP regs */ + else + regnum += MIPS_NUMREGS; /* skip floating point regs */ + else + regnum = do_gp_register_row (regnum); /* GP (int) regs */ + } + } +} + +/* Return number of args passed to a frame. described by FIP. + Can return -1, meaning no way to tell. */ + +int +mips_frame_num_args (frame) + struct frame_info *frame; +{ +#if 0 /* FIXME Use or lose this! */ + struct chain_info_t *p; + + p = mips_find_cached_frame (FRAME_FP (frame)); + if (p->valid) + return p->the_info.numargs; +#endif + return -1; +} + +/* Is this a branch with a delay slot? */ + +static int is_delayed PARAMS ((unsigned long)); + +static int +is_delayed (insn) + unsigned long insn; +{ + int i; + for (i = 0; i < NUMOPCODES; ++i) + if (mips_opcodes[i].pinfo != INSN_MACRO + && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match) + break; + return (i < NUMOPCODES + && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY + | INSN_COND_BRANCH_DELAY + | INSN_COND_BRANCH_LIKELY))); +} + +int +mips_step_skips_delay (pc) + CORE_ADDR pc; +{ + char buf[MIPS_INSTLEN]; + + /* There is no branch delay slot on MIPS16. */ + if (pc_is_mips16 (pc)) + return 0; + + if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0) + /* If error reading memory, guess that it is not a delayed branch. */ + return 0; + return is_delayed ((unsigned long)extract_unsigned_integer (buf, MIPS_INSTLEN)); +} + + +/* Skip the PC past function prologue instructions (32-bit version). + This is a helper function for mips_skip_prologue. */ + +static CORE_ADDR +mips32_skip_prologue (pc, lenient) + CORE_ADDR pc; /* starting PC to search from */ + int lenient; +{ + t_inst inst; + CORE_ADDR end_pc; + int seen_sp_adjust = 0; + int load_immediate_bytes = 0; + + /* Skip the typical prologue instructions. These are the stack adjustment + instruction and the instructions that save registers on the stack + or in the gcc frame. */ + for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN) + { + unsigned long high_word; + + inst = mips_fetch_instruction (pc); + high_word = (inst >> 16) & 0xffff; + +#if 0 + if (lenient && is_delayed (inst)) + continue; +#endif + + if (high_word == 0x27bd /* addiu $sp,$sp,offset */ + || high_word == 0x67bd) /* daddiu $sp,$sp,offset */ + seen_sp_adjust = 1; + else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */ + inst == 0x03a8e823) /* subu $sp,$sp,$t0 */ + seen_sp_adjust = 1; + else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */ + || (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */ + && (inst & 0x001F0000)) /* reg != $zero */ + continue; + + else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */ + continue; + else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000)) + /* sx reg,n($s8) */ + continue; /* reg != $zero */ + + /* move $s8,$sp. With different versions of gas this will be either + `addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'. + Accept any one of these. */ + else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d) + continue; + + else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */ + continue; + else if (high_word == 0x3c1c) /* lui $gp,n */ + continue; + else if (high_word == 0x279c) /* addiu $gp,$gp,n */ + continue; + else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */ + || inst == 0x033ce021) /* addu $gp,$t9,$gp */ + continue; + /* The following instructions load $at or $t0 with an immediate + value in preparation for a stack adjustment via + subu $sp,$sp,[$at,$t0]. These instructions could also initialize + a local variable, so we accept them only before a stack adjustment + instruction was seen. */ + else if (!seen_sp_adjust) + { + if (high_word == 0x3c01 || /* lui $at,n */ + high_word == 0x3c08) /* lui $t0,n */ + { + load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ + continue; + } + else if (high_word == 0x3421 || /* ori $at,$at,n */ + high_word == 0x3508 || /* ori $t0,$t0,n */ + high_word == 0x3401 || /* ori $at,$zero,n */ + high_word == 0x3408) /* ori $t0,$zero,n */ + { + load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */ + continue; + } + else + break; + } + else + break; + } + + /* In a frameless function, we might have incorrectly + skipped some load immediate instructions. Undo the skipping + if the load immediate was not followed by a stack adjustment. */ + if (load_immediate_bytes && !seen_sp_adjust) + pc -= load_immediate_bytes; + return pc; +} + +/* Skip the PC past function prologue instructions (16-bit version). + This is a helper function for mips_skip_prologue. */ + +static CORE_ADDR +mips16_skip_prologue (pc, lenient) + CORE_ADDR pc; /* starting