// SPDX-License-Identifier: LGPL-2.1-or-later /* * * BlueZ - Bluetooth protocol stack for Linux * * Copyright (C) 2011-2014 Intel Corporation * Copyright (C) 2002-2010 Marcel Holtmann * * */ #ifdef HAVE_CONFIG_H #include #endif #define _GNU_SOURCE #include #include #include "lib/bluetooth.h" #include "lib/hci.h" #include "src/shared/util.h" #include "display.h" #include "packet.h" #include "lmp.h" #include "ll.h" #include "vendor.h" #include "intel.h" #define COLOR_UNKNOWN_EVENT_MASK COLOR_WHITE_BG #define COLOR_UNKNOWN_SCAN_STATUS COLOR_WHITE_BG #define COLOR_UNKNOWN_EXT_EVENT COLOR_WHITE_BG static void print_status(uint8_t status) { packet_print_error("Status", status); } static void print_module(uint8_t module) { const char *str; switch (module) { case 0x01: str = "BC"; break; case 0x02: str = "HCI"; break; case 0x03: str = "LLC"; break; case 0x04: str = "OS"; break; case 0x05: str = "LM"; break; case 0x06: str = "SC"; break; case 0x07: str = "SP"; break; case 0x08: str = "OSAL"; break; case 0x09: str = "LC"; break; case 0x0a: str = "APP"; break; case 0x0b: str = "TLD"; break; case 0xf0: str = "Debug"; break; default: str = "Reserved"; break; } print_field("Module: %s (0x%2.2x)", str, module); } static void null_cmd(uint16_t index, const void *data, uint8_t size) { } static void status_rsp(uint16_t index, const void *data, uint8_t size) { uint8_t status = get_u8(data); print_status(status); } static void reset_cmd(uint16_t index, const void *data, uint8_t size) { uint8_t reset_type = get_u8(data); uint8_t patch_enable = get_u8(data + 1); uint8_t ddc_reload = get_u8(data + 2); uint8_t boot_option = get_u8(data + 3); uint32_t boot_addr = get_le32(data + 4); const char *str; switch (reset_type) { case 0x00: str = "Soft software reset"; break; case 0x01: str = "Hard software reset"; break; default: str = "Reserved"; break; } print_field("Reset type: %s (0x%2.2x)", str, reset_type); switch (patch_enable) { case 0x00: str = "Do not enable"; break; case 0x01: str = "Enable"; break; default: str = "Reserved"; break; } print_field("Patch vectors: %s (0x%2.2x)", str, patch_enable); switch (ddc_reload) { case 0x00: str = "Do not reload"; break; case 0x01: str = "Reload from OTP"; break; default: str = "Reserved"; break; } print_field("DDC parameters: %s (0x%2.2x)", str, ddc_reload); switch (boot_option) { case 0x00: str = "Current image"; break; case 0x01: str = "Specified address"; break; default: str = "Reserved"; break; } print_field("Boot option: %s (0x%2.2x)", str, boot_option); print_field("Boot address: 0x%8.8x", boot_addr); } struct intel_version_tlv { uint8_t type; uint8_t len; uint8_t val[]; }; static void print_version_tlv_u32(const struct intel_version_tlv *tlv, char *type_str) { print_field("%s(%u): 0x%8.8x", type_str, tlv->type, get_le32(tlv->val)); } static void print_version_tlv_u16(const struct intel_version_tlv *tlv, char *type_str) { print_field("%s(%u): 0x%4.4x", type_str, tlv->type, get_le16(tlv->val)); } static void print_version_tlv_u8(const struct intel_version_tlv *tlv, char *type_str) { print_field("%s(%u): 0x%2.2x", type_str, tlv->type, get_u8(tlv->val)); } static void print_version_tlv_enabled(const struct intel_version_tlv *tlv, char *type_str) { print_field("%s(%u): %s(%u)", type_str, tlv->type, tlv->val[0] ? "Enabled" : "Disabled", tlv->val[0]); } static void print_version_tlv_img_type(const struct intel_version_tlv *tlv, char *type_str) { const char *str; switch (get_u8(tlv->val)) { case 0x01: str = "Bootloader"; break; case 0x03: str = "Firmware"; break; default: str = "Unknown"; break; } print_field("%s(%u): %s(0x%2.2x)", type_str, tlv->type, str, get_u8(tlv->val)); } static void print_version_tlv_timestamp(const struct intel_version_tlv *tlv, char *type_str) { print_field("%s(%u): %u-%u", type_str, tlv->type, tlv->val[1], tlv->val[0]); } static void print_version_tlv_min_fw(const struct intel_version_tlv *tlv, char *type_str) { print_field("%s(%u): %u-%u.%u", type_str, tlv->type, tlv->val[0], tlv->val[1], 2000 + tlv->val[2]); } static void print_version_tlv_otp_bdaddr(const struct intel_version_tlv *tlv, char *type_str) { packet_print_addr(type_str, tlv->val, 0x00); } static void print_version_tlv_unknown(const struct intel_version_tlv *tlv, char *type_str) { print_field("%s(%u): ", type_str, tlv->type); packet_hexdump(tlv->val, tlv->len); } static void print_version_tlv_mfg(const struct intel_version_tlv *tlv, char *type_str) { uint16_t mfg_id = get_le16(tlv->val); print_field("%s(%u): %s (%u)", type_str, tlv->type, bt_compidtostr(mfg_id), mfg_id); } static const struct intel_version_tlv_desc { uint8_t type; char *type_str; void (*func)(const struct intel_version_tlv *tlv, char *type_str); } intel_version_tlv_table[] = { { 