/* Symbol table manager for Bison. Copyright (C) 1984, 1989, 2000-2002, 2004-2015, 2018-2021 Free Software Foundation, Inc. This file is part of Bison, the GNU Compiler Compiler. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include "symtab.h" #include "system.h" #include #include #include #include #include "complain.h" #include "getargs.h" #include "gram.h" #include "intprops.h" /** Undefined token code. */ #define CODE_UNDEFINED (-1) /* Undefined symbol number. */ #define NUMBER_UNDEFINED (-1) static struct hash_table *symbol_table = NULL; static struct hash_table *semantic_type_table = NULL; /*----------------------------------------------------------------. | Symbols sorted by tag. Allocated by table_sort, after which no | | more symbols should be created. | `----------------------------------------------------------------*/ static symbol **symbols_sorted = NULL; static semantic_type **semantic_types_sorted = NULL; /*------------------------. | Distinguished symbols. | `------------------------*/ symbol *errtoken = NULL; symbol *undeftoken = NULL; symbol *eoftoken = NULL; symbol *acceptsymbol = NULL; /* Precedence relation graph. */ static symgraph **prec_nodes; /* Store which associativity is used. */ static bool *used_assoc = NULL; bool tag_seen = false; /* Whether SYM was defined by the user. */ static bool symbol_is_user_defined (symbol *sym) { const bool eof_is_user_defined = !eoftoken->alias || STRNEQ (eoftoken->alias->tag, "$end"); return sym->tag[0] != '$' && (eof_is_user_defined || (sym != eoftoken && sym->alias != errtoken)) && sym != errtoken && sym->alias != errtoken && sym != undeftoken && sym->alias != undeftoken; } /*--------------------------. | Create a new sym_content. | `--------------------------*/ static sym_content * sym_content_new (symbol *s) { sym_content *res = xmalloc (sizeof *res); res->symbol = s; res->type_name = NULL; res->type_loc = empty_loc; for (int i = 0; i < CODE_PROPS_SIZE; ++i) code_props_none_init (&res->props[i]); res->number = NUMBER_UNDEFINED; res->prec_loc = empty_loc; res->prec = 0; res->assoc = undef_assoc; res->code = CODE_UNDEFINED; res->class = unknown_sym; res->status = undeclared; return res; } /*---------------------------------. | Create a new symbol, named TAG. | `---------------------------------*/ static symbol * symbol_new (uniqstr tag, location loc) { symbol *res = xmalloc (sizeof *res); uniqstr_assert (tag); /* If the tag is not a string (starts with a double quote), check that it is valid for Yacc. */ if (tag[0] != '\"' && tag[0] != '\'' && strchr (tag, '-')) complain (&loc, Wyacc, _("POSIX Yacc forbids dashes in symbol names: %s"), tag); res->tag = tag; res->location = loc; res->translatable = false; res->location_of_lhs = false; res->alias = NULL; res->content = sym_content_new (res); res->is_alias = false; return res; } /*--------------------. | Free a sym_content. | `--------------------*/ static void sym_content_free (sym_content *sym) { free (sym); } /*---------------------------------------------------------. | Free a symbol and its associated content if appropriate. | `---------------------------------------------------------*/ static void symbol_free (void *ptr) { symbol *sym = (symbol *)ptr; if (!sym->is_alias) sym_content_free (sym->content); free (sym); } /* If needed, swap first and second so that first has the earliest location (according to location_cmp). Many symbol features (e.g., token codes) are not assigned during parsing, but in a second step, via a traversal of the symbol table sorted on tag. However, error messages make more sense if we keep the first declaration first. */ static void symbols_sort (const symbol **first, const symbol **second) { if (0 < location_cmp ((*first)->location, (*second)->location)) { const symbol* tmp = *first; *first = *second; *second = tmp; } } /* Likewise, for locations. */ static void locations_sort (location *first, location *second) { if (0 < location_cmp (*first, *second)) { location tmp = *first; *first = *second; *second = tmp; } } char const * code_props_type_string (code_props_type kind) { switch (kind) { case destructor: return "%destructor"; case printer: return "%printer"; } abort (); } /*----------------------------------------. | Create a new semantic type, named TAG. | `----------------------------------------*/ static semantic_type * semantic_type_new (uniqstr tag, const location *loc) { semantic_type *res = xmalloc (sizeof *res); uniqstr_assert (tag); res->tag = tag; res->location = loc ? *loc : empty_loc; res->status = undeclared; for (int i = 0; i < CODE_PROPS_SIZE; ++i) code_props_none_init (&res->props[i]); return res; } /*-----------------. | Print a symbol. | `-----------------*/ #define SYMBOL_INT_ATTR_PRINT(Attr) \ if (s->content) \ fprintf (f, " %s = %d", #Attr, s->content->Attr) #define SYMBOL_STR_ATTR_PRINT(Attr) \ if (s->content && s->content->Attr) \ fprintf (f, " %s { %s }", #Attr, s->content->Attr) #define SYMBOL_CODE_PRINT(Attr) \ if (s->content && s->content->props[Attr].code) \ fprintf (f, " %s { %s }", #Attr, s->content->props[Attr].code) void symbol_print (symbol const *s, FILE *f) { if (s) { symbol_class c = s->content->class; fprintf (f, "%s: %s", c == unknown_sym ? "unknown" : c == pct_type_sym ? "%type" : c == token_sym ? "token" : c == nterm_sym ? "nterm" : NULL, /* abort. */ s->tag); putc (' ', f); location_print (s->location, f); SYMBOL_INT_ATTR_PRINT (code); SYMBOL_INT_ATTR_PRINT (number); SYMBOL_STR_ATTR_PRINT (type_name); SYMBOL_CODE_PRINT (destructor); SYMBOL_CODE_PRINT (printer); } else fputs ("", f); } #undef SYMBOL_ATTR_PRINT #undef SYMBOL_CODE_PRINT /*----------------------------------. | Whether S is a valid identifier. | `----------------------------------*/ static bool is_identifier (uniqstr s) { static char const alphanum[26 + 26 + 1 + 10] = "abcdefghijklmnopqrstuvwxyz" "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "_" "0123456789"; if (!s || ! memchr (alphanum, *s, sizeof alphanum - 10)) return false; for (++s; *s; ++s) if (! memchr (alphanum, *s, sizeof alphanum)) return false; return true; } /*-----------------------------------------------. | Get the identifier associated to this symbol. | `-----------------------------------------------*/ uniqstr symbol_id_get (symbol const *sym) { // There's one weird case: YYerror is the alias, and error is the // base symbol. Return YYerror in that case. if (sym->alias && is_identifier (sym->alias->tag)) return sym->alias->tag; else if (is_identifier (sym->tag)) return sym->tag; else return NULL; } /*------------------------------------------------------------------. | Complain that S's WHAT is redeclared at SECOND, and was first set | | at FIRST. | `------------------------------------------------------------------*/ static void complain_symbol_redeclared (symbol *s, const char *what, location first, location second) { locations_sort (&first, &second); complain (&second, complaint, _("%s redeclaration for %s"), what, s->tag); subcomplain (&first, complaint, _("previous declaration")); } static void complain_semantic_type_redeclared (semantic_type *s, const char *what, location first, location second) { locations_sort (&first, &second); complain (&second, complaint, _("%s redeclaration for <%s>"), what, s->tag); subcomplain (&first, complaint, _("previous declaration")); } static void complain_class_redeclared (symbol *sym, symbol_class class, location second) { complain (&second, complaint, class == token_sym ? _("symbol %s redeclared as a token") : _("symbol %s redeclared as a nonterminal"), sym->tag); if (!location_empty (sym->location)) subcomplain (&sym->location, complaint, _("previous definition")); } static const symbol * symbol_from_uniqstr_fuzzy (const uniqstr key) { aver (symbols_sorted); #define FSTRCMP_THRESHOLD 0.6 double best_similarity = FSTRCMP_THRESHOLD; const symbol *res = NULL; size_t count = hash_get_n_entries (symbol_table); for (int i = 0; i < count; ++i) { symbol *sym = symbols_sorted[i]; if (STRNEQ (key, sym->tag) && (sym->content->status == declared || sym->content->status == undeclared)) { double similarity = fstrcmp_bounded (key, sym->tag, best_similarity); if (best_similarity < similarity) { res = sym; best_similarity = similarity; } } } return res; } static void complain_symbol_undeclared (const symbol *sym) { assert (sym->content->status != declared); const symbol *best = symbol_from_uniqstr_fuzzy (sym->tag); if (best) { complain (&sym->location, sym->content->status == needed ? complaint : Wother, _("symbol %s is used, but is not defined as a token" " and has no rules; did you mean %s?"), quote_n (0, sym->tag), quote_n (1, best->tag)); if (feature_flag & feature_caret) location_caret_suggestion (sym->location, best->tag, stderr); } else complain (&sym->location, sym->content->status == needed ? complaint : Wother, _("symbol %s is used, but is not defined as a token" " and has no rules"), quote (sym->tag)); } void symbol_location_as_lhs_set (symbol *sym, location loc) { if (!sym->location_of_lhs) { sym->location = loc; sym->location_of_lhs = true; } } /*-----------------------------------------------------------------. | Set the TYPE_NAME associated with SYM. Does nothing if passed 0 | | as TYPE_NAME. | `-----------------------------------------------------------------*/ void symbol_type_set (symbol *sym, uniqstr type_name, location loc) { if (type_name) { tag_seen = true; if (sym->content->type_name) complain_symbol_redeclared (sym, "%type", sym->content->type_loc, loc); else { uniqstr_assert (type_name); sym->content->type_name = type_name; sym->content->type_loc = loc; } } } /*--------------------------------------------------------. | Set the DESTRUCTOR or PRINTER associated with the SYM. | `--------------------------------------------------------*/ void symbol_code_props_set (symbol *sym, code_props_type kind, code_props const *code) { if (sym->content->props[kind].code) complain_symbol_redeclared (sym, code_props_type_string (kind), sym->content->props[kind].location, code->location); else sym->content->props[kind] = *code; } /*-----------------------------------------------------. | Set the DESTRUCTOR or PRINTER associated with TYPE. | `-----------------------------------------------------*/ void semantic_type_code_props_set (semantic_type *type, code_props_type kind, code_props const *code) { if (type->props[kind].code) complain_semantic_type_redeclared (type, code_props_type_string (kind), type->props[kind].location, code->location); else type->props[kind] = *code; } /*---------------------------------------------------. | Get the computed %destructor or %printer for SYM. | `---------------------------------------------------*/ code_props * symbol_code_props_get (symbol *sym, code_props_type kind) { /* Per-symbol code props. */ if (sym->content->props[kind].code) return &sym->content->props[kind]; /* Per-type code props. */ if (sym->content->type_name) { code_props *code = &semantic_type_get (sym->content->type_name, NULL)->props[kind]; if (code->code) return code; } /* Apply default code props's only to user-defined symbols. */ if (symbol_is_user_defined (sym)) { code_props *code = &semantic_type_get (sym->content->type_name ? "*" : "", NULL)->props[kind]; if (code->code) return code; } return &code_props_none; } /*-----------------------------------------------------------------. | Set the PRECEDENCE associated with SYM. Does nothing if invoked | | with UNDEF_ASSOC as ASSOC. | `-----------------------------------------------------------------*/ void symbol_precedence_set (symbol *sym, int prec, assoc a, location loc) { if (a != undef_assoc) { sym_content *s = sym->content; if (s->prec) complain_symbol_redeclared (sym, assoc_to_string (a), s->prec_loc, loc); else { s->prec = prec; s->assoc = a; s->prec_loc = loc; } } /* Only terminals have a precedence. */ symbol_class_set (sym, token_sym, loc, false); } /*------------------------------------. | Set the CLASS associated with SYM. | `------------------------------------*/ static void complain_pct_type_on_token (location *loc) { complain (loc, Wyacc, _("POSIX yacc reserves %%type to nonterminals")); } void symbol_class_set (symbol *sym, symbol_class class, location loc, bool declaring) { aver (class != unknown_sym); sym_content *s = sym->content; if (class == pct_type_sym) { if (s->class == token_sym) complain_pct_type_on_token (&loc); else if (s->class == unknown_sym) s->class = class; } else if (s->class != unknown_sym && s->class != pct_type_sym && s->class != class) complain_class_redeclared (sym, class, loc); else { if (class == token_sym && s->class == pct_type_sym) complain_pct_type_on_token (&sym->location); s->class = class; if (declaring) { if (s->status == declared) { complain (&loc, Wother, _("symbol %s redeclared"), sym->tag); subcomplain (&sym->location, Wother, _("previous declaration")); } else { sym->location = loc; s->status = declared; } } } } /*----------------------------. | Set the token code of SYM. | `----------------------------*/ void symbol_code_set (symbol *sym, int code, location loc) { int *codep = &sym->content->code; if (sym->content->class != token_sym) complain (&loc, complaint, _("nonterminals cannot be given a token code")); else if (*codep != CODE_UNDEFINED && *codep != code) complain (&loc, complaint, _("redefining code of token %s"), sym->tag); else if (code == INT_MAX) complain (&loc, complaint, _("code of token %s too large"), sym->tag); else { *codep = code; /* User defined $end token? */ if (code == 0 && !eoftoken) { eoftoken = sym->content->symbol; eoftoken->content->number = 0; } } } /*----------------------------------------------------------. | If SYM is not defined, report an error, and consider it a | | nonterminal. | `----------------------------------------------------------*/ static void symbol_check_defined (symbol *sym) { sym_content *s = sym->content; if (s->class == unknown_sym || s->class == pct_type_sym) { complain_symbol_undeclared (sym); s->class = nterm_sym; } if (s->number == NUMBER_UNDEFINED) s->number = s->class == token_sym ? ntokens++ : nnterms++; if (s->class == token_sym && sym->tag[0] == '"' && !sym->is_alias) complain (&sym->location, Wdangling_alias, _("string literal %s not attached to a symbol"), sym->tag); for (int i = 0; i < 2; ++i) symbol_code_props_get (sym, i)->is_used = true; /* Set the semantic type status associated to the current symbol to 'declared' so that we could check semantic types unnecessary uses. */ if (s->type_name) { semantic_type *sem_type = semantic_type_get (s->type_name, NULL); if (sem_type) sem_type->status = declared; } } static void semantic_type_check_defined (semantic_type *sem_type) { /* <*> and <> do not have to be "declared". */ if (sem_type->status == declared || !*sem_type->tag || STREQ (sem_type->tag, "*")) { for (int i = 0; i < 2; ++i) if (sem_type->props[i].kind != CODE_PROPS_NONE && ! sem_type->props[i].is_used) complain (&sem_type->location, Wother, _("useless %s for type <%s>"), code_props_type_string (i), sem_type->tag); } else complain (&sem_type->location, Wother, _("type <%s> is used, but is not associated to any symbol"), sem_type->tag); } /*-------------------------------------------------------------------. | Merge the properties (precedence, associativity, etc.) of SYM, and | | its string-named alias STR; check consistency. | `-------------------------------------------------------------------*/ static void symbol_merge_properties (symbol *sym, symbol *str) { if (str->content->type_name != sym->content->type_name) { if (str->content->type_name) symbol_type_set (sym, str->content->type_name, str->content->type_loc); else symbol_type_set (str, sym->content->type_name, sym->content->type_loc); } for (int i = 0; i < CODE_PROPS_SIZE; ++i) if (str->content->props[i].code) symbol_code_props_set (sym, i, &str->content->props[i]); else if (sym->content->props[i].code) symbol_code_props_set (str, i, &sym->content->props[i]); if (sym->content->prec || str->content->prec) { if (str->content->prec) symbol_precedence_set (sym, str->content->prec, str->content->assoc, str->content->prec_loc); else