summaryrefslogtreecommitdiff
path: root/sim/pru/interp.c
diff options
context:
space:
mode:
Diffstat (limited to 'sim/pru/interp.c')
-rw-r--r--sim/pru/interp.c848
1 files changed, 848 insertions, 0 deletions
diff --git a/sim/pru/interp.c b/sim/pru/interp.c
new file mode 100644
index 00000000000..0e783c121cb
--- /dev/null
+++ b/sim/pru/interp.c
@@ -0,0 +1,848 @@
+/* Simulator for the Texas Instruments PRU processor
+ Copyright 2009-2019 Free Software Foundation, Inc.
+ Inspired by the Microblaze simulator
+ Contributed by Dimitar Dimitrov <dimitar@dinux.eu>
+
+ This file is part of the simulators.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, see <http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include <stdbool.h>
+#include <stdint.h>
+#include <stddef.h>
+#include "bfd.h"
+#include "gdb/callback.h"
+#include "libiberty.h"
+#include "gdb/remote-sim.h"
+#include "sim-main.h"
+#include "sim-assert.h"
+#include "sim-options.h"
+#include "sim-syscall.h"
+#include "pru.h"
+
+/* DMEM zero address is perfectly valid. But if CRT leaves the first word
+ alone, we can use it as a trap to catch NULL pointer access. */
+static bfd_boolean abort_on_dmem_zero_access;
+
+enum {
+ OPTION_ERROR_NULL_DEREF = OPTION_START,
+};
+
+/* Extract (from PRU endianess) and return an integer in HOST's endianness. */
+static uint32_t
+pru_extract_unsigned_integer (uint8_t *addr, size_t len)
+{
+ uint32_t retval;
+ uint8_t *p;
+ uint8_t *startaddr = addr;
+ uint8_t *endaddr = startaddr + len;
+
+ /* Start at the most significant end of the integer, and work towards
+ the least significant. */
+ retval = 0;
+
+ for (p = endaddr; p > startaddr;)
+ retval = (retval << 8) | * -- p;
+ return retval;
+}
+
+/* Store "val" (which is in HOST's endianess) into "addr"
+ (using PRU's endianness). */
+static void
+pru_store_unsigned_integer (uint8_t *addr, size_t len, uint32_t val)
+{
+ uint8_t *p;
+ uint8_t *startaddr = (uint8_t *)addr;
+ uint8_t *endaddr = startaddr + len;
+
+ for (p = startaddr; p < endaddr;)
+ {
+ *p++ = val & 0xff;
+ val >>= 8;
+ }
+}
+
+/* Extract a field value from CPU register using the given REGSEL selector.
+
+ Byte number maps directly to first values of RSEL, so we can
+ safely use "regsel" as a register byte number (0..3). */
+static inline uint32_t
+extract_regval (uint32_t val, uint32_t regsel)
+{
+ ASSERT (RSEL_7_0 == 0);
+ ASSERT (RSEL_15_8 == 1);
+ ASSERT (RSEL_23_16 == 2);
+ ASSERT (RSEL_31_24 == 3);
+
+ switch (regsel)
+ {
+ case RSEL_7_0: return (val >> 0) & 0xff;
+ case RSEL_15_8: return (val >> 8) & 0xff;
+ case RSEL_23_16: return (val >> 16) & 0xff;
+ case RSEL_31_24: return (val >> 24) & 0xff;
+ case RSEL_15_0: return (val >> 0) & 0xffff;
+ case RSEL_23_8: return (val >> 8) & 0xffff;
