// SPDX-License-Identifier: LGPL-2.1-or-later /* * * BlueZ - Bluetooth protocol stack for Linux * * Copyright (C) 2011-2014 Intel Corporation * Copyright (C) 2002-2010 Marcel Holtmann * Copyright 2023 NXP * * */ #ifdef HAVE_CONFIG_H #include #endif #define _GNU_SOURCE #include #include #include #include #include #include #include #include #include #include #include #include "lib/bluetooth.h" #include "lib/uuid.h" #include "lib/hci.h" #include "lib/hci_lib.h" #include "src/shared/util.h" #include "src/shared/btsnoop.h" #include "display.h" #include "bt.h" #include "ll.h" #include "hwdb.h" #include "keys.h" #include "l2cap.h" #include "control.h" #include "vendor.h" #include "msft.h" #include "intel.h" #include "broadcom.h" #include "packet.h" #define COLOR_CHANNEL_LABEL COLOR_WHITE #define COLOR_FRAME_LABEL COLOR_WHITE #define COLOR_INDEX_LABEL COLOR_WHITE #define COLOR_TIMESTAMP COLOR_YELLOW #define COLOR_NEW_INDEX COLOR_GREEN #define COLOR_DEL_INDEX COLOR_RED #define COLOR_OPEN_INDEX COLOR_GREEN #define COLOR_CLOSE_INDEX COLOR_RED #define COLOR_INDEX_INFO COLOR_GREEN #define COLOR_VENDOR_DIAG COLOR_YELLOW #define COLOR_SYSTEM_NOTE COLOR_OFF #define COLOR_HCI_COMMAND COLOR_BLUE #define COLOR_HCI_COMMAND_UNKNOWN COLOR_WHITE_BG #define COLOR_HCI_EVENT COLOR_MAGENTA #define COLOR_HCI_EVENT_UNKNOWN COLOR_WHITE_BG #define COLOR_HCI_ACLDATA COLOR_CYAN #define COLOR_HCI_SCODATA COLOR_YELLOW #define COLOR_UNKNOWN_ERROR COLOR_WHITE_BG #define COLOR_UNKNOWN_FEATURE_BIT COLOR_WHITE_BG #define COLOR_UNKNOWN_COMMAND_BIT COLOR_WHITE_BG #define COLOR_UNKNOWN_EVENT_MASK COLOR_WHITE_BG #define COLOR_UNKNOWN_LE_STATES COLOR_WHITE_BG #define COLOR_UNKNOWN_SERVICE_CLASS COLOR_WHITE_BG #define COLOR_UNKNOWN_PKT_TYPE_BIT COLOR_WHITE_BG #define COLOR_CTRL_OPEN COLOR_GREEN_BOLD #define COLOR_CTRL_CLOSE COLOR_RED_BOLD #define COLOR_CTRL_COMMAND COLOR_BLUE_BOLD #define COLOR_CTRL_COMMAND_UNKNOWN COLOR_WHITE_BG #define COLOR_CTRL_EVENT COLOR_MAGENTA_BOLD #define COLOR_CTRL_EVENT_UNKNOWN COLOR_WHITE_BG #define COLOR_UNKNOWN_OPTIONS_BIT COLOR_WHITE_BG #define COLOR_UNKNOWN_SETTINGS_BIT COLOR_WHITE_BG #define COLOR_UNKNOWN_ADDRESS_TYPE COLOR_WHITE_BG #define COLOR_UNKNOWN_DEVICE_FLAG COLOR_WHITE_BG #define COLOR_UNKNOWN_EXP_FEATURE_FLAG COLOR_WHITE_BG #define COLOR_UNKNOWN_ADV_FLAG COLOR_WHITE_BG #define COLOR_UNKNOWN_PHY COLOR_WHITE_BG #define COLOR_UNKNOWN_ADDED_DEVICE_FLAG COLOR_WHITE_BG #define COLOR_UNKNOWN_ADVMON_FEATURES COLOR_WHITE_BG #define COLOR_PHY_PACKET COLOR_BLUE #define UNKNOWN_MANUFACTURER 0xffff static time_t time_offset = ((time_t) -1); static int priority_level = BTSNOOP_PRIORITY_INFO; static unsigned long filter_mask = 0; static bool index_filter = false; static uint16_t index_current = 0; static uint16_t fallback_manufacturer = UNKNOWN_MANUFACTURER; #define CTRL_RAW 0x0000 #define CTRL_USER 0x0001 #define CTRL_MGMT 0x0002 #define MAX_CTRL 64 struct ctrl_data { bool used; uint32_t cookie; uint16_t format; char name[20]; }; static struct ctrl_data ctrl_list[MAX_CTRL]; static void assign_ctrl(uint32_t cookie, uint16_t format, const char *name) { int i; for (i = 0; i < MAX_CTRL; i++) { if (!ctrl_list[i].used) { ctrl_list[i].used = true; ctrl_list[i].cookie = cookie; ctrl_list[i].format = format; if (name) { strncpy(ctrl_list[i].name, name, 19); ctrl_list[i].name[19] = '\0'; } else strcpy(ctrl_list[i].name, "null"); break; } } } static void release_ctrl(uint32_t cookie, uint16_t *format, char *name) { int i; if (format) *format = 0xffff; for (i = 0; i < MAX_CTRL; i++) { if (ctrl_list[i].used && ctrl_list[i].cookie == cookie) { ctrl_list[i].used = false; if (format) *format = ctrl_list[i].format; if (name) strncpy(name, ctrl_list[i].name, 20); break; } } } static uint16_t get_format(uint32_t cookie) { int i; for (i = 0; i < MAX_CTRL; i++) { if (ctrl_list[i].used && ctrl_list[i].cookie == cookie) return ctrl_list[i].format; } return 0xffff; } #define MAX_CONN 16 static struct packet_conn_data conn_list[MAX_CONN]; static void assign_handle(uint16_t index, uint16_t handle, uint8_t type, uint8_t *dst, uint8_t dst_type) { int i; for (i = 0; i < MAX_CONN; i++) { if (conn_list[i].handle == 0x0000) { if (hci_devba(index, (bdaddr_t *)conn_list[i].src) < 0) return; conn_list[i].index = index; conn_list[i].handle = handle; conn_list[i].type = type; if (!dst) break; memcpy(conn_list[i].dst, dst, sizeof(conn_list[i].dst)); conn_list[i].dst_type = dst_type; break; } } } static void release_handle(uint16_t handle) { int i; for (i = 0; i < MAX_CONN; i++) { if (conn_list[i].handle == handle) { if (conn_list[i].destroy) conn_list[i].destroy(conn_list[i].data); memset(&conn_list[i], 0, sizeof(conn_list[i])); break; } } } struct packet_conn_data *packet_get_conn_data(uint16_t handle) { int i; for (i = 0; i < MAX_CONN; i++) { if (conn_list[i].handle == handle) return &conn_list[i]; } return NULL; } static uint8_t get_type(uint16_t handle) { struct packet_conn_data *conn; conn = packet_get_conn_data(handle); if (!conn) return 0xff; return conn->type; } bool packet_has_filter(unsigned long filter) { return filter_mask & filter; } void packet_set_filter(unsigned long filter) { filter_mask = filter; } void packet_add_filter(unsigned long filter) { if (index_filter) filter &= ~PACKET_FILTER_SHOW_INDEX; filter_mask |= filter; } void packet_del_filter(unsigned long filter) { filter_mask &= ~filter; } void packet_set_priority(const char *priority) { if (!priority) return; if (!strcasecmp(priority, "debug")) priority_level = BTSNOOP_PRIORITY_DEBUG; else priority_level = atoi(priority); } void packet_select_index(uint16_t index) { filter_mask &= ~PACKET_FILTER_SHOW_INDEX; control_filter_index(index); index_filter = true; } #define print_space(x) printf("%*c", (x), ' '); #define MAX_INDEX 16 struct index_data { uint8_t type; uint8_t bdaddr[6]; uint16_t manufacturer; uint16_t msft_opcode; uint8_t msft_evt_prefix[8]; uint8_t msft_evt_len; size_t frame; }; static struct index_data index_list[MAX_INDEX]; void packet_set_fallback_manufacturer(uint16_t manufacturer) { int i; for (i = 0; i < MAX_INDEX; i++) index_list[i].manufacturer = manufacturer; fallback_manufacturer = manufacturer; } void packet_set_msft_evt_prefix(const uint8_t *prefix, uint8_t len) { if (index_current < MAX_INDEX && len < 8) memcpy(index_list[index_current].msft_evt_prefix, prefix, len); } static void print_packet(struct timeval *tv, struct ucred *cred, char ident, uint16_t index, const char *channel, const char *color, const char *label, const char *text, const char *extra) { int col = num_columns(); char line[256], ts_str[96]; int n, ts_len = 0, ts_pos = 0, len = 0, pos = 0; static size_t last_frame; if (channel) { if (use_color()) { n = sprintf(ts_str + ts_pos, "%s", COLOR_CHANNEL_LABEL); if (n > 0) ts_pos += n; } n = sprintf(ts_str + ts_pos, " {%s}", channel); if (n > 0) { ts_pos += n; ts_len += n; } } else if (index != HCI_DEV_NONE && index < MAX_INDEX && index_list[index].frame != last_frame) { if (use_color()) { n = sprintf(ts_str + ts_pos, "%s", COLOR_FRAME_LABEL); if (n > 0) ts_pos += n; } n = sprintf(ts_str + ts_pos, " #%zu", index_list[index].frame); if (n > 0) { ts_pos += n; ts_len += n; } last_frame = index_list[index].frame; } if ((filter_mask & PACKET_FILTER_SHOW_INDEX) && index != HCI_DEV_NONE) { if (use_color()) { n = snprintf(ts_str + ts_pos, sizeof(ts_str) - ts_pos, "%s", COLOR_INDEX_LABEL); if (n > 0) ts_pos += n; } n = sprintf(ts_str + ts_pos, " [hci%d]", index); if (n > 0) { ts_pos += n; ts_len += n; } } if (tv) { time_t t = tv->tv_sec; struct tm tm; localtime_r(&t, &tm); if (use_color()) { n = sprintf(ts_str + ts_pos, "%s", COLOR_TIMESTAMP); if (n > 0) ts_pos += n; } if (filter_mask & PACKET_FILTER_SHOW_DATE) { n = sprintf(ts_str + ts_pos, " %04d-%02d-%02d", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday); if (n > 0) { ts_pos += n; ts_len += n; } } if (filter_mask & PACKET_FILTER_SHOW_TIME) { n = sprintf(ts_str + ts_pos, " %02d:%02d:%02d.%06llu", tm.tm_hour, tm.tm_min, tm.tm_sec, (long long)tv->tv_usec); if (n > 0) { ts_pos += n; ts_len += n; } } if (filter_mask & PACKET_FILTER_SHOW_TIME_OFFSET) { n = sprintf(ts_str + ts_pos, " %llu.%06llu", (long long)(tv->tv_sec - time_offset), (long long)tv->tv_usec); if (n > 0) { ts_pos += n; ts_len += n; } } } if (use_color()) { sprintf(ts_str + ts_pos, "%s", COLOR_OFF); n = sprintf(line + pos, "%s", color); if (n > 0) pos += n; } n = sprintf(line + pos, "%c %s", ident, label ? label : ""); if (n > 0) { pos += n; len += n; } if (text) { int extra_len = extra ? strlen(extra) : 0; int max_len = col - len - extra_len - ts_len - 3; n = snprintf(line + pos, max_len + 1, "%s%s", label ? ": " : "", text); if (n > max_len) { line[pos + max_len - 1] = '.'; line[pos + max_len - 2] = '.'; if (line[pos + max_len - 3] == ' ') line[pos + max_len - 3] = '.'; n = max_len; } if (n > 0) { pos += n; len += n; } } if (use_color()) { n = sprintf(line + pos, "%s", COLOR_OFF); if (n > 0) pos += n; } if (extra) { n = sprintf(line + pos, " %s", extra); if (n > 0) len += n; } if (ts_len > 0) { printf("%s", line); if (len < col) print_space(col - len - ts_len - 1); printf("%s%s\n", use_color() ? COLOR_TIMESTAMP : "", ts_str); } else printf("%s\n", line); } static const struct { uint8_t error; const char *str; } error2str_table[] = { { 0x00, "Success" }, { 0x01, "Unknown HCI Command" }, { 0x02, "Unknown Connection Identifier" }, { 0x03, "Hardware Failure" }, { 0x04, "Page Timeout" }, { 0x05, "Authentication Failure" }, { 0x06, "PIN or Key Missing" }, { 0x07, "Memory Capacity Exceeded" }, { 0x08, "Connection Timeout" }, { 0x09, "Connection Limit Exceeded" }, { 0x0a, "Synchronous Connection Limit to a Device Exceeded" }, { 0x0b, "ACL Connection Already Exists" }, { 0x0c, "Command Disallowed" }, { 0x0d, "Connection Rejected due to Limited Resources" }, { 0x0e, "Connection Rejected due to Security Reasons" }, { 0x0f, "Connection Rejected due to Unacceptable BD_ADDR" }, { 0x10, "Connection Accept Timeout Exceeded" }, { 0x11, "Unsupported Feature or Parameter Value" }, { 0x12, "Invalid HCI Command Parameters" }, { 0x13, "Remote User Terminated Connection" }, { 0x14, "Remote Device Terminated due to Low Resources" }, { 0x15, "Remote Device Terminated due to Power Off" }, { 0x16, "Connection Terminated By Local Host" }, { 0x17, "Repeated Attempts" }, { 0x18, "Pairing Not Allowed" }, { 0x19, "Unknown LMP PDU" }, { 0x1a, "Unsupported Remote Feature / Unsupported LMP Feature" }, { 0x1b, "SCO Offset Rejected" }, { 0x1c, "SCO Interval Rejected" }, { 0x1d, "SCO Air Mode Rejected" }, { 0x1e, "Invalid LMP Parameters / Invalid LL Parameters" }, { 0x1f, "Unspecified Error" }, { 0x20, "Unsupported LMP Parameter Value / " "Unsupported LL Parameter Value" }, { 0x21, "Role Change Not Allowed" }, { 0x22, "LMP Response Timeout / LL Response Timeout" }, { 0x23, "LMP Error Transaction Collision" }, { 0x24, "LMP PDU Not Allowed" }, { 0x25, "Encryption Mode Not Acceptable" }, { 0x26, "Link Key cannot be Changed" }, { 0x27, "Requested QoS Not Supported" }, { 0x28, "Instant Passed" }, { 0x29, "Pairing With Unit Key Not Supported" }, { 0x2a, "Different Transaction Collision" }, { 0x2b, "Reserved" }, { 0x2c, "QoS Unacceptable Parameter" }, { 0x2d, "QoS Rejected" }, { 0x2e, "Channel Classification Not Supported" }, { 0x2f, "Insufficient Security" }, { 0x30, "Parameter Out Of Manadatory Range" }, { 0x31, "Reserved" }, { 0x32, "Role Switch Pending" }, { 0x33, "Reserved" }, { 0x34, "Reserved Slot Violation" }, { 0x35, "Role Switch Failed" }, { 0x36, "Extended Inquiry Response Too Large" }, { 0x37, "Secure Simple Pairing Not Supported By Host" }, { 0x38, "Host Busy - Pairing" }, { 0x39, "Connection Rejected due to No Suitable Channel Found" }, { 0x3a, "Controller Busy" }, { 0x3b, "Unacceptable Connection Parameters" }, { 0x3c, "Advertising Timeout" }, { 0x3d, "Connection Terminated due to MIC Failure" }, { 0x3e, "Connection Failed to be Established" }, { 0x3f, "MAC Connection Failed" }, { 0x40, "Coarse Clock Adjustment Rejected " "but Will Try to Adjust Using Clock Dragging" }, { 0x41, "Type0 Submap Not Defined" }, { 0x42, "Unknown Advertising Identifier" }, { 0x43, "Limit Reached" }, { 0x44, "Operation Cancelled by Host" }, { 0x45, "Packet Too Long" }, { } }; static void print_error(const char *label, uint8_t error) { const char *str = "Unknown"; const char *color_on, *color_off; bool unknown = true; int i; for (i = 0; error2str_table[i].str; i++) { if (error2str_table[i].error == error) { str = error2str_table[i].str; unknown = false; break; } } if (use_color()) { if (error) { if (unknown) color_on = COLOR_UNKNOWN_ERROR; else color_on = COLOR_RED; } else color_on = COLOR_GREEN; color_off = COLOR_OFF; } else { color_on = ""; color_off = ""; } print_field("%s: %s%s%s (0x%2.2x)", label, color_on, str, color_off, error); } static void print_status(uint8_t status) { print_error("Status", status); } static void print_reason(uint8_t reason) { print_error("Reason", reason); } void packet_print_error(const char *label, uint8_t error) { print_error(label, error); } static void print_enable(const char *label, uint8_t enable) { const char *str; switch (enable) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x)", label, str, enable); } static void print_addr_type(const char *label, uint8_t addr_type) { const char *str; switch (addr_type) { case 0x00: str = "Public"; break; case 0x01: str = "Random"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x)", label, str, addr_type); } static void print_own_addr_type(uint8_t addr_type) { const char *str; switch (addr_type) { case 0x00: case 0x02: str = "Public"; break; case 0x01: case 0x03: str = "Random"; break; default: str = "Reserved"; break; } print_field("Own address type: %s (0x%2.2x)", str, addr_type); } static void print_peer_addr_type(const char *label, uint8_t addr_type) { const char *str; switch (addr_type) { case 0x00: str = "Public"; break; case 0x01: str = "Random"; break; case 0x02: str = "Resolved Public"; break; case 0x03: str = "Resolved Random"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x)", label, str, addr_type); } static void print_addr_resolve(const char *label, const uint8_t *addr, uint8_t addr_type, bool resolve) { const char *str; char *company; switch (addr_type) { case 0x00: case 0x02: if (!hwdb_get_company(addr, &company)) company = NULL; if (company) { print_field("%s: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X" " (%s)", label, addr[5], addr[4], addr[3], addr[2], addr[1], addr[0], company); free(company); } else { print_field("%s: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X" " (OUI %2.2X-%2.2X-%2.2X)", label, addr[5], addr[4], addr[3], addr[2], addr[1], addr[0], addr[5], addr[4], addr[3]); } break; case 0x01: case 0x03: switch ((addr[5] & 0xc0) >> 6) { case 0x00: str = "Non-Resolvable"; break; case 0x01: str = "Resolvable"; break; case 0x03: str = "Static"; break; default: str = "Reserved"; break; } print_field("%s: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X (%s)", label, addr[5], addr[4], addr[3], addr[2], addr[1], addr[0], str); if (resolve && (addr[5] & 0xc0) == 0x40) { uint8_t ident[6], ident_type; if (keys_resolve_identity(addr, ident, &ident_type)) { print_addr_type(" Identity type", ident_type); print_addr_resolve(" Identity", ident, ident_type, false); } } break; default: print_field("%s: %2.2X-%2.2X-%2.2X-%2.2X-%2.2X-%2.2X", label, addr[5], addr[4], addr[3], addr[2], addr[1], addr[0]); break; } } static void print_addr(const char *label, const uint8_t *addr, uint8_t type) { print_addr_resolve(label, addr, type, true); } static void print_bdaddr(const uint8_t *bdaddr) { print_addr("Address", bdaddr, 0x00); } static void print_lt_addr(uint8_t lt_addr) { print_field("LT address: %d", lt_addr); } static void print_handle_native(uint16_t handle) { struct packet_conn_data *conn; char label[25]; conn = packet_get_conn_data(handle); if (!conn) { print_field("Handle: %d", handle); return; } sprintf(label, "Handle: %d Address", handle); print_addr(label, conn->dst, conn->dst_type); } static void print_handle(uint16_t handle) { print_handle_native(le16_to_cpu(handle)); } static void print_phy_handle(uint8_t phy_handle) { print_field("Physical handle: %d", phy_handle); } static const struct bitfield_data pkt_type_table[] = { { 1, "2-DH1 may not be used" }, { 2, "3-DH1 may not be used" }, { 3, "DM1 may be used" }, { 4, "DH1 may be used" }, { 8, "2-DH3 may not be used" }, { 9, "3-DH3 may not be used" }, { 10, "DM3 may be used" }, { 11, "DH3 may be used" }, { 12, "2-DH5 may not be used" }, { 13, "3-DH5 may not be used" }, { 14, "DM5 may be used" }, { 15, "DH5 may be used" }, { } }; static void print_pkt_type(uint16_t pkt_type) { uint16_t mask = le16_to_cpu(pkt_type); print_field("Packet type: 0x%4.4x", mask); mask = print_bitfield(2, mask, pkt_type_table); if (mask) print_text(COLOR_UNKNOWN_PKT_TYPE_BIT, " Unknown packet types (0x%4.4x)", mask); } static const struct bitfield_data pkt_type_sco_table[] = { { 0, "HV1 may be used" }, { 1, "HV2 may be used" }, { 2, "HV3 may be used" }, { 3, "EV3 may be used" }, { 4, "EV4 may be used" }, { 5, "EV5 may be used" }, { 6, "2-EV3 may not be used" }, { 7, "3-EV3 may not be used" }, { 8, "2-EV5 may not be used" }, { 9, "3-EV5 may not be used" }, { } }; static void print_pkt_type_sco(uint16_t pkt_type) { uint16_t mask = le16_to_cpu(pkt_type); print_field("Packet type: 0x%4.4x", mask); mask = print_bitfield(2, mask, pkt_type_sco_table); if (mask) print_text(COLOR_UNKNOWN_PKT_TYPE_BIT, " Unknown packet types (0x%4.4x)", mask); } static void print_iac(const uint8_t *lap) { const char *str = ""; if (lap[2] == 0x9e && lap[1] == 0x8b) { switch (lap[0]) { case 0x33: str = " (General Inquiry)"; break; case 0x00: str = " (Limited Inquiry)"; break; } } print_field("Access code: 0x%2.2x%2.2x%2.2x%s", lap[2], lap[1], lap[0], str); } static void print_auth_enable(uint8_t enable) { const char *str; switch (enable) { case 0x00: str = "Authentication not required"; break; case 0x01: str = "Authentication required for all connections"; break; default: str = "Reserved"; break; } print_field("Enable: %s (0x%2.2x)", str, enable); } static void print_encrypt_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Encryption not required"; break; case 0x01: str = "Encryption required for all connections"; break; default: str = "Reserved"; break; } print_field("Mode: %s (0x%2.2x)", str, mode); } static const struct bitfield_data svc_class_table[] = { { 0, "Positioning (Location identification)" }, { 1, "Networking (LAN, Ad hoc)" }, { 2, "Rendering (Printing, Speaker)" }, { 3, "Capturing (Scanner, Microphone)" }, { 4, "Object Transfer (v-Inbox, v-Folder)" }, { 5, "Audio (Speaker, Microphone, Headset)" }, { 6, "Telephony (Cordless telephony, Modem, Headset)" }, { 7, "Information (WEB-server, WAP-server)" }, { } }; static const struct { uint8_t val; const char *str; } major_class_computer_table[] = { { 0x00, "Uncategorized, code for device not assigned" }, { 0x01, "Desktop workstation" }, { 0x02, "Server-class computer" }, { 0x03, "Laptop" }, { 0x04, "Handheld PC/PDA (clam shell)" }, { 0x05, "Palm sized PC/PDA" }, { 0x06, "Wearable computer (Watch sized)" }, { 0x07, "Tablet" }, { } }; static const char *major_class_computer(uint8_t minor) { int i; for (i = 0; major_class_computer_table[i].str; i++) { if (major_class_computer_table[i].val == minor) return major_class_computer_table[i].str; } return NULL; } static const struct { uint8_t val; const char *str; } major_class_phone_table[] = { { 0x00, "Uncategorized, code for device not assigned" }, { 0x01, "Cellular" }, { 0x02, "Cordless" }, { 0x03, "Smart phone" }, { 0x04, "Wired modem or voice gateway" }, { 0x05, "Common ISDN Access" }, { } }; static const char *major_class_phone(uint8_t minor) { int i; for (i = 0; major_class_phone_table[i].str; i++) { if (major_class_phone_table[i].val == minor) return major_class_phone_table[i].str; } return NULL; } static const struct { uint8_t val; const char *str; } major_class_av_table[] = { { 0x00, "Uncategorized, code for device not assigned" }, { 0x01, "Wearable Headset Device" }, { 0x02, "Hands-free Device" }, { 0x04, "Microphone" }, { 0x05, "Loudspeaker" }, { 0x06, "Headphones" }, { 0x07, "Portable Audio" }, { 0x08, "Car audio" }, { 0x09, "Set-top box" }, { 0x0a, "HiFi Audio Device" }, { 0x0b, "VCR" }, { 0x0c, "Video Camera" }, { 0x0d, "Camcorder" }, { 0x0e, "Video Monitor" }, { 0x0f, "Video Display and Loudspeaker" }, { 0x10, "Video Conferencing" }, { 0x12, "Gaming/Toy" }, { } }; static const char *major_class_av(uint8_t minor) { int i; for (i = 0; major_class_av_table[i].str; i++) { if (major_class_av_table[i].val == minor) return major_class_av_table[i].str; } return NULL; } static const struct { uint8_t val; const char *str; } major_class_wearable_table[] = { { 0x01, "Wrist Watch" }, { 0x02, "Pager" }, { 0x03, "Jacket" }, { 0x04, "Helmet" }, { 0x05, "Glasses" }, { } }; static const char *major_class_wearable(uint8_t minor) { int i; for (i = 0; major_class_wearable_table[i].str; i++) { if (major_class_wearable_table[i].val == minor) return major_class_wearable_table[i].str; } return NULL; } static const struct { uint8_t val; const char *str; const char *(*func)(uint8_t minor); } major_class_table[] = { { 0x00, "Miscellaneous" }, { 0x01, "Computer (desktop, notebook, PDA, organizers)", major_class_computer }, { 0x02, "Phone (cellular, cordless, payphone, modem)", major_class_phone }, { 0x03, "LAN /Network Access point" }, { 0x04, "Audio/Video (headset, speaker, stereo, video, vcr)", major_class_av }, { 0x05, "Peripheral (mouse, joystick, keyboards)" }, { 0x06, "Imaging (printing, scanner, camera, display)" }, { 0x07, "Wearable", major_class_wearable }, { 0x08, "Toy" }, { 0x09, "Health" }, { 0x1f, "Uncategorized, specific device code not specified" }, { } }; static void print_dev_class(const uint8_t *dev_class) { uint8_t mask, major_cls, minor_cls; const char *major_str = NULL; const char *minor_str = NULL; int i; print_field("Class: 0x%2.2x%2.2x%2.2x", dev_class[2], dev_class[1], dev_class[0]); if ((dev_class[0] & 0x03) != 0x00) { print_field(" Format type: 0x%2.2x", dev_class[0] & 0x03); print_text(COLOR_ERROR, " invalid format type"); return; } major_cls = dev_class[1] & 0x1f; minor_cls = (dev_class[0] & 0xfc) >> 2; for (i = 0; major_class_table[i].str; i++) { if (major_class_table[i].val == major_cls) { major_str = major_class_table[i].str; if (!major_class_table[i].func) break; minor_str = major_class_table[i].func(minor_cls); break; } } if (major_str) { print_field(" Major class: %s", major_str); if (minor_str) print_field(" Minor class: %s", minor_str); else print_field(" Minor class: 0x%2.2x", minor_cls); } else { print_field(" Major class: 0x%2.2x", major_cls); print_field(" Minor class: 0x%2.2x", minor_cls); } if (dev_class[1] & 0x20) print_field(" Limited Discoverable Mode"); if ((dev_class[1] & 0xc0) != 0x00) { print_text(COLOR_ERROR, " invalid service class"); return; } mask = print_bitfield(2, dev_class[2], svc_class_table); if (mask) print_text(COLOR_UNKNOWN_SERVICE_CLASS, " Unknown service class (0x%2.2x)", mask); } static void print_appearance(uint16_t appearance) { print_field("Appearance: %s (0x%4.4x)", bt_appear_to_str(appearance), appearance); } static void print_num_broadcast_retrans(uint8_t num_retrans) { print_field("Number of broadcast retransmissions: %u", num_retrans); } static void print_hold_mode_activity(uint8_t activity) { print_field("Activity: 0x%2.2x", activity); if (activity == 0x00) { print_field(" Maintain current Power State"); return; } if (activity & 0x01) print_field(" Suspend Page Scan"); if (activity & 0x02) print_field(" Suspend Inquiry Scan"); if (activity & 0x04) print_field(" Suspend Periodic Inquiries"); } static void print_power_type(uint8_t type) { const char *str; switch (type) { case 0x00: str = "Current Transmit Power Level"; break; case 0x01: str = "Maximum Transmit Power Level"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); } static void print_power_level(int8_t level, const char *type) { print_field("TX power%s%s%s: %d dbm (0x%2.2x)", type ? " (" : "", type ? type : "", type ? ")" : "", level, (uint8_t) level); } static void print_host_flow_control(uint8_t enable) { const char *str; switch (enable) { case 0x00: str = "Off"; break; case 0x01: str = "ACL Data Packets"; break; case 0x02: str = "Synchronous Data Packets"; break; case 0x03: str = "ACL and Synchronous Data Packets"; break; default: str = "Reserved"; break; } print_field("Flow control: %s (0x%2.2x)", str, enable); } static void print_voice_setting(uint16_t setting) { uint8_t input_coding = (le16_to_cpu(setting) & 0x0300) >> 8; uint8_t input_data_format = (le16_to_cpu(setting) & 0xc0) >> 6; uint8_t air_coding_format = le16_to_cpu(setting) & 0x0003; const char *str; print_field("Setting: 0x%4.4x", le16_to_cpu(setting)); switch (input_coding) { case 0x00: str = "Linear"; break; case 0x01: str = "u-law"; break; case 0x02: str = "A-law"; break; default: str = "Reserved"; break; } print_field(" Input Coding: %s", str); switch (input_data_format) { case 0x00: str = "1's complement"; break; case 0x01: str = "2's complement"; break; case 0x02: str = "Sign-Magnitude"; break; case 0x03: str = "Unsigned"; break; default: str = "Reserved"; break; } print_field(" Input Data Format: %s", str); if (input_coding == 0x00) { print_field(" Input Sample Size: %s", le16_to_cpu(setting) & 0x20 ? "16-bit" : "8-bit"); print_field(" # of bits padding at MSB: %d", (le16_to_cpu(setting) & 0x1c) >> 2); } switch (air_coding_format) { case 0x00: str = "CVSD"; break; case 0x01: str = "u-law"; break; case 0x02: str = "A-law"; break; case 0x03: str = "Transparent Data"; break; default: str = "Reserved"; break; } print_field(" Air Coding Format: %s", str); } static void print_retransmission_effort(uint8_t effort) { const char *str; switch (effort) { case 0x00: str = "No retransmissions"; break; case 0x01: str = "Optimize for power consumption"; break; case 0x02: str = "Optimize for link quality"; break; case 0xff: str = "Don't care"; break; default: str = "Reserved"; break; } print_field("Retransmission effort: %s (0x%2.2x)", str, effort); } static void print_scan_enable(uint8_t scan_enable) { const char *str; switch (scan_enable) { case 0x00: str = "No Scans"; break; case 0x01: str = "Inquiry Scan"; break; case 0x02: str = "Page Scan"; break; case 0x03: str = "Inquiry Scan + Page Scan"; break; default: str = "Reserved"; break; } print_field("Scan enable: %s (0x%2.2x)", str, scan_enable); } static void print_link_policy(uint16_t link_policy) { uint16_t policy = le16_to_cpu(link_policy); print_field("Link policy: 0x%4.4x", policy); if (policy == 0x0000) { print_field(" Disable All Modes"); return; } if (policy & 0x0001) print_field(" Enable Role Switch"); if (policy & 0x0002) print_field(" Enable Hold Mode"); if (policy & 0x0004) print_field(" Enable Sniff Mode"); if (policy & 0x0008) print_field(" Enable Park State"); } static void print_air_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "u-law log"; break; case 0x01: str = "A-law log"; break; case 0x02: str = "CVSD"; break; case 0x03: str = "Transparent"; break; default: str = "Reserved"; break; } print_field("Air mode: %s (0x%2.2x)", str, mode); } static void print_codec_id(const char *label, uint8_t codec) { const char *str; switch (codec) { case 0x00: str = "u-law log"; break; case 0x01: str = "A-law log"; break; case 0x02: str = "CVSD"; break; case 0x03: str = "Transparent"; break; case 0x04: str = "Linear PCM"; break; case 0x05: str = "mSBC"; break; case 0x06: str = "LC3"; break; case 0xff: str = "Vendor specific"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x)", label, str, codec); } void packet_print_codec_id(const char *label, uint8_t codec) { print_codec_id(label, codec); } static const struct bitfield_data codec_transport_table[] = { { 0, "Codec supported over BR/EDR ACL" }, { 1, "Codec supported over BR/EDR SCO and eSCO"}, { 2, "Codec supported over LE CIS" }, { 3, "Codec supported over LE BIS" }, { } }; static void print_codec(const char *label, const struct bt_hci_codec *codec) { uint8_t mask; print_codec_id(label, codec->id); print_field(" Logical Transport Type: 0x%02x", codec->transport); mask = print_bitfield(4, codec->transport, codec_transport_table); if (mask) print_text(COLOR_UNKNOWN_SERVICE_CLASS, " Unknown transport (0x%2.2x)", mask); } static void print_inquiry_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Standard Inquiry Result"; break; case 0x01: str = "Inquiry Result with RSSI"; break; case 0x02: str = "Inquiry Result with RSSI or Extended Inquiry Result"; break; default: str = "Reserved"; break; } print_field("Mode: %s (0x%2.2x)", str, mode); } static void print_inquiry_scan_type(uint8_t type) { const char *str; switch (type) { case 0x00: str = "Standard Scan"; break; case 0x01: str = "Interlaced Scan"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); } static void print_pscan_type(uint8_t type) { const char *str; switch (type) { case 0x00: str = "Standard Scan"; break; case 0x01: str = "Interlaced Scan"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); } static void print_loopback_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "No Loopback"; break; case 0x01: str = "Local Loopback"; break; case 0x02: str = "Remote Loopback"; break; default: str = "Reserved"; break; } print_field("Mode: %s (0x%2.2x)", str, mode); } static void print_auth_payload_timeout(uint16_t timeout) { print_field("Timeout: %d msec (0x%4.4x)", le16_to_cpu(timeout) * 10, le16_to_cpu(timeout)); } static void print_pscan_rep_mode(uint8_t pscan_rep_mode) { const char *str; switch (pscan_rep_mode) { case 0x00: str = "R0"; break; case 0x01: str = "R1"; break; case 0x02: str = "R2"; break; default: str = "Reserved"; break; } print_field("Page scan repetition mode: %s (0x%2.2x)", str, pscan_rep_mode); } static void print_pscan_period_mode(uint8_t pscan_period_mode) { const char *str; switch (pscan_period_mode) { case 0x00: str = "P0"; break; case 0x01: str = "P1"; break; case 0x02: str = "P2"; break; default: str = "Reserved"; break; } print_field("Page period mode: %s (0x%2.2x)", str, pscan_period_mode); } static void print_pscan_mode(uint8_t pscan_mode) { const char *str; switch (pscan_mode) { case 0x00: str = "Mandatory"; break; case 0x01: str = "Optional I"; break; case 0x02: str = "Optional II"; break; case 0x03: str = "Optional III"; break; default: str = "Reserved"; break; } print_field("Page scan mode: %s (0x%2.2x)", str, pscan_mode); } static void print_clock_offset(uint16_t clock_offset) { print_field("Clock offset: 0x%4.4x", le16_to_cpu(clock_offset)); } static void print_clock(uint32_t clock) { print_field("Clock: 0x%8.8x", le32_to_cpu(clock)); } static void print_clock_type(uint8_t type) { const char *str; switch (type) { case 0x00: str = "Local clock"; break; case 0x01: str = "Piconet clock"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); } static void print_clock_accuracy(uint16_t accuracy) { if (le16_to_cpu(accuracy) == 0xffff) print_field("Accuracy: Unknown (0x%4.4x)", le16_to_cpu(accuracy)); else print_field("Accuracy: %.4f msec (0x%4.4x)", le16_to_cpu(accuracy) * 0.3125, le16_to_cpu(accuracy)); } static void print_lpo_allowed(uint8_t lpo_allowed) { print_field("LPO allowed: 0x%2.2x", lpo_allowed); } static void print_broadcast_fragment(uint8_t fragment) { const char *str; switch (fragment) { case 0x00: str = "Continuation fragment"; break; case 0x01: str = "Starting fragment"; break; case 0x02: str = "Ending fragment"; break; case 0x03: str = "No fragmentation"; break; default: str = "Reserved"; break; } print_field("Fragment: %s (0x%2.2x)", str, fragment); } static void print_link_type(uint8_t link_type) { const char *str; switch (link_type) { case 0x00: str = "SCO"; break; case 0x01: str = "ACL"; break; case 0x02: str = "eSCO"; break; default: str = "Reserved"; break; } print_field("Link type: %s (0x%2.2x)", str, link_type); } static void print_encr_mode_change(uint8_t encr_mode, uint16_t handle) { const char *str; uint8_t conn_type; conn_type = get_type(le16_to_cpu(handle)); switch (encr_mode) { case 0x00: str = "Disabled"; break; case 0x01: switch (conn_type) { case 0x00: str = "Enabled with E0"; break; case 0x01: str = "Enabled with AES-CCM"; break; default: str = "Enabled"; break; } break; case 0x02: str = "Enabled with AES-CCM"; break; default: str = "Reserved"; break; } print_field("Encryption: %s (0x%2.2x)", str, encr_mode); } static void print_pin_type(uint8_t pin_type) { const char *str; switch (pin_type) { case 0x00: str = "Variable"; break; case 0x01: str = "Fixed"; break; default: str = "Reserved"; break; } print_field("PIN type: %s (0x%2.2x)", str, pin_type); } static void print_key_flag(uint8_t key_flag) { const char *str; switch (key_flag) { case 0x00: str = "Semi-permanent"; break; case 0x01: str = "Temporary"; break; default: str = "Reserved"; break; } print_field("Key flag: %s (0x%2.2x)", str, key_flag); } static void print_key_len(uint8_t key_len) { const char *str; switch (key_len) { case 32: str = "802.11 PAL"; break; default: str = "Reserved"; break; } print_field("Key length: %s (%d)", str, key_len); } static void print_key_type(uint8_t key_type) { const char *str; switch (key_type) { case 0x00: str = "Combination key"; break; case 0x01: str = "Local Unit key"; break; case 0x02: str = "Remote Unit key"; break; case 0x03: str = "Debug Combination key"; break; case 0x04: str = "Unauthenticated Combination key from P-192"; break; case 0x05: str = "Authenticated Combination key from P-192"; break; case 0x06: str = "Changed Combination key"; break; case 0x07: str = "Unauthenticated Combination key from P-256"; break; case 0x08: str = "Authenticated Combination key from P-256"; break; default: str = "Reserved"; break; } print_field("Key type: %s (0x%2.2x)", str, key_type); } static void print_key_size(uint8_t key_size) { print_field("Key size: %d", key_size); } static void print_key(const char *label, const uint8_t *link_key) { print_hex_field(label, link_key, 16); } static void print_link_key(const uint8_t *link_key) { print_key("Link key", link_key); } static void print_pin_code(const uint8_t *pin_code, uint8_t pin_len) { char str[pin_len + 1]; uint8_t i; for (i = 0; i < pin_len; i++) sprintf(str + i, "%c", (const char) pin_code[i]); print_field("PIN code: %s", str); } static void print_hash_p192(const uint8_t *hash) { print_key("Hash C from P-192", hash); } static void print_hash_p256(const uint8_t *hash) { print_key("Hash C from P-256", hash); } static void print_randomizer_p192(const uint8_t *randomizer) { print_key("Randomizer R with P-192", randomizer); } static void print_randomizer_p256(const uint8_t *randomizer) { print_key("Randomizer R with P-256", randomizer); } static void print_pk256(const char *label, const uint8_t *key) { print_field("%s:", label); print_hex_field(" X", &key[0], 32); print_hex_field(" Y", &key[32], 32); } static void print_dhkey(const uint8_t *dhkey) { print_hex_field("Diffie-Hellman key", dhkey, 32); } static void print_passkey(uint32_t passkey) { print_field("Passkey: %06d", le32_to_cpu(passkey)); } static void print_io_capability(uint8_t capability) { const char *str; switch (capability) { case 0x00: str = "DisplayOnly"; break; case 0x01: str = "DisplayYesNo"; break; case 0x02: str = "KeyboardOnly"; break; case 0x03: str = "NoInputNoOutput"; break; default: str = "Reserved"; break; } print_field("IO capability: %s (0x%2.2x)", str, capability); } static void print_oob_data(uint8_t oob_data) { const char *str; switch (oob_data) { case 0x00: str = "Authentication data not present"; break; case 0x01: str = "P-192 authentication data present"; break; case 0x02: str = "P-256 authentication data present"; break; case 0x03: str = "P-192 and P-256 authentication data present"; break; default: str = "Reserved"; break; } print_field("OOB data: %s (0x%2.2x)", str, oob_data); } static void print_oob_data_response(uint8_t oob_data) { const char *str; switch (oob_data) { case 0x00: str = "Authentication data not present"; break; case 0x01: str = "Authentication data present"; break; default: str = "Reserved"; break; } print_field("OOB data: %s (0x%2.2x)", str, oob_data); } static void print_authentication(uint8_t authentication) { const char *str; switch (authentication) { case 0x00: str = "No Bonding - MITM not required"; break; case 0x01: str = "No Bonding - MITM required"; break; case 0x02: str = "Dedicated Bonding - MITM not required"; break; case 0x03: str = "Dedicated Bonding - MITM required"; break; case 0x04: str = "General Bonding - MITM not required"; break; case 0x05: str = "General Bonding - MITM required"; break; default: str = "Reserved"; break; } print_field("Authentication: %s (0x%2.2x)", str, authentication); } void packet_print_io_capability(uint8_t capability) { print_io_capability(capability); } void packet_print_io_authentication(uint8_t authentication) { print_authentication(authentication); } static void print_location_domain_aware(uint8_t aware) { const char *str; switch (aware) { case 0x00: str = "Regulatory domain unknown"; break; case 0x01: str = "Regulatory domain known"; break; default: str = "Reserved"; break; } print_field("Domain aware: %s (0x%2.2x)", str, aware); } static void print_location_domain(const uint8_t *domain) { print_field("Domain: %c%c (0x%2.2x%2.2x)", (char) domain[0], (char) domain[1], domain[0], domain[1]); } static void print_location_domain_options(uint8_t options) { print_field("Domain options: %c (0x%2.2x)", (char) options, options); } static void print_location_options(uint8_t options) { print_field("Options: 0x%2.2x", options); } static void print_flow_control_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Packet based"; break; case 0x01: str = "Data block based"; break; default: str = "Reserved"; break; } print_field("Flow control mode: %s (0x%2.2x)", str, mode); } static void print_flow_direction(uint8_t direction) { const char *str; switch (direction) { case 0x00: str = "Outgoing"; break; case 0x01: str = "Incoming"; break; default: str = "Reserved"; break; } print_field("Flow direction: %s (0x%2.2x)", str, direction); } static void print_service_type(uint8_t service_type) { const char *str; switch (service_type) { case 0x00: str = "No Traffic"; break; case 0x01: str = "Best Effort"; break; case 0x02: str = "Guaranteed"; break; default: str = "Reserved"; break; } print_field("Service type: %s (0x%2.2x)", str, service_type); } static void print_flow_spec(const char *label, const uint8_t *data) { const char *str; switch (data[1]) { case 0x00: str = "No traffic"; break; case 0x01: str = "Best effort"; break; case 0x02: str = "Guaranteed"; break; default: str = "Reserved"; break; } print_field("%s flow spec: 0x%2.2x", label, data[0]); print_field(" Service type: %s (0x%2.2x)", str, data[1]); print_field(" Maximum SDU size: 0x%4.4x", get_le16(data + 2)); print_field(" SDU inter-arrival time: 0x%8.8x", get_le32(data + 4)); print_field(" Access latency: 0x%8.8x", get_le32(data + 8)); print_field(" Flush timeout: 0x%8.8x", get_le32(data + 12)); } static void print_amp_status(uint8_t amp_status) { const char *str; switch (amp_status) { case 0x00: str = "Present"; break; case 0x01: str = "Bluetooth only"; break; case 0x02: str = "No capacity"; break; case 0x03: str = "Low capacity"; break; case 0x04: str = "Medium capacity"; break; case 0x05: str = "High capacity"; break; case 0x06: str = "Full capacity"; break; default: str = "Reserved"; break; } print_field("AMP status: %s (0x%2.2x)", str, amp_status); } static void print_num_resp(uint8_t num_resp) { print_field("Num responses: %d", num_resp); } static void print_num_reports(uint8_t num_reports) { print_field("Num reports: %d", num_reports); } static void print_adv_event_type(const char *label, uint8_t type) { const char *str; switch (type) { case 0x00: str = "Connectable undirected - ADV_IND"; break; case 0x01: str = "Connectable directed - ADV_DIRECT_IND"; break; case 0x02: str = "Scannable undirected - ADV_SCAN_IND"; break; case 0x03: str = "Non connectable undirected - ADV_NONCONN_IND"; break; case 0x04: str = "Scan response - SCAN_RSP"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x)", label, str, type); } static void print_adv_channel_map(const char *label, uint8_t value) { const char *str; switch (value) { case 0x01: str = "37"; break; case 0x02: str = "38"; break; case 0x03: str = "37, 38"; break; case 0x04: str = "39"; break; case 0x05: str = "37, 39"; break; case 0x06: str = "38, 39"; break; case 0x07: str = "37, 38, 39"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x)", label, str, value); } static void print_adv_filter_policy(const char *label, uint8_t value) { const char *str; switch (value) { case 0x00: str = "Allow Scan Request from Any, " "Allow Connect Request from Any"; break; case 0x01: str = "Allow Scan Request from Accept List Only, " "Allow Connect Request from Any"; break; case 0x02: str = "Allow Scan Request from Any, " "Allow Connect Request from Accept List Only"; break; case 0x03: str = "Allow Scan Request from Accept List Only, " "Allow Connect Request from Accept List Only"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x)", label, str, value); } static void print_rssi(int8_t rssi) { packet_print_rssi("RSSI", rssi); } static void print_slot_625(const char *label, uint16_t value) { print_field("%s: %.3f msec (0x%4.4x)", label, le16_to_cpu(value) * 0.625, le16_to_cpu(value)); } static void print_slot_125(const char *label, uint16_t value) { print_field("%s: %.2f msec (0x%4.4x)", label, le16_to_cpu(value) * 1.25, le16_to_cpu(value)); } static void print_timeout(uint16_t timeout) { print_slot_625("Timeout", timeout); } static void print_interval(uint16_t interval) { print_slot_625("Interval", interval); } static void print_window(uint16_t window) { print_slot_625("Window", window); } static void print_conn_latency(const char *label, uint16_t value) { print_field("%s: %u (0x%4.4x)", label, le16_to_cpu(value), le16_to_cpu(value)); } static void print_role(uint8_t role) { const char *str; switch (role) { case 0x00: str = "Central"; break; case 0x01: str = "Peripheral"; break; default: str = "Reserved"; break; } print_field("Role: %s (0x%2.2x)", str, role); } static void print_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Active"; break; case 0x01: str = "Hold"; break; case 0x02: str = "Sniff"; break; case 0x03: str = "Park"; break; default: str = "Reserved"; break; } print_field("Mode: %s (0x%2.2x)", str, mode); } static void print_name(const uint8_t *name) { char str[249]; memcpy(str, name, 248); str[248] = '\0'; print_field("Name: %s", str); } static void print_channel_map(const uint8_t *map) { unsigned int count = 0, start = 0; char str[21]; int i, n; for (i = 0; i < 10; i++) sprintf(str + (i * 2), "%2.2x", map[i]); print_field("Channel map: 0x%s", str); for (i = 0; i < 10; i++) { for (n = 0; n < 8; n++) { if (map[i] & (1 << n)) { if (count == 0) start = (i * 8) + n; count++; continue; } if (count > 1) { print_field(" Channel %u-%u", start, start + count - 1); count = 0; } else if (count > 0) { print_field(" Channel %u", start); count = 0; } } } } void packet_print_channel_map_lmp(const uint8_t *map) { print_channel_map(map); } static void print_flush_timeout(uint16_t timeout) { if (timeout) print_timeout(timeout); else print_field("Timeout: No Automatic Flush"); } void packet_print_version(const char *label, uint8_t version, const char *sublabel, uint16_t subversion) { const char *str; switch (version) { case 0x00: str = "Bluetooth 1.0b"; break; case 0x01: str = "Bluetooth 1.1"; break; case 0x02: str = "Bluetooth 1.2"; break; case 0x03: str = "Bluetooth 2.0"; break; case 0x04: str = "Bluetooth 2.1"; break; case 0x05: str = "Bluetooth 3.0"; break; case 0x06: str = "Bluetooth 4.0"; break; case 0x07: str = "Bluetooth 4.1"; break; case 0x08: str = "Bluetooth 4.2"; break; case 0x09: str = "Bluetooth 5.0"; break; case 0x0a: str = "Bluetooth 5.1"; break; case 0x0b: str = "Bluetooth 5.2"; break; case 0x0c: str = "Bluetooth 5.3"; break; default: str = "Reserved"; break; } if (sublabel) print_field("%s: %s (0x%2.2x) - %s %d (0x%4.4x)", label, str, version, sublabel, subversion, subversion); else print_field("%s: %s (0x%2.2x)", label, str, version); } static void print_hci_version(uint8_t version, uint16_t revision) { packet_print_version("HCI version", version, "Revision", le16_to_cpu(revision)); } static void print_lmp_version(uint8_t version, uint16_t subversion) { packet_print_version("LMP version", version, "Subversion", le16_to_cpu(subversion)); } static void print_pal_version(uint8_t version, uint16_t subversion) { const char *str; switch (version) { case 0x01: str = "Bluetooth 3.0"; break; default: str = "Reserved"; break; } print_field("PAL version: %s (0x%2.2x) - Subversion %d (0x%4.4x)", str, version, le16_to_cpu(subversion), le16_to_cpu(subversion)); } void packet_print_company(const char *label, uint16_t company) { print_field("%s: %s (%d)", label, bt_compidtostr(company), company); } static void print_manufacturer(uint16_t manufacturer) { packet_print_company("Manufacturer", le16_to_cpu(manufacturer)); } static const struct { uint16_t ver; const char *str; } broadcom_uart_subversion_table[] = { { 0x210b, "BCM43142A0" }, /* 001.001.011 */ { 0x410e, "BCM43341B0" }, /* 002.001.014 */ { 0x4406, "BCM4324B3" }, /* 002.004.006 */ { } }; static const struct { uint16_t ver; const char *str; } broadcom_usb_subversion_table[] = { { 0x210b, "BCM43142A0" }, /* 001.001.011 */ { 0x2112, "BCM4314A0" }, /* 001.001.018 */ { 0x2118, "BCM20702A0" }, /* 001.001.024 */ { 0x2126, "BCM4335A0" }, /* 001.001.038 */ { 0x220e, "BCM20702A1" }, /* 001.002.014 */ { 0x230f, "BCM4354A2" }, /* 001.003.015 */ { 0x4106, "BCM4335B0" }, /* 002.001.006 */ { 0x410e, "BCM20702B0" }, /* 002.001.014 */ { 0x6109, "BCM4335C0" }, /* 003.001.009 */ { 0x610c, "BCM4354" }, /* 003.001.012 */ { } }; static void print_manufacturer_broadcom(uint16_t subversion, uint16_t revision) { uint16_t ver = le16_to_cpu(subversion); uint16_t rev = le16_to_cpu(revision); const char *str = NULL; int i; switch ((rev & 0xf000) >> 12) { case 0: case 3: for (i = 0; broadcom_uart_subversion_table[i].str; i++) { if (broadcom_uart_subversion_table[i].ver == ver) { str = broadcom_uart_subversion_table[i].str; break; } } break; case 1: case 2: for (i = 0; broadcom_usb_subversion_table[i].str; i++) { if (broadcom_usb_subversion_table[i].ver == ver) { str = broadcom_usb_subversion_table[i].str; break; } } break; } if (str) print_field(" Firmware: %3.3u.%3.3u.%3.3u (%s)", (ver & 0xe000) >> 13, (ver & 0x1f00) >> 8, ver & 0x00ff, str); else print_field(" Firmware: %3.3u.%3.3u.%3.3u", (ver & 0xe000) >> 13, (ver & 0x1f00) >> 8, ver & 0x00ff); if (rev != 0xffff) print_field(" Build: %4.4u", rev & 0x0fff); } static const char *get_supported_command(int bit); static void print_commands(const uint8_t *commands) { unsigned int count = 0; int i, n; for (i = 0; i < 64; i++) { for (n = 0; n < 8; n++) { if (commands[i] & (1 << n)) count++; } } print_field("Commands: %u entr%s", count, count == 1 ? "y" : "ies"); for (i = 0; i < 64; i++) { for (n = 0; n < 8; n++) { const char *cmd; if (!(commands[i] & (1 << n))) continue; cmd = get_supported_command((i * 8) + n); if (cmd) print_field(" %s (Octet %d - Bit %d)", cmd, i, n); else print_text(COLOR_UNKNOWN_COMMAND_BIT, " Octet %d - Bit %d ", i, n); } } } static const struct bitfield_data features_page0[] = { { 0, "3 slot packets" }, { 1, "5 slot packets" }, { 2, "Encryption" }, { 3, "Slot offset" }, { 4, "Timing accuracy" }, { 5, "Role switch" }, { 6, "Hold mode" }, { 7, "Sniff mode" }, { 8, "Park state" }, { 9, "Power control requests" }, { 10, "Channel quality driven data rate (CQDDR)"}, { 11, "SCO link" }, { 12, "HV2 packets" }, { 13, "HV3 packets" }, { 14, "u-law log synchronous data" }, { 15, "A-law log synchronous data" }, { 16, "CVSD synchronous data" }, { 17, "Paging parameter negotiation" }, { 18, "Power control" }, { 19, "Transparent synchronous data" }, { 20, "Flow control lag (least significant bit)"}, { 21, "Flow control lag (middle bit)" }, { 22, "Flow control lag (most significant bit)" }, { 23, "Broadcast Encryption" }, { 25, "Enhanced Data Rate ACL 2 Mbps mode" }, { 26, "Enhanced Data Rate ACL 3 Mbps mode" }, { 27, "Enhanced inquiry scan" }, { 28, "Interlaced inquiry scan" }, { 29, "Interlaced page scan" }, { 30, "RSSI with inquiry results" }, { 31, "Extended SCO link (EV3 packets)" }, { 32, "EV4 packets" }, { 33, "EV5 packets" }, { 35, "AFH capable peripheral" }, { 36, "AFH classification peripheral" }, { 37, "BR/EDR Not Supported" }, { 38, "LE Supported (Controller)" }, { 39, "3-slot Enhanced Data Rate ACL packets" }, { 40, "5-slot Enhanced Data Rate ACL packets" }, { 41, "Sniff subrating" }, { 42, "Pause encryption" }, { 43, "AFH capable central" }, { 44, "AFH classification central" }, { 45, "Enhanced Data Rate eSCO 2 Mbps mode" }, { 46, "Enhanced Data Rate eSCO 3 Mbps mode" }, { 47, "3-slot Enhanced Data Rate eSCO packets" }, { 48, "Extended Inquiry Response" }, { 49, "Simultaneous LE and BR/EDR (Controller)" }, { 51, "Secure Simple Pairing" }, { 52, "Encapsulated PDU" }, { 53, "Erroneous Data Reporting" }, { 54, "Non-flushable Packet Boundary Flag" }, { 56, "Link Supervision Timeout Changed Event" }, { 57, "Inquiry TX Power Level" }, { 58, "Enhanced Power Control" }, { 63, "Extended features" }, { } }; static const struct bitfield_data features_page1[] = { { 0, "Secure Simple Pairing (Host Support)" }, { 1, "LE Supported (Host)" }, { 2, "Simultaneous LE and BR/EDR (Host)" }, { 3, "Secure Connections (Host Support)" }, { } }; static const struct bitfield_data features_page2[] = { { 0, "Connectionless Peripheral Broadcast - Central" }, { 1, "Connectionless Peripheral Broadcast - Peripheral"}, { 2, "Synchronization Train" }, { 3, "Synchronization Scan" }, { 4, "Inquiry Response Notification Event" }, { 5, "Generalized interlaced scan" }, { 6, "Coarse Clock Adjustment" }, { 8, "Secure Connections (Controller Support)" }, { 9, "Ping" }, { 10, "Slot Availability Mask" }, { 11, "Train nudging" }, { } }; static const struct bitfield_data features_le[] = { { 0, "LE Encryption" }, { 1, "Connection Parameter Request Procedure" }, { 2, "Extended Reject Indication" }, { 3, "Peripheral-initiated Features Exchange" }, { 4, "LE Ping" }, { 5, "LE Data Packet Length Extension" }, { 6, "LL Privacy" }, { 7, "Extended Scanner Filter Policies" }, { 8, "LE 2M PHY" }, { 9, "Stable Modulation Index - Transmitter" }, { 10, "Stable Modulation Index - Receiver" }, { 11, "LE Coded PHY" }, { 12, "LE Extended Advertising" }, { 13, "LE Periodic Advertising" }, { 14, "Channel Selection Algorithm #2" }, { 15, "LE Power Class 1" }, { 16, "Minimum Number of Used Channels Procedure" }, { 17, "Connection CTE Request" }, { 18, "Connection CTE Response" }, { 19, "Connectionless CTE Transmitter" }, { 20, "Connectionless CTE Receiver" }, { 21, "Antenna Switching During CTE Transmission (AoD)" }, { 22, "Antenna Switching During CTE Reception (AoA)" }, { 23, "Receiving Constant Tone Extensions" }, { 24, "Periodic Advertising Sync Transfer - Sender" }, { 25, "Periodic Advertising Sync Transfer - Recipient" }, { 26, "Sleep Clock Accuracy Updates" }, { 27, "Remote Public Key Validation" }, { 28, "Connected Isochronous Stream - Central" }, { 29, "Connected Isochronous Stream - Peripheral" }, { 30, "Isochronous Broadcaster" }, { 31, "Synchronized Receiver" }, { 32, "Isochronous Channels (Host Support)" }, { 33, "LE Power Control Request" }, { 34, "LE Power Control Request" }, { 35, "LE Path Loss Monitoring" }, { 36, "Periodic Advertising ADI support" }, { 37, "Connection Subrating" }, { 38, "Connection Subrating (Host Support)" }, { 39, "Channel Classification" }, { } }; static const struct bitfield_data features_msft[] = { { 0, "RSSI Monitoring feature for BR/EDR" }, { 1, "RSSI Monitoring feature for LE connections" }, { 2, "RSSI Monitoring of LE advertisements" }, { 3, "Advertising Monitoring of LE advertisements" }, { 4, "Verifying the validity of P-192 and P-256 keys" }, { 5, "Continuous Advertising Monitoring" }, { } }; static void print_features(uint8_t page, const uint8_t *features_array, uint8_t type) { const struct bitfield_data *features_table = NULL; uint64_t mask, features = 0; char str[41]; int i; for (i = 0; i < 8; i++) { sprintf(str + (i * 5), " 0x%2.2x", features_array[i]); features |= ((uint64_t) features_array[i]) << (i * 8); } print_field("Features:%s", str); switch (type) { case 0x00: switch (page) { case 0: features_table = features_page0; break; case 1: features_table = features_page1; break; case 2: features_table = features_page2; break; } break; case 0x01: switch (page) { case 0: features_table = features_le; break; } break; case 0xf0: switch (page) { case 0: features_table = features_msft; break; } break; } if (!features_table) return; mask = print_bitfield(2, features, features_table); if (mask) print_text(COLOR_UNKNOWN_FEATURE_BIT, " Unknown features " "(0x%16.16" PRIx64 ")", mask); } void packet_print_features_lmp(const uint8_t *features, uint8_t page) { print_features(page, features, 0x00); } void packet_print_features_ll(const uint8_t *features) { print_features(0, features, 0x01); } void packet_print_features_msft(const uint8_t *features) { print_features(0, features, 0xf0); } #define LE_STATE_SCAN_ADV 0x0001 #define LE_STATE_CONN_ADV 0x0002 #define LE_STATE_NONCONN_ADV 0x0004 #define LE_STATE_HIGH_DIRECT_ADV 0x0008 #define LE_STATE_LOW_DIRECT_ADV 0x0010 #define LE_STATE_ACTIVE_SCAN 0x0020 #define LE_STATE_PASSIVE_SCAN 0x0040 #define LE_STATE_INITIATING 0x0080 #define LE_STATE_CONN_CENTRAL 0x0100 #define LE_STATE_CONN_PERIPHERAL 0x0200 #define LE_STATE_CENTRAL_CENTRAL 0x0400 #define LE_STATE_PERIPHERAL_PERIPHERAL 0x0800 #define LE_STATE_CENTRAL_PERIPHERAL 0x1000 static const struct bitfield_data le_states_desc_table[] = { { 0, "Scannable Advertising State" }, { 1, "Connectable Advertising State" }, { 2, "Non-connectable Advertising State" }, { 3, "High Duty Cycle Directed Advertising State" }, { 4, "Low Duty Cycle Directed Advertising State" }, { 5, "Active Scanning State" }, { 6, "Passive Scanning State" }, { 7, "Initiating State" }, { 8, "Connection State (Central Role)" }, { 9, "Connection State (Peripheral Role)" }, { 10, "Central Role & Central Role" }, { 11, "Peripheral Role & Peripheral Role" }, { 12, "Central Role & Peripheral Role" }, { } }; static const struct { uint8_t bit; uint16_t states; } le_states_comb_table[] = { { 0, LE_STATE_NONCONN_ADV }, { 1, LE_STATE_SCAN_ADV }, { 2, LE_STATE_CONN_ADV }, { 3, LE_STATE_HIGH_DIRECT_ADV }, { 4, LE_STATE_PASSIVE_SCAN }, { 5, LE_STATE_ACTIVE_SCAN }, { 6, LE_STATE_INITIATING | LE_STATE_CONN_CENTRAL }, { 7, LE_STATE_CONN_PERIPHERAL }, { 8, LE_STATE_PASSIVE_SCAN | LE_STATE_NONCONN_ADV }, { 9, LE_STATE_PASSIVE_SCAN | LE_STATE_SCAN_ADV }, { 10, LE_STATE_PASSIVE_SCAN | LE_STATE_CONN_ADV }, { 11, LE_STATE_PASSIVE_SCAN | LE_STATE_HIGH_DIRECT_ADV }, { 12, LE_STATE_ACTIVE_SCAN | LE_STATE_NONCONN_ADV }, { 13, LE_STATE_ACTIVE_SCAN | LE_STATE_SCAN_ADV }, { 14, LE_STATE_ACTIVE_SCAN | LE_STATE_CONN_ADV }, { 15, LE_STATE_ACTIVE_SCAN | LE_STATE_HIGH_DIRECT_ADV }, { 16, LE_STATE_INITIATING | LE_STATE_NONCONN_ADV }, { 17, LE_STATE_INITIATING | LE_STATE_SCAN_ADV }, { 18, LE_STATE_CONN_CENTRAL | LE_STATE_NONCONN_ADV }, { 19, LE_STATE_CONN_CENTRAL | LE_STATE_SCAN_ADV }, { 20, LE_STATE_CONN_PERIPHERAL | LE_STATE_NONCONN_ADV }, { 21, LE_STATE_CONN_PERIPHERAL | LE_STATE_SCAN_ADV }, { 22, LE_STATE_INITIATING | LE_STATE_PASSIVE_SCAN }, { 23, LE_STATE_INITIATING | LE_STATE_ACTIVE_SCAN }, { 24, LE_STATE_CONN_CENTRAL | LE_STATE_PASSIVE_SCAN }, { 25, LE_STATE_CONN_CENTRAL | LE_STATE_ACTIVE_SCAN }, { 26, LE_STATE_CONN_PERIPHERAL | LE_STATE_PASSIVE_SCAN }, { 27, LE_STATE_CONN_PERIPHERAL | LE_STATE_ACTIVE_SCAN }, { 28, LE_STATE_INITIATING | LE_STATE_CONN_CENTRAL | LE_STATE_CENTRAL_CENTRAL }, { 29, LE_STATE_LOW_DIRECT_ADV }, { 30, LE_STATE_LOW_DIRECT_ADV | LE_STATE_PASSIVE_SCAN }, { 31, LE_STATE_LOW_DIRECT_ADV | LE_STATE_ACTIVE_SCAN }, { 32, LE_STATE_INITIATING | LE_STATE_CONN_ADV | LE_STATE_CENTRAL_PERIPHERAL }, { 33, LE_STATE_INITIATING | LE_STATE_HIGH_DIRECT_ADV | LE_STATE_CENTRAL_PERIPHERAL }, { 34, LE_STATE_INITIATING | LE_STATE_LOW_DIRECT_ADV | LE_STATE_CENTRAL_PERIPHERAL }, { 35, LE_STATE_CONN_CENTRAL | LE_STATE_CONN_ADV | LE_STATE_CENTRAL_PERIPHERAL }, { 36, LE_STATE_CONN_CENTRAL | LE_STATE_HIGH_DIRECT_ADV | LE_STATE_CENTRAL_PERIPHERAL }, { 37, LE_STATE_CONN_CENTRAL | LE_STATE_LOW_DIRECT_ADV | LE_STATE_CENTRAL_PERIPHERAL }, { 38, LE_STATE_CONN_PERIPHERAL | LE_STATE_CONN_ADV | LE_STATE_CENTRAL_PERIPHERAL }, { 39, LE_STATE_CONN_PERIPHERAL | LE_STATE_HIGH_DIRECT_ADV | LE_STATE_PERIPHERAL_PERIPHERAL }, { 40, LE_STATE_CONN_PERIPHERAL | LE_STATE_LOW_DIRECT_ADV | LE_STATE_PERIPHERAL_PERIPHERAL }, { 41, LE_STATE_INITIATING | LE_STATE_CONN_PERIPHERAL | LE_STATE_CENTRAL_PERIPHERAL }, { } }; static void print_le_states(const uint8_t *states_array) { uint64_t mask, states = 0; int i = 0; size_t n = 0; for (i = 0; i < 8; i++) states |= ((uint64_t) states_array[i]) << (i * 8); print_field("States: 0x%16.16" PRIx64, states); mask = states; for (i = 0; le_states_comb_table[i].states; i++) { uint64_t val = (((uint64_t) 1) << le_states_comb_table[i].bit); const char *str[3] = { NULL, }; size_t num = 0; if (!(states & val)) continue; for (n = 0; n < ARRAY_SIZE(le_states_desc_table); n++) { if (le_states_comb_table[i].states & (1 << n)) str[num++] = le_states_desc_table[n].str; } if (num > 0) { print_field(" %s", str[0]); for (n = 1; n < num; n++) print_field(" and %s", str[n]); } mask &= ~val; } if (mask) print_text(COLOR_UNKNOWN_LE_STATES, " Unknown states " "(0x%16.16" PRIx64 ")", mask); } static void print_le_channel_map(const uint8_t *map) { unsigned int count = 0, start = 0; char str[11]; int i, n; for (i = 0; i < 5; i++) sprintf(str + (i * 2), "%2.2x", map[i]); print_field("Channel map: 0x%s", str); for (i = 0; i < 5; i++) { for (n = 0; n < 8; n++) { if (map[i] & (1 << n)) { if (count == 0) start = (i * 8) + n; count++; continue; } if (count > 1) { print_field(" Channel %u-%u", start, start + count - 1); count = 0; } else if (count > 0) { print_field(" Channel %u", start); count = 0; } } } } void packet_print_channel_map_ll(const uint8_t *map) { print_le_channel_map(map); } static void print_random_number(uint64_t rand) { print_field("Random number: 0x%16.16" PRIx64, le64_to_cpu(rand)); } static void print_encrypted_diversifier(uint16_t ediv) { print_field("Encrypted diversifier: 0x%4.4x", le16_to_cpu(ediv)); } static const struct bitfield_data events_table[] = { { 0, "Inquiry Complete" }, { 1, "Inquiry Result" }, { 2, "Connection Complete" }, { 3, "Connection Request" }, { 4, "Disconnection Complete" }, { 5, "Authentication Complete" }, { 6, "Remote Name Request Complete" }, { 7, "Encryption Change" }, { 8, "Change Connection Link Key Complete" }, { 9, "Link Key Type Changed" }, { 10, "Read Remote Supported Features Complete" }, { 11, "Read Remote Version Information Complete" }, { 12, "QoS Setup Complete" }, { 13, "Command Complete" }, { 14, "Command Status" }, { 15, "Hardware Error" }, { 16, "Flush Occurred" }, { 17, "Role Change" }, { 18, "Number of Completed Packets" }, { 19, "Mode Change" }, { 20, "Return Link Keys" }, { 21, "PIN Code Request" }, { 22, "Link Key Request" }, { 23, "Link Key Notification" }, { 24, "Loopback Command" }, { 25, "Data Buffer Overflow" }, { 26, "Max Slots Change" }, { 27, "Read Clock Offset Complete" }, { 28, "Connection Packet Type Changed" }, { 29, "QoS Violation" }, { 30, "Page Scan Mode Change" }, { 31, "Page Scan Repetition Mode Change" }, { 32, "Flow Specification Complete" }, { 33, "Inquiry Result with RSSI" }, { 34, "Read Remote Extended Features Complete" }, { 43, "Synchronous Connection Complete" }, { 44, "Synchronous Connection Changed" }, { 45, "Sniff Subrating" }, { 46, "Extended Inquiry Result" }, { 47, "Encryption Key Refresh Complete" }, { 48, "IO Capability Request" }, { 49, "IO Capability Request Reply" }, { 50, "User Confirmation Request" }, { 51, "User Passkey Request" }, { 52, "Remote OOB Data Request" }, { 53, "Simple Pairing Complete" }, { 55, "Link Supervision Timeout Changed" }, { 56, "Enhanced Flush Complete" }, { 58, "User Passkey Notification" }, { 59, "Keypress Notification" }, { 60, "Remote Host Supported Features Notification" }, { 61, "LE Meta" }, { } }; static void print_event_mask(const uint8_t *events_array, const struct bitfield_data *table) { uint64_t mask, events = 0; int i; for (i = 0; i < 8; i++) events |= ((uint64_t) events_array[i]) << (i * 8); print_field("Mask: 0x%16.16" PRIx64, events); mask = print_bitfield(2, events, table); if (mask) print_text(COLOR_UNKNOWN_EVENT_MASK, " Unknown mask " "(0x%16.16" PRIx64 ")", mask); } static const struct bitfield_data events_page2_table[] = { { 0, "Physical Link Complete" }, { 1, "Channel Selected" }, { 2, "Disconnection Physical Link Complete" }, { 3, "Physical Link Loss Early Warning" }, { 4, "Physical Link Recovery" }, { 5, "Logical Link Complete" }, { 6, "Disconnection Logical Link Complete" }, { 7, "Flow Specification Modify Complete" }, { 8, "Number of Completed Data Blocks" }, { 9, "AMP Start Test" }, { 10, "AMP Test End" }, { 11, "AMP Receiver Report" }, { 12, "Short Range Mode Change Complete" }, { 13, "AMP Status Change" }, { 14, "Triggered Clock Capture" }, { 15, "Synchronization Train Complete" }, { 16, "Synchronization Train Received" }, { 17, "Connectionless Peripheral Broadcast Receive" }, { 18, "Connectionless Peripheral Broadcast Timeout" }, { 19, "Truncated Page Complete" }, { 20, "Peripheral Page Response Timeout" }, { 21, "Connectionless Peripheral Broadcast Channel Map Change" }, { 22, "Inquiry Response Notification" }, { 23, "Authenticated Payload Timeout Expired" }, { 24, "SAM Status Change" }, { } }; static const struct bitfield_data events_le_table[] = { { 0, "LE Connection Complete" }, { 1, "LE Advertising Report" }, { 2, "LE Connection Update Complete" }, { 3, "LE Read Remote Used Features Complete" }, { 4, "LE Long Term Key Request" }, { 5, "LE Remote Connection Parameter Request" }, { 6, "LE Data Length Change" }, { 7, "LE Read Local P-256 Public Key Complete" }, { 8, "LE Generate DHKey Complete" }, { 9, "LE Enhanced Connection Complete" }, { 10, "LE Direct Advertising Report" }, { 11, "LE PHY Update Complete" }, { 12, "LE Extended Advertising Report" }, { 13, "LE Periodic Advertising Sync Established"}, { 14, "LE Periodic Advertising Report" }, { 15, "LE Periodic Advertising Sync Lost" }, { 16, "LE Extended Scan Timeout" }, { 17, "LE Extended Advertising Set Terminated" }, { 18, "LE Scan Request Received" }, { 19, "LE Channel Selection Algorithm" }, { 24, "LE CIS Established" }, { 25, "LE CIS Request" }, { 26, "LE Create BIG Complete" }, { 27, "LE Terminate BIG Complete" }, { 28, "LE BIG Sync Estabilished Complete" }, { 29, "LE BIG Sync Lost" }, { } }; static void print_fec(uint8_t fec) { const char *str; switch (fec) { case 0x00: str = "Not required"; break; case 0x01: str = "Required"; break; default: str = "Reserved"; break; } print_field("FEC: %s (0x%02x)", str, fec); } #define BT_EIR_FLAGS 0x01 #define BT_EIR_UUID16_SOME 0x02 #define BT_EIR_UUID16_ALL 0x03 #define BT_EIR_UUID32_SOME 0x04 #define BT_EIR_UUID32_ALL 0x05 #define BT_EIR_UUID128_SOME 0x06 #define BT_EIR_UUID128_ALL 0x07 #define BT_EIR_NAME_SHORT 0x08 #define BT_EIR_NAME_COMPLETE 0x09 #define BT_EIR_TX_POWER 0x0a #define BT_EIR_CLASS_OF_DEV 0x0d #define BT_EIR_SSP_HASH_P192 0x0e #define BT_EIR_SSP_RANDOMIZER_P192 0x0f #define BT_EIR_DEVICE_ID 0x10 #define BT_EIR_SMP_TK 0x10 #define BT_EIR_SMP_OOB_FLAGS 0x11 #define BT_EIR_PERIPHERAL_CONN_INTERVAL 0x12 #define BT_EIR_SERVICE_UUID16 0x14 #define BT_EIR_SERVICE_UUID128 0x15 #define BT_EIR_SERVICE_DATA 0x16 #define BT_EIR_PUBLIC_ADDRESS 0x17 #define BT_EIR_RANDOM_ADDRESS 0x18 #define BT_EIR_GAP_APPEARANCE 0x19 #define BT_EIR_ADVERTISING_INTERVAL 0x1a #define BT_EIR_LE_DEVICE_ADDRESS 0x1b #define BT_EIR_LE_ROLE 0x1c #define BT_EIR_SSP_HASH_P256 0x1d #define BT_EIR_SSP_RANDOMIZER_P256 0x1e #define BT_EIR_SERVICE_UUID32 0x1f #define BT_EIR_SERVICE_DATA32 0x20 #define BT_EIR_SERVICE_DATA128 0x21 #define BT_EIR_LE_SC_CONFIRM_VALUE 0x22 #define BT_EIR_LE_SC_RANDOM_VALUE 0x23 #define BT_EIR_URI 0x24 #define BT_EIR_INDOOR_POSITIONING 0x25 #define BT_EIR_TRANSPORT_DISCOVERY 0x26 #define BT_EIR_LE_SUPPORTED_FEATURES 0x27 #define BT_EIR_CHANNEL_MAP_UPDATE_IND 0x28 #define BT_EIR_MESH_PROV 0x29 #define BT_EIR_MESH_DATA 0x2a #define BT_EIR_MESH_BEACON 0x2b #define BT_EIR_CSIP_RSI 0x2e #define BT_EIR_3D_INFO_DATA 0x3d #define BT_EIR_MANUFACTURER_DATA 0xff static void print_manufacturer_apple(const void *data, uint8_t data_len) { uint8_t type = *((uint8_t *) data); if (data_len < 1) return; if (type == 0x01) { char identifier[100]; snprintf(identifier, sizeof(identifier) - 1, "%s", (const char *) (data + 1)); print_field(" Identifier: %s", identifier); return; } while (data_len > 0) { uint8_t len; const char *str; type = *((uint8_t *) data); data++; data_len--; if (type == 0x00) continue; if (data_len < 1) break; switch (type) { case 0x02: str = "iBeacon"; break; case 0x05: str = "AirDrop"; break; case 0x09: str = "Apple TV"; break; default: str = "Unknown"; break; } print_field(" Type: %s (%u)", str, type); len = *((uint8_t *) data); data++; data_len--; if (len < 1) continue; if (len > data_len) break; if (type == 0x02 && len == 0x15) { const uint8_t *uuid; uint16_t minor, major; int8_t tx_power; uuid = data; print_field(" UUID: %8.8x-%4.4x-%4.4x-%4.4x-%8.8x%4.4x", get_le32(&uuid[12]), get_le16(&uuid[10]), get_le16(&uuid[8]), get_le16(&uuid[6]), get_le32(&uuid[2]), get_le16(&uuid[0])); major = get_le16(data + 16); minor = get_le16(data + 18); print_field(" Version: %u.%u", major, minor); tx_power = *(int8_t *) (data + 20); print_field(" TX power: %d dB", tx_power); } else print_hex_field(" Data", data, len); data += len; data_len -= len; } packet_hexdump(data, data_len); } static void print_manufacturer_data(const void *data, uint8_t data_len) { uint16_t company = get_le16(data); packet_print_company("Company", company); switch (company) { case 76: case 19456: print_manufacturer_apple(data + 2, data_len - 2); break; default: print_hex_field(" Data", data + 2, data_len - 2); break; } } static void print_device_id(const void *data, uint8_t data_len) { uint16_t source, vendor, product, version; char modalias[26], *vendor_str, *product_str; const char *str; if (data_len < 8) return; source = get_le16(data); vendor = get_le16(data + 2); product = get_le16(data + 4); version = get_le16(data + 6); switch (source) { case 0x0001: str = "Bluetooth SIG assigned"; sprintf(modalias, "bluetooth:v%04Xp%04Xd%04X", vendor, product, version); break; case 0x0002: str = "USB Implementer's Forum assigned"; sprintf(modalias, "usb:v%04Xp%04Xd%04X", vendor, product, version); break; default: str = "Reserved"; modalias[0] = '\0'; break; } print_field("Device ID: %s (0x%4.4x)", str, source); if (!hwdb_get_vendor_model(modalias, &vendor_str, &product_str)) { vendor_str = NULL; product_str = NULL; } if (source != 0x0001) { if (vendor_str) print_field(" Vendor: %s (0x%4.4x)", vendor_str, vendor); else print_field(" Vendor: 0x%4.4x", vendor); } else packet_print_company(" Vendor", vendor); if (product_str) print_field(" Product: %s (0x%4.4x)", product_str, product); else print_field(" Product: 0x%4.4x", product); print_field(" Version: %u.%u.%u (0x%4.4x)", (version & 0xff00) >> 8, (version & 0x00f0) >> 4, (version & 0x000f), version); free(vendor_str); free(product_str); } static void print_uuid16_list(const char *label, const void *data, uint8_t data_len) { uint8_t count = data_len / sizeof(uint16_t); unsigned int i; print_field("%s: %u entr%s", label, count, count == 1 ? "y" : "ies"); for (i = 0; i < count; i++) { uint16_t uuid = get_le16(data + (i * 2)); print_field(" %s (0x%4.4x)", bt_uuid16_to_str(uuid), uuid); } } static void print_uuid32_list(const char *label, const void *data, uint8_t data_len) { uint8_t count = data_len / sizeof(uint32_t); unsigned int i; print_field("%s: %u entr%s", label, count, count == 1 ? "y" : "ies"); for (i = 0; i < count; i++) { uint32_t uuid = get_le32(data + (i * 4)); print_field(" %s (0x%8.8x)", bt_uuid32_to_str(uuid), uuid); } } static void print_uuid128_list(const char *label, const void *data, uint8_t data_len) { uint8_t count = data_len / 16; unsigned int i; print_field("%s: %u entr%s", label, count, count == 1 ? "y" : "ies"); for (i = 0; i < count; i++) { const uint8_t *uuid = data + (i * 16); print_field(" %s", bt_uuid128_to_str(uuid)); } } static void *iov_pull(struct iovec *iov, size_t len) { void *data; if (iov->iov_len < len) return NULL; data = iov->iov_base; iov->iov_base += len; iov->iov_len -= len; return data; } static struct packet_ltv_decoder* get_ltv_decoder(struct packet_ltv_decoder *decoder, size_t num, uint8_t type) { size_t i; if (!decoder || !num) return NULL; for (i = 0; i < num; i++) { struct packet_ltv_decoder *dec = &decoder[i]; if (dec->type == type) return dec; } return NULL; } static void print_ltv(const char *label, const uint8_t *data, uint8_t len, struct packet_ltv_decoder *decoder, size_t num) { struct iovec iov; int i; iov.iov_base = (void *) data; iov.iov_len = len; for (i = 0; iov.iov_len; i++) { uint8_t l, t, *v; struct packet_ltv_decoder *dec; l = get_u8(iov_pull(&iov, sizeof(l))); if (!l) { print_field("%s #%d: len 0x%02x", label, i, l); break; } v = iov_pull(&iov, sizeof(*v)); if (!v) break; t = get_u8(v); print_field("%s #%d: len 0x%02x type 0x%02x", label, i, l, t); l -= 1; v = iov_pull(&iov, l); if (!v) break; dec = get_ltv_decoder(decoder, num, t); if (dec) dec->func(v, l); else print_hex_field(label, v, l); } if (iov.iov_len) print_hex_field(label, iov.iov_base, iov.iov_len); } void packet_print_ltv(const char *label, const uint8_t *data, uint8_t len, struct packet_ltv_decoder *decoder, size_t decoder_len) { print_ltv(label, data, len, decoder, decoder_len); } static void print_base_annoucement(const uint8_t *data, uint8_t data_len) { struct iovec iov; struct bt_hci_le_pa_base_data *base_data; uint8_t i; iov.iov_base = (void *) data; iov.iov_len = data_len; base_data = iov_pull(&iov, sizeof(*base_data)); if (!base_data) goto done; /* Level 1 - BASE */ print_field(" Presetation Delay: %u", get_le24(base_data->pd)); print_field(" Number of Subgroups: %u", base_data->num_subgroups); /* Level 2 - Subgroups*/ for (i = 0; i < base_data->num_subgroups; i++) { struct bt_hci_le_pa_base_subgroup *subgroup; struct bt_hci_lv_data *codec_cfg; struct bt_hci_lv_data *metadata; uint8_t j; print_field(" Subgroup #%u:", i); subgroup = iov_pull(&iov, sizeof(*subgroup)); if (!subgroup) goto done; print_field(" Number of BIS(s): %u", subgroup->num_bis); print_codec_id(" Codec", subgroup->codec.id); if (subgroup->codec.id == 0xff) { uint16_t id; id = le16_to_cpu(subgroup->codec.vid); print_field(" Codec Company ID: %s (0x%04x)", bt_compidtostr(id), id); print_field(" Codec Vendor ID: 0x%04x", subgroup->codec.vid); } codec_cfg = iov_pull(&iov, sizeof(*codec_cfg)); if (!codec_cfg) goto done; if (!iov_pull(&iov, codec_cfg->len)) goto done; print_ltv(" Codec Specific Configuration", codec_cfg->data, codec_cfg->len, NULL, 0); metadata = iov_pull(&iov, sizeof(*metadata)); if (!metadata) goto done; if (!iov_pull(&iov, metadata->len)) goto done; print_ltv(" Metadata", metadata->data, metadata->len, NULL, 0); /* Level 3 - BIS(s)*/ for (j = 0; j < subgroup->num_bis; j++) { struct bt_hci_le_pa_base_bis *bis; print_field(" BIS #%u:", j); bis = iov_pull(&iov, sizeof(*bis)); if (!bis) goto done; print_field(" Index: %u", bis->index); codec_cfg = iov_pull(&iov, sizeof(*codec_cfg)); if (!codec_cfg) goto done; if (!iov_pull(&iov, codec_cfg->len)) goto done; print_hex_field(" Codec Specific Configuration", codec_cfg->data, codec_cfg->len); } } done: if (iov.iov_len) print_hex_field(" Data", iov.iov_base, iov.iov_len); } static void print_broadcast_annoucement(const uint8_t *data, uint8_t data_len) { uint32_t bid; if (data_len < 3) { print_hex_field(" Data", data, data_len); return; } bid = get_le24(data); print_field("Broadcast ID: %u (0x%06x)", bid, bid); } static const struct service_data_decoder { uint16_t uuid; void (*func)(const uint8_t *data, uint8_t data_len); } service_data_decoders[] = { { 0x1851, print_base_annoucement }, { 0x1852, print_broadcast_annoucement } }; static void print_service_data(const uint8_t *data, uint8_t data_len) { uint16_t uuid = get_le16(&data[0]); size_t i; print_field("Service Data: %s (0x%4.4x)", bt_uuid16_to_str(uuid), uuid); for (i = 0; i < ARRAY_SIZE(service_data_decoders); i++) { const struct service_data_decoder *decoder; decoder = &service_data_decoders[i]; if (decoder->uuid == uuid) { decoder->func(&data[2], data_len - 2); return; } } print_hex_field(" Data", &data[2], data_len - 2); } static const struct bitfield_data eir_flags_table[] = { { 0, "LE Limited Discoverable Mode" }, { 1, "LE General Discoverable Mode" }, { 2, "BR/EDR Not Supported" }, { 3, "Simultaneous LE and BR/EDR (Controller)" }, { 4, "Simultaneous LE and BR/EDR (Host)" }, { } }; static const struct bitfield_data eir_3d_table[] = { { 0, "Association Notification" }, { 1, "Battery Level Reporting" }, { 2, "Send Battery Level Report on Start-up Synchronization" }, { 7, "Factory Test Mode" }, { } }; static const struct bitfield_data mesh_oob_table[] = { { 0, "Other" }, { 1, "Electronic / URI" }, { 2, "2D machine-readable code" }, { 3, "Bar code" }, { 4, "Near Field Communication (NFC)" }, { 5, "Number" }, { 6, "String" }, { 11, "On box" }, { 12, "Inside box" }, { 13, "On piece of paper" }, { 14, "Inside manual" }, { 15, "On device" }, { } }; static void print_mesh_beacon(const uint8_t *data, uint8_t len) { uint16_t oob; print_hex_field("Mesh Beacon", data, len); if (len < 1) return; switch (data[0]) { case 0x00: print_field(" Unprovisioned Device Beacon (0x00)"); if (len < 18) { packet_hexdump(data + 1, len - 1); break; } print_hex_field(" Device UUID", data + 1, 16); oob = get_be16(data + 17); print_field(" OOB Information: 0x%4.4x", oob); print_bitfield(4, oob, mesh_oob_table); if (len < 23) { packet_hexdump(data + 18, len - 18); break; } print_field(" URI Hash: 0x%8.8x", get_be32(data + 19)); packet_hexdump(data + 23, len - 23); break; case 0x01: print_field(" Secure Network Beacon (0x01)"); if (len < 22) { packet_hexdump(data + 1, len - 1); break; } print_field(" Flags: 0x%2.2x", data[0]); if (data[1] & 0x01) print_field(" Key Refresh"); if (data[1] & 0x02) print_field(" IV Update"); print_hex_field(" Network Id", data + 2, 8); print_field(" IV Index: 0x%08x", get_be32(data + 10)); print_hex_field(" Authentication Value", data + 14, 8); packet_hexdump(data + 22, len - 22); break; default: print_field(" Invalid Beacon (0x%02x)", data[0]); packet_hexdump(data, len); break; } } static void print_mesh_prov(const uint8_t *data, uint8_t len) { print_hex_field("Mesh Provisioning", data, len); if (len < 6) { packet_hexdump(data, len); return; } print_field(" Link ID: 0x%08x", get_be32(data)); print_field(" Transaction Number: %u", data[4]); data += 5; len -= 5; switch (data[0] & 0x03) { case 0x00: print_field(" Transaction Start (0x00)"); if (len < 5) { packet_hexdump(data + 1, len - 1); return; } print_field(" SeqN: %u", data[0] & 0xfc >> 2); print_field(" TotalLength: %u", get_be16(data + 1)); print_field(" FCS: 0x%2.2x", data[3]); print_hex_field(" Data", data + 4, len - 4); packet_hexdump(data + 5, len - 5); break; case 0x01: print_field(" Transaction Acknowledgment (0x01)"); packet_hexdump(data + 1, len - 1); break; case 0x02: print_field(" Transaction Continuation (0x02)"); print_field(" SegmentIndex: %u", data[0] >> 2); if (len < 2) { packet_hexdump(data + 1, len - 1); return; } print_hex_field(" Data", data + 1, len - 1); packet_hexdump(data + 2, len - 2); break; case 0x03: print_field(" Provisioning Bearer Control (0x03)"); switch (data[0] >> 2) { case 0x00: print_field(" Link Open (0x00)"); if (len < 17) { packet_hexdump(data + 1, len - 1); break; } print_hex_field(" Device UUID", data, 16); break; case 0x01: print_field(" Link Ack (0x01)"); break; case 0x02: print_field(" Link Close (0x02)"); if (len < 2) { packet_hexdump(data + 1, len - 1); break; } switch (data[1]) { case 0x00: print_field(" Reason: Success (0x00)"); break; case 0x01: print_field(" Reason: Timeout (0x01)"); break; case 0x02: print_field(" Reason: Fail (0x02)"); break; default: print_field(" Reason: Unrecognized (0x%2.2x)", data[1]); } packet_hexdump(data + 2, len - 2); break; default: packet_hexdump(data + 1, len - 1); break; } break; default: print_field(" Invalid Command (0x%02x)", data[0]); packet_hexdump(data, len); break; } } static void print_mesh_data(const uint8_t *data, uint8_t len) { print_hex_field("Mesh Data", data, len); if (len < 1) return; print_field(" IVI: %u", data[0] >> 7); print_field(" NID: 0x%2.2x", data[0] & 0x7f); packet_hexdump(data + 1, len - 1); } static void print_transport_data(const uint8_t *data, uint8_t len) { print_field("Transport Discovery Data"); if (len < 3) return; print_field(" Organization: %s (0x%02x)", data[0] == 0x01 ? "Bluetooth SIG" : "RFU", data[0]); print_field(" Flags: 0x%2.2x", data[1]); print_field(" Role: 0x%2.2x", data[1] & 0x03); switch (data[1] & 0x03) { case 0x00: print_field(" Not Specified"); break; case 0x01: print_field(" Seeker Only"); break; case 0x02: print_field(" Provider Only"); break; case 0x03: print_field(" Both Seeker an Provider"); break; } print_field(" Transport Data Incomplete: %s (0x%2.2x)", data[1] & 0x04 ? "True" : "False", data[1] & 0x04); print_field(" Transport State: 0x%2.2x", data[1] & 0x18); switch (data[1] & 0x18) { case 0x00: print_field(" Off"); break; case 0x08: print_field(" On"); break; case 0x10: print_field(" Temporary Unavailable"); break; case 0x18: print_field(" RFU"); break; } print_field(" Length: %u", data[2]); print_hex_field(" Data", data + 3, len - 3); } static void print_eir(const uint8_t *eir, uint8_t eir_len, bool le) { uint16_t len = 0; if (eir_len == 0) return; while (len < eir_len - 1) { uint8_t field_len = eir[0]; const uint8_t *data = &eir[2]; uint8_t data_len; char name[239], label[100]; uint8_t flags, mask; /* Check for the end of EIR */ if (field_len == 0) break; len += field_len + 1; /* Do not continue EIR Data parsing if got incorrect length */ if (len > eir_len) { len -= field_len + 1; break; } data_len = field_len - 1; switch (eir[1]) { case BT_EIR_FLAGS: flags = *data; print_field("Flags: 0x%2.2x", flags); mask = print_bitfield(2, flags, eir_flags_table); if (mask) print_text(COLOR_UNKNOWN_SERVICE_CLASS, " Unknown flags (0x%2.2x)", mask); break; case BT_EIR_UUID16_SOME: if (data_len < sizeof(uint16_t)) break; print_uuid16_list("16-bit Service UUIDs (partial)", data, data_len); break; case BT_EIR_UUID16_ALL: if (data_len < sizeof(uint16_t)) break; print_uuid16_list("16-bit Service UUIDs (complete)", data, data_len); break; case BT_EIR_UUID32_SOME: if (data_len < sizeof(uint32_t)) break; print_uuid32_list("32-bit Service UUIDs (partial)", data, data_len); break; case BT_EIR_UUID32_ALL: if (data_len < sizeof(uint32_t)) break; print_uuid32_list("32-bit Service UUIDs (complete)", data, data_len); break; case BT_EIR_UUID128_SOME: if (data_len < 16) break; print_uuid128_list("128-bit Service UUIDs (partial)", data, data_len); break; case BT_EIR_UUID128_ALL: if (data_len < 16) break; print_uuid128_list("128-bit Service UUIDs (complete)", data, data_len); break; case BT_EIR_NAME_SHORT: memset(name, 0, sizeof(name)); memcpy(name, data, data_len); print_field("Name (short): %s", name); break; case BT_EIR_NAME_COMPLETE: memset(name, 0, sizeof(name)); memcpy(name, data, data_len); print_field("Name (complete): %s", name); break; case BT_EIR_TX_POWER: if (data_len < 1) break; print_field("TX power: %d dBm", (int8_t) *data); break; case BT_EIR_CLASS_OF_DEV: if (data_len < 3) break; print_dev_class(data); break; case BT_EIR_SSP_HASH_P192: if (data_len < 16) break; print_hash_p192(data); break; case BT_EIR_SSP_RANDOMIZER_P192: if (data_len < 16) break; print_randomizer_p192(data); break; case BT_EIR_DEVICE_ID: /* SMP TK has the same value as Device ID */ if (le) print_hex_field("SMP TK", data, data_len); else if (data_len >= 8) print_device_id(data, data_len); break; case BT_EIR_SMP_OOB_FLAGS: print_field("SMP OOB Flags: 0x%2.2x", *data); break; case BT_EIR_PERIPHERAL_CONN_INTERVAL: if (data_len < 4) break; print_field("Peripheral Conn. Interval: " "0x%4.4x - 0x%4.4x", get_le16(&data[0]), get_le16(&data[2])); break; case BT_EIR_SERVICE_UUID16: if (data_len < sizeof(uint16_t)) break; print_uuid16_list("16-bit Service UUIDs", data, data_len); break; case BT_EIR_SERVICE_UUID128: if (data_len < 16) break; print_uuid128_list("128-bit Service UUIDs", data, data_len); break; case BT_EIR_SERVICE_DATA: if (data_len < 2) break; print_service_data(data, data_len); break; case BT_EIR_RANDOM_ADDRESS: if (data_len < 6) break; print_addr("Random Address", data, 0x01); break; case BT_EIR_PUBLIC_ADDRESS: if (data_len < 6) break; print_addr("Public Address", data, 0x00); break; case BT_EIR_GAP_APPEARANCE: if (data_len < 2) break; print_appearance(get_le16(data)); break; case BT_EIR_SSP_HASH_P256: if (data_len < 16) break; print_hash_p256(data); break; case BT_EIR_SSP_RANDOMIZER_P256: if (data_len < 16) break; print_randomizer_p256(data); break; case BT_EIR_TRANSPORT_DISCOVERY: print_transport_data(data, data_len); break; case BT_EIR_3D_INFO_DATA: print_hex_field("3D Information Data", data, data_len); if (data_len < 2) break; flags = *data; print_field(" Features: 0x%2.2x", flags); mask = print_bitfield(4, flags, eir_3d_table); if (mask) print_text(COLOR_UNKNOWN_FEATURE_BIT, " Unknown features (0x%2.2x)", mask); print_field(" Path Loss Threshold: %d", data[1]); break; case BT_EIR_MESH_DATA: print_mesh_data(data, data_len); break; case BT_EIR_MESH_PROV: print_mesh_prov(data, data_len); break; case BT_EIR_MESH_BEACON: print_mesh_beacon(data, data_len); break; case BT_EIR_CSIP_RSI: if (data_len < 6) break; print_addr("Resolvable Set Identifier", data, 0xff); print_field(" Hash: 0x%6x", get_le24(data)); print_field(" Random: 0x%6x", get_le24(data + 3)); break; case BT_EIR_MANUFACTURER_DATA: if (data_len < 2) break; print_manufacturer_data(data, data_len); break; default: sprintf(label, "Unknown EIR field 0x%2.2x", eir[1]); print_hex_field(label, data, data_len); break; } eir += field_len + 1; } if (len < eir_len && eir[0] != 0) packet_hexdump(eir, eir_len - len); } void packet_print_addr(const char *label, const void *data, uint8_t type) { print_addr(label ? : "Address", data, type); } void packet_print_handle(uint16_t handle) { print_handle_native(handle); } void packet_print_rssi(const char *label, int8_t rssi) { if ((uint8_t) rssi == 0x99 || rssi == 127) print_field("%s: invalid (0x%2.2x)", label, (uint8_t) rssi); else print_field("%s: %d dBm (0x%2.2x)", label, rssi, (uint8_t) rssi); } void packet_print_ad(const void *data, uint8_t size) { print_eir(data, size, true); } struct broadcast_message { uint32_t frame_sync_instant; uint16_t bluetooth_clock_phase; uint16_t left_open_offset; uint16_t left_close_offset; uint16_t right_open_offset; uint16_t right_close_offset; uint16_t frame_sync_period; uint8_t frame_sync_period_fraction; } __attribute__ ((packed)); static void print_3d_broadcast(const void *data, uint8_t size) { const struct broadcast_message *msg = data; uint32_t instant; uint16_t left_open, left_close, right_open, right_close; uint16_t phase, period; uint8_t period_frac; bool mode; instant = le32_to_cpu(msg->frame_sync_instant); mode = !!(instant & 0x40000000); phase = le16_to_cpu(msg->bluetooth_clock_phase); left_open = le16_to_cpu(msg->left_open_offset); left_close = le16_to_cpu(msg->left_close_offset); right_open = le16_to_cpu(msg->right_open_offset); right_close = le16_to_cpu(msg->right_close_offset); period = le16_to_cpu(msg->frame_sync_period); period_frac = msg->frame_sync_period_fraction; print_field(" Frame sync instant: 0x%8.8x", instant & 0x7fffffff); print_field(" Video mode: %s (%d)", mode ? "Dual View" : "3D", mode); print_field(" Bluetooth clock phase: %d usec (0x%4.4x)", phase, phase); print_field(" Left lense shutter open offset: %d usec (0x%4.4x)", left_open, left_open); print_field(" Left lense shutter close offset: %d usec (0x%4.4x)", left_close, left_close); print_field(" Right lense shutter open offset: %d usec (0x%4.4x)", right_open, right_open); print_field(" Right lense shutter close offset: %d usec (0x%4.4x)", right_close, right_close); print_field(" Frame sync period: %d.%d usec (0x%4.4x 0x%2.2x)", period, period_frac * 256, period, period_frac); } void packet_hexdump(const unsigned char *buf, uint16_t len) { static const char hexdigits[] = "0123456789abcdef"; char str[68]; uint16_t i; if (!len) return; for (i = 0; i < len; i++) { str[((i % 16) * 3) + 0] = hexdigits[buf[i] >> 4]; str[((i % 16) * 3) + 1] = hexdigits[buf[i] & 0xf]; str[((i % 16) * 3) + 2] = ' '; str[(i % 16) + 49] = isprint(buf[i]) ? buf[i] : '.'; if ((i + 1) % 16 == 0) { str[47] = ' '; str[48] = ' '; str[65] = '\0'; print_text(COLOR_WHITE, "%s", str); str[0] = ' '; } } if (i % 16 > 0) { uint16_t j; for (j = (i % 16); j < 16; j++) { str[(j * 3) + 0] = ' '; str[(j * 3) + 1] = ' '; str[(j * 3) + 2] = ' '; str[j + 49] = ' '; } str[47] = ' '; str[48] = ' '; str[65] = '\0'; print_text(COLOR_WHITE, "%s", str); } } void packet_control(struct timeval *tv, struct ucred *cred, uint16_t index, uint16_t opcode, const void *data, uint16_t size) { control_message(opcode, data, size); } static int addr2str(const uint8_t *addr, char *str) { return sprintf(str, "%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X", addr[5], addr[4], addr[3], addr[2], addr[1], addr[0]); } void packet_monitor(struct timeval *tv, struct ucred *cred, uint16_t index, uint16_t opcode, const void *data, uint16_t size) { const struct btsnoop_opcode_new_index *ni; const struct btsnoop_opcode_index_info *ii; const struct btsnoop_opcode_user_logging *ul; char str[18], extra_str[24]; uint16_t manufacturer; const char *ident; if (index != HCI_DEV_NONE) { index_current = index; } if (index != HCI_DEV_NONE && index >= MAX_INDEX) { print_field("Invalid index (%d)", index); return; } if (tv && time_offset == ((time_t) -1)) time_offset = tv->tv_sec; switch (opcode) { case BTSNOOP_OPCODE_NEW_INDEX: ni = data; if (index < MAX_INDEX) { index_list[index].type = ni->type; memcpy(index_list[index].bdaddr, ni->bdaddr, 6); index_list[index].manufacturer = fallback_manufacturer; index_list[index].msft_opcode = BT_HCI_CMD_NOP; } addr2str(ni->bdaddr, str); packet_new_index(tv, index, str, ni->type, ni->bus, ni->name); break; case BTSNOOP_OPCODE_DEL_INDEX: if (index < MAX_INDEX) addr2str(index_list[index].bdaddr, str); else sprintf(str, "00:00:00:00:00:00"); packet_del_index(tv, index, str); break; case BTSNOOP_OPCODE_COMMAND_PKT: packet_hci_command(tv, cred, index, data, size); break; case BTSNOOP_OPCODE_EVENT_PKT: packet_hci_event(tv, cred, index, data, size); break; case BTSNOOP_OPCODE_ACL_TX_PKT: packet_hci_acldata(tv, cred, index, false, data, size); break; case BTSNOOP_OPCODE_ACL_RX_PKT: packet_hci_acldata(tv, cred, index, true, data, size); break; case BTSNOOP_OPCODE_SCO_TX_PKT: packet_hci_scodata(tv, cred, index, false, data, size); break; case BTSNOOP_OPCODE_SCO_RX_PKT: packet_hci_scodata(tv, cred, index, true, data, size); break; case BTSNOOP_OPCODE_ISO_TX_PKT: packet_hci_isodata(tv, cred, index, false, data, size); break; case BTSNOOP_OPCODE_ISO_RX_PKT: packet_hci_isodata(tv, cred, index, true, data, size); break; case BTSNOOP_OPCODE_OPEN_INDEX: if (index < MAX_INDEX) addr2str(index_list[index].bdaddr, str); else sprintf(str, "00:00:00:00:00:00"); packet_open_index(tv, index, str); break; case BTSNOOP_OPCODE_CLOSE_INDEX: if (index < MAX_INDEX) addr2str(index_list[index].bdaddr, str); else sprintf(str, "00:00:00:00:00:00"); packet_close_index(tv, index, str); break; case BTSNOOP_OPCODE_INDEX_INFO: ii = data; manufacturer = le16_to_cpu(ii->manufacturer); if (index < MAX_INDEX) { memcpy(index_list[index].bdaddr, ii->bdaddr, 6); index_list[index].manufacturer = manufacturer; switch (manufacturer) { case 2: /* * Intel controllers that support the * Microsoft vendor extension are using * 0xFC1E for VsMsftOpCode. */ index_list[index].msft_opcode = 0xFC1E; break; case 93: /* * Realtek controllers that support the * Microsoft vendor extenions are using * 0xFCF0 for VsMsftOpCode. */ index_list[index].msft_opcode = 0xFCF0; break; case 1521: /* * Emulator controllers use Linux Foundation as * manufacturer and support the * Microsoft vendor extenions using * 0xFC1E for VsMsftOpCode. */ index_list[index].msft_opcode = 0xFC1E; break; } } addr2str(ii->bdaddr, str); packet_index_info(tv, index, str, manufacturer); break; case BTSNOOP_OPCODE_VENDOR_DIAG: if (index < MAX_INDEX) manufacturer = index_list[index].manufacturer; else manufacturer = fallback_manufacturer; packet_vendor_diag(tv, index, manufacturer, data, size); break; case BTSNOOP_OPCODE_SYSTEM_NOTE: packet_system_note(tv, cred, index, data); break; case BTSNOOP_OPCODE_USER_LOGGING: ul = data; ident = ul->ident_len ? data + sizeof(*ul) : NULL; packet_user_logging(tv, cred, index, ul->priority, ident, data + sizeof(*ul) + ul->ident_len, size - (sizeof(*ul) + ul->ident_len)); break; case BTSNOOP_OPCODE_CTRL_OPEN: control_disable_decoding(); packet_ctrl_open(tv, cred, index, data, size); break; case BTSNOOP_OPCODE_CTRL_CLOSE: packet_ctrl_close(tv, cred, index, data, size); break; case BTSNOOP_OPCODE_CTRL_COMMAND: packet_ctrl_command(tv, cred, index, data, size); break; case BTSNOOP_OPCODE_CTRL_EVENT: packet_ctrl_event(tv, cred, index, data, size); break; default: sprintf(extra_str, "(code %d len %d)", opcode, size); print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Unknown packet", NULL, extra_str); packet_hexdump(data, size); break; } } void packet_simulator(struct timeval *tv, uint16_t frequency, const void *data, uint16_t size) { char str[10]; if (tv && time_offset == ((time_t) -1)) time_offset = tv->tv_sec; sprintf(str, "%u MHz", frequency); print_packet(tv, NULL, '*', 0, NULL, COLOR_PHY_PACKET, "Physical packet:", NULL, str); ll_packet(frequency, data, size, false); } static void null_cmd(uint16_t index, const void *data, uint8_t size) { } static void status_rsp(uint16_t index, const void *data, uint8_t size) { uint8_t status = *((const uint8_t *) data); print_status(status); } static void status_handle_rsp(uint16_t index, const void *data, uint8_t size) { uint8_t status = *((const uint8_t *) data); print_status(status); print_field("Connection handle: %d", get_u8(data + 1)); } static void status_bdaddr_rsp(uint16_t index, const void *data, uint8_t size) { uint8_t status = *((const uint8_t *) data); print_status(status); print_bdaddr(data + 1); } static void inquiry_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_inquiry *cmd = data; print_iac(cmd->lap); print_field("Length: %.2fs (0x%2.2x)", cmd->length * 1.28, cmd->length); print_num_resp(cmd->num_resp); } static void periodic_inquiry_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_periodic_inquiry *cmd = data; print_field("Max period: %.2fs (0x%2.2x)", cmd->max_period * 1.28, cmd->max_period); print_field("Min period: %.2fs (0x%2.2x)", cmd->min_period * 1.28, cmd->min_period); print_iac(cmd->lap); print_field("Length: %.2fs (0x%2.2x)", cmd->length * 1.28, cmd->length); print_num_resp(cmd->num_resp); } static void create_conn_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_create_conn *cmd = data; const char *str; print_bdaddr(cmd->bdaddr); print_pkt_type(cmd->pkt_type); print_pscan_rep_mode(cmd->pscan_rep_mode); print_pscan_mode(cmd->pscan_mode); print_clock_offset(cmd->clock_offset); switch (cmd->role_switch) { case 0x00: str = "Stay central"; break; case 0x01: str = "Allow peripheral"; break; default: str = "Reserved"; break; } print_field("Role switch: %s (0x%2.2x)", str, cmd->role_switch); } static void disconnect_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_disconnect *cmd = data; print_handle(cmd->handle); print_reason(cmd->reason); } static void add_sco_conn_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_add_sco_conn *cmd = data; print_handle(cmd->handle); print_pkt_type_sco(cmd->pkt_type); } static void create_conn_cancel_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_create_conn_cancel *cmd = data; print_bdaddr(cmd->bdaddr); } static void accept_conn_request_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_accept_conn_request *cmd = data; print_bdaddr(cmd->bdaddr); print_role(cmd->role); } static void reject_conn_request_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_reject_conn_request *cmd = data; print_bdaddr(cmd->bdaddr); print_reason(cmd->reason); } static void link_key_request_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_link_key_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_link_key(cmd->link_key); } static void link_key_request_neg_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_link_key_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void pin_code_request_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_pin_code_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_field("PIN length: %d", cmd->pin_len); print_pin_code(cmd->pin_code, cmd->pin_len); } static void pin_code_request_neg_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_pin_code_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void change_conn_pkt_type_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_change_conn_pkt_type *cmd = data; print_handle(cmd->handle); print_pkt_type(cmd->pkt_type); } static void auth_requested_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_auth_requested *cmd = data; print_handle(cmd->handle); } static void set_conn_encrypt_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_set_conn_encrypt *cmd = data; print_handle(cmd->handle); print_enable("Encryption", cmd->encr_mode); } static void change_conn_link_key_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_change_conn_link_key *cmd = data; print_handle(cmd->handle); } static void link_key_selection_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_link_key_selection *cmd = data; print_key_flag(cmd->key_flag); } static void remote_name_request_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_remote_name_request *cmd = data; print_bdaddr(cmd->bdaddr); print_pscan_rep_mode(cmd->pscan_rep_mode); print_pscan_mode(cmd->pscan_mode); print_clock_offset(cmd->clock_offset); } static void remote_name_request_cancel_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_remote_name_request_cancel *cmd = data; print_bdaddr(cmd->bdaddr); } static void read_remote_features_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_remote_features *cmd = data; print_handle(cmd->handle); } static void read_remote_ext_features_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_remote_ext_features *cmd = data; print_handle(cmd->handle); print_field("Page: %d", cmd->page); } static void read_remote_version_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_remote_version *cmd = data; print_handle(cmd->handle); } static void read_clock_offset_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_clock_offset *cmd = data; print_handle(cmd->handle); } static void read_lmp_handle_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_lmp_handle *cmd = data; print_handle(cmd->handle); } static void read_lmp_handle_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_lmp_handle *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_field("LMP handle: %d", rsp->lmp_handle); print_field("Reserved: %d", le32_to_cpu(rsp->reserved)); } static void setup_sync_conn_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_setup_sync_conn *cmd = data; print_handle(cmd->handle); print_field("Transmit bandwidth: %d", le32_to_cpu(cmd->tx_bandwidth)); print_field("Receive bandwidth: %d", le32_to_cpu(cmd->rx_bandwidth)); print_field("Max latency: %d", le16_to_cpu(cmd->max_latency)); print_voice_setting(cmd->voice_setting); print_retransmission_effort(cmd->retrans_effort); print_pkt_type_sco(cmd->pkt_type); } static void accept_sync_conn_request_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_accept_sync_conn_request *cmd = data; print_bdaddr(cmd->bdaddr); print_field("Transmit bandwidth: %d", le32_to_cpu(cmd->tx_bandwidth)); print_field("Receive bandwidth: %d", le32_to_cpu(cmd->rx_bandwidth)); print_field("Max latency: %d", le16_to_cpu(cmd->max_latency)); print_voice_setting(cmd->voice_setting); print_retransmission_effort(cmd->retrans_effort); print_pkt_type_sco(cmd->pkt_type); } static void reject_sync_conn_request_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_reject_sync_conn_request *cmd = data; print_bdaddr(cmd->bdaddr); print_reason(cmd->reason); } static void io_capability_request_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_io_capability_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_io_capability(cmd->capability); print_oob_data(cmd->oob_data); print_authentication(cmd->authentication); } static void user_confirm_request_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_user_confirm_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void user_confirm_request_neg_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_user_confirm_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void user_passkey_request_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_user_passkey_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_passkey(cmd->passkey); } static void user_passkey_request_neg_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_user_passkey_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void remote_oob_data_request_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_remote_oob_data_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_hash_p192(cmd->hash); print_randomizer_p192(cmd->randomizer); } static void remote_oob_data_request_neg_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_remote_oob_data_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void io_capability_request_neg_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_io_capability_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_reason(cmd->reason); } static void create_phy_link_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_create_phy_link *cmd = data; print_phy_handle(cmd->phy_handle); print_key_len(cmd->key_len); print_key_type(cmd->key_type); packet_hexdump(data + 3, size - 3); } static void accept_phy_link_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_accept_phy_link *cmd = data; print_phy_handle(cmd->phy_handle); print_key_len(cmd->key_len); print_key_type(cmd->key_type); packet_hexdump(data + 3, size - 3); } static void disconn_phy_link_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_disconn_phy_link *cmd = data; print_phy_handle(cmd->phy_handle); print_reason(cmd->reason); } static void create_logic_link_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_create_logic_link *cmd = data; print_phy_handle(cmd->phy_handle); print_flow_spec("TX", cmd->tx_flow_spec); print_flow_spec("RX", cmd->rx_flow_spec); } static void accept_logic_link_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_accept_logic_link *cmd = data; print_phy_handle(cmd->phy_handle); print_flow_spec("TX", cmd->tx_flow_spec); print_flow_spec("RX", cmd->rx_flow_spec); } static void disconn_logic_link_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_disconn_logic_link *cmd = data; print_handle(cmd->handle); } static void logic_link_cancel_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_logic_link_cancel *cmd = data; print_phy_handle(cmd->phy_handle); print_field("TX flow spec: 0x%2.2x", cmd->flow_spec); } static void logic_link_cancel_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_logic_link_cancel *rsp = data; print_status(rsp->status); print_phy_handle(rsp->phy_handle); print_field("TX flow spec: 0x%2.2x", rsp->flow_spec); } static void flow_spec_modify_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_flow_spec_modify *cmd = data; print_handle(cmd->handle); print_flow_spec("TX", cmd->tx_flow_spec); print_flow_spec("RX", cmd->rx_flow_spec); } static void enhanced_setup_sync_conn_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_enhanced_setup_sync_conn *cmd = data; print_handle(cmd->handle); print_field("Transmit bandwidth: %d", le32_to_cpu(cmd->tx_bandwidth)); print_field("Receive bandwidth: %d", le32_to_cpu(cmd->rx_bandwidth)); /* TODO */ print_field("Max latency: %d", le16_to_cpu(cmd->max_latency)); print_pkt_type_sco(cmd->pkt_type); print_retransmission_effort(cmd->retrans_effort); } static void enhanced_accept_sync_conn_request_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_enhanced_accept_sync_conn_request *cmd = data; print_bdaddr(cmd->bdaddr); print_field("Transmit bandwidth: %d", le32_to_cpu(cmd->tx_bandwidth)); print_field("Receive bandwidth: %d", le32_to_cpu(cmd->rx_bandwidth)); /* TODO */ print_field("Max latency: %d", le16_to_cpu(cmd->max_latency)); print_pkt_type_sco(cmd->pkt_type); print_retransmission_effort(cmd->retrans_effort); } static void truncated_page_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_truncated_page *cmd = data; print_bdaddr(cmd->bdaddr); print_pscan_rep_mode(cmd->pscan_rep_mode); print_clock_offset(cmd->clock_offset); } static void truncated_page_cancel_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_truncated_page_cancel *cmd = data; print_bdaddr(cmd->bdaddr); } static void set_peripheral_broadcast_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_set_peripheral_broadcast *cmd = data; print_field("Enable: 0x%2.2x", cmd->enable); print_lt_addr(cmd->lt_addr); print_lpo_allowed(cmd->lpo_allowed); print_pkt_type(cmd->pkt_type); print_slot_625("Min interval", cmd->min_interval); print_slot_625("Max interval", cmd->max_interval); print_slot_625("Supervision timeout", cmd->timeout); } static void set_peripheral_broadcast_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_set_peripheral_broadcast *rsp = data; print_status(rsp->status); print_lt_addr(rsp->lt_addr); print_interval(rsp->interval); } static void set_peripheral_broadcast_receive_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_set_peripheral_broadcast_receive *cmd = data; print_field("Enable: 0x%2.2x", cmd->enable); print_bdaddr(cmd->bdaddr); print_lt_addr(cmd->lt_addr); print_interval(cmd->interval); print_field("Offset: 0x%8.8x", le32_to_cpu(cmd->offset)); print_field("Next broadcast instant: 0x%4.4x", le16_to_cpu(cmd->instant)); print_slot_625("Supervision timeout", cmd->timeout); print_field("Remote timing accuracy: %d ppm", cmd->accuracy); print_field("Skip: 0x%2.2x", cmd->skip); print_pkt_type(cmd->pkt_type); print_channel_map(cmd->map); } static void set_peripheral_broadcast_receive_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_set_peripheral_broadcast_receive *rsp = data; print_status(rsp->status); print_bdaddr(rsp->bdaddr); print_lt_addr(rsp->lt_addr); } static void receive_sync_train_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_receive_sync_train *cmd = data; print_bdaddr(cmd->bdaddr); print_timeout(cmd->timeout); print_window(cmd->window); print_interval(cmd->interval); } static void remote_oob_ext_data_request_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_remote_oob_ext_data_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_hash_p192(cmd->hash192); print_randomizer_p192(cmd->randomizer192); print_hash_p256(cmd->hash256); print_randomizer_p256(cmd->randomizer256); } static void hold_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_hold_mode *cmd = data; print_handle(cmd->handle); print_slot_625("Hold max interval", cmd->max_interval); print_slot_625("Hold min interval", cmd->min_interval); } static void sniff_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_sniff_mode *cmd = data; print_handle(cmd->handle); print_slot_625("Sniff max interval", cmd->max_interval); print_slot_625("Sniff min interval", cmd->min_interval); print_slot_125("Sniff attempt", cmd->attempt); print_slot_125("Sniff timeout", cmd->timeout); } static void exit_sniff_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_exit_sniff_mode *cmd = data; print_handle(cmd->handle); } static void park_state_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_park_state *cmd = data; print_handle(cmd->handle); print_slot_625("Beacon max interval", cmd->max_interval); print_slot_625("Beacon min interval", cmd->min_interval); } static void exit_park_state_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_exit_park_state *cmd = data; print_handle(cmd->handle); } static void qos_setup_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_qos_setup *cmd = data; print_handle(cmd->handle); print_field("Flags: 0x%2.2x", cmd->flags); print_service_type(cmd->service_type); print_field("Token rate: %d", le32_to_cpu(cmd->token_rate)); print_field("Peak bandwidth: %d", le32_to_cpu(cmd->peak_bandwidth)); print_field("Latency: %d", le32_to_cpu(cmd->latency)); print_field("Delay variation: %d", le32_to_cpu(cmd->delay_variation)); } static void role_discovery_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_role_discovery *cmd = data; print_handle(cmd->handle); } static void role_discovery_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_role_discovery *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_role(rsp->role); } static void switch_role_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_switch_role *cmd = data; print_bdaddr(cmd->bdaddr); print_role(cmd->role); } static void read_link_policy_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_link_policy *cmd = data; print_handle(cmd->handle); } static void read_link_policy_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_link_policy *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_link_policy(rsp->policy); } static void write_link_policy_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_link_policy *cmd = data; print_handle(cmd->handle); print_link_policy(cmd->policy); } static void write_link_policy_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_write_link_policy *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_default_link_policy_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_default_link_policy *rsp = data; print_status(rsp->status); print_link_policy(rsp->policy); } static void write_default_link_policy_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_default_link_policy *cmd = data; print_link_policy(cmd->policy); } static void flow_spec_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_flow_spec *cmd = data; print_handle(cmd->handle); print_field("Flags: 0x%2.2x", cmd->flags); print_flow_direction(cmd->direction); print_service_type(cmd->service_type); print_field("Token rate: %d", le32_to_cpu(cmd->token_rate)); print_field("Token bucket size: %d", le32_to_cpu(cmd->token_bucket_size)); print_field("Peak bandwidth: %d", le32_to_cpu(cmd->peak_bandwidth)); print_field("Access latency: %d", le32_to_cpu(cmd->access_latency)); } static void sniff_subrating_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_sniff_subrating *cmd = data; print_handle(cmd->handle); print_slot_625("Max latency", cmd->max_latency); print_slot_625("Min remote timeout", cmd->min_remote_timeout); print_slot_625("Min local timeout", cmd->min_local_timeout); } static void sniff_subrating_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_sniff_subrating *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void set_event_mask_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_set_event_mask *cmd = data; print_event_mask(cmd->mask, events_table); } static void set_event_filter_cmd(uint16_t index, const void *data, uint8_t size) { uint8_t type = *((const uint8_t *) data); uint8_t filter; const char *str; switch (type) { case 0x00: str = "Clear All Filters"; break; case 0x01: str = "Inquiry Result"; break; case 0x02: str = "Connection Setup"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); switch (type) { case 0x00: if (size > 1) { print_text(COLOR_ERROR, " invalid parameter size"); packet_hexdump(data + 1, size - 1); } break; case 0x01: if (size < 2) { print_text(COLOR_ERROR, " invalid parameter size"); break; } filter = *((const uint8_t *) (data + 1)); switch (filter) { case 0x00: str = "Return responses from all devices"; break; case 0x01: str = "Device with specific Class of Device"; break; case 0x02: str = "Device with specific BD_ADDR"; break; default: str = "Reserved"; break; } print_field("Filter: %s (0x%2.2x)", str, filter); packet_hexdump(data + 2, size - 2); break; case 0x02: filter = *((const uint8_t *) (data + 1)); switch (filter) { case 0x00: str = "Allow connections all devices"; break; case 0x01: str = "Allow connections with specific Class of Device"; break; case 0x02: str = "Allow connections with specific BD_ADDR"; break; default: str = "Reserved"; break; } if (size < 2) { print_text(COLOR_ERROR, " invalid parameter size"); break; } print_field("Filter: %s (0x%2.2x)", str, filter); packet_hexdump(data + 2, size - 2); break; default: if (size < 2) { print_text(COLOR_ERROR, " invalid parameter size"); break; } filter = *((const uint8_t *) (data + 1)); print_field("Filter: Reserved (0x%2.2x)", filter); packet_hexdump(data + 2, size - 2); break; } } static void flush_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_flush *cmd = data; print_handle(cmd->handle); } static void flush_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_flush *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_pin_type_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_pin_type *rsp = data; print_status(rsp->status); print_pin_type(rsp->pin_type); } static void write_pin_type_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_pin_type *cmd = data; print_pin_type(cmd->pin_type); } static void read_stored_link_key_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_stored_link_key *cmd = data; print_bdaddr(cmd->bdaddr); print_field("Read all: 0x%2.2x", cmd->read_all); } static void read_stored_link_key_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_stored_link_key *rsp = data; print_status(rsp->status); print_field("Max num keys: %d", le16_to_cpu(rsp->max_num_keys)); print_field("Num keys: %d", le16_to_cpu(rsp->num_keys)); } static void write_stored_link_key_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_stored_link_key *cmd = data; print_field("Num keys: %d", cmd->num_keys); packet_hexdump(data + 1, size - 1); } static void write_stored_link_key_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_write_stored_link_key *rsp = data; print_status(rsp->status); print_field("Num keys: %d", rsp->num_keys); } static void delete_stored_link_key_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_delete_stored_link_key *cmd = data; print_bdaddr(cmd->bdaddr); print_field("Delete all: 0x%2.2x", cmd->delete_all); } static void delete_stored_link_key_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_delete_stored_link_key *rsp = data; print_status(rsp->status); print_field("Num keys: %d", le16_to_cpu(rsp->num_keys)); } static void write_local_name_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_local_name *cmd = data; print_name(cmd->name); } static void read_local_name_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_name *rsp = data; print_status(rsp->status); print_name(rsp->name); } static void read_conn_accept_timeout_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_conn_accept_timeout *rsp = data; print_status(rsp->status); print_timeout(rsp->timeout); } static void write_conn_accept_timeout_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_conn_accept_timeout *cmd = data; print_timeout(cmd->timeout); } static void read_page_timeout_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_page_timeout *rsp = data; print_status(rsp->status); print_timeout(rsp->timeout); } static void write_page_timeout_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_page_timeout *cmd = data; print_timeout(cmd->timeout); } static void read_scan_enable_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_scan_enable *rsp = data; print_status(rsp->status); print_scan_enable(rsp->enable); } static void write_scan_enable_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_scan_enable *cmd = data; print_scan_enable(cmd->enable); } static void