symbol_precedence_set (str, sym->content->prec, sym->content->assoc, sym->content->prec_loc); } } void symbol_make_alias (symbol *sym, symbol *str, location loc) { if (sym->content->class != token_sym) complain (&loc, complaint, _("nonterminals cannot be given a string alias")); else if (str->alias) complain (&loc, Wother, _("symbol %s used more than once as a literal string"), str->tag); else if (sym->alias) complain (&loc, Wother, _("symbol %s given more than one literal string"), sym->tag); else { symbol_merge_properties (sym, str); sym_content_free (str->content); str->content = sym->content; str->content->symbol = str; str->is_alias = true; str->alias = sym; sym->alias = str; } } /*-------------------------------------------------------------------. | Assign a symbol number, and write the definition of the token name | | into FDEFINES. Put in SYMBOLS. | `-------------------------------------------------------------------*/ static void symbol_pack (symbol *sym) { aver (sym->content->number != NUMBER_UNDEFINED); if (sym->content->class == nterm_sym) sym->content->number += ntokens; symbols[sym->content->number] = sym->content->symbol; } static void complain_code_redeclared (int num, const symbol *first, const symbol *second) { symbols_sort (&first, &second); complain (&second->location, complaint, _("code %d reassigned to token %s"), num, second->tag); subcomplain (&first->location, complaint, _("previous declaration for %s"), first->tag); } /*-------------------------------------------------. | Put SYM in TOKEN_TRANSLATIONS if it is a token. | `-------------------------------------------------*/ static void symbol_translation (const symbol *sym) { if (sym->content->class == token_sym && !sym->is_alias) { /* A token whose translation has already been set? */ if (token_translations[sym->content->code] != undeftoken->content->number) complain_code_redeclared (sym->content->code, symbols[token_translations[sym->content->code]], sym); else token_translations[sym->content->code] = sym->content->number; } } /*---------------------------------------. | Symbol and semantic type hash tables. | `---------------------------------------*/ /* Initial capacity of symbol and semantic type hash table. */ #define HT_INITIAL_CAPACITY 257 static inline bool hash_compare_symbol (const symbol *m1, const symbol *m2) { /* Since tags are unique, we can compare the pointers themselves. */ return UNIQSTR_EQ (m1->tag, m2->tag); } static inline bool hash_compare_semantic_type (const semantic_type *m1, const semantic_type *m2) { /* Since names are unique, we can compare the pointers themselves. */ return UNIQSTR_EQ (m1->tag, m2->tag); } static bool hash_symbol_comparator (void const *m1, void const *m2) { return hash_compare_symbol (m1, m2); } static bool hash_semantic_type_comparator (void const *m1, void const *m2) { return hash_compare_semantic_type (m1, m2); } static inline size_t hash_symbol (const symbol *m, size_t tablesize) { /* Since tags are unique, we can hash the pointer itself. */ return ((uintptr_t) m->tag) % tablesize; } static inline size_t hash_semantic_type (const semantic_type *m, size_t tablesize) { /* Since names are unique, we can hash the pointer itself. */ return ((uintptr_t) m->tag) % tablesize; } static size_t hash_symbol_hasher (void const *m, size_t tablesize) { return hash_symbol (m, tablesize); } static size_t hash_semantic_type_hasher (void const *m, size_t tablesize) { return hash_semantic_type (m, tablesize); } /*-------------------------------. | Create the symbol hash table. | `-------------------------------*/ void symbols_new (void) { symbol_table = hash_xinitialize (HT_INITIAL_CAPACITY, NULL, hash_symbol_hasher, hash_symbol_comparator, symbol_free); /* Construct the acceptsymbol symbol. */ acceptsymbol = symbol_get ("$accept", empty_loc); acceptsymbol->content->class = nterm_sym; acceptsymbol->content->number = nnterms++; /* Construct the YYerror/"error" token */ errtoken = symbol_get ("YYerror", empty_loc); errtoken->content->class = token_sym; errtoken->content->number = ntokens++; { symbol *alias = symbol_get ("error", empty_loc); symbol_class_set (alias, token_sym, empty_loc, false); symbol_make_alias (errtoken, alias, empty_loc); } /* Construct the YYUNDEF/"$undefined" token that represents all undefined literal tokens. It is always symbol number 2. */ undeftoken = symbol_get ("YYUNDEF", empty_loc); undeftoken->content->class = token_sym; undeftoken->content->number = ntokens++; { symbol *alias = symbol_get ("$undefined", empty_loc); symbol_class_set (alias, token_sym, empty_loc, false); symbol_make_alias (undeftoken, alias, empty_loc); } semantic_type_table = hash_xinitialize (HT_INITIAL_CAPACITY, NULL, hash_semantic_type_hasher, hash_semantic_type_comparator, free); } /*----------------------------------------------------------------. | Find the symbol named KEY, and return it. If it does not exist | | yet, create it. | `----------------------------------------------------------------*/ symbol * symbol_from_uniqstr (const uniqstr key, location loc) { symbol probe; probe.tag = key; symbol *res = hash_lookup (symbol_table, &probe); if (!res) { /* First insertion in the hash. */ aver (!symbols_sorted); res = symbol_new (key, loc); hash_xinsert (symbol_table, res); } return res; } /*-----------------------------------------------------------------------. | Find the semantic type named KEY, and return it. If it does not exist | | yet, create it. | `-----------------------------------------------------------------------*/ semantic_type * semantic_type_from_uniqstr (const uniqstr key, const location *loc) { semantic_type probe; probe.tag = key; semantic_type *res = hash_lookup (semantic_type_table, &probe); if (!res) { /* First insertion in the hash. */ res = semantic_type_new (key, loc); hash_xinsert (semantic_type_table, res); } return res; } /*----------------------------------------------------------------. | Find the symbol named KEY, and return it. If it does not exist | | yet, create it. | `----------------------------------------------------------------*/ symbol * symbol_get (const char *key, location loc) { return symbol_from_uniqstr (uniqstr_new (key), loc); } /*-----------------------------------------------------------------------. | Find the semantic type named KEY, and return it. If it does not exist | | yet, create it. | `-----------------------------------------------------------------------*/ semantic_type * semantic_type_get (const char *key, const location *loc) { return semantic_type_from_uniqstr (uniqstr_new (key), loc); } /*------------------------------------------------------------------. | Generate a dummy nonterminal, whose name cannot conflict with the | | user's names. | `------------------------------------------------------------------*/ symbol * dummy_symbol_get (location loc) { /* Incremented for each generated symbol. */ static int dummy_count = 0; char buf[32]; int len = snprintf (buf, sizeof buf, "$@%d", ++dummy_count); assure (len < sizeof buf); symbol *sym = symbol_get (buf, loc); sym->content->class = nterm_sym; return sym; } bool symbol_is_dummy (symbol const *sym) { return sym->tag[0] == '@' || (sym->tag[0] == '$' && sym->tag[1] == '@'); } /*-------------------. | Free the symbols. | `-------------------*/ void symbols_free (void) { hash_free (symbol_table); hash_free (semantic_type_table); free (symbols); free (symbols_sorted); free (semantic_types_sorted); } static int symbol_cmp (void const *a, void const *b) { return location_cmp ((*(symbol * const *)a)->location, (*(symbol * const *)b)->location); } /* Store in *SORTED an array of pointers to the symbols contained in TABLE, sorted by order of appearance (i.e., by location). */ static void table_sort (struct hash_table *table, symbol ***sorted) { aver (!