+ case RSEL_31_16: return (val >> 16) & 0xffff;
+ case RSEL_31_0: return val;
+ default: sim_io_error (NULL, "invalid regsel");
+ }
+}
+
+/* Write a value into CPU subregister pointed by reg and regsel. */
+static inline void
+write_regval (uint32_t val, uint32_t *reg, uint32_t regsel)
+{
+ uint32_t mask, sh;
+
+ switch (regsel)
+ {
+ case RSEL_7_0: mask = (0xffu << 0); sh = 0; break;
+ case RSEL_15_8: mask = (0xffu << 8); sh = 8; break;
+ case RSEL_23_16: mask = (0xffu << 16); sh = 16; break;
+ case RSEL_31_24: mask = (0xffu << 24); sh = 24; break;
+ case RSEL_15_0: mask = (0xffffu << 0); sh = 0; break;
+ case RSEL_23_8: mask = (0xffffu << 8); sh = 8; break;
+ case RSEL_31_16: mask = (0xffffu << 16); sh = 16; break;
+ case RSEL_31_0: mask = 0xffffffffu; sh = 0; break;
+ default: sim_io_error (NULL, "invalid regsel");
+ }
+
+ *reg = (*reg & ~mask) | ((val << sh) & mask);
+}
+
+/* Convert the given IMEM word address to a regular byte address used by the
+ GNU ELF container. */
+static uint32_t
+imem_wordaddr_to_byteaddr (SIM_CPU *cpu, uint16_t wa)
+{
+ return (((uint32_t) wa << 2) & IMEM_ADDR_MASK) | PC_ADDR_SPACE_MARKER;
+}
+
+/* Convert the given ELF text byte address to IMEM word address. */
+static uint16_t
+imem_byteaddr_to_wordaddr (SIM_CPU *cpu, uint32_t ba)
+{
+ return (ba >> 2) & 0xffff;
+}
+
+
+/* Store "nbytes" into DMEM "addr" from CPU register file, starting with
+ register "regn", and byte "regb" within it. */
+static inline void
+pru_reg2dmem (SIM_CPU *cpu, uint32_t addr, unsigned int nbytes,
+ int regn, int regb)
+{
+ /* GDB assumes unconditional access to all memories, so enable additional
+ checks only in standalone mode. */
+ bool standalone = (STATE_OPEN_KIND (CPU_STATE (cpu)) == SIM_OPEN_STANDALONE);
+
+ if (abort_on_dmem_zero_access && addr < 4)
+ {
+ sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, write_map,
+ nbytes, addr, write_transfer,
+ sim_core_unmapped_signal);
+ }
+ else if (standalone && ((addr >= PC_ADDR_SPACE_MARKER)
+ || (addr + nbytes > PC_ADDR_SPACE_MARKER)))
+ {
+ sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, write_map,
+ nbytes, addr, write_transfer,
+ sim_core_unmapped_signal);
+ }
+ else if ((regn * 4 + regb + nbytes) > (32 * 4))
+ {
+ sim_io_eprintf (CPU_STATE (cpu),
+ "SBBO/SBCO with invalid store data length\n");
+ RAISE_SIGILL (CPU_STATE (cpu));
+ }
+ else
+ {
+ TRACE_MEMORY (cpu, "write of %d bytes to %08x", nbytes, addr);
+ while (nbytes--)
+ {
+ sim_core_write_1 (cpu,
+ PC_byteaddr,
+ write_map,
+ addr++,
+ extract_regval (CPU.regs[regn], regb));
+
+ if (++regb >= 4)
+ {
+ regb = 0;
+ regn++;
+ }
+ }
+ }
+}
+
+/* Load "nbytes" from DMEM "addr" into CPU register file, starting with
+ register "regn", and byte "regb" within it. */
+static inline void