read_page_scan_activity_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_page_scan_activity *rsp = data; print_status(rsp->status); print_interval(rsp->interval); print_window(rsp->window); } static void write_page_scan_activity_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_page_scan_activity *cmd = data; print_interval(cmd->interval); print_window(cmd->window); } static void read_inquiry_scan_activity_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_inquiry_scan_activity *rsp = data; print_status(rsp->status); print_interval(rsp->interval); print_window(rsp->window); } static void write_inquiry_scan_activity_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_inquiry_scan_activity *cmd = data; print_interval(cmd->interval); print_window(cmd->window); } static void read_auth_enable_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_auth_enable *rsp = data; print_status(rsp->status); print_auth_enable(rsp->enable); } static void write_auth_enable_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_auth_enable *cmd = data; print_auth_enable(cmd->enable); } static void read_encrypt_mode_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_encrypt_mode *rsp = data; print_status(rsp->status); print_encrypt_mode(rsp->mode); } static void write_encrypt_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_encrypt_mode *cmd = data; print_encrypt_mode(cmd->mode); } static void read_class_of_dev_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_class_of_dev *rsp = data; print_status(rsp->status); print_dev_class(rsp->dev_class); } static void write_class_of_dev_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_class_of_dev *cmd = data; print_dev_class(cmd->dev_class); } static void read_voice_setting_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_voice_setting *rsp = data; print_status(rsp->status); print_voice_setting(rsp->setting); } static void write_voice_setting_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_voice_setting *cmd = data; print_voice_setting(cmd->setting); } static void read_auto_flush_timeout_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_auto_flush_timeout *cmd = data; print_handle(cmd->handle); } static void read_auto_flush_timeout_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_auto_flush_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_flush_timeout(rsp->timeout); } static void write_auto_flush_timeout_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_auto_flush_timeout *cmd = data; print_handle(cmd->handle); print_flush_timeout(cmd->timeout); } static void write_auto_flush_timeout_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_write_auto_flush_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_num_broadcast_retrans_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_num_broadcast_retrans *rsp = data; print_status(rsp->status); print_num_broadcast_retrans(rsp->num_retrans); } static void write_num_broadcast_retrans_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_num_broadcast_retrans *cmd = data; print_num_broadcast_retrans(cmd->num_retrans); } static void read_hold_mode_activity_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_hold_mode_activity *rsp = data; print_status(rsp->status); print_hold_mode_activity(rsp->activity); } static void write_hold_mode_activity_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_hold_mode_activity *cmd = data; print_hold_mode_activity(cmd->activity); } static void read_tx_power_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_tx_power *cmd = data; print_handle(cmd->handle); print_power_type(cmd->type); } static void read_tx_power_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_tx_power *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_power_level(rsp->level, NULL); } static void read_sync_flow_control_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_sync_flow_control *rsp = data; print_status(rsp->status); print_enable("Flow control", rsp->enable); } static void write_sync_flow_control_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_sync_flow_control *cmd = data; print_enable("Flow control", cmd->enable); } static void set_host_flow_control_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_set_host_flow_control *cmd = data; print_host_flow_control(cmd->enable); } static void host_buffer_size_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_host_buffer_size *cmd = data; print_field("ACL MTU: %-4d ACL max packet: %d", le16_to_cpu(cmd->acl_mtu), le16_to_cpu(cmd->acl_max_pkt)); print_field("SCO MTU: %-4d SCO max packet: %d", cmd->sco_mtu, le16_to_cpu(cmd->sco_max_pkt)); } static void host_num_completed_packets_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_host_num_completed_packets *cmd = data; print_field("Num handles: %d", cmd->num_handles); print_handle(cmd->handle); print_field("Count: %d", le16_to_cpu(cmd->count)); if (size > sizeof(*cmd)) packet_hexdump(data + sizeof(*cmd), size - sizeof(*cmd)); } static void read_link_supv_timeout_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_link_supv_timeout *cmd = data; print_handle(cmd->handle); } static void read_link_supv_timeout_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_link_supv_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_timeout(rsp->timeout); } static void write_link_supv_timeout_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_link_supv_timeout *cmd = data; print_handle(cmd->handle); print_timeout(cmd->timeout); } static void write_link_supv_timeout_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_write_link_supv_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_num_supported_iac_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_num_supported_iac *rsp = data; print_status(rsp->status); print_field("Number of IAC: %d", rsp->num_iac); } static void read_current_iac_lap_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_current_iac_lap *rsp = data; uint8_t i; print_status(rsp->status); print_field("Number of IAC: %d", rsp->num_iac); for (i = 0; i < rsp->num_iac; i++) print_iac(rsp->iac_lap + (i * 3)); } static void write_current_iac_lap_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_current_iac_lap *cmd = data; uint8_t i; print_field("Number of IAC: %d", cmd->num_iac); for (i = 0; i < cmd->num_iac; i++) print_iac(cmd->iac_lap + (i * 3)); } static void read_page_scan_period_mode_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_page_scan_period_mode *rsp = data; print_status(rsp->status); print_pscan_period_mode(rsp->mode); } static void write_page_scan_period_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_page_scan_period_mode *cmd = data; print_pscan_period_mode(cmd->mode); } static void read_page_scan_mode_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_page_scan_mode *rsp = data; print_status(rsp->status); print_pscan_mode(rsp->mode); } static void write_page_scan_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_page_scan_mode *cmd = data; print_pscan_mode(cmd->mode); } static void set_afh_host_classification_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_set_afh_host_classification *cmd = data; print_channel_map(cmd->map); } static void read_inquiry_scan_type_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_inquiry_scan_type *rsp = data; print_status(rsp->status); print_inquiry_scan_type(rsp->type); } static void write_inquiry_scan_type_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_inquiry_scan_type *cmd = data; print_inquiry_scan_type(cmd->type); } static void read_inquiry_mode_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_inquiry_mode *rsp = data; print_status(rsp->status); print_inquiry_mode(rsp->mode); } static void write_inquiry_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_inquiry_mode *cmd = data; print_inquiry_mode(cmd->mode); } static void read_page_scan_type_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_page_scan_type *rsp = data; print_status(rsp->status); print_pscan_type(rsp->type); } static void write_page_scan_type_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_page_scan_type *cmd = data; print_pscan_type(cmd->type); } static void read_afh_assessment_mode_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_afh_assessment_mode *rsp = data; print_status(rsp->status); print_enable("Mode", rsp->mode); } static void write_afh_assessment_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_afh_assessment_mode *cmd = data; print_enable("Mode", cmd->mode); } static void read_ext_inquiry_response_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_ext_inquiry_response *rsp = data; print_status(rsp->status); print_fec(rsp->fec); print_eir(rsp->data, sizeof(rsp->data), false); } static void write_ext_inquiry_response_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_ext_inquiry_response *cmd = data; print_fec(cmd->fec); print_eir(cmd->data, sizeof(cmd->data), false); } static void refresh_encrypt_key_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_refresh_encrypt_key *cmd = data; print_handle(cmd->handle); } static void read_simple_pairing_mode_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_simple_pairing_mode *rsp = data; print_status(rsp->status); print_enable("Mode", rsp->mode); } static void write_simple_pairing_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_simple_pairing_mode *cmd = data; print_enable("Mode", cmd->mode); } static void read_local_oob_data_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_oob_data *rsp = data; print_status(rsp->status); print_hash_p192(rsp->hash); print_randomizer_p192(rsp->randomizer); } static void read_inquiry_resp_tx_power_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_inquiry_resp_tx_power *rsp = data; print_status(rsp->status); print_power_level(rsp->level, NULL); } static void write_inquiry_tx_power_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_inquiry_tx_power *cmd = data; print_power_level(cmd->level, NULL); } static void read_erroneous_reporting_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_erroneous_reporting *rsp = data; print_status(rsp->status); print_enable("Mode", rsp->mode); } static void write_erroneous_reporting_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_erroneous_reporting *cmd = data; print_enable("Mode", cmd->mode); } static void enhanced_flush_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_enhanced_flush *cmd = data; const char *str; print_handle(cmd->handle); switch (cmd->type) { case 0x00: str = "Automatic flushable only"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, cmd->type); } static void send_keypress_notify_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_send_keypress_notify *cmd = data; const char *str; print_bdaddr(cmd->bdaddr); switch (cmd->type) { case 0x00: str = "Passkey entry started"; break; case 0x01: str = "Passkey digit entered"; break; case 0x02: str = "Passkey digit erased"; break; case 0x03: str = "Passkey cleared"; break; case 0x04: str = "Passkey entry completed"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, cmd->type); } static void send_keypress_notify_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_send_keypress_notify *rsp = data; print_status(rsp->status); print_bdaddr(rsp->bdaddr); } static void set_event_mask_page2_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_set_event_mask_page2 *cmd = data; print_event_mask(cmd->mask, events_page2_table); } static void read_location_data_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_location_data *rsp = data; print_status(rsp->status); print_location_domain_aware(rsp->domain_aware); print_location_domain(rsp->domain); print_location_domain_options(rsp->domain_options); print_location_options(rsp->options); } static void write_location_data_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_location_data *cmd = data; print_location_domain_aware(cmd->domain_aware); print_location_domain(cmd->domain); print_location_domain_options(cmd->domain_options); print_location_options(cmd->options); } static void read_flow_control_mode_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_flow_control_mode *rsp = data; print_status(rsp->status); print_flow_control_mode(rsp->mode); } static void write_flow_control_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_flow_control_mode *cmd = data; print_flow_control_mode(cmd->mode); } static void read_enhanced_tx_power_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_enhanced_tx_power *cmd = data; print_handle(cmd->handle); print_power_type(cmd->type); } static void read_enhanced_tx_power_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_enhanced_tx_power *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_power_level(rsp->level_gfsk, "GFSK"); print_power_level(rsp->level_dqpsk, "DQPSK"); print_power_level(rsp->level_8dpsk, "8DPSK"); } static void short_range_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_short_range_mode *cmd = data; print_phy_handle(cmd->phy_handle); print_enable("Short range mode", cmd->mode); } static void read_le_host_supported_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_le_host_supported *rsp = data; print_status(rsp->status); print_field("Supported: 0x%2.2x", rsp->supported); print_field("Simultaneous: 0x%2.2x", rsp->simultaneous); } static void write_le_host_supported_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_le_host_supported *cmd = data; print_field("Supported: 0x%2.2x", cmd->supported); print_field("Simultaneous: 0x%2.2x", cmd->simultaneous); } static void set_reserved_lt_addr_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_set_reserved_lt_addr *cmd = data; print_lt_addr(cmd->lt_addr); } static void set_reserved_lt_addr_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_set_reserved_lt_addr *rsp = data; print_status(rsp->status); print_lt_addr(rsp->lt_addr); } static void delete_reserved_lt_addr_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_delete_reserved_lt_addr *cmd = data; print_lt_addr(cmd->lt_addr); } static void delete_reserved_lt_addr_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_delete_reserved_lt_addr *rsp = data; print_status(rsp->status); print_lt_addr(rsp->lt_addr); } static void set_peripheral_broadcast_data_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_set_peripheral_broadcast_data *cmd = data; print_lt_addr(cmd->lt_addr); print_broadcast_fragment(cmd->fragment); print_field("Length: %d", cmd->length); if (size - 3 != cmd->length) print_text(COLOR_ERROR, "invalid data size (%d != %d)", size - 3, cmd->length); packet_hexdump(data + 3, size - 3); } static void set_peripheral_broadcast_data_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_set_peripheral_broadcast_data *rsp = data; print_status(rsp->status); print_lt_addr(rsp->lt_addr); } static void read_sync_train_params_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_sync_train_params *rsp = data; print_status(rsp->status); print_interval(rsp->interval); print_field("Timeout: %.3f msec (0x%8.8x)", le32_to_cpu(rsp->timeout) * 0.625, le32_to_cpu(rsp->timeout)); print_field("Service data: 0x%2.2x", rsp->service_data); } static void write_sync_train_params_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_sync_train_params *cmd = data; print_slot_625("Min interval", cmd->min_interval); print_slot_625("Max interval", cmd->max_interval); print_field("Timeout: %.3f msec (0x%8.8x)", le32_to_cpu(cmd->timeout) * 0.625, le32_to_cpu(cmd->timeout)); print_field("Service data: 0x%2.2x", cmd->service_data); } static void write_sync_train_params_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_write_sync_train_params *rsp = data; print_status(rsp->status); print_interval(rsp->interval); } static void read_secure_conn_support_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_secure_conn_support *rsp = data; print_status(rsp->status); print_enable("Support", rsp->support); } static void write_secure_conn_support_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_secure_conn_support *cmd = data; print_enable("Support", cmd->support); } static void read_auth_payload_timeout_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_auth_payload_timeout *cmd = data; print_handle(cmd->handle); } static void read_auth_payload_timeout_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_auth_payload_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_auth_payload_timeout(rsp->timeout); } static void write_auth_payload_timeout_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_auth_payload_timeout *cmd = data; print_handle(cmd->handle); print_auth_payload_timeout(cmd->timeout); } static void write_auth_payload_timeout_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_write_auth_payload_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_local_oob_ext_data_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_oob_ext_data *rsp = data; print_status(rsp->status); print_hash_p192(rsp->hash192); print_randomizer_p192(rsp->randomizer192); print_hash_p256(rsp->hash256); print_randomizer_p256(rsp->randomizer256); } static void read_ext_page_timeout_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_ext_page_timeout *rsp = data; print_status(rsp->status); print_timeout(rsp->timeout); } static void write_ext_page_timeout_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_ext_page_timeout *cmd = data; print_timeout(cmd->timeout); } static void read_ext_inquiry_length_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_ext_inquiry_length *rsp = data; print_status(rsp->status); print_interval(rsp->interval); } static void write_ext_inquiry_length_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_ext_inquiry_length *cmd = data; print_interval(cmd->interval); } static void read_local_version_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_version *rsp = data; uint16_t manufacturer; print_status(rsp->status); print_hci_version(rsp->hci_ver, rsp->hci_rev); manufacturer = le16_to_cpu(rsp->manufacturer); if (index_current < MAX_INDEX) { switch (index_list[index_current].type) { case HCI_PRIMARY: print_lmp_version(rsp->lmp_ver, rsp->lmp_subver); break; case HCI_AMP: print_pal_version(rsp->lmp_ver, rsp->lmp_subver); break; } index_list[index_current].manufacturer = manufacturer; } print_manufacturer(rsp->manufacturer); switch (manufacturer) { case 15: print_manufacturer_broadcom(rsp->lmp_subver, rsp->hci_rev); break; } } static void read_local_commands_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_commands *rsp = data; print_status(rsp->status); print_commands(rsp->commands); } static void read_local_features_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_features *rsp = data; print_status(rsp->status); print_features(0, rsp->features, 0x00); } static void read_local_ext_features_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_local_ext_features *cmd = data; print_field("Page: %d", cmd->page); } static void read_local_ext_features_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_ext_features *rsp = data; print_status(rsp->status); print_field("Page: %d/%d", rsp->page, rsp->max_page); print_features(rsp->page, rsp->features, 0x00); } static void read_buffer_size_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_buffer_size *rsp = data; print_status(rsp->status); print_field("ACL MTU: %-4d ACL max packet: %d", le16_to_cpu(rsp->acl_mtu), le16_to_cpu(rsp->acl_max_pkt)); print_field("SCO MTU: %-4d SCO max packet: %d", rsp->sco_mtu, le16_to_cpu(rsp->sco_max_pkt)); } static void read_country_code_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_country_code *rsp = data; const char *str; print_status(rsp->status); switch (rsp->code) { case 0x00: str = "North America, Europe*, Japan"; break; case 0x01: str = "France"; break; default: str = "Reserved"; break; } print_field("Country code: %s (0x%2.2x)", str, rsp->code); } static void read_bd_addr_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_bd_addr *rsp = data; print_status(rsp->status); print_bdaddr(rsp->bdaddr); if (index_current < MAX_INDEX) memcpy(index_list[index_current].bdaddr, rsp->bdaddr, 6); } static void read_data_block_size_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_data_block_size *rsp = data; print_status(rsp->status); print_field("Max ACL length: %d", le16_to_cpu(rsp->max_acl_len)); print_field("Block length: %d", le16_to_cpu(rsp->block_len)); print_field("Num blocks: %d", le16_to_cpu(rsp->num_blocks)); } static void read_local_codecs_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_codecs *rsp = data; uint8_t i, num_vnd_codecs; if (rsp->num_codecs + 3 > size) { print_field("Invalid number of codecs."); return; } print_status(rsp->status); print_field("Number of supported codecs: %d", rsp->num_codecs); for (i = 0; i < rsp->num_codecs; i++) print_codec_id(" Codec", rsp->codec[i]); num_vnd_codecs = rsp->codec[rsp->num_codecs]; print_field("Number of vendor codecs: %d", num_vnd_codecs); packet_hexdump(data + rsp->num_codecs + 3, size - rsp->num_codecs - 3); } static void print_codecs(const void *data, int i) { const struct bt_hci_codec *codec = data; print_codec(" Codec", codec); } typedef void (*print_list_func_t)(const void *data, int i); static void print_list(const void *data, uint8_t size, int num_items, size_t item_size, print_list_func_t func) { int i; for (i = 0; size >= item_size && num_items; i++) { if (func) func(data, i); data += item_size; size -= item_size; num_items--; } if (num_items) print_hex_field("", data, size); } static void print_vnd_codecs_v2(const void *data, int i) { const struct bt_hci_vnd_codec_v2 *codec = data; uint8_t mask; packet_print_company(" Company ID", le16_to_cpu(codec->cid)); print_field(" Vendor Codec ID: 0x%4.4x", le16_to_cpu(codec->vid)); print_field(" Logical Transport Type: 0x%02x", codec->transport); mask = print_bitfield(4, codec->transport, codec_transport_table); if (mask) print_text(COLOR_UNKNOWN_SERVICE_CLASS, " Unknown transport (0x%2.2x)", mask); } static void read_local_codecs_rsp_v2(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_codecs_v2 *rsp = data; uint8_t num_vnd_codecs; if (rsp->num_codecs + 3 > size) { print_field("Invalid number of codecs."); return; } print_status(rsp->status); print_field("Number of supported codecs: %d", rsp->num_codecs); size -= sizeof(*rsp); if (size < rsp->num_codecs * sizeof(*rsp->codec)) { print_field("Invalid number of codecs."); return; } print_list(rsp->codec, size, rsp->num_codecs, sizeof(*rsp->codec), print_codecs); size -= rsp->num_codecs * sizeof(*rsp->codec); if (size < sizeof(uint8_t)) { print_field("Invalid number of vendor codecs."); return; } num_vnd_codecs = rsp->codec[rsp->num_codecs].id; size -= 1; print_field("Number of vendor codecs: %d", num_vnd_codecs); if (size < num_vnd_codecs * sizeof(*rsp->codec)) { print_field("Invalid number of vendor codecs."); return; } print_list(&rsp->codec[rsp->num_codecs] + 1, size, num_vnd_codecs, sizeof(struct bt_hci_vnd_codec_v2), print_vnd_codecs_v2); } static void print_path_direction(const char *prefix, uint8_t dir) { const char *str; switch (dir) { case 0x00: str = "Input (Host to Controller)"; break; case 0x01: str = "Output (Controller to Host)"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x)", prefix, str, dir); } static void print_vnd_codec(const char *label, const struct bt_hci_vnd_codec *codec) { uint8_t mask; print_codec_id(label, codec->id); if (codec->id == 0xff) { packet_print_company("Company Codec ID", le16_to_cpu(codec->cid)); print_field("Vendor Codec ID: %d", le16_to_cpu(codec->vid)); } print_field("Logical Transport Type: 0x%02x", codec->transport); mask = print_bitfield(2, codec->transport, codec_transport_table); if (mask) print_text(COLOR_UNKNOWN_SERVICE_CLASS, " Unknown transport (0x%2.2x)", mask); } static void read_local_codec_caps_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_local_codec_caps *cmd = data; print_vnd_codec("Codec", &cmd->codec); print_path_direction("Direction", cmd->dir); } static void read_local_codec_caps_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_codec_caps *rsp = data; uint8_t i; print_status(rsp->status); print_field("Number of codec capabilities: %d", rsp->num); data += sizeof(*rsp); size -= sizeof(*rsp); for (i = 0; i < rsp->num; i++) { const struct bt_hci_codec_caps *caps = data; if (size < sizeof(*caps)) { print_field("Invalid capabilities: %u < %zu", size, sizeof(*caps)); return; } print_field(" Capabilities #%u:", i); packet_hexdump(caps->data, caps->len); data += 1 + caps->len; size -= 1 + caps->len; } } static void read_local_ctrl_delay_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_local_ctrl_delay *cmd = data; print_vnd_codec("Codec", &cmd->codec); print_path_direction("Direction", cmd->dir); print_field("Length Codec Configuration: %u", cmd->codec_cfg_len); } static void config_data_path_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_config_data_path *cmd = data; print_path_direction("Direction", cmd->dir); print_field("ID: %u", cmd->id); print_field("Vendor Specific Config Length: %u", cmd->vnd_config_len); print_hex_field("Vendor Specific Config", cmd->vnd_config, cmd->vnd_config_len); } static void print_usec_interval(const char *prefix, const uint8_t interval[3]) { uint32_t u24 = 0; memcpy(&u24, interval, 3); print_field("%s: %u us (0x%6.6x)", prefix, le32_to_cpu(u24), le32_to_cpu(u24)); } static void read_local_ctrl_delay_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_ctrl_delay *rsp = data; print_status(rsp->status); print_usec_interval("Minimum Controller delay", rsp->min_delay); print_usec_interval("Maximum Controller delay", rsp->max_delay); } static void read_local_pairing_options_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_pairing_options *rsp = data; print_status(rsp->status); print_field("Pairing options: 0x%2.2x", rsp->pairing_options); print_field("Max encryption key size: %u octets", rsp->max_key_size); } static void read_failed_contact_counter_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_failed_contact_counter *cmd = data; print_handle(cmd->handle); } static void read_failed_contact_counter_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_failed_contact_counter *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_field("Counter: %u", le16_to_cpu(rsp->counter)); } static void reset_failed_contact_counter_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_reset_failed_contact_counter *cmd = data; print_handle(cmd->handle); } static void reset_failed_contact_counter_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_reset_failed_contact_counter *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_link_quality_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_link_quality *cmd = data; print_handle(cmd->handle); } static void read_link_quality_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_link_quality *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_field("Link quality: 0x%2.2x", rsp->link_quality); } static void read_rssi_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_rssi *cmd = data; print_handle(cmd->handle); } static void read_rssi_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_rssi *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_rssi(rsp->rssi); } static void read_afh_channel_map_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_afh_channel_map *cmd = data; print_handle(cmd->handle); } static void read_afh_channel_map_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_afh_channel_map *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_enable("Mode", rsp->mode); print_channel_map(rsp->map); } static void read_clock_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_clock *cmd = data; print_handle(cmd->handle); print_clock_type(cmd->type); } static void read_clock_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_clock *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_clock(rsp->clock); print_clock_accuracy(rsp->accuracy); } static void read_encrypt_key_size_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_encrypt_key_size *cmd = data; print_handle(cmd->handle); } static void read_encrypt_key_size_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_encrypt_key_size *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_key_size(rsp->key_size); } static void read_local_amp_info_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_amp_info *rsp = data; const char *str; print_status(rsp->status); print_amp_status(rsp->amp_status); print_field("Total bandwidth: %d kbps", le32_to_cpu(rsp->total_bw)); print_field("Max guaranteed bandwidth: %d kbps", le32_to_cpu(rsp->max_bw)); print_field("Min latency: %d", le32_to_cpu(rsp->min_latency)); print_field("Max PDU size: %d", le32_to_cpu(rsp->max_pdu)); switch (rsp->amp_type) { case 0x00: str = "Primary BR/EDR Controller"; break; case 0x01: str = "802.11 AMP Controller"; break; default: str = "Reserved"; break; } print_field("Controller type: %s (0x%2.2x)", str, rsp->amp_type); print_field("PAL capabilities: 0x%4.4x", le16_to_cpu(rsp->pal_cap)); print_field("Max ASSOC length: %d", le16_to_cpu(rsp->max_assoc_len)); print_field("Max flush timeout: %d", le32_to_cpu(rsp->max_flush_to)); print_field("Best effort flush timeout: %d", le32_to_cpu(rsp->be_flush_to)); } static void read_local_amp_assoc_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_read_local_amp_assoc *cmd = data; print_phy_handle(cmd->phy_handle); print_field("Length so far: %d", le16_to_cpu(cmd->len_so_far)); print_field("Max ASSOC length: %d", le16_to_cpu(cmd->max_assoc_len)); } static void read_local_amp_assoc_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_amp_assoc *rsp = data; print_status(rsp->status); print_phy_handle(rsp->phy_handle); print_field("Remaining ASSOC length: %d", le16_to_cpu(rsp->remain_assoc_len)); packet_hexdump(data + 4, size - 4); } static void write_remote_amp_assoc_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_remote_amp_assoc *cmd = data; print_phy_handle(cmd->phy_handle); print_field("Length so far: %d", le16_to_cpu(cmd->len_so_far)); print_field("Remaining ASSOC length: %d", le16_to_cpu(cmd->remain_assoc_len)); packet_hexdump(data + 5, size - 5); } static void write_remote_amp_assoc_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_write_remote_amp_assoc *rsp = data; print_status(rsp->status); print_phy_handle(rsp->phy_handle); } static void get_mws_transport_config_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_get_mws_transport_config *rsp = data; uint8_t sum_baud_rates = 0; int i; print_status(rsp->status); print_field("Number of transports: %d", rsp->num_transports); for (i = 0; i < rsp->num_transports; i++) { uint8_t transport = rsp->transport[0]; uint8_t num_baud_rates = rsp->transport[1]; const char *str; switch (transport) { case 0x00: str = "Disbabled"; break; case 0x01: str = "WCI-1"; break; case 0x02: str = "WCI-2"; break; default: str = "Reserved"; break; } print_field(" Transport layer: %s (0x%2.2x)", str, transport); print_field(" Number of baud rates: %d", num_baud_rates); sum_baud_rates += num_baud_rates; } print_field("Baud rate list: %u entr%s", sum_baud_rates, sum_baud_rates == 1 ? "y" : "ies"); for (i = 0; i < sum_baud_rates; i++) { uint32_t to_baud_rate, from_baud_rate; to_baud_rate = get_le32(data + 2 + rsp->num_transports * 2 + i * 4); from_baud_rate = get_le32(data + 2 + rsp->num_transports * 2 + sum_baud_rates * 4 + i * 4); print_field(" Bluetooth to MWS: %d", to_baud_rate); print_field(" MWS to Bluetooth: %d", from_baud_rate); } packet_hexdump(data + 2 + rsp->num_transports * 2 + sum_baud_rates * 8, size - 2 - rsp->num_transports * 2 - sum_baud_rates * 8); } static void set_triggered_clock_capture_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_set_triggered_clock_capture *cmd = data; print_handle(cmd->handle); print_enable("Capture", cmd->enable); print_clock_type(cmd->type); print_lpo_allowed(cmd->lpo_allowed); print_field("Clock captures to filter: %u", cmd->num_filter); } static void read_loopback_mode_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_read_loopback_mode *rsp = data; print_status(rsp->status); print_loopback_mode(rsp->mode); } static void write_loopback_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_loopback_mode *cmd = data; print_loopback_mode(cmd->mode); } static void write_ssp_debug_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_write_ssp_debug_mode *cmd = data; print_enable("Debug Mode", cmd->mode); } static void le_set_event_mask_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_event_mask *cmd = data; print_event_mask(cmd->mask, events_le_table); } static void le_read_buffer_size_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_buffer_size *rsp = data; print_status(rsp->status); print_field("Data packet length: %d", le16_to_cpu(rsp->le_mtu)); print_field("Num data packets: %d", rsp->le_max_pkt); } static void le_read_local_features_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_local_features *rsp = data; print_status(rsp->status); print_features(0, rsp->features, 0x01); } static void le_set_random_address_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_random_address *cmd = data; print_addr("Address", cmd->addr, 0x01); } static void le_set_adv_parameters_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_adv_parameters *cmd = data; const char *str; print_slot_625("Min advertising interval", cmd->min_interval); print_slot_625("Max advertising interval", cmd->max_interval); switch (cmd->type) { case 0x00: str = "Connectable undirected - ADV_IND"; break; case 0x01: str = "Connectable directed - ADV_DIRECT_IND (high duty cycle)"; break; case 0x02: str = "Scannable undirected - ADV_SCAN_IND"; break; case 0x03: str = "Non connectable undirected - ADV_NONCONN_IND"; break; case 0x04: str = "Connectable directed - ADV_DIRECT_IND (low duty cycle)"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, cmd->type); print_own_addr_type(cmd->own_addr_type); print_addr_type("Direct address type", cmd->direct_addr_type); print_addr("Direct address", cmd->direct_addr, cmd->direct_addr_type); print_adv_channel_map("Channel map", cmd->channel_map); print_adv_filter_policy("Filter policy", cmd->filter_policy); } static void le_read_adv_tx_power_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_adv_tx_power *rsp = data; print_status(rsp->status); print_power_level(rsp->level, NULL); } static void le_set_adv_data_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_adv_data *cmd = data; print_field("Length: %d", cmd->len); print_eir(cmd->data, cmd->len, true); } static void le_set_scan_rsp_data_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_scan_rsp_data *cmd = data; print_field("Length: %d", cmd->len); print_eir(cmd->data, cmd->len, true); } static void le_set_adv_enable_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_adv_enable *cmd = data; print_enable("Advertising", cmd->enable); } static void print_scan_type(const char *label, uint8_t type) { const char *str; switch (type) { case 0x00: str = "Passive"; break; case 0x01: str = "Active"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x)", label, str, type); } static void print_scan_filter_policy(uint8_t policy) { const char *str; switch (policy) { case 0x00: str = "Accept all advertisement"; break; case 0x01: str = "Ignore not in accept list"; break; case 0x02: str = "Accept all advertisement, inc. directed unresolved RPA"; break; case 0x03: str = "Ignore not in accept list, exc. directed unresolved RPA"; break; default: str = "Reserved"; break; } print_field("Filter policy: %s (0x%2.2x)", str, policy); } static void le_set_scan_parameters_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_scan_parameters *cmd = data; print_scan_type("Type", cmd->type); print_interval(cmd->interval); print_window(cmd->window); print_own_addr_type(cmd->own_addr_type); print_scan_filter_policy(cmd->filter_policy); } static void le_set_scan_enable_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_scan_enable *cmd = data; print_enable("Scanning", cmd->enable); print_enable("Filter duplicates", cmd->filter_dup); } static void le_create_conn_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_create_conn *cmd = data; const char *str; print_slot_625("Scan interval", cmd->scan_interval); print_slot_625("Scan window", cmd->scan_window); switch (cmd->filter_policy) { case 0x00: str = "Accept list is not used"; break; case 0x01: str = "Accept list is used"; break; default: str = "Reserved"; break; } print_field("Filter policy: %s (0x%2.2x)", str, cmd->filter_policy); print_peer_addr_type("Peer address type", cmd->peer_addr_type); print_addr("Peer address", cmd->peer_addr, cmd->peer_addr_type); print_own_addr_type(cmd->own_addr_type); print_slot_125("Min connection interval", cmd->min_interval); print_slot_125("Max connection interval", cmd->max_interval); print_conn_latency("Connection latency", cmd->latency); print_field("Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(cmd->supv_timeout) * 10, le16_to_cpu(cmd->supv_timeout)); print_slot_625("Min connection length", cmd->min_length); print_slot_625("Max connection length", cmd->max_length); } static void le_read_accept_list_size_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_accept_list_size *rsp = data; print_status(rsp->status); print_field("Size: %u", rsp->size); } static void le_add_to_accept_list_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_add_to_accept_list *cmd = data; print_addr_type("Address type", cmd->addr_type); print_addr("Address", cmd->addr, cmd->addr_type); } static void