16, "CNVi TOP", print_version_tlv_u32 }, { 17, "CNVr TOP", print_version_tlv_u32 }, { 18, "CNVi BT", print_version_tlv_u32 }, { 19, "CNVr BT", print_version_tlv_u32 }, { 20, "CNVi OTP", print_version_tlv_u16 }, { 21, "CNVr OTP", print_version_tlv_u16 }, { 22, "Device Rev ID", print_version_tlv_u16 }, { 23, "USB VID", print_version_tlv_u16 }, { 24, "USB PID", print_version_tlv_u16 }, { 25, "PCIE VID", print_version_tlv_u16 }, { 26, "PCIe DID", print_version_tlv_u16 }, { 27, "PCIe Subsystem ID", print_version_tlv_u16 }, { 28, "Image Type", print_version_tlv_img_type }, { 29, "Time Stamp", print_version_tlv_timestamp }, { 30, "Build Type", print_version_tlv_u8 }, { 31, "Build Num", print_version_tlv_u32 }, { 32, "FW Build Product", print_version_tlv_u8 }, { 33, "FW Build HW", print_version_tlv_u8 }, { 34, "FW Build Step", print_version_tlv_u8 }, { 35, "BT Spec", print_version_tlv_u8 }, { 36, "Manufacturer", print_version_tlv_mfg }, { 37, "HCI Revision", print_version_tlv_u16 }, { 38, "LMP SubVersion", print_version_tlv_u16 }, { 39, "OTP Patch Version", print_version_tlv_u8 }, { 40, "Secure Boot", print_version_tlv_enabled }, { 41, "Key From Header", print_version_tlv_enabled }, { 42, "OTP Lock", print_version_tlv_enabled }, { 43, "API Lock", print_version_tlv_enabled }, { 44, "Debug Lock", print_version_tlv_enabled }, { 45, "Minimum FW", print_version_tlv_min_fw }, { 46, "Limited CCE", print_version_tlv_enabled }, { 47, "SBE Type", print_version_tlv_u8 }, { 48, "OTP BDADDR", print_version_tlv_otp_bdaddr }, { 49, "Unlocked State", print_version_tlv_enabled }, { 0, NULL, NULL }, }; static void read_version_tlv_rsp(const void *data, uint8_t size) { uint8_t status = get_u8(data); print_status(status); /* Consume the status */ data++; size--; while (size > 0) { const struct intel_version_tlv *tlv = data; const struct intel_version_tlv_desc *desc = NULL; int i; for (i = 0; intel_version_tlv_table[i].type > 0; i++) { if (intel_version_tlv_table[i].type == tlv->type) { desc = &intel_version_tlv_table[i]; break; } } if (desc) desc->func(tlv, desc->type_str); else print_version_tlv_unknown(tlv, "Unknown Type"); data += sizeof(*tlv) + tlv->len; size -= sizeof(*tlv) + tlv->len; } } static void read_version_rsp(uint16_t index, const void *data, uint8_t size) { uint8_t status = get_u8(data); uint8_t hw_platform = get_u8(data + 1); uint8_t hw_variant = get_u8(data + 2); uint8_t hw_revision = get_u8(data + 3); uint8_t fw_variant = get_u8(data + 4); uint8_t fw_revision = get_u8(data + 5); uint8_t fw_build_nn = get_u8(data + 6); uint8_t fw_build_cw = get_u8(data + 7); uint8_t fw_build_yy = get_u8(data + 8); uint8_t fw_patch = get_u8(data + 9); /* There are two different formats of the response for the * HCI_Intel_Read_version command depends on the command parameters * If the size is fixed to 10 and hw_platform is 0x37, then it is the * legacy format, otherwise use the tlv based format. */ if (size != 10 && hw_platform != 0x37) { read_version_tlv_rsp(data, size); return; } print_status(status); print_field("Hardware platform: 0x%2.2x", hw_platform); print_field("Hardware variant: 0x%2.2x", hw_variant); print_field("Hardware revision: %u.%u", hw_revision >> 4, hw_revision & 0x0f); print_field("Firmware variant: 0x%2.2x", fw_variant); print_field("Firmware revision: %u.%u", fw_revision >> 4, fw_revision & 0x0f); print_field("Firmware build: %u-%u.%u", fw_build_nn, fw_build_cw, 2000 + fw_build_yy); print_field("Firmware patch: %u", fw_patch); } static void read_version_cmd(uint16_t index, const void *data, uint8_t size) { char *str; uint8_t type; /* This is the legacy read version command format and no further action * is needed */ if (size == 0) return; print_field("Requested Type:"); while (size > 0) { const struct intel_version_tlv_desc *desc = NULL; int i; type = get_u8(data); /* Get all supported types */ if (type == 0xff) str = "All Supported Types"; else { for (i = 0; intel_version_tlv_table[i].type > 0; i++) { if (intel_version_tlv_table[i].type == type) { desc = &intel_version_tlv_table[i]; break; } } if (desc) str = desc->type_str; else str = "Unknown Type"; } print_field(" %s(0x%2.2x)", str, type); data += sizeof(type); size -= sizeof(type); } } static void set_uart_baudrate_cmd(uint16_t index, const void *data, uint8_t size) { uint8_t baudrate = get_u8(data); const char *str; switch (baudrate) { case 0x00: str = "9600 Baud"; break; case 0x01: str = "19200 Baud"; break; case 0x02: str = "38400 Baud"; break; case 0x03: str = "57600 Baud"; break; case 0x04: str = "115200 Baud"; break; case 0x05: str = "230400 Baud"; break; case 0x06: str = "460800 Baud"; break; case 0x07: str = "921600 Baud"; break; case 0x08: str = "1843200 