+pru_dmem2reg (SIM_CPU *cpu, uint32_t addr, unsigned int nbytes,
+ int regn, int regb)
+{
+ /* GDB assumes unconditional access to all memories, so enable additional
+ checks only in standalone mode. */
+ bool standalone = (STATE_OPEN_KIND (CPU_STATE (cpu)) == SIM_OPEN_STANDALONE);
+
+ if (abort_on_dmem_zero_access && addr < 4)
+ {
+ sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, read_map,
+ nbytes, addr, read_transfer,
+ sim_core_unmapped_signal);
+ }
+ else if (standalone && ((addr >= PC_ADDR_SPACE_MARKER)
+ || (addr + nbytes > PC_ADDR_SPACE_MARKER)))
+ {
+ /* This check is necessary because our IMEM "address space"
+ is not really accessible, yet we have mapped it as a generic
+ memory space. */
+ sim_core_signal (CPU_STATE (cpu), cpu, PC_byteaddr, read_map,
+ nbytes, addr, read_transfer,
+ sim_core_unmapped_signal);
+ }
+ else if ((regn * 4 + regb + nbytes) > (32 * 4))
+ {
+ sim_io_eprintf (CPU_STATE (cpu),
+ "LBBO/LBCO with invalid load data length\n");
+ RAISE_SIGILL (CPU_STATE (cpu));
+ }
+ else
+ {
+ unsigned int b;
+ TRACE_MEMORY (cpu, "read of %d bytes from %08x", nbytes, addr);
+ while (nbytes--)
+ {
+ b = sim_core_read_1 (cpu, PC_byteaddr, read_map, addr++);
+
+ /* Reuse the fact the Register Byte Number maps directly to RSEL. */
+ ASSERT (RSEL_7_0 == 0);
+ write_regval (b, &CPU.regs[regn], regb);
+
+ if (++regb >= 4)
+ {
+ regb = 0;
+ regn++;
+ }
+ }
+ }
+}
+
+/* Set reset values of general-purpose registers. */
+static void
+set_initial_gprs (SIM_CPU *cpu)
+{
+ int i;
+
+ /* Set up machine just out of reset. */
+ CPU_PC_SET (cpu, 0);
+ PC_ADDR_SPACE_MARKER = IMEM_ADDR_DEFAULT; /* from default linker script? */
+
+ /* Clean out the GPRs. */
+ for (i = 0; i < ARRAY_SIZE (CPU.regs); i++)
+ CPU.regs[i] = 0;
+ for (i = 0; i < ARRAY_SIZE (CPU.macregs); i++)
+ CPU.macregs[i] = 0;
+
+ CPU.loop.looptop = CPU.loop.loopend = 0;
+ CPU.loop.loop_in_progress = 0;
+ CPU.loop.loop_counter = 0;
+
+ CPU.carry = 0;
+ CPU.insts = 0;
+ CPU.cycles = 0;
+
+ /* AM335x should provide sane defaults. */
+ CPU.ctable[0] = 0x00020000;
+ CPU.ctable[1] = 0x48040000;
+ CPU.ctable[2] = 0x4802a000;
+ CPU.ctable[3] = 0x00030000;
+ CPU.ctable[4] = 0x00026000;
+ CPU.ctable[5] = 0x48060000;
+ CPU.ctable[6] = 0x48030000;
+ CPU.ctable[7] = 0x00028000;
+ CPU.ctable[8] = 0x46000000;
+ CPU.ctable[9] = 0x4a100000;
+ CPU.ctable[10] = 0x48318000;
+ CPU.ctable[11] = 0x48022000;
+ CPU.ctable[12] = 0x48024000;
+ CPU.ctable[13] = 0x48310000;
+ CPU.ctable[14] = 0x481cc000;
+ CPU.ctable[15] = 0x481d0000;
+ CPU.ctable[16] = 0x481a0000;
+ CPU.ctable[17] = 0x4819c000;
+ CPU.ctable[18] = 0x48300000;
+ CPU.ctable[19] = 0x48302000;
+ CPU.ctable[20] = 0x48304000;
+ CPU.ctable[21] = 0x00032400;
+ CPU.ctable[22] = 0x480c8000;
+ CPU.ctable[23] = 0x480ca000;