le_remove_from_accept_list_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_remove_from_accept_list *cmd = data; print_addr_type("Address type", cmd->addr_type); print_addr("Address", cmd->addr, cmd->addr_type); } static void le_conn_update_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_conn_update *cmd = data; print_handle(cmd->handle); print_slot_125("Min connection interval", cmd->min_interval); print_slot_125("Max connection interval", cmd->max_interval); print_conn_latency("Connection latency", cmd->latency); print_field("Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(cmd->supv_timeout) * 10, le16_to_cpu(cmd->supv_timeout)); print_slot_625("Min connection length", cmd->min_length); print_slot_625("Max connection length", cmd->max_length); } static void le_set_host_classification_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_host_classification *cmd = data; print_le_channel_map(cmd->map); } static void le_read_channel_map_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_read_channel_map *cmd = data; print_handle(cmd->handle); } static void le_read_channel_map_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_channel_map *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_le_channel_map(rsp->map); } static void le_read_remote_features_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_read_remote_features *cmd = data; print_handle(cmd->handle); } static void le_encrypt_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_encrypt *cmd = data; print_key("Key", cmd->key); print_key("Plaintext data", cmd->plaintext); } static void le_encrypt_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_encrypt *rsp = data; print_status(rsp->status); print_key("Encrypted data", rsp->data); } static void le_rand_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_rand *rsp = data; print_status(rsp->status); print_random_number(rsp->number); } static void le_start_encrypt_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_start_encrypt *cmd = data; print_handle(cmd->handle); print_random_number(cmd->rand); print_encrypted_diversifier(cmd->ediv); print_key("Long term key", cmd->ltk); } static void le_ltk_req_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_ltk_req_reply *cmd = data; print_handle(cmd->handle); print_key("Long term key", cmd->ltk); } static void le_ltk_req_reply_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_ltk_req_reply *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void le_ltk_req_neg_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_ltk_req_neg_reply *cmd = data; print_handle(cmd->handle); } static void le_ltk_req_neg_reply_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_ltk_req_neg_reply *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void le_read_supported_states_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_supported_states *rsp = data; print_status(rsp->status); print_le_states(rsp->states); } static void le_receiver_test_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_receiver_test *cmd = data; print_field("RX frequency: %d MHz (0x%2.2x)", (cmd->frequency * 2) + 2402, cmd->frequency); } static void le_transmitter_test_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_transmitter_test *cmd = data; print_field("TX frequency: %d MHz (0x%2.2x)", (cmd->frequency * 2) + 2402, cmd->frequency); print_field("Test data length: %d bytes", cmd->data_len); print_field("Packet payload: 0x%2.2x", cmd->payload); } static void le_test_end_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_test_end *rsp = data; print_status(rsp->status); print_field("Number of packets: %d", le16_to_cpu(rsp->num_packets)); } static void le_conn_param_req_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_conn_param_req_reply *cmd = data; print_handle(cmd->handle); print_slot_125("Min connection interval", cmd->min_interval); print_slot_125("Max connection interval", cmd->max_interval); print_conn_latency("Connection latency", cmd->latency); print_field("Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(cmd->supv_timeout) * 10, le16_to_cpu(cmd->supv_timeout)); print_slot_625("Min connection length", cmd->min_length); print_slot_625("Max connection length", cmd->max_length); } static void le_conn_param_req_reply_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_conn_param_req_reply *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void le_conn_param_req_neg_reply_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_conn_param_req_neg_reply *cmd = data; print_handle(cmd->handle); print_reason(cmd->reason); } static void le_conn_param_req_neg_reply_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_conn_param_req_neg_reply *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void le_set_data_length_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_data_length *cmd = data; print_handle(cmd->handle); print_field("TX octets: %d", le16_to_cpu(cmd->tx_len)); print_field("TX time: %d", le16_to_cpu(cmd->tx_time)); } static void le_set_data_length_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_set_data_length *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void le_read_default_data_length_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_default_data_length *rsp = data; print_status(rsp->status); print_field("TX octets: %d", le16_to_cpu(rsp->tx_len)); print_field("TX time: %d", le16_to_cpu(rsp->tx_time)); } static void le_write_default_data_length_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_write_default_data_length *cmd = data; print_field("TX octets: %d", le16_to_cpu(cmd->tx_len)); print_field("TX time: %d", le16_to_cpu(cmd->tx_time)); } static void le_generate_dhkey_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_generate_dhkey *cmd = data; print_pk256("Remote P-256 public key", cmd->remote_pk256); } static void le_add_to_resolv_list_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_add_to_resolv_list *cmd = data; print_addr_type("Address type", cmd->addr_type); print_addr("Address", cmd->addr, cmd->addr_type); print_key("Peer identity resolving key", cmd->peer_irk); print_key("Local identity resolving key", cmd->local_irk); } static void le_remove_from_resolv_list_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_remove_from_resolv_list *cmd = data; print_addr_type("Address type", cmd->addr_type); print_addr("Address", cmd->addr, cmd->addr_type); } static void le_read_resolv_list_size_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_resolv_list_size *rsp = data; print_status(rsp->status); print_field("Size: %u", rsp->size); } static void le_read_peer_resolv_addr_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_read_peer_resolv_addr *cmd = data; print_addr_type("Address type", cmd->addr_type); print_addr("Address", cmd->addr, cmd->addr_type); } static void le_read_peer_resolv_addr_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_peer_resolv_addr *rsp = data; print_status(rsp->status); print_addr("Address", rsp->addr, 0x01); } static void le_read_local_resolv_addr_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_read_local_resolv_addr *cmd = data; print_addr_type("Address type", cmd->addr_type); print_addr("Address", cmd->addr, cmd->addr_type); } static void le_read_local_resolv_addr_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_local_resolv_addr *rsp = data; print_status(rsp->status); print_addr("Address", rsp->addr, 0x01); } static void le_set_resolv_enable_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_resolv_enable *cmd = data; print_enable("Address resolution", cmd->enable); } static void le_set_resolv_timeout_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_resolv_timeout *cmd = data; print_field("Timeout: %u seconds", le16_to_cpu(cmd->timeout)); } static void le_read_max_data_length_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_max_data_length *rsp = data; print_status(rsp->status); print_field("Max TX octets: %d", le16_to_cpu(rsp->max_tx_len)); print_field("Max TX time: %d", le16_to_cpu(rsp->max_tx_time)); print_field("Max RX octets: %d", le16_to_cpu(rsp->max_rx_len)); print_field("Max RX time: %d", le16_to_cpu(rsp->max_rx_time)); } static void le_read_phy_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_read_phy *cmd = data; print_handle(cmd->handle); } static void print_le_phy(const char *prefix, uint8_t phy) { const char *str; switch (phy) { case 0x01: str = "LE 1M"; break; case 0x02: str = "LE 2M"; break; case 0x03: str = "LE Coded"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x)", prefix, str, phy); } static void le_read_phy_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_phy *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_le_phy("TX PHY", rsp->tx_phy); print_le_phy("RX PHY", rsp->rx_phy); } static const struct bitfield_data le_phys[] = { { 0, "LE 1M" }, { 1, "LE 2M" }, { 2, "LE Coded"}, { } }; static const struct bitfield_data le_phy_preference[] = { { 0, "No TX PHY preference" }, { 1, "No RX PHY preference" }, { } }; static void print_le_phys_preference(uint8_t all_phys, uint8_t tx_phys, uint8_t rx_phys) { uint8_t mask; print_field("All PHYs preference: 0x%2.2x", all_phys); mask = print_bitfield(2, all_phys, le_phy_preference); if (mask) print_text(COLOR_UNKNOWN_OPTIONS_BIT, " Reserved" " (0x%2.2x)", mask); print_field("TX PHYs preference: 0x%2.2x", tx_phys); mask = print_bitfield(2, tx_phys, le_phys); if (mask) print_text(COLOR_UNKNOWN_OPTIONS_BIT, " Reserved" " (0x%2.2x)", mask); print_field("RX PHYs preference: 0x%2.2x", rx_phys); mask = print_bitfield(2, rx_phys, le_phys); if (mask) print_text(COLOR_UNKNOWN_OPTIONS_BIT, " Reserved" " (0x%2.2x)", mask); } static void le_set_default_phy_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_default_phy *cmd = data; print_le_phys_preference(cmd->all_phys, cmd->tx_phys, cmd->rx_phys); } static void le_set_phy_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_phy *cmd = data; const char *str; print_handle(cmd->handle); print_le_phys_preference(cmd->all_phys, cmd->tx_phys, cmd->rx_phys); switch (le16_to_cpu(cmd->phy_opts)) { case 0x0001: str = "S2 coding"; break; case 0x0002: str = "S8 coding"; break; default: str = "Reserved"; break; } print_field("PHY options preference: %s (0x%4.4x)", str, cmd->phy_opts); } static void le_enhanced_receiver_test_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_enhanced_receiver_test *cmd = data; const char *str; print_field("RX channel frequency: %d MHz (0x%2.2x)", (cmd->rx_channel * 2) + 2402, cmd->rx_channel); print_le_phy("PHY", cmd->phy); switch (cmd->modulation_index) { case 0x00: str = "Standard"; break; case 0x01: str = "Stable"; break; default: str = "Reserved"; break; } print_field("Modulation index: %s (0x%2.2x)", str, cmd->modulation_index); } static void le_enhanced_transmitter_test_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_enhanced_transmitter_test *cmd = data; const char *str; print_field("TX channel frequency: %d MHz (0x%2.2x)", (cmd->tx_channel * 2) + 2402, cmd->tx_channel); print_field("Test data length: %d bytes", cmd->data_len); print_field("Packet payload: 0x%2.2x", cmd->payload); switch (cmd->phy) { case 0x01: str = "LE 1M"; break; case 0x02: str = "LE 2M"; break; case 0x03: str = "LE Coded with S=8"; break; case 0x04: str = "LE Coded with S=2"; break; default: str = "Reserved"; break; } print_field("PHY: %s (0x%2.2x)", str, cmd->phy); } static void le_set_adv_set_rand_addr(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_adv_set_rand_addr *cmd = data; print_field("Advertising handle: 0x%2.2x", cmd->handle); print_addr("Advertising random address", cmd->bdaddr, 0x01); } static const struct bitfield_data ext_adv_properties_table[] = { { 0, "Connectable" }, { 1, "Scannable" }, { 2, "Directed" }, { 3, "High Duty Cycle Directed Connectable" }, { 4, "Use legacy advertising PDUs" }, { 5, "Anonymous advertising" }, { 6, "Include TxPower" }, { } }; static const char *get_adv_pdu_desc(uint16_t flags) { const char *str; switch (flags) { case 0x10: str = "ADV_NONCONN_IND"; break; case 0x12: str = "ADV_SCAN_IND"; break; case 0x13: str = "ADV_IND"; break; case 0x15: str = "ADV_DIRECT_IND (low duty cycle)"; break; case 0x1d: str = "ADV_DIRECT_IND (high duty cycle)"; break; default: str = "Reserved"; break; } return str; } static void print_ext_adv_properties(uint16_t flags) { uint16_t mask = flags; const char *property; int i; print_field("Properties: 0x%4.4x", flags); for (i = 0; ext_adv_properties_table[i].str; i++) { if (flags & (1 << ext_adv_properties_table[i].bit)) { property = ext_adv_properties_table[i].str; if (ext_adv_properties_table[i].bit == 4) { print_field(" %s: %s", property, get_adv_pdu_desc(flags)); } else { print_field(" %s", property); } mask &= ~(1 << ext_adv_properties_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_ADV_FLAG, " Unknown advertising properties (0x%4.4x)", mask); } static void print_ext_slot_625(const char *label, const uint8_t value[3]) { uint32_t value_cpu = value[0]; value_cpu |= value[1] << 8; value_cpu |= value[2] << 16; print_field("%s: %.3f msec (0x%4.4x)", label, value_cpu * 0.625, value_cpu); } static void le_set_ext_adv_params_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_ext_adv_params *cmd = data; const char *str; print_field("Handle: 0x%2.2x", cmd->handle); print_ext_adv_properties(le16_to_cpu(cmd->evt_properties)); print_ext_slot_625("Min advertising interval", cmd->min_interval); print_ext_slot_625("Max advertising interval", cmd->max_interval); print_adv_channel_map("Channel map", cmd->channel_map); print_own_addr_type(cmd->own_addr_type); print_peer_addr_type("Peer address type", cmd->peer_addr_type); print_addr("Peer address", cmd->peer_addr, cmd->peer_addr_type); print_adv_filter_policy("Filter policy", cmd->filter_policy); if (cmd->tx_power == 0x7f) print_field("TX power: Host has no preference (0x7f)"); else print_power_level(cmd->tx_power, NULL); switch (cmd->primary_phy) { case 0x01: str = "LE 1M"; break; case 0x03: str = "LE Coded"; break; default: str = "Reserved"; break; } print_field("Primary PHY: %s (0x%2.2x)", str, cmd->primary_phy); print_field("Secondary max skip: 0x%2.2x", cmd->secondary_max_skip); print_le_phy("Secondary PHY", cmd->secondary_phy); print_field("SID: 0x%2.2x", cmd->sid); print_enable("Scan request notifications", cmd->notif_enable); } static void le_set_ext_adv_params_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_set_ext_adv_params *rsp = data; print_status(rsp->status); print_power_level(rsp->tx_power, "selected"); } static void le_set_ext_adv_data_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_ext_adv_data *cmd = data; const char *str; print_field("Handle: 0x%2.2x", cmd->handle); switch (cmd->operation) { case 0x00: str = "Immediate fragment"; break; case 0x01: str = "First fragment"; break; case 0x02: str = "Last fragment"; break; case 0x03: str = "Complete extended advertising data"; break; case 0x04: str = "Unchanged data"; break; default: str = "Reserved"; break; } print_field("Operation: %s (0x%2.2x)", str, cmd->operation); switch (cmd->fragment_preference) { case 0x00: str = "Fragment all"; break; case 0x01: str = "Minimize fragmentation"; break; default: str = "Reserved"; break; } print_field("Fragment preference: %s (0x%2.2x)", str, cmd->fragment_preference); print_field("Data length: 0x%2.2x", cmd->data_len); packet_print_ad(cmd->data, size - sizeof(*cmd)); } static void le_set_ext_scan_rsp_data_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_ext_scan_rsp_data *cmd = data; const char *str; print_field("Handle: 0x%2.2x", cmd->handle); switch (cmd->operation) { case 0x00: str = "Immediate fragment"; break; case 0x01: str = "First fragment"; break; case 0x02: str = "Last fragment"; break; case 0x03: str = "Complete scan response data"; break; case 0x04: str = "Unchanged data"; break; default: str = "Reserved"; break; } print_field("Operation: %s (0x%2.2x)", str, cmd->operation); switch (cmd->fragment_preference) { case 0x00: str = "Fragment all"; break; case 0x01: str = "Minimize fragmentation"; break; default: str = "Reserved"; break; } print_field("Fragment preference: %s (0x%2.2x)", str, cmd->fragment_preference); print_field("Data length: 0x%2.2x", cmd->data_len); packet_print_ad(cmd->data, size - sizeof(*cmd)); } static void le_set_ext_adv_enable_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_ext_adv_enable *cmd = data; const struct bt_hci_cmd_ext_adv_set *adv_set; int i; print_enable("Extended advertising", cmd->enable); if (cmd->num_of_sets == 0) print_field("Number of sets: Disable all sets (0x%2.2x)", cmd->num_of_sets); else if (cmd->num_of_sets > 0x3f) print_field("Number of sets: Reserved (0x%2.2x)", cmd->num_of_sets); else print_field("Number of sets: %u (0x%2.2x)", cmd->num_of_sets, cmd->num_of_sets); for (i = 0; i < cmd->num_of_sets; ++i) { adv_set = data + 2 + i * sizeof(struct bt_hci_cmd_ext_adv_set); print_field("Entry %d", i); print_field(" Handle: 0x%2.2x", adv_set->handle); print_field(" Duration: %d ms (0x%2.2x)", adv_set->duration * 10, adv_set->duration); print_field(" Max ext adv events: %d", adv_set->max_events); } } static void le_read_max_adv_data_len_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_max_adv_data_len *rsp = data; print_status(rsp->status); print_field("Max length: %d", rsp->max_len); } static void le_read_num_supported_adv_sets_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_num_supported_adv_sets *rsp = data; print_status(rsp->status); print_field("Num supported adv sets: %d", rsp->num_of_sets); } static void le_remove_adv_set_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_remove_adv_set *cmd = data; print_handle(cmd->handle); } static const struct bitfield_data pa_properties_table[] = { { 6, "Include TxPower" }, { } }; static void print_pa_properties(uint16_t flags) { uint16_t mask; print_field("Properties: 0x%4.4x", flags); mask = print_bitfield(2, flags, pa_properties_table); if (mask) print_text(COLOR_UNKNOWN_ADV_FLAG, " Unknown advertising properties (0x%4.4x)", mask); } static void le_set_pa_params_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_pa_params *cmd = data; print_handle(cmd->handle); print_slot_125("Min interval", cmd->min_interval); print_slot_125("Max interval", cmd->max_interval); print_pa_properties(cmd->properties); } static void le_set_pa_data_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_pa_data *cmd = data; const char *str; print_handle(cmd->handle); switch (cmd->operation) { case 0x00: str = "Immediate fragment"; break; case 0x01: str = "First fragment"; break; case 0x02: str = "Last fragment"; break; case 0x03: str = "Complete ext advertising data"; break; default: str = "Reserved"; break; } print_field("Operation: %s (0x%2.2x)", str, cmd->operation); print_field("Data length: 0x%2.2x", cmd->data_len); print_eir(cmd->data, cmd->data_len, true); } static void le_set_pa_enable_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_pa_enable *cmd = data; print_enable("Periodic advertising", cmd->enable); print_handle(cmd->handle); } static const struct bitfield_data ext_scan_phys_table[] = { { 0, "LE 1M" }, { 2, "LE Coded" }, { } }; static void print_ext_scan_phys(const void *data, uint8_t flags) { const struct bt_hci_le_scan_phy *scan_phy; uint8_t mask = flags; int bits_set = 0; int i; print_field("PHYs: 0x%2.2x", flags); for (i = 0; ext_scan_phys_table[i].str; i++) { if (flags & (1 << ext_scan_phys_table[i].bit)) { scan_phy = data + bits_set * sizeof(*scan_phy); mask &= ~(1 << ext_scan_phys_table[i].bit); print_field("Entry %d: %s", bits_set, ext_scan_phys_table[i].str); print_scan_type(" Type", scan_phy->type); print_slot_625(" Interval", scan_phy->interval); print_slot_625(" Window", scan_phy->window); ++bits_set; } } if (mask) print_text(COLOR_UNKNOWN_ADV_FLAG, " Unknown scanning PHYs" " (0x%2.2x)", mask); } static void le_set_ext_scan_params_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_ext_scan_params *cmd = data; print_own_addr_type(cmd->own_addr_type); print_scan_filter_policy(cmd->filter_policy); print_ext_scan_phys(cmd->data, cmd->num_phys); } static void le_set_ext_scan_enable_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_ext_scan_enable *cmd = data; print_enable("Extended scan", cmd->enable); print_enable("Filter duplicates", cmd->filter_dup); print_field("Duration: %d msec (0x%4.4x)", le16_to_cpu(cmd->duration) * 10, le16_to_cpu(cmd->duration)); print_field("Period: %.2f sec (0x%4.4x)", le16_to_cpu(cmd->period) * 1.28, le16_to_cpu(cmd->period)); } static const struct bitfield_data ext_conn_phys_table[] = { { 0, "LE 1M" }, { 1, "LE 2M" }, { 2, "LE Coded" }, { } }; static void print_ext_conn_phys(const void *data, uint8_t flags) { const struct bt_hci_le_ext_create_conn *entry; uint8_t mask = flags; int bits_set = 0; int i; print_field("Initiating PHYs: 0x%2.2x", flags); for (i = 0; ext_conn_phys_table[i].str; i++) { if (flags & (1 << ext_conn_phys_table[i].bit)) { entry = data + bits_set * sizeof(*entry); mask &= ~(1 << ext_conn_phys_table[i].bit); print_field("Entry %d: %s", bits_set, ext_conn_phys_table[i].str); print_slot_625(" Scan interval", entry->scan_interval); print_slot_625(" Scan window", entry->scan_window); print_slot_125(" Min connection interval", entry->min_interval); print_slot_125(" Max connection interval", entry->max_interval); print_conn_latency(" Connection latency", entry->latency); print_field(" Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(entry->supv_timeout) * 10, le16_to_cpu(entry->supv_timeout)); print_slot_625(" Min connection length", entry->min_length); print_slot_625(" Max connection length", entry->max_length); ++bits_set; } } if (mask) print_text(COLOR_UNKNOWN_ADV_FLAG, " Unknown scanning PHYs" " (0x%2.2x)", mask); } static void le_ext_create_conn_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_ext_create_conn *cmd = data; const char *str; switch (cmd->filter_policy) { case 0x00: str = "Accept list is not used"; break; case 0x01: str = "Accept list is used"; break; default: str = "Reserved"; break; } print_field("Filter policy: %s (0x%2.2x)", str, cmd->filter_policy); print_own_addr_type(cmd->own_addr_type); print_peer_addr_type("Peer address type", cmd->peer_addr_type); print_addr("Peer address", cmd->peer_addr, cmd->peer_addr_type); print_ext_conn_phys(cmd->data, cmd->phys); } static const struct bitfield_data create_sync_cte_type[] = { { 0, "Do not sync to packets with AoA CTE" }, { 1, "Do not sync to packets with AoD CTE 1us" }, { 2, "Do not sync to packets with AoD CTE 2us" }, { 3, "Do not sync to packets with type 3 AoD" }, { 4, "Do not sync to packets without CTE" }, { }, }; static const struct bitfield_data create_sync_options[] = { { 0, "Use Periodic Advertiser List" }, { 1, "Reporting initially disabled" }, { }, }; static const struct bitfield_data create_sync_options_alt[] = { { 0, "Use advertising SID, Advertiser Address Type and address"}, { 1, "Reporting initially enabled" }, { }, }; static void print_create_sync_cte_type(uint8_t flags) { uint8_t mask = flags; print_field("Sync CTE type: 0x%4.4x", flags); mask = print_bitfield(2, flags, create_sync_cte_type); if (mask) { print_text(COLOR_UNKNOWN_ADV_FLAG, "Unknown sync CTE type properties (0x%4.4x)", mask); } } static void print_create_sync_options(uint8_t flags) { uint8_t mask = flags; int i; print_field("Options: 0x%4.4x", flags); for (i = 0; create_sync_options[i].str; i++) { if (flags & (1 << create_sync_options[i].bit)) { print_field("%s", create_sync_options[i].str); mask &= ~(1 << create_sync_options[i].bit); } else { print_field("%s", create_sync_options_alt[i].str); mask &= ~(1 << create_sync_options_alt[i].bit); } } if (mask) { print_text(COLOR_UNKNOWN_ADV_FLAG, " Unknown options (0x%4.4x)", mask); } } static void le_pa_create_sync_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_pa_create_sync *cmd = data; print_create_sync_options(cmd->options); print_field("SID: 0x%2.2x", cmd->sid); print_addr_type("Adv address type", cmd->addr_type); print_addr("Adv address", cmd->addr, cmd->addr_type); print_field("Skip: 0x%4.4x", cmd->skip); print_field("Sync timeout: %d msec (0x%4.4x)", le16_to_cpu(cmd->sync_timeout) * 10, le16_to_cpu(cmd->sync_timeout)); print_create_sync_cte_type(cmd->sync_cte_type); } static void le_pa_term_sync_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_pa_term_sync *cmd = data; print_field("Sync handle: 0x%4.4x", cmd->sync_handle); } static void le_add_dev_pa_list_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_add_dev_pa_list *cmd = data; print_addr_type("Adv address type", cmd->addr_type); print_addr("Adv address", cmd->addr, cmd->addr_type); print_field("SID: 0x%2.2x", cmd->sid); } static void le_remove_dev_pa_list_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_remove_dev_pa_list *cmd = data; print_addr_type("Adv address type", cmd->addr_type); print_addr("Adv address", cmd->addr, cmd->addr_type); print_field("SID: 0x%2.2x", cmd->sid); } static void le_read_pa_list_size_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_dev_pa_list_size *rsp = data; print_status(rsp->status); print_field("List size: 0x%2.2x", rsp->list_size); } static void le_read_tx_power_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_tx_power *rsp = data; print_status(rsp->status); print_field("Min Tx power: %d dBm", rsp->min_tx_power); print_field("Max Tx power: %d dBm", rsp->max_tx_power); } static void le_read_rf_path_comp_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_rf_path_comp *rsp = data; print_status(rsp->status); print_field("RF Tx Path Compensation Value: 0x%4.4x", rsp->rf_tx_path_comp); print_field("RF Rx Path Compensation Value: 0x%4.4x", rsp->rf_rx_path_comp); } static void le_write_rf_path_comp_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_write_rf_path_comp *cmd = data; print_field("RF Tx Path Compensation Value: 0x%4.4x", cmd->rf_tx_path_comp); print_field("RF Rx Path Compensation Value: 0x%4.4x", cmd->rf_rx_path_comp); } static void le_set_priv_mode_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_priv_mode *cmd = data; const char *str; print_addr_type("Peer Identity address type", cmd->peer_id_addr_type); print_addr("Peer Identity address", cmd->peer_id_addr, cmd->peer_id_addr_type); switch (cmd->priv_mode) { case 0x00: str = "Use Network Privacy"; break; case 0x01: str = "Use Device Privacy"; break; default: str = "Reserved"; break; } print_field("Privacy Mode: %s (0x%2.2x)", str, cmd->priv_mode); } static void le_receiver_test_cmd_v3(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_receiver_test_v3 *cmd = data; uint8_t i; print_field("RX Channel: %u MHz (0x%2.2x)", cmd->rx_chan * 2 + 2402, cmd->rx_chan); switch (cmd->phy) { case 0x01: print_field("PHY: LE 1M (0x%2.2x)", cmd->phy); break; case 0x02: print_field("PHY: LE 2M (0x%2.2x)", cmd->phy); break; case 0x03: print_field("PHY: LE Coded (0x%2.2x)", cmd->phy); break; } print_field("Modulation Index: %s (0x%2.2x)", cmd->mod_index ? "stable" : "standard", cmd->mod_index); print_field("Expected CTE Length: %u us (0x%2.2x)", cmd->cte_len * 8, cmd->cte_len); print_field("Expected CTE Type: %u us slots (0x%2.2x)", cmd->cte_type, cmd->cte_type); print_field("Slot Duration: %u us (0x%2.2x)", cmd->duration, cmd->duration); print_field("Number of Antenna IDs: %u", cmd->num_antenna_id); if (size < sizeof(*cmd) + cmd->num_antenna_id) return; for (i = 0; i < cmd->num_antenna_id; i++) print_field(" Antenna ID: %u", cmd->antenna_ids[i]); } static const char *parse_tx_test_payload(uint8_t payload) { switch (payload) { case 0x00: return "PRBS9 sequence 11111111100000111101..."; case 0x01: return "Repeated 11110000"; case 0x02: return "Repeated 10101010"; case 0x03: return "PRBS15"; case 0x04: return "Repeated 11111111"; case 0x05: return "Repeated 00000000"; case 0x06: return "Repeated 00001111"; case 0x07: return "Repeated 01010101"; default: return "Reserved"; } } static void le_tx_test_cmd_v3(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_tx_test_v3 *cmd = data; uint8_t i; print_field("TX Channel: %u MHz (0x%2.2x)", cmd->chan * 2 + 2402, cmd->chan); print_field("Length of Test Data: %u", cmd->data_len); print_field("Packet Payload: %s (0x%2.2x)", parse_tx_test_payload(cmd->payload), cmd->payload); switch (cmd->phy) { case 0x01: print_field("PHY: LE 1M (0x%2.2x)", cmd->phy); break; case 0x02: print_field("PHY: LE 2M (0x%2.2x)", cmd->phy); break; case 0x03: print_field("PHY: LE Coded with S=8 (0x%2.2x)", cmd->phy); break; case 0x04: print_field("PHY: LE Coded with S=2 (0x%2.2x)", cmd->phy); break; } print_field("Expected CTE Length: %u us (0x%2.2x)", cmd->cte_len * 8, cmd->cte_len); print_field("Expected CTE Type: %u us slots (0x%2.2x)", cmd->cte_type, cmd->cte_type); print_field("Slot Duration: %u us (0x%2.2x)", cmd->duration, cmd->duration); print_field("Number of Antenna IDs: %u", cmd->num_antenna_id); if (size < sizeof(*cmd) + cmd->num_antenna_id) return; for (i = 0; i < cmd->num_antenna_id; i++) print_field(" Antenna ID: %u", cmd->antenna_ids[i]); } static void le_pa_rec_enable(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_pa_enable *cmd = data; print_field("Sync handle: %d", cmd->handle); print_enable("Reporting", cmd->enable); } static void le_pa_sync_trans(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_periodic_sync_trans *cmd = data; print_field("Connection handle: %d", cmd->handle); print_field("Service data: 0x%4.4x", cmd->service_data); print_field("Sync handle: %d", cmd->sync_handle); } static void le_pa_set_info_trans(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_pa_set_info_trans *cmd = data; print_field("Connection handle: %d", cmd->handle); print_field("Service data: 0x%4.4x", cmd->service_data); print_field("Advertising handle: %d", cmd->adv_handle); } static void print_sync_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled with report events disabled"; break; case 0x02: str = "Enabled with report events enabled"; break; default: str = "RFU"; break; } print_field("Mode: %s (0x%2.2x)", str, mode); } static void le_pa_sync_trans_params(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_pa_sync_trans_params *cmd = data; print_field("Connection handle: %d", cmd->handle); print_sync_mode(cmd->mode); print_field("Skip: 0x%2.2x", cmd->skip); print_field("Sync timeout: %d msec (0x%4.4x)", le16_to_cpu(cmd->sync_timeout) * 10, le16_to_cpu(cmd->sync_timeout)); print_create_sync_cte_type(cmd->cte_type); } static void le_set_default_pa_sync_trans_params(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_default_pa_sync_trans_params *cmd = data; print_sync_mode(cmd->mode); print_field("Skip: 0x%2.2x", cmd->skip); print_field("Sync timeout: %d msec (0x%4.4x)", le16_to_cpu(cmd->sync_timeout) * 10, le16_to_cpu(cmd->sync_timeout)); print_create_sync_cte_type(cmd->cte_type); } static void print_sca(uint8_t sca) { switch (sca) { case 0x00: print_field("SCA: 201 - 500 ppm (0x%2.2x)", sca); return; case 0x01: print_field("SCA: 151 - 200 ppm (0x%2.2x)", sca); return; case 0x02: print_field("SCA: 101 - 150 ppm (0x%2.2x)", sca); return; case 0x03: print_field("SCA: 76 - 100 ppm (0x%2.2x)", sca); return; case 0x04: print_field("SCA: 51 - 75 ppm (0x%2.2x)", sca); return; case 0x05: print_field("SCA: 31 - 50 ppm (0x%2.2x)", sca); return; case 0x06: print_field("SCA: 21 - 30 ppm (0x%2.2x)", sca); return; case 0x07: print_field("SCA: 0 - 20 ppm (0x%2.2x)", sca); return; default: print_field("SCA: Reserved (0x%2.2x)", sca); } } static void print_packing(uint8_t value) { switch (value) { case 0x00: print_field("Packing: Sequential (0x%2.2x)", value); return; case 0x01: print_field("Packing: Interleaved (0x%2.2x)", value); return; default: print_field("Packing: Reserved (0x%2.2x)", value); } } static void print_framing(uint8_t value) { switch (value) { case 0x00: print_field("Framing: Unframed (0x%2.2x)", value); return; case 0x01: print_field("Framing: Framed (0x%2.2x)", value); return; default: print_field("Packing: Reserved (0x%2.2x)", value); } } static void le_read_buffer_size_v2_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_buffer_size_v2 *rsp = data; print_status(rsp->status); if (size == 1) return; print_field("ACL MTU: %d", le16_to_cpu(rsp->acl_mtu)); print_field("ACL max packet: %d", rsp->acl_max_pkt); print_field("ISO MTU: %d", le16_to_cpu(rsp->iso_mtu)); print_field("ISO max packet: %d", rsp->iso_max_pkt); } static void le_read_iso_tx_sync_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_read_iso_tx_sync *cmd = data; print_field("Handle: %d", le16_to_cpu(cmd->handle)); } static void le_read_iso_tx_sync_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_iso_tx_sync *rsp = data; uint32_t offset = 0; print_status(rsp->status); if (size == 1) return; print_field("Handle: %d", le16_to_cpu(rsp->handle)); print_field("Sequence Number: %d", le16_to_cpu(rsp->seq)); print_field("Timestamp: %d", le32_to_cpu(rsp->timestamp)); memcpy(&offset, rsp->offset, sizeof(rsp->offset)); print_field("Offset: %d", le32_to_cpu(offset)); } static void print_cis_params(const void *data, int i) { const struct bt_hci_cis_params *cis = data; print_field("CIS ID: 0x%2.2x", cis->cis_id); print_field("Central to Peripheral Maximum SDU Size: %u", le16_to_cpu(cis->c_sdu)); print_field("Peripheral to Central Maximum SDU Size: %u", le16_to_cpu(cis->p_sdu)); print_le_phy("Central to Peripheral PHY", cis->c_phy); print_le_phy("Peripheral to Central PHY", cis->p_phy); print_field("Central to Peripheral Retransmission attempts: 0x%2.2x", cis->c_rtn); print_field("Peripheral to Central Retransmission attempts: 0x%2.2x", cis->p_rtn); } static void le_set_cig_params_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_cig_params *cmd = data; print_field("CIG ID: 0x%2.2x", cmd->cig_id); print_usec_interval("Central to Peripheral SDU Interval", cmd->c_interval); print_usec_interval("Peripheral to Central SDU Interval", cmd->p_interval); print_sca(cmd->sca); print_packing(cmd->packing); print_framing(cmd->framing); print_field("Central to Peripheral Maximum Latency: %d ms (0x%4.4x)", le16_to_cpu(cmd->c_latency), le16_to_cpu(cmd->c_latency)); print_field("Peripheral to Central Maximum Latency: %d ms (0x%4.4x)", le16_to_cpu(cmd->p_latency), le16_to_cpu(cmd->p_latency)); print_field("Number of CIS: %u", cmd->num_cis); size -= sizeof(*cmd); print_list(cmd->cis, size, cmd->num_cis, sizeof(*cmd->cis), print_cis_params); } static void print_cis_params_test(const void *data, int i) { const struct bt_hci_cis_params_test *cis = data; print_field("CIS ID: 0x%2.2x", cis->cis_id); print_field("NSE: 0x%2.2x", cis->nse); print_field("Central to Peripheral Maximum SDU: 0x%4.4x", le16_to_cpu(cis->c_sdu)); print_field("Peripheral to Central Maximum SDU: 0x%4.4x", le16_to_cpu(cis->p_sdu)); print_field("Central to Peripheral Maximum PDU: 0x%4.4x", le16_to_cpu(cis->c_pdu)); print_field("Peripheral to Central Maximum PDU: 0x%4.4x", le16_to_cpu(cis->p_pdu)); print_le_phy("Central to Peripheral PHY", cis->c_phy); print_le_phy("Peripheral to Central PHY", cis->p_phy); print_field("Central to Peripheral Burst Number: 0x%2.2x", cis->c_bn); print_field("Peripheral to Central Burst Number: 0x%2.2x", cis->p_bn); } static void le_set_cig_params_test_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_cig_params_test *cmd = data; print_field("CIG ID: 0x%2.2x", cmd->cig_id); print_usec_interval("Central to Peripheral SDU Interval", cmd->c_interval); print_usec_interval("Peripheral to Central SDU Interval", cmd->p_interval); print_field("Central to Peripheral Flush Timeout: 0x%2.2x", cmd->c_ft); print_field("Peripheral to Central Flush Timeout: 0x%2.2x", cmd->p_ft); print_field("ISO Interval: %.2f ms (0x%4.4x)", le16_to_cpu(cmd->iso_interval) * 1.25, le16_to_cpu(cmd->iso_interval)); print_sca(cmd->sca); print_packing(cmd->packing); print_framing(cmd->framing); print_field("Number of CIS: %u", cmd->num_cis); size -= sizeof(*cmd); print_list(cmd->cis, size, cmd->num_cis, sizeof(*cmd->cis), print_cis_params_test); } static void print_cig_handle(const void *data, int i) { uint16_t handle = get_le16(data); print_field("Connection Handle #%d: %d", i, handle); } static void le_set_cig_params_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_set_cig_params *rsp = data; print_status(rsp->status); if (size == 1) return; print_field("CIG ID: 0x%2.2x", rsp->cig_id); print_field("Number of Handles: %u", rsp->num_handles); size -= sizeof(*rsp); print_list(rsp->handle, size, rsp->num_handles, sizeof(*rsp->handle), print_cig_handle); } static void print_cis(const void *data, int i) { const struct bt_hci_cis *cis = data; print_field("CIS Handle: %d", cis->cis_handle); print_field("ACL Handle: %d", cis->acl_handle); } static void le_create_cis_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_create_cis *cmd = data; print_field("Number of CIS: %u", cmd->num_cis); size -= sizeof(*cmd); print_list(cmd->cis, size, cmd->num_cis, sizeof(*cmd->cis), print_cis); } static void le_remove_cig_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_remove_cig *cmd = data; print_field("CIG ID: 0x%02x", cmd->cig_id); } static void le_remove_cig_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_remove_cig *rsp = data; print_status(rsp->status); if (size == 1) return; print_field("CIG ID: 0x%2.2x", rsp->cig_id); } static void le_accept_cis_req_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_accept_cis *cmd = data; print_field("CIS Handle: %d", le16_to_cpu(cmd->handle)); } static void le_reject_cis_req_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_reject_cis *cmd = data; print_field("CIS Handle: %d", le16_to_cpu(cmd->handle)); print_reason(cmd->reason); } static void print_bis(const struct bt_hci_bis *bis) { print_usec_interval("SDU Interval", bis->sdu_interval); print_field("Maximum SDU size: %u", le16_to_cpu(bis->sdu)); print_field("Maximum Latency: %u ms (0x%4.4x)", le16_to_cpu(bis->latency), le16_to_cpu(bis->latency)); print_field("RTN: 0x%2.2x", bis->rtn); print_le_phy("PHY", bis->phy); print_packing(bis->packing); print_framing(bis->framing); print_field("Encryption: 0x%2.2x", bis->encryption); print_hex_field("Broadcast Code", bis->bcode, 16); } static void le_create_big_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_create_big *cmd = data; print_field("Handle: 0x%2.2x", cmd->handle); print_field("Advertising Handle: 0x%2.2x", cmd->adv_handle); print_field("Number of BIS: %u", cmd->num_bis); print_bis(&cmd->bis); } static void print_bis_test(const void *data, int i) { const struct bt_hci_bis_test *bis = data; print_usec_interval("SDU Interval", bis->sdu_interval); print_field("ISO Interval: %.2f ms (0x%4.4x)", le16_to_cpu(bis->iso_interval) * 1.25, le16_to_cpu(bis->iso_interval)); print_field("Number of Subevents: %u", bis->nse); print_field("Maximum SDU: %u", bis->sdu); print_field("Maximum PDU: %u", bis->pdu); print_packing(bis->packing); print_framing(bis->framing); print_le_phy("PHY", bis->phy); print_field("Burst Number: %u", bis->bn); print_field("Immediate Repetition Count: %u", bis->irc); print_field("Pre Transmission Offset: 0x%2.2x", bis->pto); print_field("Encryption: 0x%2.2x", bis->encryption); print_hex_field("Broadcast Code", bis->bcode, 16); } static void le_create_big_cmd_test_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_create_big_test *cmd = data; print_field("BIG ID: 0x%2.2x", cmd->big_id); print_field("Advertising Handle: 0x%2.2x", cmd->adv_handle); print_field("Number of BIS: %u", cmd->num_bis); size -= sizeof(*cmd); print_list(cmd->bis, size, cmd->num_bis, sizeof(*cmd->bis), print_bis_test); } static void le_terminate_big_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_term_big *cmd = data; print_field("BIG Handle: 0x%2.2x", cmd->handle); print_reason(cmd->reason); } static void print_bis_sync(const void *data, int i) { const uint8_t *bis_id = data; print_field("BIS ID: 0x%2.2x", *bis_id); } static void le_big_create_sync_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_big_create_sync *cmd = data; print_field("BIG Handle: 0x%2.2x", cmd->handle); print_field("BIG Sync Handle: 0x%4.4x", le16_to_cpu(cmd->sync_handle)); print_field("Encryption: %s (0x%2.2x)", cmd->encryption ? "Encrypted" : "Unencrypted", cmd->encryption); print_hex_field("Broadcast Code", cmd->bcode, 16); print_field("Maximum Number Subevents: 0x%2.2x", cmd->mse); print_field("Timeout: %d ms (0x%4.4x)", le16_to_cpu(cmd->timeout) * 10, le16_to_cpu(cmd->timeout)); print_field("Number of BIS: %u", cmd->num_bis); size -= sizeof(*cmd); print_list(cmd->bis, size, cmd->num_bis, sizeof(*cmd->bis), print_bis_sync); } static void le_big_term_sync_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_big_term_sync *cmd = data; print_field("BIG Handle: 0x%2.2x", cmd->handle); } static void print_iso_path(const char *prefix, uint8_t path) { switch (path) { case 0x00: print_field("%s: HCI (0x%2.2x)", prefix, path); return; case 0xff: print_field("%s: Disabled (0x%2.2x)", prefix, path); return; default: print_field("%s: Logical Channel Number %u", prefix, path); } } static void le_setup_iso_path_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_setup_iso_path *cmd = data; print_field("Handle: %d", le16_to_cpu(cmd->handle)); print_path_direction("Data Path Direction", cmd->direction); print_iso_path("Data Path", cmd->path); print_codec_id("Coding Format", cmd->codec); packet_print_company("Company Codec ID", le16_to_cpu(cmd->codec_cid)); print_field("Vendor Codec ID: %d", le16_to_cpu(cmd->codec_vid)); print_usec_interval("Controller Delay", cmd->delay); print_field("Codec Configuration Length: %d", cmd->codec_cfg_len); print_hex_field("Codec Configuration", cmd->codec_cfg, cmd->codec_cfg_len); } static void le_setup_iso_path_rsp(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_rsp_le_setup_iso_path *rsp = data; print_status(rsp->status); if (size == 1) return; print_field("Handle: %d", le16_to_cpu(rsp->handle)); } static void le_remove_iso_path_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_remove_iso_path *cmd = data; print_field("Connection Handle: %d", le16_to_cpu(cmd->handle)); print_path_direction("Data Path Direction", cmd->direction); } static void le_req_peer_sca_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_req_peer_sca *cmd = data; print_field("Connection Handle: %d", le16_to_cpu(cmd->handle)); } static void le_set_host_feature_cmd(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_host_feature *cmd = data; uint64_t mask; print_field("Bit Number: %u", cmd->bit_number); mask = print_bitfield(2, (((uint64_t) 1) << cmd->bit_number), features_le); if (mask) print_text(COLOR_UNKNOWN_FEATURE_BIT, " Unknown features " "(0x%16.16" PRIx64 ")", mask); print_field("Bit Value: %u", cmd->bit_value); } struct opcode_data { uint16_t opcode; int bit; const char *str; void (*cmd_func) (uint16_t index, const void *data, uint8_t size); uint8_t cmd_size; bool cmd_fixed; void (*rsp_func) (uint16_t index, const void *data, uint8_t size); uint8_t rsp_size; bool rsp_fixed; }; static const struct opcode_data opcode_table[] = { { 0x0000, -1, "NOP" }, /* OGF 1 - Link Control */ { 0x0401, 0, "Inquiry", inquiry_cmd, 5, true }, { 0x0402, 1, "Inquiry Cancel", null_cmd, 0, true, status_rsp, 1, true }, { 0x0403, 2, "Periodic Inquiry Mode", periodic_inquiry_cmd, 9, true, status_rsp, 1, true }, { 0x0404, 3, "Exit Periodic Inquiry Mode", null_cmd, 0, true, status_rsp, 1, true }, { 0x0405, 4, "Create Connection", create_conn_cmd, 13, true }, { 0x0406, 5, "Disconnect", disconnect_cmd, 3, true }, { 0x0407, 6, "Add SCO Connection", add_sco_conn_cmd, 4, true }, { 0x0408, 7, "Create Connection Cancel", create_conn_cancel_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x0409, 8, "Accept Connection Request", accept_conn_request_cmd, 7, true }, { 0x040a, 9, "Reject Connection Request", reject_conn_request_cmd, 7, true }, { 0x040b, 10, "Link Key Request Reply", link_key_request_reply_cmd, 22, true, status_bdaddr_rsp, 7, true }, { 0x040c, 11, "Link Key Request Negative Reply", link_key_request_neg_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x040d, 12, "PIN Code Request Reply", pin_code_request_reply_cmd, 23, true, status_bdaddr_rsp, 7, true }, { 0x040e, 13, "PIN Code Request Negative Reply", pin_code_request_neg_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x040f, 14, "Change Connection Packet Type", change_conn_pkt_type_cmd, 4, true }, { 0x0411, 15, "Authentication Requested", auth_requested_cmd, 2, true }, { 0x0413, 16, "Set Connection Encryption", set_conn_encrypt_cmd, 3, true }, { 0x0415, 17, "Change Connection Link Key", change_conn_link_key_cmd, 2, true }, { 0x0417, 18, "Temporary Link Key", link_key_selection_cmd, 1, true }, { 0x0419, 19, "Remote Name Request", remote_name_request_cmd, 10, true }, { 0x041a, 20, "Remote Name Request Cancel", remote_name_request_cancel_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x041b, 21, "Read Remote Supported Features", read_remote_features_cmd, 2, true }, { 0x041c, 22, "Read Remote Extended Features", read_remote_ext_features_cmd, 3, true }, { 0x041d, 23, "Read Remote Version Information", read_remote_version_cmd, 2, true }, { 0x041f, 24, "Read Clock Offset", read_clock_offset_cmd, 2, true }, { 0x0420, 25, "Read LMP Handle", read_lmp_handle_cmd, 2, true, read_lmp_handle_rsp, 8, true }, { 0x0428, 131, "Setup Synchronous Connection", setup_sync_conn_cmd, 17, true }, { 0x0429, 132, "Accept Synchronous Connection Request", accept_sync_conn_request_cmd, 21, true }, { 0x042a, 133, "Reject Synchronous Connection Request", reject_sync_conn_request_cmd, 7, true }, { 0x042b, 151, "IO Capability Request Reply", io_capability_request_reply_cmd, 9, true, status_bdaddr_rsp, 7, true }, { 0x042c, 152, "User Confirmation Request Reply", user_confirm_request_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x042d, 153, "User Confirmation Request Neg Reply", user_confirm_request_neg_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x042e, 154, "User Passkey Request Reply", user_passkey_request_reply_cmd, 10, true, status_bdaddr_rsp, 7, true }, { 0x042f, 155, "User Passkey Request Negative Reply", user_passkey_request_neg_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x0430, 156, "Remote OOB Data Request Reply", remote_oob_data_request_reply_cmd, 38, true, status_bdaddr_rsp, 7, true }, { 0x0433, 159, "Remote OOB Data Request Neg Reply", remote_oob_data_request_neg_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x0434, 163, "IO Capability Request Negative Reply", io_capability_request_neg_reply_cmd, 7, true, status_bdaddr_rsp, 7, true }, { 0x0435, 168, "Create Physical Link", create_phy_link_cmd, 3, false }, { 0x0436, 169, "Accept Physical Link", accept_phy_link_cmd, 3, false }, { 0x0437, 170, "Disconnect Physical Link", disconn_phy_link_cmd, 2, true }, { 0x0438, 171, "Create Logical Link", create_logic_link_cmd, 33, true }, { 0x0439, 172, "Accept Logical Link", accept_logic_link_cmd, 33, true }, { 0x043a, 173, "Disconnect Logical Link", disconn_logic_link_cmd, 2, true }, { 0x043b, 174, "Logical Link Cancel", logic_link_cancel_cmd, 2, true, logic_link_cancel_rsp, 3, true }, { 0x043c, 175, "Flow Specifcation Modify", flow_spec_modify_cmd, 34, true }, { 0x043d, 235, "Enhanced Setup Synchronous Connection", enhanced_setup_sync_conn_cmd, 59, true }, { 0x043e, 236, "Enhanced Accept Synchronous Connection Request", enhanced_accept_sync_conn_request_cmd, 63, true }, { 0x043f, 246, "Truncated Page", truncated_page_cmd, 9, true }, { 0x0440, 247, "Truncated Page Cancel", truncated_page_cancel_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x0441, 248, "Set Connectionless Peripheral Broadcast", set_peripheral_broadcast_cmd, 11, true, set_peripheral_broadcast_rsp, 4, true }, { 0x0442, 249, "Set Connectionless Peripheral Broadcast Receive", set_peripheral_broadcast_receive_cmd, 34, true, set_peripheral_broadcast_receive_rsp, 8, true }, { 0x0443, 250, "Start Synchronization Train", null_cmd, 0, true }, { 0x0444, 251, "Receive Synchronization Train", receive_sync_train_cmd, 12, true }, { 0x0445, 257, "Remote OOB Extended Data Request Reply", remote_oob_ext_data_request_reply_cmd, 70, true, status_bdaddr_rsp, 7, true }, /* OGF 2 - Link Policy */ { 0x0801, 33, "Hold Mode", hold_mode_cmd, 6, true }, { 0x0803, 34, "Sniff Mode", sniff_mode_cmd, 10, true }, { 0x0804, 35, "Exit Sniff Mode", exit_sniff_mode_cmd, 2, true }, { 0x0805, 36, "Park State", park_state_cmd, 6, true }, { 0x0806, 37, "Exit Park State", exit_park_state_cmd, 2, true }, { 0x0807, 38, "QoS Setup", qos_setup_cmd, 20, true }, { 0x0809, 39, "Role Discovery", role_discovery_cmd, 2, true, role_discovery_rsp, 4, true }, { 0x080b, 40, "Switch Role", switch_role_cmd, 7, true }, { 0x080c, 41, "Read Link Policy Settings", read_link_policy_cmd, 2, true, read_link_policy_rsp, 5, true }, { 0x080d, 42, "Write Link Policy Settings", write_link_policy_cmd, 4, true, write_link_policy_rsp, 3, true }, { 0x080e, 43, "Read Default Link Policy Settings", null_cmd, 0, true, read_default_link_policy_rsp, 3, true }, { 0x080f, 44, "Write Default Link Policy Settings", write_default_link_policy_cmd, 2, true, status_rsp, 1, true }, { 0x0810, 45, "Flow Specification", flow_spec_cmd, 21, true }, { 0x0811, 140, "Sniff Subrating", sniff_subrating_cmd, 8, true, sniff_subrating_rsp, 3, true }, /* OGF 3 - Host Control */ { 0x0c01, 46, "Set Event Mask", set_event_mask_cmd, 8, true, status_rsp, 1, true }, { 0x0c03, 47, "Reset", null_cmd, 0, true, status_rsp, 1, true }, { 0x0c05, 48, "Set Event Filter", set_event_filter_cmd, 1, false, status_rsp, 1, true }, { 0x0c08, 49, "Flush", flush_cmd, 2, true, flush_rsp, 3, true }, { 0x0c09, 50, "Read PIN Type", null_cmd, 0, true, read_pin_type_rsp, 2, true }, { 0x0c0a, 51, "Write PIN Type", write_pin_type_cmd, 1, true, status_rsp, 1, true }, { 0x0c0b, 52, "Create New Unit Key", null_cmd, 0, true, status_rsp, 1, true }, { 0x0c0d, 53, "Read Stored Link Key", read_stored_link_key_cmd, 7, true, read_stored_link_key_rsp, 5, true }, { 0x0c11, 54, "Write Stored Link Key", write_stored_link_key_cmd, 1, false, write_stored_link_key_rsp, 2, true }, { 0x0c12, 55, "Delete Stored Link Key", delete_stored_link_key_cmd, 7, true, delete_stored_link_key_rsp, 3, true }, { 0x0c13, 56, "Write Local Name", write_local_name_cmd, 248, true, status_rsp, 1, true }, { 0x0c14, 57, "Read Local Name", null_cmd, 0, true, read_local_name_rsp, 249, true }, { 0x0c15, 58, "Read Connection Accept Timeout", null_cmd, 0, true, read_conn_accept_timeout_rsp, 3, true }, { 0x0c16, 59, "Write Connection Accept Timeout", write_conn_accept_timeout_cmd, 2, true, status_rsp, 1, true }, { 0x0c17, 60, "Read Page Timeout", null_cmd, 0, true, read_page_timeout_rsp, 3, true }, { 0x0c18, 61, "Write Page Timeout", write_page_timeout_cmd, 2, true, status_rsp, 1, true }, { 0x0c19, 62, "Read Scan Enable", null_cmd, 0, true, read_scan_enable_rsp, 2, true }, { 0x0c1a, 63, "Write Scan Enable", write_scan_enable_cmd, 1, true, status_rsp, 1, true }, { 0x0c1b, 64, "Read Page Scan Activity", null_cmd, 0, true, read_page_scan_activity_rsp, 5, true }, { 0x0c1c, 65, "Write Page Scan Activity", write_page_scan_activity_cmd, 4, true, status_rsp, 1, true }, { 0x0c1d, 66, "Read Inquiry Scan Activity", null_cmd, 0, true, read_inquiry_scan_activity_rsp, 5, true }, { 0x0c1e, 67, "Write Inquiry Scan Activity", write_inquiry_scan_activity_cmd, 4, true, status_rsp, 1, true }, { 0x0c1f, 68, "Read Authentication Enable", null_cmd, 0, true, read_auth_enable_rsp, 2, true }, { 0x0c20, 69, "Write Authentication Enable", write_auth_enable_cmd, 1, true, status_rsp, 1, true }, { 0x0c21, 70, "Read Encryption Mode", null_cmd, 0, true, read_encrypt_mode_rsp, 2, true }, { 0x0c22, 71, "Write Encryption Mode", write_encrypt_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c23, 72, "Read Class of Device", null_cmd, 0, true, read_class_of_dev_rsp, 4, true }, { 0x0c24, 73, "Write Class of Device", write_class_of_dev_cmd, 3, true, status_rsp, 1, true }, { 0x0c25, 74, "Read Voice Setting", null_cmd, 0, true, read_voice_setting_rsp, 3, true }, { 0x0c26, 75, "Write Voice Setting", write_voice_setting_cmd, 2, true, status_rsp, 1, true }, { 0x0c27, 76, "Read Automatic Flush Timeout", read_auto_flush_timeout_cmd, 2, true, read_auto_flush_timeout_rsp, 5, true }, { 0x0c28, 77, "Write Automatic Flush Timeout", write_auto_flush_timeout_cmd, 4, true, write_auto_flush_timeout_rsp, 3, true }, { 0x0c29, 78, "Read Num Broadcast Retransmissions", null_cmd, 0, true, read_num_broadcast_retrans_rsp, 2, true }, { 0x0c2a, 79, "Write Num Broadcast Retransmissions", write_num_broadcast_retrans_cmd, 1, true, status_rsp, 1, true }, { 0x0c2b, 80, "Read Hold Mode Activity", null_cmd, 0, true, read_hold_mode_activity_rsp, 2, true }, { 0x0c2c, 81, "Write Hold Mode Activity", write_hold_mode_activity_cmd, 1, true, status_rsp, 1, true }, { 0x0c2d, 82, "Read Transmit Power Level", read_tx_power_cmd, 3, true, read_tx_power_rsp, 4, true }, { 0x0c2e, 83, "Read Sync Flow Control Enable", null_cmd, 0, true, read_sync_flow_control_rsp, 2, true }, { 0x0c2f, 84, "Write Sync Flow Control Enable", write_sync_flow_control_cmd, 1, true, status_rsp, 1, true }, { 0x0c31, 85, "Set Controller To Host Flow Control", set_host_flow_control_cmd, 1, true, status_rsp, 1, true }, { 0x0c33, 86, "Host Buffer Size", host_buffer_size_cmd, 7, true, status_rsp, 1, true }, { 0x0c35, 87, "Host Number of Completed Packets", host_num_completed_packets_cmd, 5, false }, { 0x0c36, 88, "Read Link Supervision Timeout", read_link_supv_timeout_cmd, 2, true, read_link_supv_timeout_rsp, 5, true }, { 0x0c37, 89, "Write Link Supervision Timeout", write_link_supv_timeout_cmd, 4, true, write_link_supv_timeout_rsp, 3, true }, { 0x0c38, 90, "Read Number of Supported IAC", null_cmd, 0, true, read_num_supported_iac_rsp, 2, true }, { 0x0c39, 91, "Read Current IAC LAP", null_cmd, 0, true, read_current_iac_lap_rsp, 2, false }, { 0x0c3a, 92, "Write Current IAC LAP", write_current_iac_lap_cmd, 1, false, status_rsp, 1, true }, { 0x0c3b, 93, "Read Page Scan Period Mode", null_cmd, 0, true, read_page_scan_period_mode_rsp, 2, true }, { 0x0c3c, 94, "Write Page Scan Period Mode", write_page_scan_period_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c3d, 95, "Read Page Scan Mode", null_cmd, 0, true, read_page_scan_mode_rsp, 2, true }, { 0x0c3e, 96, "Write Page Scan Mode", write_page_scan_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c3f, 97, "Set AFH Host Channel Classification", set_afh_host_classification_cmd, 10, true, status_rsp, 1, true }, { 0x0c42, 100, "Read Inquiry Scan Type", null_cmd, 0, true, read_inquiry_scan_type_rsp, 2, true }, { 0x0c43, 101, "Write Inquiry Scan Type", write_inquiry_scan_type_cmd, 1, true, status_rsp, 1, true }, { 0x0c44, 102, "Read Inquiry Mode", null_cmd, 0, true, read_inquiry_mode_rsp, 2, true }, { 0x0c45, 103, "Write Inquiry Mode", write_inquiry_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c46, 104, "Read Page Scan Type", null_cmd, 0, true, read_page_scan_type_rsp, 2, true }, { 0x0c47, 105, "Write Page Scan Type", write_page_scan_type_cmd, 1, true, status_rsp, 1, true }, { 0x0c48, 106, "Read AFH Channel Assessment Mode", null_cmd, 0, true, read_afh_assessment_mode_rsp, 2, true }, { 0x0c49, 107, "Write AFH Channel Assessment Mode", write_afh_assessment_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c51, 136, "Read Extended Inquiry Response", null_cmd, 0, true, read_ext_inquiry_response_rsp, 242, true }, { 0x0c52, 137, "Write Extended Inquiry Response", write_ext_inquiry_response_cmd, 241, true, status_rsp, 1, true }, { 0x0c53, 138, "Refresh Encryption Key", refresh_encrypt_key_cmd, 2, true }, { 0x0c55, 141, "Read Simple Pairing Mode", null_cmd, 0, true, read_simple_pairing_mode_rsp, 2, true }, { 0x0c56, 142, "Write Simple Pairing Mode", write_simple_pairing_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c57, 143, "Read Local OOB Data", null_cmd, 0, true, read_local_oob_data_rsp, 33, true }, { 0x0c58, 144, "Read Inquiry Response TX Power Level", null_cmd, 0, true, read_inquiry_resp_tx_power_rsp, 2, true }, { 0x0c59, 145, "Write Inquiry Transmit Power Level", write_inquiry_tx_power_cmd, 1, true, status_rsp, 1, true }, { 0x0c5a, 146, "Read Default Erroneous Data Reporting", null_cmd, 0, true, read_erroneous_reporting_rsp, 2, true }, { 0x0c5b, 147, "Write Default Erroneous Data Reporting", write_erroneous_reporting_cmd, 1, true, status_rsp, 1, true }, { 0x0c5f, 158, "Enhanced Flush", enhanced_flush_cmd, 3, true }, { 0x0c60, 162, "Send Keypress Notification", send_keypress_notify_cmd, 7, true, send_keypress_notify_rsp, 7, true }, { 0x0c61, 176, "Read Logical Link Accept Timeout" }, { 0x0c62, 177, "Write Logical Link Accept Timeout" }, { 0x0c63, 178, "Set Event Mask Page 2", set_event_mask_page2_cmd, 8, true, status_rsp, 1, true }, { 0x0c64, 179, "Read Location Data", null_cmd, 0, true, read_location_data_rsp, 6, true }, { 0x0c65, 180, "Write Location Data", write_location_data_cmd, 5, true, status_rsp, 1, true }, { 0x0c66, 184, "Read Flow Control Mode", null_cmd, 0, true, read_flow_control_mode_rsp, 2, true }, { 0x0c67, 185, "Write Flow Control Mode", write_flow_control_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c68, 192, "Read Enhanced Transmit Power Level", read_enhanced_tx_power_cmd, 3, true, read_enhanced_tx_power_rsp, 6, true }, { 0x0c69, 194, "Read Best Effort Flush Timeout" }, { 0x0c6a, 195, "Write Best Effort Flush Timeout" }, { 0x0c6b, 196, "Short Range Mode", short_range_mode_cmd, 2, true }, { 0x0c6c, 197, "Read LE Host Supported", null_cmd, 0, true, read_le_host_supported_rsp, 3, true }, { 0x0c6d, 198, "Write LE Host Supported", write_le_host_supported_cmd, 2, true, status_rsp, 1, true }, { 0x0c6e, 238, "Set MWS Channel Parameters" }, { 0x0c6f, 239, "Set External Frame Configuration" }, { 0x0c70, 240, "Set MWS Signaling" }, { 0x0c71, 241, "Set MWS Transport Layer" }, { 0x0c72, 242, "Set MWS Scan Frequency Table" }, { 0x0c73, 244, "Set MWS Pattern Configuration" }, { 0x0c74, 252, "Set Reserved LT_ADDR", set_reserved_lt_addr_cmd, 1, true, set_reserved_lt_addr_rsp, 2, true }, { 0x0c75, 253, "Delete Reserved LT_ADDR", delete_reserved_lt_addr_cmd, 1, true, delete_reserved_lt_addr_rsp, 2, true }, { 0x0c76, 254, "Set Connectionless Peripheral Broadcast Data", set_peripheral_broadcast_data_cmd, 3, false, set_peripheral_broadcast_data_rsp, 2, true }, { 0x0c77, 255, "Read Synchronization Train Parameters", null_cmd, 0, true, read_sync_train_params_rsp, 8, true }, { 0x0c78, 256, "Write Synchronization Train Parameters", write_sync_train_params_cmd, 9, true, write_sync_train_params_rsp, 3, true }, { 0x0c79, 258, "Read Secure Connections Host Support", null_cmd, 0, true, read_secure_conn_support_rsp, 2, true }, { 0x0c7a, 259, "Write Secure Connections Host Support", write_secure_conn_support_cmd, 1, true, status_rsp, 1, true }, { 0x0c7b, 260, "Read Authenticated Payload Timeout", read_auth_payload_timeout_cmd, 2, true, read_auth_payload_timeout_rsp, 5, true }, { 0x0c7c, 261, "Write Authenticated Payload Timeout", write_auth_payload_timeout_cmd, 4, true, write_auth_payload_timeout_rsp, 3, true }, { 0x0c7d, 262, "Read Local OOB Extended Data", null_cmd, 0, true, read_local_oob_ext_data_rsp, 65, true }, { 0x0c7e, 264, "Read Extended Page Timeout", null_cmd, 0, true, read_ext_page_timeout_rsp, 3, true }, { 0x0c7f, 265, "Write Extended Page Timeout", write_ext_page_timeout_cmd, 2, true, status_rsp, 1, true }, { 0x0c80, 266, "Read Extended Inquiry Length", null_cmd, 0, true, read_ext_inquiry_length_rsp, 3, true }, { 0x0c81, 267, "Write Extended Inquiry Length", write_ext_inquiry_length_cmd, 2, true, status_rsp, 1, true }, /* OGF 4 - Information Parameter */ { 0x1001, 115, "Read Local Version Information", null_cmd, 0, true, read_local_version_rsp, 9, true }, { 0x1002, 116, "Read Local Supported Commands", null_cmd, 0, true, read_local_commands_rsp, 65, true }, { 0x1003, 117, "Read Local Supported Features", null_cmd, 0, true, read_local_features_rsp, 9, true }, { 0x1004, 118, "Read Local Extended Features", read_local_ext_features_cmd, 1, true, read_local_ext_features_rsp, 11, true }, { 0x1005, 119, "Read Buffer Size", null_cmd, 0, true, read_buffer_size_rsp, 8, true }, { 0x1007, 120, "Read Country Code", null_cmd, 0, true, read_country_code_rsp, 2, true }, { 0x1009, 121, "Read BD ADDR", null_cmd, 0, true, read_bd_addr_rsp, 7, true }, { 0x100a, 186, "Read Data Block Size", null_cmd, 0, true, read_data_block_size_rsp, 7, true }, { 0x100b, 237, "Read Local Supported Codecs", null_cmd, 0, true, read_local_codecs_rsp, 3, false }, { 0x100c, 331, "Read Local Simple Pairing Options", null_cmd, 0, true, read_local_pairing_options_rsp, 3, true }, { BT_HCI_CMD_READ_LOCAL_CODECS_V2, BT_HCI_BIT_READ_LOCAL_CODECS_V2, "Read Local Supported Codecs V2", null_cmd, 0, true, read_local_codecs_rsp_v2, sizeof(struct bt_hci_rsp_read_local_codecs_v2), false }, { BT_HCI_CMD_READ_LOCAL_CODEC_CAPS, BT_HCI_BIT_READ_LOCAL_CODEC_CAPS, "Read Local Supported Codec Capabilities", read_local_codec_caps_cmd, sizeof(struct bt_hci_cmd_read_local_codec_caps), true, read_local_codec_caps_rsp, sizeof(struct bt_hci_rsp_read_local_codec_caps), false }, { BT_HCI_CMD_READ_LOCAL_CTRL_DELAY, BT_HCI_BIT_READ_LOCAL_CTRL_DELAY, "Read Local Supported Controller Delay", read_local_ctrl_delay_cmd, sizeof(struct bt_hci_cmd_read_local_ctrl_delay), false, read_local_ctrl_delay_rsp, sizeof(struct bt_hci_rsp_read_local_ctrl_delay), true }, { BT_HCI_CMD_CONFIG_DATA_PATH, BT_HCI_BIT_CONFIG_DATA_PATH, "Configure Data Path", config_data_path_cmd, sizeof(struct bt_hci_cmd_config_data_path), false, status_rsp, 1, true }, /* OGF 5 - Status Parameter */ { 0x1401, 122, "Read Failed Contact Counter", read_failed_contact_counter_cmd, 2, true, read_failed_contact_counter_rsp, 5, true }, { 0x1402, 123, "Reset Failed Contact Counter", reset_failed_contact_counter_cmd, 2, true, reset_failed_contact_counter_rsp, 3, true }, { 0x1403, 124, "Read Link Quality", read_link_quality_cmd, 2, true, read_link_quality_rsp, 4, true }, { 0x1405, 125, "Read RSSI", read_rssi_cmd, 2, true, read_rssi_rsp, 4, true }, { 0x1406, 126, "Read AFH Channel Map", read_afh_channel_map_cmd, 2, true, read_afh_channel_map_rsp, 14, true }, { 0x1407, 127, "Read Clock", read_clock_cmd, 3, true, read_clock_rsp, 9, true }, { 0x1408, 164, "Read Encryption Key Size", read_encrypt_key_size_cmd, 2, true, read_encrypt_key_size_rsp, 4, true }, { 0x1409, 181, "Read Local AMP Info", null_cmd, 0, true, read_local_amp_info_rsp, 31, true }, { 0x140a, 182, "Read Local AMP ASSOC", read_local_amp_assoc_cmd, 5, true, read_local_amp_assoc_rsp, 5, false }, { 0x140b, 183, "Write Remote AMP ASSOC", write_remote_amp_assoc_cmd, 6, false, write_remote_amp_assoc_rsp, 2, true }, { 0x140c, 243, "Get MWS Transport Layer Configuration", null_cmd, 0, true, get_mws_transport_config_rsp, 2, false }, { 0x140d, 245, "Set Triggered Clock Capture", set_triggered_clock_capture_cmd, 6, true, status_rsp, 1, true }, /* OGF 6 - Testing */ { 0x1801, 128, "Read Loopback Mode", null_cmd, 0, true, read_loopback_mode_rsp, 2, true }, { 0x1802, 129, "Write Loopback Mode", write_loopback_mode_cmd, 1, true, status_rsp, 1, true }, { 0x1803, 130, "Enable Device Under Test Mode", null_cmd, 0, true, status_rsp, 1, true }, { 0x1804, 157, "Write Simple Pairing Debug Mode", write_ssp_debug_mode_cmd, 1, true, status_rsp, 1, true }, { 0x1807, 189, "Enable AMP Receiver Reports" }, { 0x1808, 190, "AMP Test End" }, { 0x1809, 191, "AMP Test" }, { 0x180a, 263, "Write Secure Connections Test Mode" }, /* OGF 8 - LE Control */ { 0x2001, 200, "LE Set Event Mask", le_set_event_mask_cmd, 8, true, status_rsp, 1, true }, { 0x2002, 201, "LE Read Buffer Size", null_cmd, 0, true, le_read_buffer_size_rsp, 4, true }, { 0x2003, 202, "LE Read Local Supported Features", null_cmd, 0, true, le_read_local_features_rsp, 9, true }, { 0x2005, 204, "LE Set Random Address", le_set_random_address_cmd, 6, true, status_rsp, 1, true }, { 0x2006, 205, "LE Set Advertising Parameters", le_set_adv_parameters_cmd, 15, true, status_rsp, 1, true }, { 0x2007, 206, "LE Read Advertising Channel TX Power", null_cmd, 0, true, le_read_adv_tx_power_rsp, 2, true }, { 0x2008, 207, "LE Set Advertising Data", le_set_adv_data_cmd, 32, true, status_rsp, 1, true }, { 0x2009, 208, "LE Set Scan Response Data", le_set_scan_rsp_data_cmd, 32, true, status_rsp, 1, true }, { 0x200a, 209, "LE Set Advertise Enable", le_set_adv_enable_cmd, 1, true, status_rsp, 1, true }, { 0x200b, 210, "LE Set Scan Parameters", le_set_scan_parameters_cmd, 7, true, status_rsp, 1, true }, { 0x200c, 211, "LE Set Scan Enable", le_set_scan_enable_cmd, 2, true, status_rsp, 1, true }, { 0x200d, 212, "LE Create Connection", le_create_conn_cmd, 25, true }, { 0x200e, 213, "LE Create Connection Cancel", null_cmd, 0, true, status_rsp, 1, true }, { 0x200f, 214, "LE Read Accept List Size", null_cmd, 0, true, le_read_accept_list_size_rsp, 2, true }, { 0x2010, 215, "LE Clear Accept List", null_cmd, 0, true, status_rsp, 1, true }, { 0x2011, 216, "LE Add Device To Accept List", le_add_to_accept_list_cmd, 7, true, status_rsp, 1, true }, { 0x2012, 217, "LE Remove Device From Accept List", le_remove_from_accept_list_cmd, 7, true, status_rsp, 1, true }, { 0x2013, 218, "LE Connection Update", le_conn_update_cmd, 14, true }, { 0x2014, 219, "LE Set Host Channel Classification", le_set_host_classification_cmd, 5, true, status_rsp, 1, true }, { 0x2015, 220, "LE Read Channel Map", le_read_channel_map_cmd, 2, true, le_read_channel_map_rsp, 8, true }, { 0x2016, 221, "LE Read Remote Used Features", le_read_remote_features_cmd, 2, true }, { 0x2017, 222, "LE Encrypt", le_encrypt_cmd, 32, true, le_encrypt_rsp, 17, true }, { 0x2018, 223, "LE Rand", null_cmd, 0, true, le_rand_rsp, 9, true }, { 0x2019, 224, "LE Start Encryption", le_start_encrypt_cmd, 28, true }, { 0x201a, 225, "LE Long Term Key Request Reply", le_ltk_req_reply_cmd, 18, true, le_ltk_req_reply_rsp, 3, true }, { 0x201b, 226, "LE Long Term Key Request Neg Reply", le_ltk_req_neg_reply_cmd, 2, true, le_ltk_req_neg_reply_rsp, 3, true }, { 0x201c, 227, "LE Read Supported States", null_cmd, 0, true, le_read_supported_states_rsp, 9, true }, { 0x201d, 228, "LE Receiver Test", le_receiver_test_cmd, 1, true, status_rsp, 1, true }, { 0x201e, 229, "LE Transmitter Test", le_transmitter_test_cmd, 3, true, status_rsp, 1, true }, { 0x201f, 230, "LE Test End", null_cmd, 0, true, le_test_end_rsp, 3, true }, { 0x2020, 268, "LE Remote Connection Parameter Request Reply", le_conn_param_req_reply_cmd, 14, true, le_conn_param_req_reply_rsp, 3, true }, { 0x2021, 269, "LE Remote Connection Parameter Request Negative Reply", le_conn_param_req_neg_reply_cmd, 3, true, le_conn_param_req_neg_reply_rsp, 3, true }, { 0x2022, 270, "LE Set Data Length", le_set_data_length_cmd, 6, true, le_set_data_length_rsp, 3, true }, { 0x2023, 271, "LE Read Suggested Default Data Length", null_cmd, 0, true, le_read_default_data_length_rsp, 5, true }, { 0x2024, 272, "LE Write Suggested Default Data Length", le_write_default_data_length_cmd, 4, true, status_rsp, 1, true }, { 0x2025, 273, "LE Read Local P-256 Public Key", null_cmd, 0, true }, { 0x2026, 274, "LE Generate DHKey", le_generate_dhkey_cmd, 64, true }, { 0x2027, 275, "LE Add Device To Resolving List", le_add_to_resolv_list_cmd, 39, true, status_rsp, 1, true }, { 0x2028, 276, "LE Remove Device From Resolving List", le_remove_from_resolv_list_cmd, 7, true, status_rsp, 1, true }, { 0x2029, 277, "LE Clear Resolving List", null_cmd, 0, true, status_rsp, 1, true }, { 0x202a, 278, "LE Read Resolving List Size", null_cmd, 0, true, le_read_resolv_list_size_rsp, 2, true }, { 0x202b, 279, "LE Read Peer Resolvable Address", le_read_peer_resolv_addr_cmd, 7, true, le_read_peer_resolv_addr_rsp, 7, true }, { 0x202c, 280, "LE Read Local Resolvable Address", le_read_local_resolv_addr_cmd, 7, true, le_read_local_resolv_addr_rsp, 7, true }, { 0x202d, 281, "LE Set Address Resolution Enable", le_set_resolv_enable_cmd, 1, true, status_rsp, 1, true }, { 0x202e, 282, "LE Set Resolvable Private Address Timeout", le_set_resolv_timeout_cmd, 2, true, status_rsp, 1, true }, { 0x202f, 283, "LE Read Maximum Data Length", null_cmd, 0, true, le_read_max_data_length_rsp, 9, true }, { 0x2030, 284, "LE Read PHY", le_read_phy_cmd, 2, true, le_read_phy_rsp, 5, true}, { 0x2031, 285, "LE Set Default PHY", le_set_default_phy_cmd, 3, true, status_rsp, 1, true }, { 0x2032, 286, "LE Set PHY", le_set_phy_cmd, 7, true}, { 0x2033, 287, "LE Enhanced Receiver Test", le_enhanced_receiver_test_cmd, 3, true, status_rsp, 1, true }, { 0x2034, 288, "LE Enhanced Transmitter Test", le_enhanced_transmitter_test_cmd, 4, true, status_rsp, 1, true }, { 0x2035, 289, "LE Set Advertising Set Random Address", le_set_adv_set_rand_addr, 7, true, status_rsp, 1, true }, { 0x2036, 290, "LE Set Extended Advertising Parameters", le_set_ext_adv_params_cmd, 25, true, le_set_ext_adv_params_rsp, 2, true }, { 0x2037, 291, "LE Set Extended Advertising Data", le_set_ext_adv_data_cmd, 4, false, status_rsp, 1, true }, { 0x2038, 292, "LE Set Extended Scan Response Data", le_set_ext_scan_rsp_data_cmd, 4, false, status_rsp, 1, true }, { 0x2039, 293, "LE Set Extended Advertising Enable", le_set_ext_adv_enable_cmd, 2, false, status_rsp, 1, true }, { 0x203a, 294, "LE Read Maximum Advertising Data Length", null_cmd, 0, true, le_read_max_adv_data_len_rsp, 3, true }, { 0x203b, 295, "LE Read Number of Supported Advertising Sets", null_cmd, 0, true, le_read_num_supported_adv_sets_rsp, 2, true }, { 0x203c, 296, "LE Remove Advertising Set", le_remove_adv_set_cmd, 1, true, status_rsp, 1, true }, { 0x203d, 297, "LE Clear Advertising Sets", null_cmd, 0, true, status_rsp, 1, true }, { 0x203e, 298, "LE Set Periodic Advertising Parameters", le_set_pa_params_cmd, 7, true, status_rsp, 1, true }, { 0x203f, 299, "LE Set Periodic Advertising Data", le_set_pa_data_cmd, 3, false, status_rsp, 1, true }, { 0x2040, 300, "LE Set Periodic Advertising Enable", le_set_pa_enable_cmd, 2, true, status_rsp, 1, true }, { 0x2041, 301, "LE Set Extended Scan Parameters", le_set_ext_scan_params_cmd, 3, false, status_rsp, 1, true }, { 0x2042, 302, "LE Set Extended Scan Enable", le_set_ext_scan_enable_cmd, 6, true, status_rsp, 1, true }, { 0x2043, 303, "LE Extended Create Connection", le_ext_create_conn_cmd, 10, false, status_rsp, 1, true }, { 0x2044, 304, "LE Periodic Advertising Create Sync", le_pa_create_sync_cmd, 14, true, status_rsp, 1, true }, { 0x2045, 305, "LE Periodic Advertising Create Sync Cancel", null_cmd, 0, true, status_rsp, 1, true }, { 0x2046, 306, "LE Periodic Advertising Terminate Sync", le_pa_term_sync_cmd, 2, true, status_rsp, 1, true }, { 0x2047, 307, "LE Add Device To Periodic Advertiser List", le_add_dev_pa_list_cmd, 8, true, status_rsp, 1, true }, { 0x2048, 308, "LE Remove Device From Periodic Advertiser List", le_remove_dev_pa_list_cmd, 8, true, status_rsp, 1, true }, { 0x2049, 309, "LE Clear Periodic Advertiser List", null_cmd, 0, true, status_rsp, 1, true }, { 0x204a, 310, "LE Read Periodic Advertiser List Size", null_cmd, 0, true, le_read_pa_list_size_rsp, 2, true }, { 0x204b, 311, "LE Read Transmit Power", null_cmd, 0, true, le_read_tx_power_rsp, 3, true }, { 0x204c, 312, "LE Read RF Path Compensation", null_cmd, 0, true, le_read_rf_path_comp_rsp, 5, true }, { 0x204d, 313, "LE Write RF Path Compensation", le_write_rf_path_comp_cmd, 4, true, status_rsp, 1, true }, { 0x204e, 314, "LE Set Privacy Mode", le_set_priv_mode_cmd, 8, true, status_rsp, 1, true }, { 0x204f, 315, "LE Receiver Test command [v3]", le_receiver_test_cmd_v3, 7, false, status_rsp, 1, true }, { 0x2050, 316, "LE Transmitter Test command [v3]", le_tx_test_cmd_v3, 9, false, status_rsp, 1, true }, { 0x2059, 325, "LE Periodic Advertising Receive Enable", le_pa_rec_enable, 3, true, status_rsp, 1, true }, { 0x205a, 326, "LE Periodic Advertising Sync Transfer", le_pa_sync_trans, 6, true, status_handle_rsp, 3, true }, { 0x205b, 327, "LE Periodic Advertising Set Info Transfer", le_pa_set_info_trans, 5, true, status_handle_rsp, 3, true }, { 0x205c, 328, "LE Periodic Advertising Sync Transfer Parameters", le_pa_sync_trans_params, 8, true, status_handle_rsp, 3, true}, { 0x205d, 329, "LE Set Default Periodic Advertisng Sync Transfer " "Parameters", le_set_default_pa_sync_trans_params, 6, true, status_rsp, 1, true}, { BT_HCI_CMD_LE_READ_BUFFER_SIZE_V2, BT_HCI_BIT_LE_READ_BUFFER_SIZE_V2, "LE Read Buffer v2", null_cmd, 0, true, le_read_buffer_size_v2_rsp, sizeof( struct bt_hci_rsp_le_read_buffer_size_v2), true }, { BT_HCI_CMD_LE_READ_ISO_TX_SYNC, BT_HCI_BIT_LE_READ_ISO_TX_SYNC, "LE Read ISO TX Sync", le_read_iso_tx_sync_cmd, sizeof(struct bt_hci_cmd_le_read_iso_tx_sync), true, le_read_iso_tx_sync_rsp, sizeof(struct bt_hci_rsp_le_read_iso_tx_sync), true }, { BT_HCI_CMD_LE_SET_CIG_PARAMS, BT_HCI_BIT_LE_SET_CIG_PARAMS, "LE Set Connected Isochronous Group Parameters", le_set_cig_params_cmd, sizeof(struct bt_hci_cmd_le_set_cig_params), false, le_set_cig_params_rsp, sizeof(struct bt_hci_rsp_le_set_cig_params), false }, { BT_HCI_CMD_LE_SET_CIG_PARAMS_TEST, BT_HCI_BIT_LE_SET_CIG_PARAMS_TEST, "LE Set Connected Isochronous Group Parameters" " Test", le_set_cig_params_test_cmd, sizeof( struct bt_hci_cmd_le_set_cig_params_test), false, le_set_cig_params_rsp, sizeof(struct bt_hci_rsp_le_set_cig_params), false }, { BT_HCI_CMD_LE_CREATE_CIS, BT_HCI_BIT_LE_CREATE_CIS, "LE Create Connected Isochronous Stream", le_create_cis_cmd, sizeof(struct bt_hci_cmd_le_create_cis), false }, { BT_HCI_CMD_LE_REMOVE_CIG, BT_HCI_BIT_LE_REMOVE_CIG, "LE Remove Connected Isochronous Group", le_remove_cig_cmd, sizeof(struct bt_hci_cmd_le_remove_cig), false, le_remove_cig_rsp, sizeof(struct bt_hci_rsp_le_remove_cig), false }, { BT_HCI_CMD_LE_ACCEPT_CIS, BT_HCI_BIT_LE_ACCEPT_CIS, "LE Accept Connected Isochronous Stream Request", le_accept_cis_req_cmd, sizeof(struct bt_hci_cmd_le_accept_cis), true }, { BT_HCI_CMD_LE_REJECT_CIS, BT_HCI_BIT_LE_REJECT_CIS, "LE Reject Connected Isochronous Stream Request", le_reject_cis_req_cmd, sizeof(struct bt_hci_cmd_le_reject_cis), true, status_rsp, 1, true }, { BT_HCI_CMD_LE_CREATE_BIG, BT_HCI_BIT_LE_CREATE_BIG, "LE Create Broadcast Isochronous Group", le_create_big_cmd }, { BT_HCI_CMD_LE_CREATE_BIG_TEST, BT_HCI_BIT_LE_CREATE_BIG_TEST, "LE Create Broadcast Isochronous Group Test", le_create_big_cmd_test_cmd }, { BT_HCI_CMD_LE_TERM_BIG, BT_HCI_BIT_LE_TERM_BIG, "LE Terminate Broadcast Isochronous Group", le_terminate_big_cmd, sizeof(struct bt_hci_cmd_le_term_big), true, status_rsp, 1, true}, { BT_HCI_CMD_LE_BIG_CREATE_SYNC, BT_HCI_BIT_LE_BIG_CREATE_SYNC, "LE Broadcast Isochronous Group Create Sync", le_big_create_sync_cmd, sizeof(struct bt_hci_cmd_le_big_create_sync), false }, { BT_HCI_CMD_LE_BIG_TERM_SYNC, BT_HCI_BIT_LE_BIG_TERM_SYNC, "LE Broadcast Isochronous Group Terminate Sync", le_big_term_sync_cmd, sizeof(struct bt_hci_cmd_le_big_term_sync), true }, { BT_HCI_CMD_LE_REQ_PEER_SCA, BT_HCI_BIT_LE_REQ_PEER_SCA, "LE Request Peer SCA", le_req_peer_sca_cmd, sizeof(struct bt_hci_cmd_le_req_peer_sca), true }, { BT_HCI_CMD_LE_SETUP_ISO_PATH, BT_HCI_BIT_LE_SETUP_ISO_PATH, "LE Setup Isochronous Data Path", le_setup_iso_path_cmd, sizeof(struct bt_hci_cmd_le_setup_iso_path), true, le_setup_iso_path_rsp, sizeof(struct bt_hci_rsp_le_setup_iso_path), true }, { BT_HCI_CMD_LE_REMOVE_ISO_PATH, BT_HCI_BIT_LE_REMOVE_ISO_PATH, "LE Remove Isochronous Data Path", le_remove_iso_path_cmd, sizeof(struct bt_hci_cmd_le_remove_iso_path), true, status_rsp, 1, true }, { BT_HCI_CMD_LE_ISO_TX_TEST, BT_HCI_BIT_LE_ISO_TX_TEST, "LE Isochronous Transmit Test", NULL, 0, false }, { BT_HCI_CMD_LE_ISO_RX_TEST, BT_HCI_BIT_LE_ISO_RX_TEST, "LE Isochronous Receive Test", NULL, 0, false }, { BT_HCI_CMD_LE_ISO_READ_TEST_COUNTER, BT_HCI_BIT_LE_ISO_READ_TEST_COUNTER, "LE Isochronous Read Test Counters", NULL, 0, false }, { BT_HCI_CMD_LE_ISO_TEST_END, BT_HCI_BIT_LE_ISO_TEST_END, "LE Isochronous Read Test Counters", NULL, 0, false }, { BT_HCI_CMD_LE_SET_HOST_FEATURE, BT_HCI_BIT_LE_SET_HOST_FEATURE, "LE Set Host Feature", le_set_host_feature_cmd, sizeof(struct bt_hci_cmd_le_set_host_feature), true, status_rsp, 1, true }, { } }; static const char *get_supported_command(int bit) { int i; for (i = 0; opcode_table[i].str; i++) { if (opcode_table[i].bit == bit) return opcode_table[i].str; } return NULL; } static const char *current_vendor_str(uint16_t ocf) { uint16_t manufacturer, msft_opcode; if (index_current < MAX_INDEX) { manufacturer = index_list[index_current].manufacturer; msft_opcode = index_list[index_current].msft_opcode; } else { manufacturer = fallback_manufacturer; msft_opcode = BT_HCI_CMD_NOP; } if (msft_opcode != BT_HCI_CMD_NOP && cmd_opcode_ocf(msft_opcode) == ocf) return "Microsoft"; switch (manufacturer) { case 2: return "Intel"; case 15: return "Broadcom"; case 93: return "Realtek"; } return NULL; } static const struct vendor_ocf *current_vendor_ocf(uint16_t ocf) { uint16_t manufacturer, msft_opcode; if (index_current < MAX_INDEX) { manufacturer = index_list[index_current].manufacturer; msft_opcode = index_list[index_current].msft_opcode; } else { manufacturer = fallback_manufacturer; msft_opcode = BT_HCI_CMD_NOP; } if (msft_opcode != BT_HCI_CMD_NOP && cmd_opcode_ocf(msft_opcode) == ocf) return msft_vendor_ocf(); switch (manufacturer) { case 2: return intel_vendor_ocf(ocf); case 15: return broadcom_vendor_ocf(ocf); } return NULL; } static const struct vendor_evt *current_vendor_evt(const void *data, int *consumed_size) { uint16_t manufacturer; uint8_t evt = *((const uint8_t *) data); /* A regular vendor event consumes 1 byte. */ *consumed_size = 1; if (index_current < MAX_INDEX) manufacturer = index_list[index_current].manufacturer; else manufacturer = fallback_manufacturer; switch (manufacturer) { case 2: return intel_vendor_evt(data, consumed_size); case 15: return broadcom_vendor_evt(evt); } return NULL; } static const char *current_vendor_evt_str(void) { uint16_t manufacturer; if (index_current < MAX_INDEX) manufacturer = index_list[index_current].manufacturer; else manufacturer = fallback_manufacturer; switch (manufacturer) { case 2: return "Intel"; case 15: return "Broadcom"; case 93: return "Realtek"; } return NULL; } static void inquiry_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_inquiry_complete *evt = data; print_status(evt->status); } static void inquiry_result_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_inquiry_result *evt = data; print_num_resp(evt->num_resp); print_bdaddr(evt->bdaddr); print_pscan_rep_mode(evt->pscan_rep_mode); print_pscan_period_mode(evt->pscan_period_mode); print_pscan_mode(evt->pscan_mode); print_dev_class(evt->dev_class); print_clock_offset(evt->clock_offset); if (size > sizeof(*evt)) packet_hexdump(data + sizeof(*evt), size - sizeof(*evt)); } static void conn_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_conn_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_bdaddr(evt->bdaddr); print_link_type(evt->link_type); print_enable("Encryption", evt->encr_mode); if (evt->status == 0x00) assign_handle(index, le16_to_cpu(evt->handle), 0x00, (void *)evt->bdaddr, BDADDR_BREDR); } static void conn_request_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_conn_request *evt = data; print_bdaddr(evt->bdaddr); print_dev_class(evt->dev_class); print_link_type(evt->link_type); } static void disconnect_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_disconnect_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_reason(evt->reason); if (evt->status == 0x00) release_handle(le16_to_cpu(evt->handle)); } static void auth_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_auth_complete *evt = data; print_status(evt->status); print_handle(evt->handle); } static void remote_name_request_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_remote_name_request_complete *evt = data; print_status(evt->status); print_bdaddr(evt->bdaddr); print_name(evt->name); } static void encrypt_change_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_encrypt_change *evt = data; print_status(evt->status); print_handle(evt->handle); print_encr_mode_change(evt->encr_mode, evt->handle); } static void change_conn_link_key_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_change_conn_link_key_complete *evt = data; print_status(evt->status); print_handle(evt->handle); } static void link_key_type_changed_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_link_key_type_changed *evt = data; print_status(evt->status); print_handle(evt->handle); print_key_flag(evt->key_flag); } static void remote_features_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_remote_features_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_features(0, evt->features, 0x00); } static void remote_version_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_remote_version_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_lmp_version(evt->lmp_ver, evt->lmp_subver); print_manufacturer(evt->manufacturer); switch (le16_to_cpu(evt->manufacturer)) { case 15: print_manufacturer_broadcom(evt->lmp_subver, 0xffff); break; } } static void qos_setup_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_qos_setup_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_field("Flags: 0x%2.2x", evt->flags); print_service_type(evt->service_type); print_field("Token rate: %d", le32_to_cpu(evt->token_rate)); print_field("Peak bandwidth: %d", le32_to_cpu(evt->peak_bandwidth)); print_field("Latency: %d", le32_to_cpu(evt->latency)); print_field("Delay variation: %d", le32_to_cpu(evt->delay_variation)); } static void cmd_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_cmd_complete *evt = data; uint16_t opcode = le16_to_cpu(evt->opcode); uint16_t ogf = cmd_opcode_ogf(opcode); uint16_t ocf = cmd_opcode_ocf(opcode); struct opcode_data vendor_data; const struct opcode_data *opcode_data = NULL; const char *opcode_color, *opcode_str; char vendor_str[150]; int i; for (i = 0; opcode_table[i].str; i++) { if (opcode_table[i].opcode == opcode) { opcode_data = &opcode_table[i]; break; } } if (opcode_data) { if (opcode_data->rsp_func) opcode_color = COLOR_HCI_COMMAND; else opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = opcode_data->str; } else { if (ogf == 0x3f) { const struct vendor_ocf *vnd = current_vendor_ocf(ocf); if (vnd) { const char *str = current_vendor_str(ocf); if (str) { snprintf(vendor_str, sizeof(vendor_str), "%s %s", str, vnd->str); vendor_data.str = vendor_str; } else vendor_data.str = vnd->str; vendor_data.rsp_func = vnd->rsp_func; vendor_data.rsp_size = vnd->rsp_size; vendor_data.rsp_fixed = vnd->rsp_fixed; opcode_data = &vendor_data; if (opcode_data->rsp_func) opcode_color = COLOR_HCI_COMMAND; else opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = opcode_data->str; } else { opcode_color = COLOR_HCI_COMMAND; opcode_str = "Vendor"; } } else { opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = "Unknown"; } } print_indent(6, opcode_color, "", opcode_str, COLOR_OFF, " (0x%2.2x|0x%4.4x) ncmd %d", ogf, ocf, evt->ncmd); if (!opcode_data || !opcode_data->rsp_func) { if (size > 3) { uint8_t status = *((uint8_t *) (data + 3)); print_status(status); packet_hexdump(data + 4, size - 4); } return; } if (opcode_data->rsp_size > 1 && size - 3 == 1) { uint8_t status = *((uint8_t *) (data + 3)); print_status(status); return; } if (opcode_data->rsp_fixed) { if (size - 3 != opcode_data->rsp_size) { print_text(COLOR_ERROR, "invalid packet size"); packet_hexdump(data + 3, size - 3); return; } } else { if (size - 3 < opcode_data->rsp_size) { print_text(COLOR_ERROR, "too short packet"); packet_hexdump(data + 3, size - 3); return; } } opcode_data->rsp_func(index, data + 3, size - 3); } static void cmd_status_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_cmd_status *evt = data; uint16_t opcode = le16_to_cpu(evt->opcode); uint16_t ogf = cmd_opcode_ogf(opcode); uint16_t ocf = cmd_opcode_ocf(opcode); const struct opcode_data *opcode_data = NULL; const char *opcode_color, *opcode_str; char vendor_str[150]; int i; for (i = 0; opcode_table[i].str; i++) { if (opcode_table[i].opcode == opcode) { opcode_data = &opcode_table[i]; break; } } if (opcode_data) { opcode_color = COLOR_HCI_COMMAND; opcode_str = opcode_data->str; } else { if (ogf == 0x3f) { const struct vendor_ocf *vnd = current_vendor_ocf(ocf); if (vnd) { const char *str = current_vendor_str(ocf); if (str) { snprintf(vendor_str, sizeof(vendor_str), "%s %s", str, vnd->str); opcode_str = vendor_str; } else opcode_str = vnd->str; opcode_color = COLOR_HCI_COMMAND; } else { opcode_color = COLOR_HCI_COMMAND; opcode_str = "Vendor"; } } else { opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = "Unknown"; } } print_indent(6, opcode_color, "", opcode_str, COLOR_OFF, " (0x%2.2x|0x%4.4x) ncmd %d", ogf, ocf, evt->ncmd); print_status(evt->status); } static void hardware_error_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_hardware_error *evt = data; print_field("Code: 0x%2.2x", evt->code); } static void flush_occurred_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_flush_occurred *evt = data; print_handle(evt->handle); } static void role_change_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_role_change *evt = data; print_status(evt->status); print_bdaddr(evt->bdaddr); print_role(evt->role); } static void num_completed_packets_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_num_completed_packets *evt = data; print_field("Num handles: %d", evt->num_handles); print_handle(evt->handle); print_field("Count: %d", le16_to_cpu(evt->count)); if (size > sizeof(*evt)) packet_hexdump(data + sizeof(*evt), size - sizeof(*evt)); } static void mode_change_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_mode_change *evt = data; print_status(evt->status); print_handle(evt->handle); print_mode(evt->mode); print_interval(evt->interval); } static void return_link_keys_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_return_link_keys *evt = data; uint8_t i; print_field("Num keys: %d", evt->num_keys); for (i = 0; i < evt->num_keys; i++) { print_bdaddr(evt->keys + (i * 22)); print_link_key(evt->keys + (i * 22) + 6); } } static void pin_code_request_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_pin_code_request *evt = data; print_bdaddr(evt->bdaddr); } static void link_key_request_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_link_key_request *evt = data; print_bdaddr(evt->bdaddr); } static void link_key_notify_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_link_key_notify *evt = data; print_bdaddr(evt->bdaddr); print_link_key(evt->link_key); print_key_type(evt->key_type); } static void loopback_command_evt(uint16_t index, const void *data, uint8_t size) { packet_hexdump(data, size); } static void data_buffer_overflow_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_data_buffer_overflow *evt = data; print_link_type(evt->link_type); } static void max_slots_change_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_max_slots_change *evt = data; print_handle(evt->handle); print_field("Max slots: %d", evt->max_slots); } static void clock_offset_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_clock_offset_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_clock_offset(evt->clock_offset); } static void conn_pkt_type_changed_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_conn_pkt_type_changed *evt = data; print_status(evt->status); print_handle(evt->handle); print_pkt_type(evt->pkt_type); } static void qos_violation_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_qos_violation *evt = data; print_handle(evt->handle); } static void pscan_mode_change_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_pscan_mode_change *evt = data; print_bdaddr(evt->bdaddr); print_pscan_mode(evt->pscan_mode); } static void pscan_rep_mode_change_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_pscan_rep_mode_change *evt = data; print_bdaddr(evt->bdaddr); print_pscan_rep_mode(evt->pscan_rep_mode); } static void flow_spec_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_flow_spec_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_field("Flags: 0x%2.2x", evt->flags); print_flow_direction(evt->direction); print_service_type(evt->service_type); print_field("Token rate: %d", le32_to_cpu(evt->token_rate)); print_field("Token bucket size: %d", le32_to_cpu(evt->token_bucket_size)); print_field("Peak bandwidth: %d", le32_to_cpu(evt->peak_bandwidth)); print_field("Access latency: %d", le32_to_cpu(evt->access_latency)); } static void inquiry_result_with_rssi_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_inquiry_result_with_rssi *evt = data; print_num_resp(evt->num_resp); print_bdaddr(evt->bdaddr); print_pscan_rep_mode(evt->pscan_rep_mode); print_pscan_period_mode(evt->pscan_period_mode); print_dev_class(evt->dev_class); print_clock_offset(evt->clock_offset); print_rssi(evt->rssi); if (size > sizeof(*evt)) packet_hexdump(data + sizeof(*evt), size - sizeof(*evt)); } static void remote_ext_features_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_remote_ext_features_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_field("Page: %d/%d", evt->page, evt->max_page); print_features(evt->page, evt->features, 0x00); } static void sync_conn_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_sync_conn_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_bdaddr(evt->bdaddr); print_link_type(evt->link_type); print_field("Transmission interval: 0x%2.2x", evt->tx_interval); print_field("Retransmission window: 0x%2.2x", evt->retrans_window); print_field("RX packet length: %d", le16_to_cpu(evt->rx_pkt_len)); print_field("TX packet length: %d", le16_to_cpu(evt->tx_pkt_len)); print_air_mode(evt->air_mode); } static void sync_conn_changed_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_sync_conn_changed *evt = data; print_status(evt->status); print_handle(evt->handle); print_field("Transmission interval: 0x%2.2x", evt->tx_interval); print_field("Retransmission window: 0x%2.2x", evt->retrans_window); print_field("RX packet length: %d", le16_to_cpu(evt->rx_pkt_len)); print_field("TX packet length: %d", le16_to_cpu(evt->tx_pkt_len)); } static void sniff_subrating_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_sniff_subrating *evt = data; print_status(evt->status); print_handle(evt->handle); print_slot_625("Max transmit latency", evt->max_tx_latency); print_slot_625("Max receive latency", evt->max_rx_latency); print_slot_625("Min remote timeout", evt->min_remote_timeout); print_slot_625("Min local timeout", evt->min_local_timeout); } static void ext_inquiry_result_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_ext_inquiry_result *evt = data; print_num_resp(evt->num_resp); print_bdaddr(evt->bdaddr); print_pscan_rep_mode(evt->pscan_rep_mode); print_pscan_period_mode(evt->pscan_period_mode); print_dev_class(evt->dev_class); print_clock_offset(evt->clock_offset); print_rssi(evt->rssi); print_eir(evt->data, sizeof(evt->data), false); } static void encrypt_key_refresh_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_encrypt_key_refresh_complete *evt = data; print_status(evt->status); print_handle(evt->handle); } static void io_capability_request_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_io_capability_request *evt = data; print_bdaddr(evt->bdaddr); } static void io_capability_response_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_io_capability_response *evt = data; print_bdaddr(evt->bdaddr); print_io_capability(evt->capability); print_oob_data_response(evt->oob_data); print_authentication(evt->authentication); } static void user_confirm_request_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_user_confirm_request *evt = data; print_bdaddr(evt->bdaddr); print_passkey(evt->passkey); } static void user_passkey_request_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_user_passkey_request *evt = data; print_bdaddr(evt->bdaddr); } static void remote_oob_data_request_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_remote_oob_data_request *evt = data; print_bdaddr(evt->bdaddr); } static void simple_pairing_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_simple_pairing_complete *evt = data; print_status(evt->status); print_bdaddr(evt->bdaddr); } static void link_supv_timeout_changed_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_link_supv_timeout_changed *evt = data; print_handle(evt->handle); print_timeout(evt->timeout); } static void enhanced_flush_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_enhanced_flush_complete *evt = data; print_handle(evt->handle); } static void user_passkey_notify_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_user_passkey_notify *evt = data; print_bdaddr(evt->bdaddr); print_passkey(evt->passkey); } static void keypress_notify_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_keypress_notify *evt = data; const char *str; print_bdaddr(evt->bdaddr); switch (evt->type) { case 0x00: str = "Passkey entry started"; break; case 0x01: str = "Passkey digit entered"; break; case 0x02: str = "Passkey digit erased"; break; case 0x03: str = "Passkey clared"; break; case 0x04: str = "Passkey entry completed"; break; default: str = "Reserved"; break; } print_field("Notification type: %s (0x%2.2x)", str, evt->type); } static void remote_host_features_notify_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_remote_host_features_notify *evt = data; print_bdaddr(evt->bdaddr); print_features(1, evt->features, 0x00); } static void phy_link_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_phy_link_complete *evt = data; print_status(evt->status); print_phy_handle(evt->phy_handle); } static void channel_selected_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_channel_selected *evt = data; print_phy_handle(evt->phy_handle); } static void disconn_phy_link_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_disconn_phy_link_complete *evt = data; print_status(evt->status); print_phy_handle(evt->phy_handle); print_reason(evt->reason); } static void phy_link_loss_early_warning_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_phy_link_loss_early_warning *evt = data; const char *str; print_phy_handle(evt->phy_handle); switch (evt->reason) { case 0x00: str = "Unknown"; break; case 0x01: str = "Range related"; break; case 0x02: str = "Bandwidth related"; break; case 0x03: str = "Resolving conflict"; break; case 0x04: str = "Interference"; break; default: str = "Reserved"; break; } print_field("Reason: %s (0x%2.2x)", str, evt->reason); } static void phy_link_recovery_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_phy_link_recovery *evt = data; print_phy_handle(evt->phy_handle); } static void logic_link_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_logic_link_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_phy_handle(evt->phy_handle); print_field("TX flow spec: 0x%2.2x", evt->flow_spec); } static void disconn_logic_link_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_disconn_logic_link_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_reason(evt->reason); } static void flow_spec_modify_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_flow_spec_modify_complete *evt = data; print_status(evt->status); print_handle(evt->handle); } static void num_completed_data_blocks_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_num_completed_data_blocks *evt = data; print_field("Total num data blocks: %d", le16_to_cpu(evt->total_num_blocks)); print_field("Num handles: %d", evt->num_handles); print_handle(evt->handle); print_field("Num packets: %d", evt->num_packets); print_field("Num blocks: %d", evt->num_blocks); if (size > sizeof(*evt)) packet_hexdump(data + sizeof(*evt), size - sizeof(*evt)); } static void short_range_mode_change_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_short_range_mode_change *evt = data; print_status(evt->status); print_phy_handle(evt->phy_handle); print_enable("Short range mode", evt->mode); } static void amp_status_change_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_amp_status_change *evt = data; print_status(evt->status); print_amp_status(evt->amp_status); } static void triggered_clock_capture_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_triggered_clock_capture *evt = data; print_handle(evt->handle); print_clock_type(evt->type); print_clock(evt->clock); print_clock_offset(evt->clock_offset); } static void sync_train_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_sync_train_complete *evt = data; print_status(evt->status); } static void sync_train_received_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_sync_train_received *evt = data; print_status(evt->status); print_bdaddr(evt->bdaddr); print_field("Offset: 0x%8.8x", le32_to_cpu(evt->offset)); print_channel_map(evt->map); print_lt_addr(evt->lt_addr); print_field("Next broadcast instant: 0x%4.4x", le16_to_cpu(evt->instant)); print_interval(evt->interval); print_field("Service Data: 0x%2.2x", evt->service_data); } static void peripheral_broadcast_receive_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_peripheral_broadcast_receive *evt = data; print_bdaddr(evt->bdaddr); print_lt_addr(evt->lt_addr); print_field("Clock: 0x%8.8x", le32_to_cpu(evt->clock)); print_field("Offset: 0x%8.8x", le32_to_cpu(evt->offset)); print_field("Receive status: 0x%2.2x", evt->status); print_broadcast_fragment(evt->fragment); print_field("Length: %d", evt->length); if (size - 18 != evt->length) print_text(COLOR_ERROR, "invalid data size (%d != %d)", size - 18, evt->length); if (evt->lt_addr == 0x01 && evt->length == 17) print_3d_broadcast(data + 18, size - 18); else packet_hexdump(data + 18, size - 18); } static void peripheral_broadcast_timeout_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_peripheral_broadcast_timeout *evt = data; print_bdaddr(evt->bdaddr); print_lt_addr(evt->lt_addr); } static void truncated_page_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_truncated_page_complete *evt = data; print_status(evt->status); print_bdaddr(evt->bdaddr); } static void peripheral_page_response_timeout_evt(uint16_t index, const void *data, uint8_t size) { } static void channel_map_change_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_channel_map_change *evt = data; print_channel_map(evt->map); } static void inquiry_response_notify_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_inquiry_response_notify *evt = data; print_iac(evt->lap); print_rssi(evt->rssi); } static void auth_payload_timeout_expired_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_auth_payload_timeout_expired *evt = data; print_handle(evt->handle); } static void le_conn_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_conn_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_role(evt->role); print_peer_addr_type("Peer address type", evt->peer_addr_type); print_addr("Peer address", evt->peer_addr, evt->peer_addr_type); print_slot_125("Connection interval", evt->interval); print_conn_latency("Connection latency", evt->latency); print_field("Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(evt->supv_timeout) * 10, le16_to_cpu(evt->supv_timeout)); print_field("Central clock accuracy: 0x%2.2x", evt->clock_accuracy); if (evt->status == 0x00) assign_handle(index, le16_to_cpu(evt->handle), 0x01, (void *)evt->peer_addr, evt->peer_addr_type); } static void le_adv_report_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_adv_report *evt = data; uint8_t evt_len; int8_t *rssi; print_num_reports(evt->num_reports); report: print_adv_event_type("Event type", evt->event_type); print_peer_addr_type("Address type", evt->addr_type); print_addr("Address", evt->addr, evt->addr_type); print_field("Data length: %d", evt->data_len); print_eir(evt->data, evt->data_len, true); rssi = (int8_t *) (evt->data + evt->data_len); print_rssi(*rssi); evt_len = sizeof(*evt) + evt->data_len + 1; if (size > evt_len) { data += evt_len - 1; size -= evt_len - 1; evt = data; goto report; } } static void le_conn_update_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_conn_update_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_slot_125("Connection interval", evt->interval); print_conn_latency("Connection latency", evt->latency); print_field("Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(evt->supv_timeout) * 10, le16_to_cpu(evt->supv_timeout)); } static void le_remote_features_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_remote_features_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_features(0, evt->features, 0x01); } static void le_long_term_key_request_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_long_term_key_request *evt = data; print_handle(evt->handle); print_random_number(evt->rand); print_encrypted_diversifier(evt->ediv); } static void le_conn_param_request_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_conn_param_request *evt = data; print_handle(evt->handle); print_slot_125("Min connection interval", evt->min_interval); print_slot_125("Max connection interval", evt->max_interval); print_conn_latency("Connection latency", evt->latency); print_field("Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(evt->supv_timeout) * 10, le16_to_cpu(evt->supv_timeout)); } static void le_data_length_change_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_data_length_change *evt = data; print_handle(evt->handle); print_field("Max TX octets: %d", le16_to_cpu(evt->max_tx_len)); print_field("Max TX time: %d", le16_to_cpu(evt->max_tx_time)); print_field("Max RX octets: %d", le16_to_cpu(evt->max_rx_len)); print_field("Max RX time: %d", le16_to_cpu(evt->max_rx_time)); } static void le_read_local_pk256_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_read_local_pk256_complete *evt = data; print_status(evt->status); print_pk256("Local P-256 public key", evt->local_pk256); } static void le_generate_dhkey_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_generate_dhkey_complete *evt = data; print_status(evt->status); print_dhkey(evt->dhkey); } static void le_enhanced_conn_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_enhanced_conn_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_role(evt->role); print_peer_addr_type("Peer address type", evt->peer_addr_type); print_addr("Peer address", evt->peer_addr, evt->peer_addr_type); print_addr("Local resolvable private address", evt->local_rpa, 0x01); print_addr("Peer resolvable private address", evt->peer_rpa, 0x01); print_slot_125("Connection interval", evt->interval); print_conn_latency("Connection latency", evt->latency); print_field("Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(evt->supv_timeout) * 10, le16_to_cpu(evt->supv_timeout)); print_field("Central clock accuracy: 0x%2.2x", evt->clock_accuracy); if (evt->status == 0x00) assign_handle(index, le16_to_cpu(evt->handle), 0x01, (void *)evt->peer_addr, evt->peer_addr_type); } static void le_direct_adv_report_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_direct_adv_report *evt = data; print_num_reports(evt->num_reports); print_adv_event_type("Event type", evt->event_type); print_peer_addr_type("Address type", evt->addr_type); print_addr("Address", evt->addr, evt->addr_type); print_addr_type("Direct address type", evt->direct_addr_type); print_addr("Direct address", evt->direct_addr, evt->direct_addr_type); print_rssi(evt->rssi); if (size > sizeof(*evt)) packet_hexdump(data + sizeof(*evt), size - sizeof(*evt)); } static void le_phy_update_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_phy_update_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_le_phy("TX PHY", evt->tx_phy); print_le_phy("RX PHY", evt->rx_phy); } static const struct bitfield_data ext_adv_report_evt_type[] = { { 0, "Connectable" }, { 1, "Scannable" }, { 2, "Directed" }, { 3, "Scan response" }, { 4, "Use legacy advertising PDUs" }, { } }; static void print_ext_adv_report_evt_type(const char *indent, uint16_t flags) { uint16_t mask = flags; uint16_t props = flags; uint8_t data_status; const char *str; const char *color_on; int i; print_field("%sEvent type: 0x%4.4x", indent, flags); props &= 0x1f; print_field("%s Props: 0x%4.4x", indent, props); for (i = 0; ext_adv_report_evt_type[i].str; i++) { if (flags & (1 << ext_adv_report_evt_type[i].bit)) { print_field("%s %s", indent, ext_adv_report_evt_type[i].str); mask &= ~(1 << ext_adv_report_evt_type[i].bit); } } data_status = (flags >> 5) & 3; mask &= ~(data_status << 5); switch (data_status) { case 0x00: str = "Complete"; color_on = COLOR_GREEN; break; case 0x01: str = "Incomplete, more data to come"; color_on = COLOR_YELLOW; break; case 0x02: str = "Incomplete, data truncated, no more to come"; color_on = COLOR_RED; break; default: str = "Reserved"; color_on = COLOR_RED; break; } print_field("%s Data status: %s%s%s", indent, color_on, str, COLOR_OFF); if (mask) print_text(COLOR_UNKNOWN_ADV_FLAG, "%s Reserved (0x%4.4x)", indent, mask); } static void print_legacy_adv_report_pdu(uint16_t flags) { const char *str; if (!(flags & (1 << 4))) return; switch (flags) { case 0x10: str = "ADV_NONCONN_IND"; break; case 0x12: str = "ADV_SCAN_IND"; break; case 0x13: str = "ADV_IND"; break; case 0x15: str = "ADV_DIRECT_IND"; break; case 0x1a: str = "SCAN_RSP to an ADV_IND"; break; case 0x1b: str = "SCAN_RSP to an ADV_SCAN_IND"; break; default: str = "Reserved"; break; } print_field(" Legacy PDU Type: %s (0x%4.4x)", str, flags); } static void le_ext_adv_report_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_ext_adv_report *evt = data; const struct bt_hci_le_ext_adv_report *report; const char *str; int i; print_num_reports(evt->num_reports); data += sizeof(evt->num_reports); for (i = 0; i < evt->num_reports; ++i) { report = data; print_field("Entry %d", i); print_ext_adv_report_evt_type(" ", report->event_type); print_legacy_adv_report_pdu(report->event_type); print_peer_addr_type(" Address type", report->addr_type); print_addr(" Address", report->addr, report->addr_type); switch (report->primary_phy) { case 0x01: str = "LE 1M"; break; case 0x03: str = "LE Coded"; break; default: str = "Reserved"; break; } print_field(" Primary PHY: %s", str); switch (report->secondary_phy) { case 0x00: str = "No packets"; break; case 0x01: str = "LE 1M"; break; case 0x02: str = "LE 2M"; break; case 0x03: str = "LE Coded"; break; default: str = "Reserved"; break; } print_field(" Secondary PHY: %s", str); if (report->sid == 0xff) print_field(" SID: no ADI field (0x%2.2x)", report->sid); else if (report->sid > 0x0f) print_field(" SID: Reserved (0x%2.2x)", report->sid); else print_field(" SID: 0x%2.2x", report->sid); print_field(" TX power: %d dBm", report->tx_power); if (report->rssi == 127) print_field(" RSSI: not available (0x%2.2x)", (uint8_t) report->rssi); else if (report->rssi >= -127 && report->rssi <= 20) print_field(" RSSI: %d dBm (0x%2.2x)", report->rssi, (uint8_t) report->rssi); else print_field(" RSSI: reserved (0x%2.2x)", (uint8_t) report->rssi); print_slot_125(" Periodic advertising interval", report->interval); print_peer_addr_type(" Direct address type", report->direct_addr_type); print_addr(" Direct address", report->direct_addr, report->direct_addr_type); print_field(" Data length: 0x%2.2x", report->data_len); data += sizeof(struct bt_hci_le_ext_adv_report); packet_hexdump(data, report->data_len); print_eir(data, report->data_len, true); data += report->data_len; } } static void le_pa_sync(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_per_sync_established *evt = data; print_status(evt->status); print_field("Sync handle: %d", evt->handle); if (evt->sid > 0x0f) print_field("Advertising SID: Reserved (0x%2.2x)", evt->sid); else print_field("Advertising SID: 0x%2.2x", evt->sid); print_peer_addr_type("Advertiser address type", evt->addr_type); print_addr("Advertiser address", evt->addr, evt->addr_type); print_le_phy("Advertiser PHY", evt->phy); print_slot_125("Periodic advertising interval", evt->interval); print_field("Advertiser clock accuracy: 0x%2.2x", evt->clock_accuracy); } static void le_pa_report_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_le_pa_report *evt = data; const char *color_on; const char *str; print_field("Sync handle: %d", evt->handle); print_power_level(evt->tx_power, NULL); if (evt->rssi == 127) print_field("RSSI: not available (0x%2.2x)", (uint8_t) evt->rssi); else if (evt->rssi >= -127 && evt->rssi <= 20) print_field("RSSI: %d dBm (0x%2.2x)", evt->rssi, (uint8_t) evt->rssi); else print_field("RSSI: reserved (0x%2.2x)", (uint8_t) evt->rssi); switch (evt->cte_type) { case 0x00: str = "AoA Constant Tone Extension"; break; case 0x01: str = "AoA Constant Tone Extension with 1us slots"; break; case 0x02: str = "AoD Constant Tone Extension with 2us slots"; break; case 0xff: str = "No Constant Tone Extension"; break; default: str = "Reserved"; break; } print_field("CTE Type: %s (0x%2x)", str, evt->cte_type); switch (evt->data_status) { case 0x00: str = "Complete"; color_on = COLOR_GREEN; break; case 0x01: str = "Incomplete, more data to come"; color_on = COLOR_YELLOW; break; case 0x02: str = "Incomplete, data truncated, no more to come"; color_on = COLOR_RED; break; default: str = "Reserved"; color_on = COLOR_RED; break; } print_field("Data status: %s%s%s", color_on, str, COLOR_OFF); print_field("Data length: 0x%2.2x", evt->data_len); packet_hexdump(evt->data, evt->data_len); } static void le_pa_sync_lost(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_per_sync_lost *evt = data; print_field("Sync handle: %d", evt->handle); } static void le_adv_set_term_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_adv_set_term *evt = data; print_status(evt->status); print_field("Handle: %d", evt->handle); print_field("Connection handle: %d", evt->conn_handle); print_field("Number of completed extended advertising events: %d", evt->num_evts); } static void le_scan_req_received_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_scan_req_received *evt = data; print_field("Handle: %d", evt->handle); print_peer_addr_type("Scanner address type", evt->scanner_addr_type); print_addr("Scanner address", evt->scanner_addr, evt->scanner_addr_type); } static void le_chan_select_alg_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_chan_select_alg *evt = data; const char *str; print_handle(evt->handle); switch (evt->algorithm) { case 0x00: str = "#1"; break; case 0x01: str = "#2"; break; default: str = "Reserved"; break; } print_field("Algorithm: %s (0x%2.2x)", str, evt->algorithm); } static void le_cte_request_failed_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_cte_request_failed *evt = data; print_status(evt->status); print_field("Connection handle: %d", evt->handle); } static void le_pa_sync_trans_rec_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_pa_sync_trans_rec *evt = data; print_status(evt->status); print_field("Handle: %d", evt->handle); print_field("Connection handle: %d", evt->handle); print_field("Service data: 0x%4.4x", evt->service_data); print_field("Sync handle: %d", evt->sync_handle); print_field("SID: 0x%2.2x", evt->sid); print_peer_addr_type("Address type:", evt->addr_type); print_addr("Address:", evt->addr, evt->addr_type); print_le_phy("PHY:", evt->phy); print_field("Periodic advertising Interval: %.3f", 1.25 * evt->interval); print_clock_accuracy(evt->clock_accuracy); } static void le_cis_established_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_cis_established *evt = data; print_status(evt->status); print_field("Connection Handle: %d", le16_to_cpu(evt->conn_handle)); print_usec_interval("CIG Synchronization Delay", evt->cig_sync_delay); print_usec_interval("CIS Synchronization Delay", evt->cis_sync_delay); print_usec_interval("Central to Peripheral Latency", evt->c_latency); print_usec_interval("Peripheral to Central Latency", evt->p_latency); print_le_phy("Central to Peripheral PHY", evt->c_phy); print_le_phy("Peripheral to Central PHY", evt->p_phy); print_field("Number of Subevents: %u", evt->nse); print_field("Central to Peripheral Burst Number: %u", evt->c_bn); print_field("Peripheral to Central Burst Number: %u", evt->p_bn); print_field("Central to Peripheral Flush Timeout: %u", evt->c_ft); print_field("Peripheral to Central Flush Timeout: %u", evt->p_ft); print_field("Central to Peripheral MTU: %u", le16_to_cpu(evt->c_mtu)); print_field("Peripheral to Central MTU: %u", le16_to_cpu(evt->p_mtu)); print_field("ISO Interval: %u", le16_to_cpu(evt->interval)); } static void le_req_cis_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_cis_req *evt = data; print_field("ACL Handle: %d", le16_to_cpu(evt->acl_handle)); print_field("CIS Handle: %d", le16_to_cpu(evt->cis_handle)); print_field("CIG