PC to search from */ + int lenient; +{ + CORE_ADDR end_pc; + int extend_bytes = 0; + int prev_extend_bytes; + + /* Table of instructions likely to be found in a function prologue. */ + static struct + { + unsigned short inst; + unsigned short mask; + } table[] = + { + { 0x6300, 0xff00 }, /* addiu $sp,offset */ + { 0xfb00, 0xff00 }, /* daddiu $sp,offset */ + { 0xd000, 0xf800 }, /* sw reg,n($sp) */ + { 0xf900, 0xff00 }, /* sd reg,n($sp) */ + { 0x6200, 0xff00 }, /* sw $ra,n($sp) */ + { 0xfa00, 0xff00 }, /* sd $ra,n($sp) */ + { 0x673d, 0xffff }, /* move $s1,sp */ + { 0xd980, 0xff80 }, /* sw $a0-$a3,n($s1) */ + { 0x6704, 0xff1c }, /* move reg,$a0-$a3 */ + { 0xe809, 0xf81f }, /* entry pseudo-op */ + { 0x0100, 0xff00 }, /* addiu $s1,$sp,n */ + { 0, 0 } /* end of table marker */ + }; + + /* Skip the typical prologue instructions. These are the stack adjustment + instruction and the instructions that save registers on the stack + or in the gcc frame. */ + for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN) + { + unsigned short inst; + int i; + + inst = mips_fetch_instruction (pc); + + /* Normally we ignore an extend instruction. However, if it is + not followed by a valid prologue instruction, we must adjust + the pc back over the extend so that it won't be considered + part of the prologue. */ + if ((inst & 0xf800) == 0xf000) /* extend */ + { + extend_bytes = MIPS16_INSTLEN; + continue; + } + prev_extend_bytes = extend_bytes; + extend_bytes = 0; + + /* Check for other valid prologue instructions besides extend. */ + for (i = 0; table[i].mask != 0; i++) + if ((inst & table[i].mask) == table[i].inst) /* found, get out */ + break; + if (table[i].mask != 0) /* it was in table? */ + continue; /* ignore it */ + else /* non-prologue */ + { + /* Return the current pc, adjusted backwards by 2 if + the previous instruction was an extend. */ + return pc - prev_extend_bytes; + } + } + return pc; +} + +/* To skip prologues, I use this predicate. Returns either PC itself + if the code at PC does not look like a function prologue; otherwise + returns an address that (if we're lucky) follows the prologue. If + LENIENT, then we must skip everything which is involved in setting + up the frame (it's OK to skip more, just so long as we don't skip + anything which might clobber the registers which are being saved. + We must skip more in the case where part of the prologue is in the + delay slot of a non-prologue instruction). */ + +CORE_ADDR +mips_skip_prologue (pc, lenient) + CORE_ADDR pc; + int lenient; +{ + /* See if we can determine the end of the prologue via the symbol table. + If so, then return either PC, or the PC after the prologue, whichever + is greater. */ + + CORE_ADDR post_prologue_pc = after_prologue (pc, NULL); + + if (post_prologue_pc != 0) + return max (pc, post_prologue_pc); + + /* Can't determine prologue from the symbol table, need to examine + instructions. */ + + if (pc_is_mips16 (pc)) + return mips16_skip_prologue (pc, lenient); + else + return mips32_skip_prologue (pc, lenient); +} + +#if 0 +/* The lenient prologue stuff should be superseded by the code in + init_extra_frame_info which looks to see whether the stores mentioned + in the proc_desc have actually taken place. */ + +/* Is address PC in the prologue (loosely defined) for function at + STARTADDR? */ + +static int +mips_in_lenient_prologue (startaddr, pc) + CORE_ADDR startaddr; + CORE_ADDR pc; +{ + CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1); + return pc >= startaddr && pc < end_prologue; +} +#endif + +/* Given a return value in `regbuf' with a type `valtype', + extract and copy its value into `valbuf'. */ +void +mips_extract_return_value (valtype, regbuf, valbuf) + struct type *valtype; + char regbuf[REGISTER_BYTES]; + char *valbuf; +{ + int regnum; + int offset = 0; + int len = TYPE_LENGTH (valtype); + + regnum = 2; + if (TYPE_CODE (valtype) == TYPE_CODE_FLT + && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE + || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE + && len <= MIPS_FPU_SINGLE_REGSIZE))) + regnum = FP0_REGNUM; + + if (TARGET_BYTE_ORDER == BIG_ENDIAN) + { /* "un-left-justify" the value from the register */ + if (len < REGISTER_RAW_SIZE (regnum)) + offset = REGISTER_RAW_SIZE (regnum) - len; + if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ + len < REGISTER_RAW_SIZE (regnum) * 2 && + (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || + TYPE_CODE (valtype) == TYPE_CODE_UNION)) + offset = 2 * REGISTER_RAW_SIZE (regnum) - len; + } + memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len); + REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf); +} + +/* Given