+ CPU.ctable[24] = 0x00000000;
+ CPU.ctable[25] = 0x00002000;
+ CPU.ctable[26] = 0x0002e000;
+ CPU.ctable[27] = 0x00032000;
+ CPU.ctable[28] = 0x00000000;
+ CPU.ctable[29] = 0x49000000;
+ CPU.ctable[30] = 0x40000000;
+ CPU.ctable[31] = 0x80000000;
+}
+
+/* Map regsel selector to subregister field width. */
+static inline unsigned int
+regsel_width (uint32_t regsel)
+{
+ switch (regsel)
+ {
+ case RSEL_7_0: return 8;
+ case RSEL_15_8: return 8;
+ case RSEL_23_16: return 8;
+ case RSEL_31_24: return 8;
+ case RSEL_15_0: return 16;
+ case RSEL_23_8: return 16;
+ case RSEL_31_16: return 16;
+ case RSEL_31_0: return 32;
+ default: sim_io_error (NULL, "invalid regsel");
+ }
+}
+
+/* Handle XIN instruction addressing the MAC peripheral. */
+static void
+pru_sim_xin_mac (SIM_DESC sd, SIM_CPU *cpu, unsigned int rd_regn,
+ unsigned int rdb, unsigned int length)
+{
+ if (rd_regn < 25 || (rd_regn * 4 + rdb + length) > (27 + 1) * 4)
+ sim_io_error (sd, "XIN MAC: invalid transfer regn=%u.%u, length=%u\n",
+ rd_regn, rdb, length);
+
+ /* Copy from MAC to PRU regs. Ranges have been validated above. */
+ while (length--)
+ {
+ write_regval (CPU.macregs[rd_regn - 25] >> (rdb * 8),
+ &CPU.regs[rd_regn],
+ rdb);
+ if (++rdb == 4)
+ {
+ rdb = 0;
+ rd_regn++;
+ }
+ }
+}
+
+/* Handle XIN instruction. */
+static void
+pru_sim_xin (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba,
+ unsigned int rd_regn, unsigned int rdb, unsigned int length)
+{
+ if (wba == 0)
+ {
+ pru_sim_xin_mac (sd, cpu, rd_regn, rdb, length);
+ }
+ else if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1
+ || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER)
+ {
+ while (length--)
+ {
+ unsigned int val;
+
+ val = extract_regval (CPU.scratchpads[wba][rd_regn], rdb);
+ write_regval (val, &CPU.regs[rd_regn], rdb);
+ if (++rdb == 4)
+ {
+ rdb = 0;
+ rd_regn++;
+ }
+ }
+ }
+ else if (wba == 254 || wba == 255)
+ {
+ /* FILL/ZERO pseudos implemented via XIN. */
+ unsigned int fillbyte = (wba == 254) ? 0xff : 0x00;
+ while (length--)
+ {
+ write_regval (fillbyte, &CPU.regs[rd_regn], rdb);
+ if (++rdb == 4)
+ {
+ rdb = 0;
+ rd_regn++;
+ }
+ }
+ }
+ else
+ {
+ sim_io_error (sd, "XIN: XFR device %d not supported.\n", wba);
+ }
+}
+
+/* Handle XOUT instruction addressing the MAC peripheral. */
+static void
+pru_sim_xout_mac (SIM_DESC sd, SIM_CPU *cpu, unsigned int rd_regn,
+ unsigned int rdb, unsigned int length)
+{
+ const int modereg_accessed = (rd_regn == 25);
+
+ /* Multiple Accumulate. */
+ if (rd_regn < 25 || (rd_regn * 4 + rdb + length) > (27 + 1) * 4)
+ sim_io_error (sd, "XOUT MAC: invalid transfer regn=%u.%u, length=%u\n",
+ rd_regn, rdb, length);
+
+ /* Copy from PRU to MAC regs. Ranges have been validated above. */
+ while (length--)