Baud"; break; case 0x09: str = "3250000 baud"; break; case 0x0a: str = "2000000 baud"; break; case 0x0b: str = "3000000 baud"; break; case 0x0c: str = "3714286 baud"; break; case 0x0d: str = "4333333 baud"; break; case 0x0e: str = "6500000 baud"; break; default: str = "Reserved"; break; } print_field("Baudrate: %s (0x%2.2x)", str, baudrate); } static void secure_send_cmd(uint16_t index, const void *data, uint8_t size) { uint8_t type = get_u8(data); const char *str; switch (type) { case 0x00: str = "Init"; break; case 0x01: str = "Data"; break; case 0x02: str = "Sign"; break; case 0x03: str = "PKey"; break; default: str = "Reserved"; break; } print_field("Type: %s fragment (0x%2.2x)", str, type); packet_hexdump(data + 1, size - 1); } static void manufacturer_mode_cmd(uint16_t index, const void *data, uint8_t size) { uint8_t mode = get_u8(data); uint8_t reset = get_u8(data + 1); const char *str; switch (mode) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Mode switch: %s (0x%2.2x)", str, mode); switch (reset) { case 0x00: str = "No reset"; break; case 0x01: str = "Reset and deactivate patches"; break; case 0x02: str = "Reset and activate patches"; break; default: str = "Reserved"; break; } print_field("Reset behavior: %s (0x%2.2x)", str, reset); } static void write_bd_data_cmd(uint16_t index, const void *data, uint8_t size) { uint8_t features[8]; packet_print_addr("Address", data, 0x00); packet_hexdump(data + 6, 6); memcpy(features, data + 12, 8); packet_print_features_lmp(features, 0); memcpy(features, data + 20, 1); memset(features + 1, 0, 7); packet_print_features_ll(features); packet_hexdump(data + 21, size - 21); } static void read_bd_data_rsp(uint16_t index, const void *data, uint8_t size) { uint8_t status = get_u8(data); print_status(status); packet_print_addr("Address", data + 1, 0x00); packet_hexdump(data + 7, size - 7); } static void write_bd_address_cmd(uint16_t index, const void *data, uint8_t size) { packet_print_addr("Address", data, 0x00); } static void act_deact_traces_cmd(uint16_t index, const void *data, uint8_t size) { uint8_t tx = get_u8(data); uint8_t tx_arq = get_u8(data + 1); uint8_t rx = get_u8(data + 2); print_field("Transmit traces: 0x%2.2x", tx); print_field("Transmit ARQ: 0x%2.2x", tx_arq); print_field("Receive traces: 0x%2.2x", rx); } static void stimulate_exception_cmd(uint16_t index, const void *data, uint8_t size) { uint8_t type = get_u8(data); const char *str; switch (type) { case 0x00: str = "Fatal Exception"; break; case 0x01: str = "Debug Exception"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); } static const struct { uint8_t bit; const char *str; } events_table[] = { { 0, "Bootup" }, { 1, "SCO Rejected via LMP" }, { 2, "PTT Switch Notification" }, { 7, "Scan Status" }, { 9, "Debug Exception" }, { 10, "Fatal Exception" }, { 11, "System Exception" }, { 13, "LE Link Established" }, { 14, "FW Trace String" }, { } }; static void set_event_mask_cmd(uint16_t index, const void *data, uint8_t size) { const uint8_t *events_array = data; uint64_t mask, events = 0; int i; for (i = 0; i < 8; i++) events |= ((uint64_t) events_array[i]) << (i * 8); print_field("Mask: 0x%16.16" PRIx64, events); mask = events; for (i = 0; events_table[i].str; i++) { if (events & (((uint64_t) 1) << events_table[i].bit)) { print_field(" %s", events_table[i].str); mask &= ~(((uint64_t) 1) << events_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_EVENT_MASK, " Unknown mask " "(0x%16.16" PRIx64 ")", mask); } static void ddc_config_write_cmd(uint16_t index, const void *data, uint8_t size) { while (size > 0) { uint8_t param_len = get_u8(data); uint16_t param_id = get_le16(data + 1); print_field("Identifier: 0x%4.4x", param_id); packet_hexdump(data + 3, param_len - 2); data += param_len + 1; size -= param_len + 1; } } static void ddc_config_write_rsp(uint16_t index, const void *data, uint8_t size) { uint8_t status = get_u8(data); uint16_t param_id = get_le16(data + 1); print_status(status); print_field("Identifier: 0x%4.4x", param_id); } static void memory_write_cmd(uint16_t index, const void *data, uint8_t size) { uint32_t addr = get_le32(data); uint8_t mode = get_u8(data + 4); uint8_t length = get_u8(data + 5); const char *str; print_field("Address: 0x%8.8x", addr); switch (mode) { case 0x00: str = "Byte access"; break; case 0x01: str = "Half word access"; break; case 0x02: str = "Word access"; break; default: str = "Reserved"; break; } print_field("Mode: %s (0x%2.2x)", str, mode); print_field("Length: %u", length); packet_hexdump(data + 6, size - 6); } static void read_supported_features_cmd(uint16_t index, const void *data, uint8_t size) { uint8_t page = get_u8(data); print_field("Page: 0x%2.2x", page); } static void