a return value in `regbuf' with a type `valtype', + write it's value into the appropriate register. */ +void +mips_store_return_value (valtype, valbuf) + struct type *valtype; + char *valbuf; +{ + int regnum; + int offset = 0; + int len = TYPE_LENGTH (valtype); + char raw_buffer[MAX_REGISTER_RAW_SIZE]; + + regnum = 2; + if (TYPE_CODE (valtype) == TYPE_CODE_FLT + && (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE + || (MIPS_FPU_TYPE == MIPS_FPU_SINGLE + && len <= MIPS_REGSIZE))) + regnum = FP0_REGNUM; + + if (TARGET_BYTE_ORDER == BIG_ENDIAN) + { /* "left-justify" the value in the register */ + if (len < REGISTER_RAW_SIZE (regnum)) + offset = REGISTER_RAW_SIZE (regnum) - len; + if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */ + len < REGISTER_RAW_SIZE (regnum) * 2 && + (TYPE_CODE (valtype) == TYPE_CODE_STRUCT || + TYPE_CODE (valtype) == TYPE_CODE_UNION)) + offset = 2 * REGISTER_RAW_SIZE (regnum) - len; + } + memcpy(raw_buffer + offset, valbuf, len); + REGISTER_CONVERT_FROM_TYPE(regnum, valtype, raw_buffer); + write_register_bytes(REGISTER_BYTE (regnum), raw_buffer, + len > REGISTER_RAW_SIZE (regnum) ? + len : REGISTER_RAW_SIZE (regnum)); +} + +/* Exported procedure: Is PC in the signal trampoline code */ + +int +in_sigtramp (pc, ignore) + CORE_ADDR pc; + char *ignore; /* function name */ +{ + if (sigtramp_address == 0) + fixup_sigtramp (); + return (pc >= sigtramp_address && pc < sigtramp_end); +} + +/* Commands to show/set the MIPS FPU type. */ + +static void show_mipsfpu_command PARAMS ((char *, int)); +static void +show_mipsfpu_command (args, from_tty) + char *args; + int from_tty; +{ + char *msg; + char *fpu; + switch (MIPS_FPU_TYPE) + { + case MIPS_FPU_SINGLE: + fpu = "single-precision"; + break; + case MIPS_FPU_DOUBLE: + fpu = "double-precision"; + break; + case MIPS_FPU_NONE: + fpu = "absent (none)"; + break; + } + if (mips_fpu_type_auto) + printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n", + fpu); + else + printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n", + fpu); +} + + +static void set_mipsfpu_command PARAMS ((char *, int)); +static void +set_mipsfpu_command (args, from_tty) + char *args; + int from_tty; +{ + printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n"); + show_mipsfpu_command (args, from_tty); +} + +static void set_mipsfpu_single_command PARAMS ((char *, int)); +static void +set_mipsfpu_single_command (args, from_tty) + char *args; + int from_tty; +{ + mips_fpu_type = MIPS_FPU_SINGLE; + mips_fpu_type_auto = 0; +} + +static void set_mipsfpu_double_command PARAMS ((char *, int)); +static void +set_mipsfpu_double_command (args, from_tty) + char *args; + int from_tty; +{ + mips_fpu_type = MIPS_FPU_DOUBLE; + mips_fpu_type_auto = 0; +} + +static void set_mipsfpu_none_command PARAMS ((char *, int)); +static void +set_mipsfpu_none_command (args, from_tty) + char *args; + int from_tty; +{ + mips_fpu_type = MIPS_FPU_NONE; + mips_fpu_type_auto = 0; +} + +static void set_mipsfpu_auto_command PARAMS ((char *, int)); +static void +set_mipsfpu_auto_command (args, from_tty) + char *args; + int from_tty; +{ + mips_fpu_type_auto = 1; +} + +/* Command to set the processor type. */ + +void +mips_set_processor_type_command (args, from_tty) + char *args; + int from_tty; +{ + int i; + + if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0') + { + printf_unfiltered ("The known MIPS processor types are as follows:\n\n"); + for (i = 0; mips_processor_type_table[i].name != NULL; ++i) + printf_unfiltered ("%s\n", mips_processor_type_table[i].name); + + /* Restore the value. */ + tmp_mips_processor_type = strsave (mips_processor_type); + + return; + } + + if (!mips_set_processor_type (tmp_mips_processor_type)) + { + error ("Unknown processor type `%s'.", tmp_mips_processor_type); + /* Restore its value. */ + tmp_mips_processor_type = strsave (mips_processor_type); + } +} + +static void +mips_show_processor_type_command (args, from_tty) + char *args; + int from_tty; +{ +} + +/* Modify the actual processor type. */ + +int +mips_set_processor_type (str) + char *str; +{ + int i, j; + + if (str == NULL) + return 0; + + for (i = 0; mips_processor_type_table[i].name != NULL; ++i) + { + if (strcasecmp (str, mips_processor_type_table[i].name) == 0) + { + mips_processor_type = str; + + for (j = 0; j < NUM_REGS; ++j) + /* FIXME - MIPS should be defining REGISTER_NAME() instead */ + gdb_register_names[j] = mips_processor_type_table[i].regnames[j]; + + return 1; + + /* FIXME tweak fpu flag too */ + } + } + + return 