+ {
+ write_regval (CPU.regs[rd_regn] >> (rdb * 8),
+ &CPU.macregs[rd_regn - 25],
+ rdb);
+ if (++rdb == 4)
+ {
+ rdb = 0;
+ rd_regn++;
+ }
+ }
+
+ if (modereg_accessed
+ && (CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK))
+ {
+ /* MUL/MAC operands are sampled every XOUT in multiply and
+ accumulate mode. */
+ uint64_t prod, oldsum, sum;
+ CPU.macregs[PRU_MACREG_OP_0] = CPU.regs[28];
+ CPU.macregs[PRU_MACREG_OP_1] = CPU.regs[29];
+
+ prod = CPU.macregs[PRU_MACREG_OP_0];
+ prod *= (uint64_t)CPU.macregs[PRU_MACREG_OP_1];
+
+ oldsum = CPU.macregs[PRU_MACREG_ACC_L];
+ oldsum += (uint64_t)CPU.macregs[PRU_MACREG_ACC_H] << 32;
+ sum = oldsum + prod;
+
+ CPU.macregs[PRU_MACREG_PROD_L] = sum & 0xfffffffful;
+ CPU.macregs[PRU_MACREG_PROD_H] = sum >> 32;
+ CPU.macregs[PRU_MACREG_ACC_L] = CPU.macregs[PRU_MACREG_PROD_L];
+ CPU.macregs[PRU_MACREG_ACC_H] = CPU.macregs[PRU_MACREG_PROD_H];
+
+ if (oldsum > sum)
+ CPU.macregs[PRU_MACREG_MODE] |= MAC_R25_ACC_CARRY_MASK;
+ }
+ if (modereg_accessed
+ && (CPU.macregs[PRU_MACREG_MODE] & MAC_R25_ACC_CARRY_MASK))
+ {
+ /* store 1 to clear. */
+ CPU.macregs[PRU_MACREG_MODE] &= ~MAC_R25_ACC_CARRY_MASK;
+ CPU.macregs[PRU_MACREG_ACC_L] = 0;
+ CPU.macregs[PRU_MACREG_ACC_H] = 0;
+ }
+
+}
+
+/* Handle XOUT instruction. */
+static void
+pru_sim_xout (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba,
+ unsigned int rd_regn, unsigned int rdb, unsigned int length)
+{
+ if (wba == 0)
+ {
+ pru_sim_xout_mac (sd, cpu, rd_regn, rdb, length);
+ }
+ else if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1
+ || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER)
+ {
+ while (length--)
+ {
+ unsigned int val;
+
+ val = extract_regval (CPU.regs[rd_regn], rdb);
+ write_regval (val, &CPU.scratchpads[wba][rd_regn], rdb);
+ if (++rdb == 4)
+ {
+ rdb = 0;
+ rd_regn++;
+ }
+ }
+ }
+ else
+ sim_io_error (sd, "XOUT: XFR device %d not supported.\n", wba);
+}
+
+/* Handle XCHG instruction. */
+static void
+pru_sim_xchg (SIM_DESC sd, SIM_CPU *cpu, unsigned int wba,
+ unsigned int rd_regn, unsigned int rdb, unsigned int length)
+{
+ if (wba == XFRID_SCRATCH_BANK_0 || wba == XFRID_SCRATCH_BANK_1
+ || wba == XFRID_SCRATCH_BANK_2 || wba == XFRID_SCRATCH_BANK_PEER)
+ {
+ while (length--)
+ {
+ unsigned int valr, vals;
+
+ valr = extract_regval (CPU.regs[rd_regn], rdb);
+ vals = extract_regval (CPU.scratchpads[wba][rd_regn], rdb);
+ write_regval (valr, &CPU.scratchpads[wba][rd_regn], rdb);
+ write_regval (vals, &CPU.regs[rd_regn], rdb);
+ if (++rdb == 4)
+ {
+ rdb = 0;
+ rd_regn++;
+ }
+ }
+ }
+ else
+ sim_io_error (sd, "XOUT: XFR device %d not supported.\n", wba);
+}
+
+/* Handle syscall simulation. Its ABI is specific to the GNU simulator. */
+static void
+pru_sim_syscall (SIM_DESC sd, SIM_CPU *cpu)