*sorted); size_t count = hash_get_n_entries (table); *sorted = xnmalloc (count + 1, sizeof **sorted); hash_get_entries (table, (void**)*sorted, count); qsort (*sorted, count, sizeof **sorted, symbol_cmp); (*sorted)[count] = NULL; } /*--------------------------------------------------------------. | Check that all the symbols are defined. Report any undefined | | symbols and consider them nonterminals. | `--------------------------------------------------------------*/ void symbols_check_defined (void) { table_sort (symbol_table, &symbols_sorted); /* semantic_type, like symbol, starts with a 'tag' field and then a 'location' field. And here we only deal with arrays/hashes of pointers, sizeof is not an issue. So instead of implementing table_sort (and symbol_cmp) once for each type, let's lie a bit to the typing system, and treat 'semantic_type' as if it were 'symbol'. */ table_sort (semantic_type_table, (symbol ***) &semantic_types_sorted); for (int i = 0; symbols_sorted[i]; ++i) symbol_check_defined (symbols_sorted[i]); for (int i = 0; semantic_types_sorted[i]; ++i) semantic_type_check_defined (semantic_types_sorted[i]); } /*------------------------------------------------------------------. | Set TOKEN_TRANSLATIONS. Check that no two symbols share the same | | number. | `------------------------------------------------------------------*/ static void symbols_token_translations_init (void) { bool code_256_available_p = true; /* Find the highest token code, and whether 256, the POSIX preferred token code for the error token, is used. */ max_code = 0; for (int i = 0; i < ntokens; ++i) { sym_content *sym = symbols[i]->content; if (sym->code != CODE_UNDEFINED) { if (sym->code > max_code) max_code = sym->code; if (sym->code == 256) code_256_available_p = false; } } /* If 256 is not used, assign it to error, to follow POSIX. */ if (code_256_available_p && errtoken->content->code == CODE_UNDEFINED) errtoken->content->code = 256; /* Set the missing codes. */ if (max_code < 256) max_code = 256; for (int i = 0; i < ntokens; ++i) { sym_content *sym = symbols[i]->content; if (sym->code == CODE_UNDEFINED) { IGNORE_TYPE_LIMITS_BEGIN if (INT_ADD_WRAPV (max_code, 1, &max_code)) complain (NULL, fatal, _("token number too large")); IGNORE_TYPE_LIMITS_END sym->code = max_code; } if (sym->code > max_code) max_code = sym->code; } token_translations = xnmalloc (max_code + 1, sizeof *token_translations); /* Initialize all entries for literal tokens to the internal token number for $undefined, which represents all invalid inputs. */ for (int i = 0; i < max_code + 1; ++i) token_translations[i] = undeftoken->content->number; for (int i = 0; symbols_sorted[i]; ++i) symbol_translation (symbols_sorted[i]); } /* Whether some symbol requires internationalization. */ static bool has_translations (void) { for (const void *entry = hash_get_first (symbol_table); entry; entry = hash_get_next (symbol_table, entry)) { const symbol *sym = (const symbol *) entry; if (sym->translatable) return true; } return false; } /*----------------------------------------------------------------. | Assign symbol numbers, and write definition of token names into | | FDEFINES. Set up vectors SYMBOL_TABLE, TAGS of symbols. | `----------------------------------------------------------------*/ void symbols_pack (void) { symbols = xcalloc (nsyms, sizeof *symbols); for (int i = 0; symbols_sorted[i]; ++i) symbol_pack (symbols_sorted[i]); /* Aliases leave empty slots in symbols, so remove them. */ { int nsyms_old = nsyms; for (int writei = 0, readi = 0; readi < nsyms_old; readi += 1) { if (symbols[readi] == NULL) { nsyms -= 1; ntokens -= 1; } else { symbols[writei] = symbols[readi]; symbols[writei]->content->number = writei; writei += 1; } } } symbols = xnrealloc (symbols, nsyms, sizeof *symbols); symbols_token_translations_init (); // If some user tokens are internationalized, the internal ones // should be too. if (has_translations ()) { const bool eof_is_user_defined = !eoftoken->alias || STRNEQ (eoftoken->alias->tag, "$end"); if (!eof_is_user_defined) eoftoken->alias->translatable = true; undeftoken->alias->translatable = true; errtoken->alias->translatable = true; } } /*---------------------------------. | Initialize relation graph