read_supported_features_rsp(uint16_t index, const void *data, uint8_t size) { uint8_t status = get_u8(data); uint8_t page = get_u8(data + 1); uint8_t max_pages = get_u8(data + 2); print_status(status); print_field("Page: 0x%2.2x", page); print_field("Max Pages: 0x%2.2x", max_pages); print_field("Supported Features:"); packet_hexdump(data + 3, size - 3); } static const struct vendor_ocf vendor_ocf_table[] = { { 0x001, "Reset", reset_cmd, 8, true, status_rsp, 1, true }, { 0x002, "No Operation" }, { 0x005, "Read Version", read_version_cmd, 0, false, read_version_rsp, 1, false }, { 0x006, "Set UART Baudrate", set_uart_baudrate_cmd, 1, true, status_rsp, 1, true }, { 0x007, "Enable LPM" }, { 0x008, "PCM Write Configuration" }, { 0x009, "Secure Send", secure_send_cmd, 1, false, status_rsp, 1, true }, { 0x00d, "Read Secure Boot Params", null_cmd, 0, true }, { 0x00e, "Write Secure Boot Params" }, { 0x00f, "Unlock" }, { 0x010, "Change UART Baudrate" }, { 0x011, "Manufacturer Mode", manufacturer_mode_cmd, 2, true, status_rsp, 1, true }, { 0x012, "Read Link RSSI" }, { 0x022, "Get Exception Info" }, { 0x024, "Clear Exception Info" }, { 0x02f, "Write BD Data", write_bd_data_cmd, 6, false }, { 0x030, "Read BD Data", null_cmd, 0, true, read_bd_data_rsp, 7, false }, { 0x031, "Write BD Address", write_bd_address_cmd, 6, true, status_rsp, 1, true }, { 0x032, "Flow Specification" }, { 0x034, "Read Secure ID" }, { 0x038, "Set Synchronous USB Interface Type" }, { 0x039, "Config Synchronous Interface" }, { 0x03f, "SW RF Kill", null_cmd, 0, true, status_rsp, 1, true }, { 0x043, "Activate Deactivate Traces", act_deact_traces_cmd, 3, true }, { 0x04d, "Stimulate Exception", stimulate_exception_cmd, 1, true, status_rsp, 1, true }, { 0x050, "Read HW Version" }, { 0x052, "Set Event Mask", set_event_mask_cmd, 8, true, status_rsp, 1, true }, { 0x053, "Config_Link_Controller" }, { 0x089, "DDC Write" }, { 0x08a, "DDC Read" }, { 0x08b, "DDC Config Write", ddc_config_write_cmd, 3, false, ddc_config_write_rsp, 3, true }, { 0x08c, "DDC Config Read" }, { 0x08d, "Memory Read" }, { 0x08e, "Memory Write", memory_write_cmd, 6, false, status_rsp, 1, true }, { 0x0a6, "Read Supported Features", read_supported_features_cmd, 1, true, read_supported_features_rsp, 19, true }, { } }; const struct vendor_ocf *intel_vendor_ocf(uint16_t ocf) { int i; for (i = 0; vendor_ocf_table[i].str; i++) { if (vendor_ocf_table[i].ocf == ocf) return &vendor_ocf_table[i]; } return NULL; } static void startup_evt(uint16_t index, const void *data, uint8_t size) { } static void fatal_exception_evt(uint16_t index, const void *data, uint8_t size) { uint16_t line = get_le16(data); uint8_t module = get_u8(data + 2); uint8_t reason = get_u8(data + 3); print_field("Line: %u", line); print_module(module); print_field("Reason: 0x%2.2x", reason); } static void bootup_evt(uint16_t index, const void *data, uint8_t size) { uint8_t zero = get_u8(data); uint8_t num_packets = get_u8(data + 1); uint8_t source = get_u8(data + 2); uint8_t reset_type = get_u8(data + 3); uint8_t reset_reason = get_u8(data + 4); uint8_t ddc_status = get_u8(data + 5); const char *str; print_field("Zero: 0x%2.2x", zero); print_field("Number of packets: %d", num_packets); switch (source) { case 0x00: str = "Bootloader"; break; case 0x01: str = "Operational firmware"; break; case 0x02: str = "Self test firmware"; break; default: str = "Reserved"; break; } print_field("Source: %s (0x%2.2x)", str, source); switch (reset_type) { case 0x00: str = "Hardware reset"; break; case 0x01: str = "Soft watchdog reset"; break; case 0x02: str = "Soft software reset"; break; case 0x03: str = "Hard watchdog reset"; break; case 0x04: str = "Hard software reset"; break; default: str = "Reserved"; break; } print_field("Reset type: %s (0x%2.2x)", str, reset_type); switch (reset_reason) { case 0x00: str = "Power on"; break; case 0x01: str = "Reset command"; break; case 0x02: str = "Intel reset command"; break; case 0x03: str = "Watchdog"; break; case 0x04: str = "Fatal exception"; break; case 0x05: str = "System exception"; break; case 0xff: str = "Unknown"; break; default: str = "Reserved"; break; } print_field("Reset reason: %s (0x%2.2x)", str, reset_reason); switch (ddc_status) { case 0x00: str = "Firmware default"; break; case 0x01: str = "Firmware default plus OTP"; break; case 0x02: str = "Persistent RAM"; break; case 0x03: str = "Not used"; break; default: str = "Reserved"; break; } print_field("DDC status: %s (0x%2.2x)", str, ddc_status); } static void default_bd_data_evt(uint16_t index, const void *data, uint8_t size) { uint8_t mem_status = get_u8(data); const char *str; switch (mem_status) { case 0x02: str = "Invalid manufacturing data"; break; default: str = "Reserved"; break; } print_field("Memory status: %s (0x%2.2x)", str, mem_status); } static void secure_send_commands_result_evt(uint16_t index, const void *data, uint8_t size) { uint8_t result = get_u8(data); uint16_t opcode = get_le16(data + 1); uint16_t ogf = cmd_opcode_ogf(opcode); uint16_t ocf = cmd_opcode_ocf(opcode); uint8_t status = get_u8(data + 3); const char *str; switch (result) { case 0x00: str = "Success"; break; case 0x01: str = "General failure"; break; case 0x02: str = "Hardware failure"; break; case 0x03: str = "Signature verification failed"; break; case 0x04: str = "Parsing error of command buffer"; break; case 0x05: str = "Command execution failure"; break; case 0x06: str = "Command parameters error"; break; case 0x07: str = "Command missing"; break; default: str = "Reserved"; break; } print_field("Result: %s (0x%2.2x)", str, result); print_field("Opcode: 0x%4.4x (0x%2.2x|0x%4.4x)", opcode, ogf, ocf); print_status(status); } static void debug_exception_evt(uint16_t index, const void *data, uint8_t size) { uint16_t line = get_le16(data); uint8_t module = get_u8(data + 2); uint8_t reason = get_u8(data + 3); print_field("Line: %u", line); print_module(module); print_field("Reason: 0x%2.2x", reason); } static void le_link_established_evt(uint16_t index, const void *data, uint8_t size) { uint16_t handle = get_le16(data); uint32_t access_addr = get_le32(data + 10); print_field("Handle: %u", handle); packet_hexdump(data + 2, 8); print_field("Access address: 0x%8.8x", access_addr); packet_hexdump(data + 14, size - 14); } static void scan_status_evt(uint16_t index, const void *data, uint8_t size) { uint8_t enable = get_u8(data); print_field("Inquiry scan: %s", (enable & 0x01) ? "Enabled" : "Disabled"); print_field("Page scan: %s", (enable & 0x02) ? "Enabled" : "Disabled"); if (enable & 0xfc) print_text(COLOR_UNKNOWN_SCAN_STATUS, " Unknown status (0x%2.2x)", enable & 0xfc); } static void act_deact_traces_complete_evt(uint16_t index, const void *data, uint8_t size) { uint8_t status = get_u8(data); print_status(status); } static void lmp_pdu_trace_evt(uint16_t index, const void *data, uint8_t size) { uint8_t type, len, id; uint16_t handle, count; uint32_t clock; const char *str; type = get_u8(data); handle = get_le16(data + 1); switch (type) { case 0x00: str = "RX LMP"; break; case 0x01: str = "TX LMP"; break; case 0x02: str = "ACK LMP"; break; case 0x03: str = "RX LL"; break; case 0x04: str = "TX LL"; break; case 0x05: str = "ACK LL"; break; default: str = "Unknown"; break; } print_field("Type: %s (0x%2.2x)", str, type); print_field("Handle: %u", handle); switch (type) { case 0x00: len = size - 8; clock = get_le32(data + 4 + len); packet_hexdump(data + 3, 1); lmp_packet(data + 4, len, false); print_field("Clock: 0x%8.8x", clock); break; case 0x01: len = size - 9; clock = get_le32(data + 4 + len); id = get_u8(data + 4 + len + 4); packet_hexdump(data + 3, 1); lmp_packet(data + 4, len, false); print_field("Clock: 0x%8.8x", clock); print_field("ID: 0x%2.2x", id); break; case 0x02: clock = get_le32(data + 3); id = get_u8(data + 3 + 4); print_field("Clock: 0x%8.8x", clock); print_field("ID: 0x%2.2x", id); break; case 0x03: len = size - 8; count = get_le16(data + 3); print_field("Count: 0x%4.4x", count); packet_hexdump(data + 3 + 2 + 1, 2); llcp_packet(data + 8, len, false); break; case 0x04: len = size - 8; count = get_le16(data + 3); id = get_u8(data + 3 + 2); print_field("Count: 0x%4.4x", count); print_field("ID: 0x%2.2x", id); packet_hexdump(data + 3 + 2 + 1, 2); llcp_packet(data + 8, len, false); break; case 0x05: count = get_le16(data + 3); id = get_u8(data + 3 + 2); print_field("Count: 0x%4.4x", count); print_field("ID: 0x%2.2x", id); break; default: packet_hexdump(data + 3, size - 3); break; } } static void write_bd_data_complete_evt(uint16_t index, const void *data, uint8_t size) { uint8_t status = get_u8(data); print_status(status); } static void sco_rejected_via_lmp_evt(uint16_t index, const void *data, uint8_t size) { uint8_t reason = get_u8(data + 6); packet_print_addr("Address", data, 0x00); packet_print_error("Reason", reason); } static void ptt_switch_notification_evt(uint16_t index, const void *data, uint8_t size) { uint16_t handle = get_le16(data); uint8_t table = get_u8(data + 2); const char *str; print_field("Handle: %u", handle); switch (table) { case 0x00: str = "Basic rate"; break; case 0x01: str = "Enhanced data rate"; break; default: str = "Reserved"; break; } print_field("Packet type table: %s (0x%2.2x)", str, table); } static void system_exception_evt(uint16_t index, const void *data, uint8_t size) { uint8_t type = get_u8(data); const char *str; switch (type) { case 0x00: str = "No Exception"; break; case 0x01: str = "Undefined Instruction"; break; case 0x02: str = "Prefetch abort"; break; case 0x03: str = "Data abort"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); packet_hexdump(data + 1, size - 1); } static const struct vendor_evt vendor_evt_table[] = { { 0x00, "Startup", startup_evt, 0, true }, { 0x01, "Fatal Exception", fatal_exception_evt, 4, true }, { 0x02, "Bootup", bootup_evt, 6, true }, { 0x05, "Default BD Data", default_bd_data_evt, 1, true }, { 0x06, "Secure Send Commands Result", secure_send_commands_result_evt, 4, true }, { 0x08, "Debug Exception", debug_exception_evt, 4, true }, { 0x0f, "LE Link Established", le_link_established_evt, 26, true }, { 0x11, "Scan Status", scan_status_evt, 1, true }, { 0x16, "Activate Deactivate Traces Complete", act_deact_traces_complete_evt, 1, true }, { 0x17, "LMP PDU Trace", lmp_pdu_trace_evt, 3, false }, { 0x19, "Write BD Data Complete", write_bd_data_complete_evt, 1, true }, { 0x25, "SCO Rejected via LMP", sco_rejected_via_lmp_evt, 7, true }, { 0x26, "PTT Switch Notification", ptt_switch_notification_evt, 3, true }, { 0x29, "System Exception", system_exception_evt, 133, true }, { 0x2c, "FW Trace String" }, { 0x2e, "FW Trace Binary" }, { } }; /* * An Intel telemetry subevent is of the TLV format. * - Type: takes 1 byte. This is the subevent_id. * - Length: takes 1 byte. * - Value: takes |Length| bytes. */ struct intel_tlv { uint8_t subevent_id; uint8_t length; uint8_t value[]; }; #define TLV_SIZE(tlv) (*((const uint8_t *) tlv + 1) + 2 * sizeof(uint8_t)) #define NEXT_TLV(tlv) (const struct intel_tlv *) \ ((const uint8_t *) tlv + TLV_SIZE(tlv)) static void ext_evt_type(const struct intel_tlv *tlv) { uint8_t evt_type = get_u8(tlv->value); const char *str; switch (evt_type) { case 0x00: str = "System Exception"; break; case 0x01: str = "Fatal Exception"; break; case 0x02: str = "Debug Exception"; break; case 0x03: str = "Connection Event for BR/EDR Link Type"; break; case 0x04: str = "Disconnection Event"; break; case 0x05: str = "Performance Stats"; break; default: print_text(COLOR_UNKNOWN_EXT_EVENT, "Unknown extended telemetry event type (0x%2.2x)", evt_type); packet_hexdump((const void *) tlv, tlv->length + 2 * sizeof(uint8_t)); return; } print_field("Extended event type (0x%2.2x): %s (0x%2.2x)", tlv->subevent_id, str, evt_type); } static void ext_acl_evt_conn_handle(const struct intel_tlv *tlv) { uint16_t conn_handle = get_le16(tlv->value); print_field("ACL connection handle (0x%2.2x): 0x%4.4x", tlv->subevent_id, conn_handle); } static void ext_acl_evt_hec_errors(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Rx HEC errors (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_acl_evt_crc_errors(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Rx CRC errors (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_acl_evt_num_pkt_from_host(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Packets from host (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_acl_evt_num_tx_pkt_to_air(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Tx packets (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_acl_evt_num_tx_pkt_retry(const struct intel_tlv *tlv) { char *subevent_str; uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; switch (tlv->subevent_id) { case 0x4f: subevent_str = "Tx packets 0 retries"; break; case 0x50: subevent_str = "Tx packets 1 retries"; break; case 0x51: subevent_str = "Tx packets 2 retries"; break; case 0x52: subevent_str = "Tx packets 3 retries"; break; case 0x53: subevent_str = "Tx packets 4 retries and more"; break; default: subevent_str = "Unknown"; break; } print_field("%s (0x%2.2x): %d", subevent_str, tlv->subevent_id, num); } static void ext_acl_evt_num_tx_pkt_type(const struct intel_tlv *tlv) { char *packet_type_str; uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; switch (tlv->subevent_id) { case 0x54: packet_type_str = "DH1"; break; case 0x55: packet_type_str = "DH3"; break; case 0x56: packet_type_str = "DH5"; break; case 0x57: packet_type_str = "2DH1"; break; case 0x58: packet_type_str = "2DH3"; break; case 0x59: packet_type_str = "2DH5"; break; case 0x5a: packet_type_str = "3DH1"; break; case 0x5b: packet_type_str = "3DH3"; break; case 0x5c: packet_type_str = "3DH5"; break; default: packet_type_str = "Unknown"; break; } print_field("Tx %s packets (0x%2.2x): %d", packet_type_str, tlv->subevent_id, num); } static void ext_acl_evt_num_rx_pkt_from_air(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Rx packets (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_acl_evt_link_throughput(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("ACL link throughput (bps) (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_acl_evt_max_packet_latency(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("ACL max packet latency (us) (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_acl_evt_avg_packet_latency(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("ACL avg packet latency (us) (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_acl_evt_rssi_moving_avg(const struct intel_tlv *tlv) { uint32_t num = get_le16(tlv->value); /* Skip if 0 */ if (!num) return; print_field("ACL RX RSSI moving avg (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_acl_evt_bad_cnt(const char *prefix, const struct intel_tlv *tlv) { uint32_t c_1m = get_le32(tlv->value); uint32_t c_2m = get_le32(tlv->value + 4); uint32_t c_3m = get_le32(tlv->value + 8); /* Skip if all 0 */ if (!c_1m && !c_2m && !c_3m) return; print_field("%s (0x%2.2x): 1M %d 2M %d 3M %d", prefix, tlv->subevent_id, c_1m, c_2m, c_3m); } static void ext_acl_evt_snr_bad_cnt(const struct intel_tlv *tlv) { ext_acl_evt_bad_cnt("ACL RX SNR Bad Margin Counter", tlv); } static void ext_acl_evt_rx_rssi_bad_cnt(const struct intel_tlv *tlv) { ext_acl_evt_bad_cnt("ACL RX RSSI Bad Counter", tlv); } static void ext_acl_evt_tx_rssi_bad_cnt(const struct intel_tlv *tlv) { ext_acl_evt_bad_cnt("ACL TX RSSI Bad Counter", tlv); } static void ext_sco_evt_conn_handle(const struct intel_tlv *tlv) { uint16_t conn_handle = get_le16(tlv->value); print_field("SCO/eSCO connection handle (0x%2.2x): 0x%4.4x", tlv->subevent_id, conn_handle); } static void ext_sco_evt_num_rx_pkt_from_air(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Packets from host (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_sco_evt_num_tx_pkt_to_air(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Tx packets (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_sco_evt_num_rx_payloads_lost(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Rx payload lost (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_sco_evt_num_tx_payloads_lost(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Tx payload lost (0x%2.2x): %d", tlv->subevent_id, num); } static void slots_errors(const struct intel_tlv *tlv, const char *type_str) { /* The subevent has 5 slots where each slot is of the uint32_t type. */ uint32_t num[5]; const uint8_t *data = tlv->value; int i; if (tlv->length != 5 * sizeof(uint32_t)) { print_text(COLOR_UNKNOWN_EXT_EVENT, " Invalid subevent length (%d)", tlv->length); return; } for (i = 0; i < 5; i++) { num[i] = get_le32(data); data += sizeof(uint32_t); } print_field("%s (0x%2.2x): %d %d %d %d %d", type_str, tlv->subevent_id, num[0], num[1], num[2], num[3], num[4]); } static void ext_sco_evt_num_no_sync_errors(const struct intel_tlv *tlv) { slots_errors(tlv, "Rx No SYNC errors"); } static void ext_sco_evt_num_hec_errors(const struct intel_tlv *tlv) { slots_errors(tlv, "Rx HEC errors"); } static void ext_sco_evt_num_crc_errors(const struct intel_tlv *tlv) { slots_errors(tlv, "Rx CRC errors"); } static void ext_sco_evt_num_naks(const struct intel_tlv *tlv) { slots_errors(tlv, "Rx NAK errors"); } static void ext_sco_evt_num_failed_tx_by_wifi(const struct intel_tlv *tlv) { slots_errors(tlv, "Failed Tx due to Wifi coex"); } static void ext_sco_evt_num_failed_rx_by_wifi(const struct intel_tlv *tlv) { slots_errors(tlv, "Failed Rx due to Wifi coex"); } static void ext_sco_evt_samples_inserted(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Late samples inserted based on CDC (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_sco_evt_samples_dropped(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Samples dropped (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_sco_evt_mute_samples(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("Mute samples sent at initial connection (0x%2.2x): %d", tlv->subevent_id, num); } static void ext_sco_evt_plc_injection_data(const struct intel_tlv *tlv) { uint32_t num = get_le32(tlv->value); /* Skip if 0 */ if (!num) return; print_field("PLC injection data (0x%2.2x): %d", tlv->subevent_id, num); } static const struct intel_ext_subevent { uint8_t subevent_id; uint8_t length; void (*func)(const struct intel_tlv *tlv); } intel_ext_subevent_table[] = { { 0x01, 1, ext_evt_type }, /* ACL audio link quality subevents */ { 0x4a, 2, ext_acl_evt_conn_handle }, { 0x4b, 4, ext_acl_evt_hec_errors }, { 0x4c, 4, ext_acl_evt_crc_errors }, { 0x4d, 4, ext_acl_evt_num_pkt_from_host }, { 0x4e, 4, ext_acl_evt_num_tx_pkt_to_air }, { 0x4f, 4, ext_acl_evt_num_tx_pkt_retry }, { 0x50, 4, ext_acl_evt_num_tx_pkt_retry }, { 0x51, 4, ext_acl_evt_num_tx_pkt_retry }, { 0x52, 4, ext_acl_evt_num_tx_pkt_retry }, { 0x53, 4, ext_acl_evt_num_tx_pkt_retry }, { 0x54, 4, ext_acl_evt_num_tx_pkt_type }, { 0x55, 4, ext_acl_evt_num_tx_pkt_type }, { 0x56, 4, ext_acl_evt_num_tx_pkt_type }, { 0x57, 4, ext_acl_evt_num_tx_pkt_type }, { 0x58, 4, ext_acl_evt_num_tx_pkt_type }, { 0x59, 4, ext_acl_evt_num_tx_pkt_type }, { 0x5a, 4, ext_acl_evt_num_tx_pkt_type }, { 0x5b, 4, ext_acl_evt_num_tx_pkt_type }, { 0x5c, 4, ext_acl_evt_num_tx_pkt_type }, { 0x5d, 4, ext_acl_evt_num_rx_pkt_from_air }, { 0x5e, 4, ext_acl_evt_link_throughput }, { 0x5f, 4, ext_acl_evt_max_packet_latency }, { 0x60, 4, ext_acl_evt_avg_packet_latency }, { 0x61, 2, ext_acl_evt_rssi_moving_avg }, { 0x62, 12, ext_acl_evt_snr_bad_cnt }, { 0x63, 12, ext_acl_evt_rx_rssi_bad_cnt }, { 0x64, 12, ext_acl_evt_tx_rssi_bad_cnt }, /* SCO/eSCO audio link quality subevents */ { 0x6a, 2, ext_sco_evt_conn_handle }, { 0x6b, 4, ext_sco_evt_num_rx_pkt_from_air }, { 0x6c, 4, ext_sco_evt_num_tx_pkt_to_air }, { 0x6d, 4, ext_sco_evt_num_rx_payloads_lost }, { 0x6e, 4, ext_sco_evt_num_tx_payloads_lost }, { 0x6f, 20, ext_sco_evt_num_no_sync_errors }, { 0x70, 20, ext_sco_evt_num_hec_errors }, { 0x71, 20, ext_sco_evt_num_crc_errors }, { 0x72, 20, ext_sco_evt_num_naks }, { 0x73, 20, ext_sco_evt_num_failed_tx_by_wifi }, { 0x74, 20, ext_sco_evt_num_failed_rx_by_wifi }, { 0x75, 4, ext_sco_evt_samples_inserted }, { 0x76, 4, ext_sco_evt_samples_dropped }, { 0x77, 4, ext_sco_evt_mute_samples }, { 0x78, 4, ext_sco_evt_plc_injection_data }, /* end */ { 0x0, 0} }; static const struct intel_tlv *process_ext_subevent(const struct intel_tlv *tlv, const struct intel_tlv *last_tlv) { const struct intel_tlv *next_tlv = NEXT_TLV(tlv); const struct intel_ext_subevent *subevent = NULL; int i; for (i = 0; intel_ext_subevent_table[i].length > 0; i++) { if (intel_ext_subevent_table[i].subevent_id == tlv->subevent_id) { subevent = &intel_ext_subevent_table[i]; break; } } if (!subevent) { print_text(COLOR_UNKNOWN_EXT_EVENT, "Unknown extended subevent 0x%2.2x", tlv->subevent_id); packet_hexdump(tlv->value, tlv->length); return next_tlv; } if (tlv->length != subevent->length) { print_text(COLOR_ERROR, "Invalid length %d of subevent 0x%2.2x", tlv->length, tlv->subevent_id); return NULL; } if (next_tlv > last_tlv) { print_text(COLOR_ERROR, "Subevent exceeds the buffer size."); return NULL; } subevent->func(tlv); return next_tlv; } static void intel_vendor_ext_evt(uint16_t index, const void *data, uint8_t size) { /* The data pointer points to a number of tlv.*/ const struct intel_tlv *tlv = data; const struct intel_tlv *last_tlv = data + size; /* Process every tlv subevent until reaching last_tlv. * The decoding process terminates normally when tlv == last_tlv. */ while (tlv && tlv < last_tlv) tlv = process_ext_subevent(tlv, last_tlv); /* If an error occurs in decoding the subevents, hexdump the packet. */ if (!tlv) packet_hexdump(data, size); } /* Vendor extended events with a vendor prefix. */ static const struct vendor_evt vendor_prefix_evt_table[] = { { 0x03, "Extended Telemetry", intel_vendor_ext_evt }, { } }; const uint8_t intel_vendor_prefix[] = {0x87, 0x80}; #define INTEL_VENDOR_PREFIX_SIZE sizeof(intel_vendor_prefix) /* * The vendor event with Intel vendor prefix. * Its format looks like * 0xff * where Intel's is 0x8780. * * When == 0x03, it is a telemetry event; and * is a number of tlv data. */ struct vendor_prefix_evt { uint8_t prefix_data[INTEL_VENDOR_PREFIX_SIZE]; uint8_t subopcode; }; static const struct vendor_evt *intel_vendor_prefix_evt(const void *data, int *consumed_size) { unsigned int i; const struct vendor_prefix_evt *vnd = data; char prefix_string[INTEL_VENDOR_PREFIX_SIZE * 2 + 1] = { 0 }; /* Check if the vendor prefix matches. */ for (i = 0; i < INTEL_VENDOR_PREFIX_SIZE; i++) { if (vnd->prefix_data[i] != intel_vendor_prefix[i]) return NULL; sprintf(prefix_string + i * 2, "%02x", vnd->prefix_data[i]); } print_field("Vendor Prefix (0x%s)", prefix_string); /* * Handle the vendor event with a vendor prefix. * 0xff * This loop checks whether the exists in the * vendor_prefix_evt_table. */ for (i = 0; vendor_prefix_evt_table[i].str; i++) { if (vendor_prefix_evt_table[i].evt == vnd->subopcode) { *consumed_size = sizeof(struct vendor_prefix_evt); return &vendor_prefix_evt_table[i]; } } return NULL; } const struct vendor_evt *intel_vendor_evt(const void *data, int *consumed_size) { uint8_t evt = *((const uint8_t *) data); int i; /* * Handle the vendor event without a vendor prefix. * 0xff * This loop checks whether the exists in the vendor_evt_table. */ for (i = 0; vendor_evt_table[i].str; i++) { if (vendor_evt_table[i].evt == evt) return &vendor_evt_table[i]; } /* * It is not a regular event. Check whether it is a vendor extended * event that comes with a vendor prefix followed by a subopcode. */ return intel_vendor_prefix_evt(data, consumed_size); }