+{
+ /* If someday TI confirms that the "reserved" HALT opcode fields
+ can be used for extra arguments, then maybe we can embed
+ the syscall number there. Until then, let's use R1. */
+ const uint32_t syscall_num = CPU.regs[1];
+ long ret;
+
+ ret = sim_syscall (cpu, syscall_num,
+ CPU.regs[14], CPU.regs[15],
+ CPU.regs[16], CPU.regs[17]);
+ CPU.regs[14] = ret;
+}
+
+/* Simulate one instruction. */
+static void
+sim_step_once (SIM_DESC sd)
+{
+ SIM_CPU *cpu = STATE_CPU (sd, 0);
+ const struct pru_opcode *op;
+ uint32_t inst;
+ uint32_t _RDVAL, OP2; /* intermediate values. */
+ int rd_is_modified = 0; /* RD modified and must be stored back. */
+
+ /* Fetch the initial instruction that we'll decode. */
+ inst = sim_core_read_4 (cpu, PC_byteaddr, exec_map, PC_byteaddr);
+ TRACE_MEMORY (cpu, "read of insn 0x%08x from %08x", inst, PC_byteaddr);
+
+ op = pru_find_opcode (inst);
+
+ if (!op)
+ {
+ sim_io_eprintf (sd, "Unknown instruction 0x%04x\n", inst);
+ RAISE_SIGILL (sd);
+ }
+ else
+ {
+ TRACE_DISASM (cpu, PC_byteaddr);
+
+ /* In multiply-only mode, R28/R29 operands are sampled on every clock
+ cycle. */
+ if ((CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK) == 0)
+ {
+ CPU.macregs[PRU_MACREG_OP_0] = CPU.regs[28];
+ CPU.macregs[PRU_MACREG_OP_1] = CPU.regs[29];
+ }
+
+ switch (op->type)
+ {
+/* Helper macro to improve clarity of pru.isa. The empty while is a
+ guard against using RD as a left-hand side value. */
+#define RD do { } while (0); rd_is_modified = 1; _RDVAL
+#define INSTRUCTION(NAME, ACTION) \
+ case prui_ ## NAME: \
+ ACTION; \
+ break;
+#include "pru.isa"
+#undef INSTRUCTION
+#undef RD
+
+ default:
+ RAISE_SIGILL (sd);
+ }
+
+ if (rd_is_modified)
+ write_regval (_RDVAL, &CPU.regs[RD_REGN], RDSEL);
+
+ /* Don't treat r30 and r31 as regular registers, they are I/O! */
+ CPU.regs[30] = 0;
+ CPU.regs[31] = 0;
+
+ /* Handle PC match of loop end. */
+ if (LOOP_IN_PROGRESS && (PC == LOOPEND))
+ {
+ SIM_ASSERT (LOOPCNT > 0);
+ if (--LOOPCNT == 0)
+ LOOP_IN_PROGRESS = 0;
+ else
+ PC = LOOPTOP;
+ }
+
+ /* In multiply-only mode, MAC does multiplication every cycle. */
+ if ((CPU.macregs[PRU_MACREG_MODE] & MAC_R25_MAC_MODE_MASK) == 0)
+ {
+ uint64_t prod;
+ prod = CPU.macregs[PRU_MACREG_OP_0];
+ prod *= (uint64_t)CPU.macregs[PRU_MACREG_OP_1];
+ CPU.macregs[PRU_MACREG_PROD_L] = prod & 0xfffffffful;
+ CPU.macregs[PRU_MACREG_PROD_H] = prod >> 32;
+
+ /* Clear the MAC accumulator when in normal mode. */
+ CPU.macregs[PRU_MACREG_ACC_L] = 0;
+ CPU.macregs[PRU_MACREG_ACC_H] = 0;
+ }
+
+ /* Update cycle counts. */
+ CPU.insts += 1; /* One instruction completed ... */
+ CPU.cycles += 1; /* ... and it takes a single cycle. */
+
+ /* Account for memory access latency with a reasonable estimate.