0; +} + +/* Attempt to identify the particular processor model by reading the + processor id. */ + +char * +mips_read_processor_type () +{ + CORE_ADDR prid; + + prid = read_register (PRID_REGNUM); + + if ((prid & ~0xf) == 0x700) + return savestring ("r3041", strlen("r3041")); + + return NULL; +} + +/* Just like reinit_frame_cache, but with the right arguments to be + callable as an sfunc. */ + +static void +reinit_frame_cache_sfunc (args, from_tty, c) + char *args; + int from_tty; + struct cmd_list_element *c; +{ + reinit_frame_cache (); +} + +int +gdb_print_insn_mips (memaddr, info) + bfd_vma memaddr; + disassemble_info *info; +{ + mips_extra_func_info_t proc_desc; + + /* Search for the function containing this address. Set the low bit + of the address when searching, in case we were given an even address + that is the start of a 16-bit function. If we didn't do this, + the search would fail because the symbol table says the function + starts at an odd address, i.e. 1 byte past the given address. */ + memaddr = ADDR_BITS_REMOVE (memaddr); + proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL); + + /* Make an attempt to determine if this is a 16-bit function. If + the procedure descriptor exists and the address therein is odd, + it's definitely a 16-bit function. Otherwise, we have to just + guess that if the address passed in is odd, it's 16-bits. */ + if (proc_desc) + info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH; + else + info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH; + + /* Round down the instruction address to the appropriate boundary. */ + memaddr &= (info->mach == 16 ? ~1 : ~3); + + /* Call the appropriate disassembler based on the target endian-ness. */ + if (TARGET_BYTE_ORDER == BIG_ENDIAN) + return print_insn_big_mips (memaddr, info); + else + return print_insn_little_mips (memaddr, info); +} + +/* Old-style breakpoint macros. + The IDT board uses an unusual breakpoint value, and sometimes gets + confused when it sees the usual MIPS breakpoint instruction. */ + +#define BIG_BREAKPOINT {0, 0x5, 0, 0xd} +#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0} +#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd} +#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0} +#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd} +#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0} +#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5} +#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8} + +/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program + counter value to determine whether a 16- or 32-bit breakpoint should be + used. It returns a pointer to a string of bytes that encode a breakpoint + instruction, stores the length of the string to *lenptr, and adjusts pc + (if necessary) to point to the actual memory location where the + breakpoint should be inserted. */ + +unsigned char *mips_breakpoint_from_pc (pcptr, lenptr) + CORE_ADDR *pcptr; + int *lenptr; +{ + if (TARGET_BYTE_ORDER == BIG_ENDIAN) + { + if (pc_is_mips16 (*pcptr)) + { + static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT; + *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); + *lenptr = sizeof(mips16_big_breakpoint); + return mips16_big_breakpoint; + } + else + { + static char big_breakpoint[] = BIG_BREAKPOINT; + static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT; + static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT; + + *lenptr = sizeof(big_breakpoint); + + if (strcmp (target_shortname, "mips") == 0) + return idt_big_breakpoint; + else if (strcmp (target_shortname, "ddb") == 0 + || strcmp (target_shortname, "pmon") == 0 + || strcmp (target_shortname, "lsi") == 0) + return pmon_big_breakpoint; + else + return big_breakpoint; + } + } + else + { + if (pc_is_mips16 (*pcptr)) + { + static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT; + *pcptr = UNMAKE_MIPS16_ADDR (*pcptr); + *lenptr = sizeof(mips16_little_breakpoint); + return mips16_little_breakpoint; + } + else + { + static char little_breakpoint[] = LITTLE_BREAKPOINT; + static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT; + static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT; + + *lenptr = sizeof(little_breakpoint); + + if (strcmp (target_shortname, "mips") == 0) + return idt_little_breakpoint; + else if (strcmp (target_shortname, "ddb") == 0 + || strcmp (target_shortname, "pmon") == 0 + || strcmp (target_shortname, "lsi") == 0) + return pmon_little_breakpoint; + else + return little_breakpoint; + } + } +} + +/* If PC is in a mips16 call or return stub, return the address of the