nodes. | `---------------------------------*/ static void init_prec_nodes (void) { prec_nodes = xcalloc (nsyms, sizeof *prec_nodes); for (int i = 0; i < nsyms; ++i) { prec_nodes[i] = xmalloc (sizeof *prec_nodes[i]); symgraph *s = prec_nodes[i]; s->id = i; s->succ = 0; s->pred = 0; } } /*----------------. | Create a link. | `----------------*/ static symgraphlink * symgraphlink_new (graphid id, symgraphlink *next) { symgraphlink *res = xmalloc (sizeof *res); res->id = id; res->next = next; return res; } /*------------------------------------------------------------------. | Register the second symbol of the precedence relation, and return | | whether this relation is new. Use only in register_precedence. | `------------------------------------------------------------------*/ static bool register_precedence_second_symbol (symgraphlink **first, graphid sym) { if (!*first || sym < (*first)->id) *first = symgraphlink_new (sym, *first); else { symgraphlink *slist = *first; while (slist->next && slist->next->id <= sym) slist = slist->next; if (slist->id == sym) /* Relation already present. */ return false; slist->next = symgraphlink_new (sym, slist->next); } return true; } /*------------------------------------------------------------------. | Register a new relation between symbols as used. The first symbol | | has a greater precedence than the second one. | `------------------------------------------------------------------*/ void register_precedence (graphid first, graphid snd) { if (!prec_nodes) init_prec_nodes (); register_precedence_second_symbol (&(prec_nodes[first]->succ), snd); register_precedence_second_symbol (&(prec_nodes[snd]->pred), first); } /*---------------------------------------. | Deep clear a linked / adjacency list). | `---------------------------------------*/ static void linkedlist_free (symgraphlink *node) { if (node) { while (node->next) { symgraphlink *tmp = node->next; free (node); node = tmp; } free (node); } } /*----------------------------------------------. | Clear and destroy association tracking table. | `----------------------------------------------*/ static void assoc_free (void) { for (int i = 0; i < nsyms; ++i) { linkedlist_free (prec_nodes[i]->pred); linkedlist_free (prec_nodes[i]->succ); free (prec_nodes[i]); } free (prec_nodes); } /*---------------------------------------. | Initialize association tracking table. | `---------------------------------------*/ static void init_assoc (void) { used_assoc = xcalloc (nsyms, sizeof *used_assoc); for (graphid i = 0; i < nsyms; ++i) used_assoc[i] = false; } /*------------------------------------------------------------------. | Test if the associativity for the symbols is defined and useless. | `------------------------------------------------------------------*/ static inline bool is_assoc_useless (symbol *s) { return s && s->content->assoc != undef_assoc && s->content->assoc != precedence_assoc && !used_assoc[s->content->number]; } /*-------------------------------. | Register a used associativity. | `-------------------------------*/ void register_assoc (graphid i, graphid j) { if (!used_assoc) init_assoc (); used_assoc[i] = true; used_assoc[j] = true; } /*--------------------------------------------------. | Print a warning for unused precedence relations. | `--------------------------------------------------*/ void print_precedence_warnings (void) { if (!prec_nodes) init_prec_nodes (); if (!used_assoc) init_assoc (); for (int i = 0; i < nsyms; ++i) { symbol *s = symbols[i]; if (s && s->content->prec != 0 && !prec_nodes[i]->pred && !prec_nodes[i]->succ) { if (is_assoc_useless (s)) complain (&s->content->prec_loc, Wprecedence, _("useless precedence and associativity for %s"), s->tag); else if (s->content->assoc == precedence_assoc) complain (&s->content->prec_loc, Wprecedence, _("useless precedence for %s"), s->tag); } else if (is_assoc_useless (s)) complain (&s->content->prec_loc, Wprecedence, _("useless associativity for %s, use %%precedence"), s->tag); } free (used_assoc); assoc_free (); }