+ No distinction is currently made between SRAM, DRAM and generic
+ L3 slaves. */
+ if (op->type == prui_lbbo || op->type == prui_sbbo
+ || op->type == prui_lbco || op->type == prui_sbco)
+ CPU.cycles += 2;
+
+ }
+}
+
+/* Implement standard sim_engine_run function. */
+void
+sim_engine_run (SIM_DESC sd,
+ int next_cpu_nr, /* ignore */
+ int nr_cpus, /* ignore */
+ int siggnal) /* ignore */
+{
+ while (1)
+ {
+ sim_step_once (sd);
+ if (sim_events_tick (sd))
+ sim_events_process (sd);
+ }
+}
+
+
+/* Implement callback for standard CPU_PC_FETCH routine. */
+static sim_cia
+pru_pc_get (sim_cpu *cpu)
+{
+ /* Present PC as byte address. */
+ return imem_wordaddr_to_byteaddr (cpu, cpu->pru_cpu.pc);
+}
+
+/* Implement callback for standard CPU_PC_STORE routine. */
+static void
+pru_pc_set (sim_cpu *cpu, sim_cia pc)
+{
+ /* PC given as byte address. */
+ cpu->pru_cpu.pc = imem_byteaddr_to_wordaddr (cpu, pc);
+}
+
+
+/* Implement callback for standard CPU_REG_STORE routine. */
+static int
+pru_store_register (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
+{
+ if (rn < NUM_REGS && rn >= 0)
+ {
+ if (length == 4)
+ {
+ /* Misalignment safe. */
+ long ival = pru_extract_unsigned_integer (memory, 4);
+ if (rn < 32)
+ CPU.regs[rn] = ival;
+ else
+ pru_pc_set (cpu, ival);
+ return 4;
+ }
+ else
+ return 0;
+ }
+ else
+ return 0;
+}
+
+/* Implement callback for standard CPU_REG_FETCH routine. */
+static int
+pru_fetch_register (SIM_CPU *cpu, int rn, unsigned char *memory, int length)
+{
+ long ival;
+
+ if (rn < NUM_REGS && rn >= 0)
+ {
+ if (length == 4)
+ {
+ if (rn < 32)
+ ival = CPU.regs[rn];
+ else
+ ival = pru_pc_get (cpu);
+
+ /* Misalignment-safe. */
+ pru_store_unsigned_integer (memory, 4, ival);
+ return 4;
+ }
+ else
+ return 0;
+ }
+ else
+ return 0;
+}
+
+static void
+free_state (SIM_DESC sd)
+{
+ if (STATE_MODULES (sd) != NULL)
+ sim_module_uninstall (sd);
+ sim_cpu_free_all (sd);
+ sim_state_free (sd);
+}
+
+/* Declare the PRU option handler. */
+static DECLARE_OPTION_HANDLER (pru_option_handler);
+
+/* Implement the PRU option handler. */
+static SIM_RC
+pru_option_handler (SIM_DESC sd, sim_cpu *cpu, int opt, char *arg,
+ int is_command)
+{
+ switch (opt)
+ {
+ case OPTION_ERROR_NULL_DEREF:
+ abort_on_dmem_zero_access = TRUE;
+ return SIM_RC_OK;
+
+ default:
+ sim_io_eprintf (sd, "Unknown PRU option %d\n", opt);
+ return SIM_RC_FAIL;
+ }
+}
+
+/* List of PRU-specific options. */
+static const OPTION pru_options[] =
+{
+ { {"error-null-deref", no_argument, NULL, OPTION_ERROR_NULL_DEREF},
+ '\0', NULL, "Trap any access to DMEM address zero",
+ pru_option_handler, NULL },
+
+ { {NULL, no_argument, NULL, 0}, '\0', NULL, NULL, NULL, NULL }
+};
+
+/* Implement standard sim_open function. */
+SIM_DESC
+sim_open (SIM_OPEN_KIND kind, host_callback *cb,