target + PC, which is either the callee or the caller. There are several + cases which must be handled: + + * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the + target PC is in $31 ($ra). + * If the PC is in __mips16_call_stub_{1..10}, this is a call stub + and the target PC is in $2. + * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. + before the jal instruction, this is effectively a call stub + and the the target PC is in $2. Otherwise this is effectively + a return stub and the target PC is in $18. + + See the source code for the stubs in gcc/config/mips/mips16.S for + gory details. + + This function implements the SKIP_TRAMPOLINE_CODE macro. +*/ + +CORE_ADDR +mips_skip_stub (pc) + CORE_ADDR pc; +{ + char *name; + CORE_ADDR start_addr; + + /* Find the starting address and name of the function containing the PC. */ + if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0) + return 0; + + /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the + target PC is in $31 ($ra). */ + if (strcmp (name, "__mips16_ret_sf") == 0 + || strcmp (name, "__mips16_ret_df") == 0) + return read_register (RA_REGNUM); + + if (strncmp (name, "__mips16_call_stub_", 19) == 0) + { + /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub + and the target PC is in $2. */ + if (name[19] >= '0' && name[19] <= '9') + return read_register (2); + + /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. + before the jal instruction, this is effectively a call stub + and the the target PC is in $2. Otherwise this is effectively + a return stub and the target PC is in $18. */ + else if (name[19] == 's' || name[19] == 'd') + { + if (pc == start_addr) + { + /* Check if the target of the stub is a compiler-generated + stub. Such a stub for a function bar might have a name + like __fn_stub_bar, and might look like this: + mfc1 $4,$f13 + mfc1 $5,$f12 + mfc1 $6,$f15 + mfc1 $7,$f14 + la $1,bar (becomes a lui/addiu pair) + jr $1 + So scan down to the lui/addi and extract the target + address from those two instructions. */ + + CORE_ADDR target_pc = read_register (2); + t_inst inst; + int i; + + /* See if the name of the target function is __fn_stub_*. */ + if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0) + return target_pc; + if (strncmp (name, "__fn_stub_", 10) != 0 + && strcmp (name, "etext") != 0 + && strcmp (name, "_etext") != 0) + return target_pc; + + /* Scan through this _fn_stub_ code for the lui/addiu pair. + The limit on the search is arbitrarily set to 20 + instructions. FIXME. */ + for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN) + { + inst = mips_fetch_instruction (target_pc); + if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */ + pc = (inst << 16) & 0xffff0000; /* high word */ + else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */ + return pc | (inst & 0xffff); /* low word */ + } + + /* Couldn't find the lui/addui pair, so return stub address. */ + return target_pc; + } + else + /* This is the 'return' part of a call stub. The return + address is in $r18. */ + return read_register (18); + } + } + return 0; /* not a stub */ +} + + +/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline). + This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */ + +int +mips_in_call_stub (pc, name) + CORE_ADDR pc; + char *name; +{ + CORE_ADDR start_addr; + + /* Find the starting address of the function containing the PC. If the + caller didn't give us a name, look it up at the same time. */ + if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0) + return 0; + + if (strncmp (name, "__mips16_call_stub_", 19) == 0) + { + /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */ + if (name[19] >= '0' && name[19] <= '9') + return 1; + /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e. + before the jal instruction, this is effectively a call stub. */ + else if (name[19] == 's' || name[19] == 'd') + return pc == start_addr; + } + + return 0; /* not a stub */ +} + + +/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline). + This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */ + +int +mips_in_return_stub (pc, name) + CORE_ADDR pc; + char *name; +{ + CORE_ADDR start_addr; + + /* Find the starting address of the function containing the PC. */ + if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0) + return 0; + + /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */ + if (strcmp (name, "__mips16_ret_sf") == 0 + || strcmp (name, "__mips16_ret_df") == 0) + return 1; + + /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start, + i.e. after the jal instruction, this is effectively