+ struct bfd *abfd, char * const *argv)
+{
+ int i;
+ char c;
+ SIM_DESC sd = sim_state_alloc (kind, cb);
+ SIM_ASSERT (STATE_MAGIC (sd) == SIM_MAGIC_NUMBER);
+
+ /* The cpu data is kept in a separately allocated chunk of memory. */
+ if (sim_cpu_alloc_all (sd, 1, /*cgen_cpu_max_extra_bytes ()*/0) != SIM_RC_OK)
+ {
+ free_state (sd);
+ return 0;
+ }
+
+ if (sim_pre_argv_init (sd, argv[0]) != SIM_RC_OK)
+ {
+ free_state (sd);
+ return 0;
+ }
+ sim_add_option_table (sd, NULL, pru_options);
+
+ /* The parser will print an error message for us, so we silently return. */
+ if (sim_parse_args (sd, argv) != SIM_RC_OK)
+ {
+ free_state (sd);
+ return 0;
+ }
+
+ /* Check for/establish a reference program image. */
+ if (sim_analyze_program (sd,
+ (STATE_PROG_ARGV (sd) != NULL
+ ? *STATE_PROG_ARGV (sd)
+ : NULL), abfd) != SIM_RC_OK)
+ {
+ free_state (sd);
+ return 0;
+ }
+
+ /* Configure/verify the target byte order and other runtime
+ configuration options. */
+ if (sim_config (sd) != SIM_RC_OK)
+ {
+ sim_module_uninstall (sd);
+ return 0;
+ }
+
+ if (sim_post_argv_init (sd) != SIM_RC_OK)
+ {
+ /* Uninstall the modules to avoid memory leaks,
+ file descriptor leaks, etc. */
+ sim_module_uninstall (sd);
+ return 0;
+ }
+
+ /* CPU specific initialization. */
+ for (i = 0; i < MAX_NR_PROCESSORS; ++i)
+ {
+ SIM_CPU *cpu = STATE_CPU (sd, i);
+
+ CPU_REG_STORE (cpu) = pru_store_register;
+ CPU_REG_FETCH (cpu) = pru_fetch_register;
+ CPU_PC_FETCH (cpu) = pru_pc_get;
+ CPU_PC_STORE (cpu) = pru_pc_set;
+
+ set_initial_gprs (cpu);
+ }
+
+ /* Allocate external memory if none specified by user.
+ Use address 4 here in case the user wanted address 0 unmapped. */
+ if (sim_core_read_buffer (sd, NULL, read_map, &c, 4, 1) == 0)
+ {
+ sim_do_commandf (sd, "memory-region 0x%x,0x%x",
+ 0,
+ DMEM_DEFAULT_SIZE);
+ }
+ if (sim_core_read_buffer (sd, NULL, read_map, &c, IMEM_ADDR_DEFAULT, 1) == 0)
+ {
+ sim_do_commandf (sd, "memory-region 0x%x,0x%x",
+ IMEM_ADDR_DEFAULT,
+ IMEM_DEFAULT_SIZE);
+ }
+
+ return sd;
+}
+
+/* Implement standard sim_create_inferior function. */
+SIM_RC
+sim_create_inferior (SIM_DESC sd, struct bfd *prog_bfd,
+ char * const *argv, char * const *env)
+{
+ SIM_CPU *cpu = STATE_CPU (sd, 0);
+ SIM_ADDR addr;
+
+ addr = bfd_get_start_address (prog_bfd);
+
+ sim_pc_set (cpu, addr);
+ PC_ADDR_SPACE_MARKER = addr & ~IMEM_ADDR_MASK;
+
+ /* Standalone mode (i.e. `run`) will take care of the argv for us in
+ sim_open () -> sim_parse_args (). But in debug mode (i.e. 'target sim'
+ with `gdb`), we need to handle it because the user can change the
+ argv on the fly via gdb's 'run'. */
+ if (STATE_PROG_ARGV (sd) != argv)
+ {
+ freeargv (STATE_PROG_ARGV (sd));
+ STATE_PROG_ARGV (sd) = dupargv (argv);
+ }
+
+ return SIM_RC_OK;
+}