a return stub. */ + if (strncmp (name, "__mips16_call_stub_", 19) == 0 + && (name[19] == 's' || name[19] == 'd') + && pc != start_addr) + return 1; + + return 0; /* not a stub */ +} + + +/* Return non-zero if the PC is in a library helper function that should + be ignored. This implements the IGNORE_HELPER_CALL macro. */ + +int +mips_ignore_helper (pc) + CORE_ADDR pc; +{ + char *name; + + /* Find the starting address and name of the function containing the PC. */ + if (find_pc_partial_function (pc, &name, NULL, NULL) == 0) + return 0; + + /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function + that we want to ignore. */ + return (strcmp (name, "__mips16_ret_sf") == 0 + || strcmp (name, "__mips16_ret_df") == 0); +} + + +/* Return a location where we can set a breakpoint that will be hit + when an inferior function call returns. This is normally the + program's entry point. Executables that don't have an entry + point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS + whose address is the location where the breakpoint should be placed. */ + +CORE_ADDR +mips_call_dummy_address () +{ + struct minimal_symbol *sym; + + sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL); + if (sym) + return SYMBOL_VALUE_ADDRESS (sym); + else + return entry_point_address (); +} + + +void +_initialize_mips_tdep () +{ + static struct cmd_list_element *mipsfpulist = NULL; + struct cmd_list_element *c; + + if (!tm_print_insn) /* Someone may have already set it */ + tm_print_insn = gdb_print_insn_mips; + + /* Let the user turn off floating point and set the fence post for + heuristic_proc_start. */ + + add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command, + "Set use of MIPS floating-point coprocessor.", + &mipsfpulist, "set mipsfpu ", 0, &setlist); + add_cmd ("single", class_support, set_mipsfpu_single_command, + "Select single-precision MIPS floating-point coprocessor.", + &mipsfpulist); + add_cmd ("double", class_support, set_mipsfpu_double_command, + "Select double-precision MIPS floating-point coprocessor .", + &mipsfpulist); + add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist); + add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist); + add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist); + add_cmd ("none", class_support, set_mipsfpu_none_command, + "Select no MIPS floating-point coprocessor.", + &mipsfpulist); + add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist); + add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist); + add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist); + add_cmd ("auto", class_support, set_mipsfpu_auto_command, + "Select MIPS floating-point coprocessor automatically.", + &mipsfpulist); + add_cmd ("mipsfpu", class_support, show_mipsfpu_command, + "Show current use of MIPS floating-point coprocessor target.", + &showlist); + + c = add_set_cmd ("processor", class_support, var_string_noescape, + (char *) &tmp_mips_processor_type, + "Set the type of MIPS processor in use.\n\ +Set this to be able to access processor-type-specific registers.\n\ +", + &setlist); + c->function.cfunc = mips_set_processor_type_command; + c = add_show_from_set (c, &showlist); + c->function.cfunc = mips_show_processor_type_command; + + tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE); + mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0); + + /* We really would like to have both "0" and "unlimited" work, but + command.c doesn't deal with that. So make it a var_zinteger + because the user can always use "999999" or some such for unlimited. */ + c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger, + (char *) &heuristic_fence_post, + "\ +Set the distance searched for the start of a function.\n\ +If you are debugging a stripped executable, GDB needs to search through the\n\ +program for the start of a function. This command sets the distance of the\n\ +search. The only need to set it is when debugging a stripped executable.", + &setlist); + /* We need to throw away the frame cache when we set this, since it + might change our ability to get backtraces. */ + c->function.sfunc = reinit_frame_cache_sfunc; + add_show_from_set (c, &showlist); + + /* Allow the user to control whether the upper bits of 64-bit + addresses should be zeroed. */ + add_show_from_set + (add_set_cmd ("mask-address", no_class, var_boolean, (char *)&mask_address_p, + "Set zeroing of upper 32 bits of 64-bit addresses.\n\ +Use \"on\" to enable the masking, and \"off\" to disable it.\n\ +Without an argument, zeroing of upper address bits is enabled.", &setlist), + &showlist); +} |