ID: 0x%2.2x", evt->cig_id); print_field("CIS ID: 0x%2.2x", evt->cis_id); } static void print_bis_handle(const void *data, int i) { uint16_t handle = get_le16(data); print_field("Connection Handle #%d: %d", i, handle); } static void le_big_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_big_complete *evt = data; print_status(evt->status); print_field("Handle: 0x%2.2x", evt->handle); print_usec_interval("BIG Synchronization Delay", evt->sync_delay); print_usec_interval("Transport Latency", evt->latency); print_le_phy("PHY", evt->phy); print_field("NSE: %u", evt->nse); print_field("BN: %u", evt->bn); print_field("PTO: %u", evt->bn); print_field("IRC: %u", evt->irc); print_field("Maximum PDU: %u", evt->max_pdu); print_slot_125("ISO Interval", evt->interval); print_list(evt->bis_handle, size, evt->num_bis, sizeof(*evt->bis_handle), print_bis_handle); } static void le_big_terminate_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_big_terminate *evt = data; print_field("BIG Handle: 0x%2.2x", evt->handle); print_reason(evt->reason); } static void le_big_sync_estabilished_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_big_sync_estabilished *evt = data; print_status(evt->status); print_field("BIG Handle: 0x%2.2x", evt->handle); print_usec_interval("Transport Latency", evt->latency); print_field("NSE: %u", evt->nse); print_field("BN: %u", evt->bn); print_field("PTO: %u", evt->bn); print_field("IRC: %u", evt->irc); print_field("Maximum PDU: %u", evt->max_pdu); print_slot_125("ISO Interval", evt->interval); print_list(evt->bis, size, evt->num_bis, sizeof(*evt->bis), print_bis_handle); } static void le_big_sync_lost_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_big_sync_lost *evt = data; print_field("BIG ID: 0x%2.2x", evt->big_id); print_reason(evt->reason); } static void le_req_sca_complete_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_req_peer_sca_complete *evt = data; print_status(evt->status); print_field("Connection Handle: %d", le16_to_cpu(evt->handle)); print_sca(evt->sca); } static void le_big_info_evt(uint16_t index, const void *data, uint8_t size) { const struct bt_hci_evt_le_big_info_adv_report *evt = data; print_field("Sync Handle: 0x%4.4x", evt->sync_handle); print_field("Number BIS: %u", evt->num_bis); print_field("NSE: %u", evt->nse); print_slot_125("ISO Interval", evt->iso_interval); print_field("BN: %u", evt->bn); print_field("PTO: %u", evt->bn); print_field("IRC: %u", evt->irc); print_field("Maximum PDU: %u", evt->max_pdu); print_usec_interval("SDU Interval", evt->sdu_interval); print_field("Maximum SDU: %u", evt->max_sdu); print_le_phy("PHY", evt->phy); print_framing(evt->framing); print_field("Encryption: 0x%02x", evt->encryption); } struct subevent_data { uint8_t subevent; const char *str; void (*func) (uint16_t index, const void *data, uint8_t size); uint8_t size; bool fixed; }; static void print_subevent(uint16_t index, const struct subevent_data *subevent_data, const void *data, uint8_t size) { const char *subevent_color; if (subevent_data->func) subevent_color = COLOR_HCI_EVENT; else subevent_color = COLOR_HCI_EVENT_UNKNOWN; print_indent(6, subevent_color, "", subevent_data->str, COLOR_OFF, " (0x%2.2x)", subevent_data->subevent); if (!subevent_data->func) { packet_hexdump(data, size); return; } if (subevent_data->fixed) { if (size != subevent_data->size) { print_text(COLOR_ERROR, "invalid packet size"); packet_hexdump(data, size); return; } } else { if (size < subevent_data->size) { print_text(COLOR_ERROR, "too short packet"); packet_hexdump(data, size); return; } } subevent_data->func(index, data, size); } static const struct subevent_data le_meta_event_table[] = { { 0x01, "LE Connection Complete", le_conn_complete_evt, 18, true }, { 0x02, "LE Advertising Report", le_adv_report_evt, 1, false }, { 0x03, "LE Connection Update Complete", le_conn_update_complete_evt, 9, true }, { 0x04, "LE Read Remote Used Features", le_remote_features_complete_evt, 11, true }, { 0x05, "LE Long Term Key Request", le_long_term_key_request_evt, 12, true }, { 0x06, "LE Remote Connection Parameter Request", le_conn_param_request_evt, 10, true }, { 0x07, "LE Data Length Change", le_data_length_change_evt, 10, true }, { 0x08, "LE Read Local P-256 Public Key Complete", le_read_local_pk256_complete_evt, 65, true }, { 0x09, "LE Generate DHKey Complete", le_generate_dhkey_complete_evt, 33, true }, { 0x0a, "LE Enhanced Connection Complete", le_enhanced_conn_complete_evt, 30, true }, { 0x0b, "LE Direct Advertising Report", le_direct_adv_report_evt, 1, false }, { 0x0c, "LE PHY Update Complete", le_phy_update_complete_evt, 5, true}, { 0x0d, "LE Extended Advertising Report", le_ext_adv_report_evt, 1, false}, { 0x0e, "LE Periodic Advertising Sync Established", le_pa_sync, 15, true }, { 0x0f, "LE Periodic Advertising Report", le_pa_report_evt, 7, false}, { 0x10, "LE Periodic Advertising Sync Lost", le_pa_sync_lost, 2, true}, { 0x11, "LE Scan Timeout" }, { 0x12, "LE Advertising Set Terminated", le_adv_set_term_evt, 5, true}, { 0x13, "LE Scan Request Received", le_scan_req_received_evt, 8, true}, { 0x14, "LE Channel Selection Algorithm", le_chan_select_alg_evt, 3, true}, { 0x17, "LE CTE Request Failed", le_cte_request_failed_evt, 3, true}, { 0x18, "LE Periodic Advertising Sync Transfer Received", le_pa_sync_trans_rec_evt, 19, true}, { BT_HCI_EVT_LE_CIS_ESTABLISHED, "LE Connected Isochronous Stream Established", le_cis_established_evt, sizeof(struct bt_hci_evt_le_cis_established), true }, { BT_HCI_EVT_LE_CIS_REQ, "LE Connected Isochronous Stream Request", le_req_cis_evt, sizeof(struct bt_hci_evt_le_cis_req), true }, { BT_HCI_EVT_LE_BIG_COMPLETE, "LE Broadcast Isochronous Group Complete", le_big_complete_evt, sizeof(struct bt_hci_evt_le_big_complete) }, { BT_HCI_EVT_LE_BIG_TERMINATE, "LE Broadcast Isochronous Group Terminate", le_big_terminate_evt, sizeof(struct bt_hci_evt_le_big_terminate) }, { BT_HCI_EVT_LE_BIG_SYNC_ESTABILISHED, "LE Broadcast Isochronous Group Sync " "Estabilished", le_big_sync_estabilished_evt, sizeof(struct bt_hci_evt_le_big_sync_lost) }, { BT_HCI_EVT_LE_BIG_SYNC_LOST, "LE Broadcast Isochronous Group Sync Lost", le_big_sync_lost_evt, sizeof(struct bt_hci_evt_le_big_sync_lost) }, { BT_HCI_EVT_LE_REQ_PEER_SCA_COMPLETE, "LE Request Peer SCA Complete", le_req_sca_complete_evt, sizeof( struct bt_hci_evt_le_req_peer_sca_complete)}, { BT_HCI_EVT_LE_BIG_INFO_ADV_REPORT, "LE Broadcast Isochronous Group Info Advertising Report", le_big_info_evt, sizeof(struct bt_hci_evt_le_big_info_adv_report) }, { } }; static void le_meta_event_evt(uint16_t index, const void *data, uint8_t size) { uint8_t subevent = *((const uint8_t *) data); struct subevent_data unknown; const struct subevent_data *subevent_data = &unknown; int i; unknown.subevent = subevent; unknown.str = "Unknown"; unknown.func = NULL; unknown.size = 0; unknown.fixed = true; for (i = 0; le_meta_event_table[i].str; i++) { if (le_meta_event_table[i].subevent == subevent) { subevent_data = &le_meta_event_table[i]; break; } } print_subevent(index, subevent_data, data + 1, size - 1); } static void vendor_evt(uint16_t index, const void *data, uint8_t size) { struct subevent_data vendor_data; char vendor_str[150]; int consumed_size; const struct vendor_evt *vnd = current_vendor_evt(data, &consumed_size); if (vnd) { const char *str = current_vendor_evt_str(); if (str) { snprintf(vendor_str, sizeof(vendor_str), "%s %s", str, vnd->str); vendor_data.str = vendor_str; } else vendor_data.str = vnd->str; vendor_data.subevent = vnd->evt; vendor_data.func = vnd->evt_func; vendor_data.size = vnd->evt_size; vendor_data.fixed = vnd->evt_fixed; print_subevent(index, &vendor_data, data + consumed_size, size - consumed_size); } else { uint16_t manufacturer; if (index_current < MAX_INDEX) manufacturer = index_list[index_current].manufacturer; else manufacturer = fallback_manufacturer; vendor_event(manufacturer, data, size); } } struct event_data { uint8_t event; const char *str; void (*func) (uint16_t index, const void *data, uint8_t size); uint8_t size; bool fixed; }; static const struct event_data event_table[] = { { 0x01, "Inquiry Complete", inquiry_complete_evt, 1, true }, { 0x02, "Inquiry Result", inquiry_result_evt, 1, false }, { 0x03, "Connect Complete", conn_complete_evt, 11, true }, { 0x04, "Connect Request", conn_request_evt, 10, true }, { 0x05, "Disconnect Complete", disconnect_complete_evt, 4, true }, { 0x06, "Auth Complete", auth_complete_evt, 3, true }, { 0x07, "Remote Name Req Complete", remote_name_request_complete_evt, 255, true }, { 0x08, "Encryption Change", encrypt_change_evt, 4, true }, { 0x09, "Change Connection Link Key Complete", change_conn_link_key_complete_evt, 3, true }, { 0x0a, "Link Key Type Changed", link_key_type_changed_evt, 4, true }, { 0x0b, "Read Remote Supported Features", remote_features_complete_evt, 11, true }, { 0x0c, "Read Remote Version Complete", remote_version_complete_evt, 8, true }, { 0x0d, "QoS Setup Complete", qos_setup_complete_evt, 21, true }, { 0x0e, "Command Complete", cmd_complete_evt, 3, false }, { 0x0f, "Command Status", cmd_status_evt, 4, true }, { 0x10, "Hardware Error", hardware_error_evt, 1, true }, { 0x11, "Flush Occurred", flush_occurred_evt, 2, true }, { 0x12, "Role Change", role_change_evt, 8, true }, { 0x13, "Number of Completed Packets", num_completed_packets_evt, 1, false }, { 0x14, "Mode Change", mode_change_evt, 6, true }, { 0x15, "Return Link Keys", return_link_keys_evt, 1, false }, { 0x16, "PIN Code Request", pin_code_request_evt, 6, true }, { 0x17, "Link Key Request", link_key_request_evt, 6, true }, { 0x18, "Link Key Notification", link_key_notify_evt, 23, true }, { 0x19, "Loopback Command", loopback_command_evt, 3, false }, { 0x1a, "Data Buffer Overflow", data_buffer_overflow_evt, 1, true }, { 0x1b, "Max Slots Change", max_slots_change_evt, 3, true }, { 0x1c, "Read Clock Offset Complete", clock_offset_complete_evt, 5, true }, { 0x1d, "Connection Packet Type Changed", conn_pkt_type_changed_evt, 5, true }, { 0x1e, "QoS Violation", qos_violation_evt, 2, true }, { 0x1f, "Page Scan Mode Change", pscan_mode_change_evt, 7, true }, { 0x20, "Page Scan Repetition Mode Change", pscan_rep_mode_change_evt, 7, true }, { 0x21, "Flow Specification Complete", flow_spec_complete_evt, 22, true }, { 0x22, "Inquiry Result with RSSI", inquiry_result_with_rssi_evt, 1, false }, { 0x23, "Read Remote Extended Features", remote_ext_features_complete_evt, 13, true }, { 0x2c, "Synchronous Connect Complete", sync_conn_complete_evt, 17, true }, { 0x2d, "Synchronous Connect Changed", sync_conn_changed_evt, 9, true }, { 0x2e, "Sniff Subrating", sniff_subrating_evt, 11, true }, { 0x2f, "Extended Inquiry Result", ext_inquiry_result_evt, 1, false }, { 0x30, "Encryption Key Refresh Complete", encrypt_key_refresh_complete_evt, 3, true }, { 0x31, "IO Capability Request", io_capability_request_evt, 6, true }, { 0x32, "IO Capability Response", io_capability_response_evt, 9, true }, { 0x33, "User Confirmation Request", user_confirm_request_evt, 10, true }, { 0x34, "User Passkey Request", user_passkey_request_evt, 6, true }, { 0x35, "Remote OOB Data Request", remote_oob_data_request_evt, 6, true }, { 0x36, "Simple Pairing Complete", simple_pairing_complete_evt, 7, true }, { 0x38, "Link Supervision Timeout Changed", link_supv_timeout_changed_evt, 4, true }, { 0x39, "Enhanced Flush Complete", enhanced_flush_complete_evt, 2, true }, { 0x3b, "User Passkey Notification", user_passkey_notify_evt, 10, true }, { 0x3c, "Keypress Notification", keypress_notify_evt, 7, true }, { 0x3d, "Remote Host Supported Features", remote_host_features_notify_evt, 14, true }, { 0x3e, "LE Meta Event", le_meta_event_evt, 1, false }, { 0x40, "Physical Link Complete", phy_link_complete_evt, 2, true }, { 0x41, "Channel Selected", channel_selected_evt, 1, true }, { 0x42, "Disconnect Physical Link Complete", disconn_phy_link_complete_evt, 3, true }, { 0x43, "Physical Link Loss Early Warning", phy_link_loss_early_warning_evt, 2, true }, { 0x44, "Physical Link Recovery", phy_link_recovery_evt, 1, true }, { 0x45, "Logical Link Complete", logic_link_complete_evt, 5, true }, { 0x46, "Disconnect Logical Link Complete", disconn_logic_link_complete_evt, 4, true }, { 0x47, "Flow Specification Modify Complete", flow_spec_modify_complete_evt, 3, true }, { 0x48, "Number of Completed Data Blocks", num_completed_data_blocks_evt, 3, false }, { 0x49, "AMP Start Test" }, { 0x4a, "AMP Test End" }, { 0x4b, "AMP Receiver Report" }, { 0x4c, "Short Range Mode Change Complete", short_range_mode_change_evt, 3, true }, { 0x4d, "AMP Status Change", amp_status_change_evt, 2, true }, { 0x4e, "Triggered Clock Capture", triggered_clock_capture_evt, 9, true }, { 0x4f, "Synchronization Train Complete", sync_train_complete_evt, 1, true }, { 0x50, "Synchronization Train Received", sync_train_received_evt, 29, true }, { 0x51, "Connectionless Peripheral Broadcast Receive", peripheral_broadcast_receive_evt, 18, false }, { 0x52, "Connectionless Peripheral Broadcast Timeout", peripheral_broadcast_timeout_evt, 7, true }, { 0x53, "Truncated Page Complete", truncated_page_complete_evt, 7, true }, { 0x54, "Peripheral Page Response Timeout", peripheral_page_response_timeout_evt, 0, true }, { 0x55, "Connectionless Peripheral Broadcast Channel Map Change", channel_map_change_evt, 10, true }, { 0x56, "Inquiry Response Notification", inquiry_response_notify_evt, 4, true }, { 0x57, "Authenticated Payload Timeout Expired", auth_payload_timeout_expired_evt, 2, true }, { 0x58, "SAM Status Change" }, { 0xfe, "Testing" }, { 0xff, "Vendor", vendor_evt, 0, false }, { } }; void packet_new_index(struct timeval *tv, uint16_t index, const char *label, uint8_t type, uint8_t bus, const char *name) { char details[48]; sprintf(details, "(%s,%s,%s)", hci_typetostr(type), hci_bustostr(bus), name); print_packet(tv, NULL, '=', index, NULL, COLOR_NEW_INDEX, "New Index", label, details); } void packet_del_index(struct timeval *tv, uint16_t index, const char *label) { print_packet(tv, NULL, '=', index, NULL, COLOR_DEL_INDEX, "Delete Index", label, NULL); } void packet_open_index(struct timeval *tv, uint16_t index, const char *label) { print_packet(tv, NULL, '=', index, NULL, COLOR_OPEN_INDEX, "Open Index", label, NULL); } void packet_close_index(struct timeval *tv, uint16_t index, const char *label) { print_packet(tv, NULL, '=', index, NULL, COLOR_CLOSE_INDEX, "Close Index", label, NULL); } void packet_index_info(struct timeval *tv, uint16_t index, const char *label, uint16_t manufacturer) { char details[128]; sprintf(details, "(%s)", bt_compidtostr(manufacturer)); print_packet(tv, NULL, '=', index, NULL, COLOR_INDEX_INFO, "Index Info", label, details); } void packet_vendor_diag(struct timeval *tv, uint16_t index, uint16_t manufacturer, const void *data, uint16_t size) { char extra_str[16]; sprintf(extra_str, "(len %d)", size); print_packet(tv, NULL, '=', index, NULL, COLOR_VENDOR_DIAG, "Vendor Diagnostic", NULL, extra_str); switch (manufacturer) { case 15: broadcom_lm_diag(data, size); break; default: packet_hexdump(data, size); break; } } void packet_system_note(struct timeval *tv, struct ucred *cred, uint16_t index, const void *message) { print_packet(tv, cred, '=', index, NULL, COLOR_SYSTEM_NOTE, "Note", message, NULL); } struct monitor_l2cap_hdr { uint16_t cid; uint16_t psm; } __attribute__((packed)); static void packet_decode(struct timeval *tv, struct ucred *cred, char dir, uint16_t index, const char *color, const char *label, const void *data, uint16_t size) { const struct monitor_l2cap_hdr *hdr = data; if (size < sizeof(*hdr)) { print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed User Data packet", NULL, NULL); } print_packet(tv, cred, dir, index, NULL, COLOR_HCI_ACLDATA, label, dir == '>' ? "User Data RX" : "User Data TX", NULL); /* Discard last byte since it just a filler */ l2cap_frame(index, dir == '>', 0, le16_to_cpu(hdr->cid), le16_to_cpu(hdr->psm), data + sizeof(*hdr), size - (sizeof(*hdr) + 1)); } void packet_user_logging(struct timeval *tv, struct ucred *cred, uint16_t index, uint8_t priority, const char *ident, const void *data, uint16_t size) { char pid_str[140]; const char *label; const char *color; if (priority > priority_level) return; switch (priority) { case BTSNOOP_PRIORITY_ERR: color = COLOR_ERROR; break; case BTSNOOP_PRIORITY_WARNING: color = COLOR_WARN; break; case BTSNOOP_PRIORITY_INFO: color = COLOR_INFO; break; case BTSNOOP_PRIORITY_DEBUG: color = COLOR_DEBUG; break; default: color = COLOR_WHITE_BG; break; } if (cred) { char *path = alloca(24); char line[128]; FILE *fp; snprintf(path, 23, "/proc/%u/comm", cred->pid); fp = fopen(path, "re"); if (fp) { if (fgets(line, sizeof(line), fp)) { line[strcspn(line, "\r\n")] = '\0'; snprintf(pid_str, sizeof(pid_str), "%s[%u]", line, cred->pid); } else snprintf(pid_str, sizeof(pid_str), "%u", cred->pid); fclose(fp); } else snprintf(pid_str, sizeof(pid_str), "%u", cred->pid); label = pid_str; } else { if (ident) label = ident; else label = "Message"; } if (ident && (ident[0] == '<' || ident[0] == '>')) { packet_decode(tv, cred, ident[0], index, color, label == ident ? &ident[2] : label, data, size); return; } print_packet(tv, cred, '=', index, NULL, color, label, data, NULL); } void packet_hci_command(struct timeval *tv, struct ucred *cred, uint16_t index, const void *data, uint16_t size) { const hci_command_hdr *hdr = data; uint16_t opcode = le16_to_cpu(hdr->opcode); uint16_t ogf = cmd_opcode_ogf(opcode); uint16_t ocf = cmd_opcode_ocf(opcode); struct opcode_data vendor_data; const struct opcode_data *opcode_data = NULL; const char *opcode_color, *opcode_str; char extra_str[25], vendor_str[150]; int i; if (index >= MAX_INDEX) { print_field("Invalid index (%d).", index); return; } index_list[index].frame++; if (size < HCI_COMMAND_HDR_SIZE || size > BTSNOOP_MAX_PACKET_SIZE) { sprintf(extra_str, "(len %d)", size); print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed HCI Command packet", NULL, extra_str); return; } data += HCI_COMMAND_HDR_SIZE; size -= HCI_COMMAND_HDR_SIZE; for (i = 0; opcode_table[i].str; i++) { if (opcode_table[i].opcode == opcode) { opcode_data = &opcode_table[i]; break; } } if (opcode_data) { if (opcode_data->cmd_func) opcode_color = COLOR_HCI_COMMAND; else opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = opcode_data->str; } else { if (ogf == 0x3f) { const struct vendor_ocf *vnd = current_vendor_ocf(ocf); if (vnd) { const char *str = current_vendor_str(ocf); if (str) { snprintf(vendor_str, sizeof(vendor_str), "%s %s", str, vnd->str); vendor_data.str = vendor_str; } else vendor_data.str = vnd->str; vendor_data.cmd_func = vnd->cmd_func; vendor_data.cmd_size = vnd->cmd_size; vendor_data.cmd_fixed = vnd->cmd_fixed; opcode_data = &vendor_data; if (opcode_data->cmd_func) opcode_color = COLOR_HCI_COMMAND; else opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = opcode_data->str; } else { opcode_color = COLOR_HCI_COMMAND; opcode_str = "Vendor"; } } else { opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = "Unknown"; } } sprintf(extra_str, "(0x%2.2x|0x%4.4x) plen %d", ogf, ocf, hdr->plen); print_packet(tv, cred, '<', index, NULL, opcode_color, "HCI Command", opcode_str, extra_str); if (!opcode_data || !opcode_data->cmd_func) { packet_hexdump(data, size); return; } if (size != hdr->plen) { print_text(COLOR_ERROR, "invalid packet size (%u != %u)", size, hdr->plen); packet_hexdump(data, size); return; } if (opcode_data->cmd_fixed) { if (hdr->plen != opcode_data->cmd_size) { print_text(COLOR_ERROR, "invalid packet size"); packet_hexdump(data, size); return; } } else { if (hdr->plen < opcode_data->cmd_size) { print_text(COLOR_ERROR, "too short packet"); packet_hexdump(data, size); return; } } opcode_data->cmd_func(index, data, hdr->plen); } void packet_hci_event(struct timeval *tv, struct ucred *cred, uint16_t index, const void *data, uint16_t size) { const hci_event_hdr *hdr = data; const struct event_data *event_data = NULL; const char *event_color, *event_str; char extra_str[25]; int i; if (index >= MAX_INDEX) { print_field("Invalid index (%d).", index); return; } index_list[index].frame++; if (size < HCI_EVENT_HDR_SIZE) { sprintf(extra_str, "(len %d)", size); print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed HCI Event packet", NULL, extra_str); packet_hexdump(data, size); return; } data += HCI_EVENT_HDR_SIZE; size -= HCI_EVENT_HDR_SIZE; for (i = 0; event_table[i].str; i++) { if (event_table[i].event == hdr->evt) { event_data = &event_table[i]; break; } } if (event_data) { if (event_data->func) event_color = COLOR_HCI_EVENT; else event_color = COLOR_HCI_EVENT_UNKNOWN; event_str = event_data->str; } else { event_color = COLOR_HCI_EVENT_UNKNOWN; event_str = "Unknown"; } sprintf(extra_str, "(0x%2.2x) plen %d", hdr->evt, hdr->plen); print_packet(tv, cred, '>', index, NULL, event_color, "HCI Event", event_str, extra_str); if (!event_data || !event_data->func) { packet_hexdump(data, size); return; } if (size != hdr->plen) { print_text(COLOR_ERROR, "invalid packet size (%u != %u)", size, hdr->plen); packet_hexdump(data, size); return; } if (event_data->fixed) { if (hdr->plen != event_data->size) { print_text(COLOR_ERROR, "invalid packet size"); packet_hexdump(data, size); return; } } else { if (hdr->plen < event_data->size) { print_text(COLOR_ERROR, "too short packet"); packet_hexdump(data, size); return; } } event_data->func(index, data, hdr->plen); } void packet_hci_acldata(struct timeval *tv, struct ucred *cred, uint16_t index, bool in, const void *data, uint16_t size) { const struct bt_hci_acl_hdr *hdr = data; uint16_t handle = le16_to_cpu(hdr->handle); uint16_t dlen = le16_to_cpu(hdr->dlen); uint8_t flags = acl_flags(handle); char handle_str[16], extra_str[32]; if (index >= MAX_INDEX) { print_field("Invalid index (%d).", index); return; } index_list[index].frame++; if (size < HCI_ACL_HDR_SIZE) { if (in) print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed ACL Data RX packet", NULL, NULL); else print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed ACL Data TX packet", NULL, NULL); packet_hexdump(data, size); return; } data += HCI_ACL_HDR_SIZE; size -= HCI_ACL_HDR_SIZE; sprintf(handle_str, "Handle %d", acl_handle(handle)); sprintf(extra_str, "flags 0x%2.2x dlen %d", flags, dlen); print_packet(tv, cred, in ? '>' : '<', index, NULL, COLOR_HCI_ACLDATA, in ? "ACL Data RX" : "ACL Data TX", handle_str, extra_str); if (size != dlen) { print_text(COLOR_ERROR, "invalid packet size (%d != %d)", size, dlen); packet_hexdump(data, size); return; } if (filter_mask & PACKET_FILTER_SHOW_ACL_DATA) packet_hexdump(data, size); l2cap_packet(index, in, acl_handle(handle), flags, data, size); } void packet_hci_scodata(struct timeval *tv, struct ucred *cred, uint16_t index, bool in, const void *data, uint16_t size) { const hci_sco_hdr *hdr = data; uint16_t handle = le16_to_cpu(hdr->handle); uint8_t flags = acl_flags(handle); char handle_str[16], extra_str[32]; if (index >= MAX_INDEX) { print_field("Invalid index (%d).", index); return; } index_list[index].frame++; if (size < HCI_SCO_HDR_SIZE) { if (in) print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed SCO Data RX packet", NULL, NULL); else print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed SCO Data TX packet", NULL, NULL); packet_hexdump(data, size); return; } data += HCI_SCO_HDR_SIZE; size -= HCI_SCO_HDR_SIZE; sprintf(handle_str, "Handle %d", acl_handle(handle)); sprintf(extra_str, "flags 0x%2.2x dlen %d", flags, hdr->dlen); print_packet(tv, cred, in ? '>' : '<', index, NULL, COLOR_HCI_SCODATA, in ? "SCO Data RX" : "SCO Data TX", handle_str, extra_str); if (size != hdr->dlen) { print_text(COLOR_ERROR, "invalid packet size (%d != %d)", size, hdr->dlen); packet_hexdump(data, size); return; } if (filter_mask & PACKET_FILTER_SHOW_SCO_DATA) packet_hexdump(data, size); } void packet_hci_isodata(struct timeval *tv, struct ucred *cred, uint16_t index, bool in, const void *data, uint16_t size) { const struct bt_hci_iso_hdr *hdr = data; uint16_t handle = le16_to_cpu(hdr->handle); uint8_t flags = acl_flags(handle); char handle_str[16], extra_str[32]; if (index >= MAX_INDEX) { print_field("Invalid index (%d).", index); return; } index_list[index].frame++; if (size < sizeof(*hdr)) { if (in) print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed ISO Data RX packet", NULL, NULL); else print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed ISO Data TX packet", NULL, NULL); packet_hexdump(data, size); return; } data += sizeof(*hdr); size -= sizeof(*hdr); sprintf(handle_str, "Handle %d", acl_handle(handle)); sprintf(extra_str, "flags 0x%2.2x dlen %d", flags, hdr->dlen); print_packet(tv, cred, in ? '>' : '<', index, NULL, COLOR_HCI_SCODATA, in ? "ISO Data RX" : "ISO Data TX", handle_str, extra_str); if (size != hdr->dlen) { print_text(COLOR_ERROR, "invalid packet size (%d != %d)", size, hdr->dlen); packet_hexdump(data, size); return; } if (filter_mask & PACKET_FILTER_SHOW_SCO_DATA) packet_hexdump(data, size); } void packet_ctrl_open(struct timeval *tv, struct ucred *cred, uint16_t index, const void *data, uint16_t size) { uint32_t cookie; uint16_t format; char channel[11]; if (size < 6) { print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed Control Open packet", NULL, NULL); packet_hexdump(data, size); return; } cookie = get_le32(data); format = get_le16(data + 4); data += 6; size -= 6; sprintf(channel, "0x%4.4x", cookie); if ((format == CTRL_RAW || format == CTRL_USER || format == CTRL_MGMT) && size >= 8) { uint8_t version; uint16_t revision; uint32_t flags; uint8_t ident_len; const char *comm; char details[48]; const char *title; version = get_u8(data); revision = get_le16(data + 1); flags = get_le32(data + 3); ident_len = get_u8(data + 7); if ((8 + ident_len) > size) { print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed Control Open packet", NULL, NULL); return; } data += 8; size -= 8; comm = ident_len > 0 ? data : "unknown"; data += ident_len; size -= ident_len; assign_ctrl(cookie, format, comm); sprintf(details, "%sversion %u.%u", flags & 0x0001 ? "(privileged) " : "", version, revision); switch (format) { case CTRL_RAW: title = "RAW Open"; break; case CTRL_USER: title = "USER Open"; break; case CTRL_MGMT: title = "MGMT Open"; break; default: title = "Control Open"; break; } print_packet(tv, cred, '@', index, channel, COLOR_CTRL_OPEN, title, comm, details); } else { char label[7]; assign_ctrl(cookie, format, NULL); sprintf(label, "0x%4.4x", format); print_packet(tv, cred, '@', index, channel, COLOR_CTRL_OPEN, "Control Open", label, NULL); } packet_hexdump(data, size); } void packet_ctrl_close(struct timeval *tv, struct ucred *cred, uint16_t index, const void *data, uint16_t size) { uint32_t cookie; uint16_t format; char channel[11], label[22]; const char *title; if (size < 4) { print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed Control Close packet", NULL, NULL); packet_hexdump(data, size); return; } cookie = get_le32(data); data += 4; size -= 4; sprintf(channel, "0x%4.4x", cookie); release_ctrl(cookie, &format, label); switch (format) { case CTRL_RAW: title = "RAW Close"; break; case CTRL_USER: title = "USER Close"; break; case CTRL_MGMT: title = "MGMT Close"; break; default: sprintf(label, "0x%4.4x", format); title = "Control Close"; break; } print_packet(tv, cred, '@', index, channel, COLOR_CTRL_CLOSE, title, label, NULL); packet_hexdump(data, size); } static const struct { uint8_t status; const char *str; } mgmt_status_table[] = { { 0x00, "Success" }, { 0x01, "Unknown Command" }, { 0x02, "Not Connected" }, { 0x03, "Failed" }, { 0x04, "Connect Failed" }, { 0x05, "Authentication Failed" }, { 0x06, "Not Paired" }, { 0x07, "No Resources" }, { 0x08, "Timeout" }, { 0x09, "Already Connected" }, { 0x0a, "Busy" }, { 0x0b, "Rejected" }, { 0x0c, "Not Supported" }, { 0x0d, "Invalid Parameters" }, { 0x0e, "Disconnected" }, { 0x0f, "Not Powered" }, { 0x10, "Cancelled" }, { 0x11, "Invalid Index" }, { 0x12, "RFKilled" }, { 0x13, "Already Paired" }, { 0x14, "Permission Denied" }, { } }; static void mgmt_print_status(uint8_t status) { const char *str = "Unknown"; const char *color_on, *color_off; bool unknown = true; int i; for (i = 0; mgmt_status_table[i].str; i++) { if (mgmt_status_table[i].status == status) { str = mgmt_status_table[i].str; unknown = false; break; } } if (use_color()) { if (status) { if (unknown) color_on = COLOR_UNKNOWN_ERROR; else color_on = COLOR_RED; } else color_on = COLOR_GREEN; color_off = COLOR_OFF; } else { color_on = ""; color_off = ""; } print_field("Status: %s%s%s (0x%2.2x)", color_on, str, color_off, status); } static void mgmt_print_address(const uint8_t *address, uint8_t type) { switch (type) { case 0x00: print_addr_resolve("BR/EDR Address", address, 0x00, false); break; case 0x01: print_addr_resolve("LE Address", address, 0x00, false); break; case 0x02: print_addr_resolve("LE Address", address, 0x01, false); break; default: print_addr_resolve("Address", address, 0xff, false); break; } } static const struct bitfield_data mgmt_address_type_table[] = { { 0, "BR/EDR" }, { 1, "LE Public" }, { 2, "LE Random" }, { } }; static void mgmt_print_address_type(uint8_t type) { uint8_t mask; print_field("Address type: 0x%2.2x", type); mask = print_bitfield(2, type, mgmt_address_type_table); if (mask) print_text(COLOR_UNKNOWN_ADDRESS_TYPE, " Unknown address type" " (0x%2.2x)", mask); } static void mgmt_print_version(uint8_t version) { packet_print_version("Version", version, NULL, 0x0000); } static void mgmt_print_manufacturer(uint16_t manufacturer) { packet_print_company("Manufacturer", manufacturer); } static const struct bitfield_data mgmt_options_table[] = { { 0, "External configuration" }, { 1, "Bluetooth public address configuration" }, { } }; static void mgmt_print_options(const char *label, uint32_t options) { uint32_t mask; print_field("%s: 0x%8.8x", label, options); mask = print_bitfield(2, options, mgmt_options_table); if (mask) print_text(COLOR_UNKNOWN_OPTIONS_BIT, " Unknown options" " (0x%8.8x)", mask); } static const struct bitfield_data mgmt_settings_table[] = { { 0, "Powered" }, { 1, "Connectable" }, { 2, "Fast Connectable" }, { 3, "Discoverable" }, { 4, "Bondable" }, { 5, "Link Security" }, { 6, "Secure Simple Pairing" }, { 7, "BR/EDR" }, { 8, "High Speed" }, { 9, "Low Energy" }, { 10, "Advertising" }, { 11, "Secure Connections" }, { 12, "Debug Keys" }, { 13, "Privacy" }, { 14, "Controller Configuration"}, { 15, "Static Address" }, { 16, "PHY Configuration" }, { 17, "Wideband Speech" }, { 18, "CIS Central" }, { 19, "CIS Peripheral" }, { } }; static void mgmt_print_settings(const char *label, uint32_t settings) { uint32_t mask; print_field("%s: 0x%8.8x", label, settings); mask = print_bitfield(2, settings, mgmt_settings_table); if (mask) print_text(COLOR_UNKNOWN_SETTINGS_BIT, " Unknown settings" " (0x%8.8x)", mask); } static void mgmt_print_name(const void *data) { print_field("Name: %s", (char *) data); print_field("Short name: %s", (char *) (data + 249)); } static void mgmt_print_io_capability(uint8_t capability) { const char *str; switch (capability) { case 0x00: str = "DisplayOnly"; break; case 0x01: str = "DisplayYesNo"; break; case 0x02: str = "KeyboardOnly"; break; case 0x03: str = "NoInputNoOutput"; break; case 0x04: str = "KeyboardDisplay"; break; default: str = "Reserved"; break; } print_field("Capability: %s (0x%2.2x)", str, capability); } static const struct bitfield_data mgmt_device_flags_table[] = { { 0, "Confirm Name" }, { 1, "Legacy Pairing" }, { 2, "Not Connectable" }, { 3, "Connection Locally Initiated" }, { } }; static void mgmt_print_device_flags(uint32_t flags) { uint32_t mask; print_field("Flags: 0x%8.8x", flags); mask = print_bitfield(2, flags, mgmt_device_flags_table); if (mask) print_text(COLOR_UNKNOWN_DEVICE_FLAG, " Unknown device flag" " (0x%8.8x)", mask); } static void mgmt_print_device_action(uint8_t action) { const char *str; switch (action) { case 0x00: str = "Background scan for device"; break; case 0x01: str = "Allow incoming connection"; break; case 0x02: str = "Auto-connect remote device"; break; default: str = "Reserved"; break; } print_field("Action: %s (0x%2.2x)", str, action); } static const struct bitfield_data mgmt_adv_flags_table[] = { { 0, "Switch into Connectable mode" }, { 1, "Advertise as Discoverable" }, { 2, "Advertise as Limited Discoverable" }, { 3, "Add Flags field to Advertising Data" }, { 4, "Add TX Power field to Advertising Data" }, { 5, "Add Appearance field to Scan Response" }, { 6, "Add Local Name in Scan Response" }, { 7, "Advertise in 1M on Secondary channel" }, { 8, "Advertise in 2M on Secondary channel" }, { 9, "Advertise in CODED on Secondary channel" }, { 10, "Support setting Tx Power" }, { 11, "Support HW offload" }, { 12, "Use provided duration parameter" }, { 13, "Use provided timeout parameter" }, { 14, "Use provided interval parameters" }, { 15, "Use provided tx power parameter" }, { 16, "Contain Scan Response Data" }, { } }; #define MGMT_ADV_PARAM_DURATION (1 << 12) #define MGMT_ADV_PARAM_TIMEOUT (1 << 13) #define MGMT_ADV_PARAM_INTERVALS (1 << 14) #define MGMT_ADV_PARAM_TX_POWER (1 << 15) static void mgmt_print_adv_flags(uint32_t flags) { uint32_t mask; print_field("Flags: 0x%8.8x", flags); mask = print_bitfield(2, flags, mgmt_adv_flags_table); if (mask) print_text(COLOR_UNKNOWN_ADV_FLAG, " Unknown advertising flag" " (0x%8.8x)", mask); } static void mgmt_print_store_hint(uint8_t hint) { const char *str; switch (hint) { case 0x00: str = "No"; break; case 0x01: str = "Yes"; break; default: str = "Reserved"; break; } print_field("Store hint: %s (0x%2.2x)", str, hint); } static void mgmt_print_connection_parameter(const void *data) { uint8_t address_type = get_u8(data + 6); uint16_t min_conn_interval = get_le16(data + 7); uint16_t max_conn_interval = get_le16(data + 9); uint16_t conn_latency = get_le16(data + 11); uint16_t supv_timeout = get_le16(data + 13); mgmt_print_address(data, address_type); print_field("Min connection interval: %u", min_conn_interval); print_field("Max connection interval: %u", max_conn_interval); print_conn_latency("Connection latency", conn_latency); print_field("Supervision timeout: %u", supv_timeout); } static void mgmt_print_link_key(const void *data) { uint8_t address_type = get_u8(data + 6); uint8_t key_type = get_u8(data + 7); uint8_t pin_len = get_u8(data + 24); mgmt_print_address(data, address_type); print_key_type(key_type); print_link_key(data + 8); print_field("PIN length: %d", pin_len); } static void mgmt_print_long_term_key(const void *data) { uint8_t address_type = get_u8(data + 6); uint8_t key_type = get_u8(data + 7); uint8_t central = get_u8(data + 8); uint8_t enc_size = get_u8(data + 9); const char *str; mgmt_print_address(data, address_type); switch (key_type) { case 0x00: str = "Unauthenticated legacy key"; break; case 0x01: str = "Authenticated legacy key"; break; case 0x02: str = "Unauthenticated key from P-256"; break; case 0x03: str = "Authenticated key from P-256"; break; case 0x04: str = "Debug key from P-256"; break; default: str = "Reserved"; break; } print_field("Key type: %s (0x%2.2x)", str, key_type); print_field("Central: 0x%2.2x", central); print_field("Encryption size: %u", enc_size); print_hex_field("Diversifier", data + 10, 2); print_hex_field("Randomizer", data + 12, 8); print_hex_field("Key", data + 20, 16); } static void mgmt_print_identity_resolving_key(const void *data) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); print_hex_field("Key", data + 7, 16); keys_add_identity(data, address_type, data + 7); } static void mgmt_print_signature_resolving_key(const void *data) { uint8_t address_type = get_u8(data + 6); uint8_t key_type = get_u8(data + 7); const char *str; mgmt_print_address(data, address_type); switch (key_type) { case 0x00: str = "Unauthenticated local CSRK"; break; case 0x01: str = "Unauthenticated remote CSRK"; break; case 0x02: str = "Authenticated local CSRK"; break; case 0x03: str = "Authenticated remote CSRK"; break; default: str = "Reserved"; break; } print_field("Key type: %s (0x%2.2x)", str, key_type); print_hex_field("Key", data + 8, 16); } static void mgmt_print_oob_data(const void *data) { print_hash_p192(data); print_randomizer_p192(data + 16); print_hash_p256(data + 32); print_randomizer_p256(data + 48); } static const struct bitfield_data mgmt_exp_feature_flags_table[] = { { 0, "Active" }, { 1, "Settings change" }, { } }; static void mgmt_print_exp_feature(const void *data) { uint32_t flags = get_le32(data + 16); uint32_t mask; print_field("UUID: %s", bt_uuid128_to_str(data)); print_field("Flags: 0x%8.8x", flags); mask = print_bitfield(2, flags, mgmt_exp_feature_flags_table); if (mask) print_text(COLOR_UNKNOWN_EXP_FEATURE_FLAG, " Unknown feature flag (0x%8.8x)", mask); } static void mgmt_null_cmd(const void *data, uint16_t size) { } static void mgmt_null_rsp(const void *data, uint16_t size) { } static void mgmt_read_version_info_rsp(const void *data, uint16_t size) { uint8_t version; uint16_t revision; version = get_u8(data); revision = get_le16(data + 1); print_field("Version: %u.%u", version, revision); } static void mgmt_print_commands(const void *data, uint16_t num); static void mgmt_print_events(const void *data, uint16_t num); static void mgmt_read_supported_commands_rsp(const void *data, uint16_t size) { uint16_t num_commands = get_le16(data); uint16_t num_events = get_le16(data + 2); if (size - 4 != (num_commands * 2) + (num_events *2)) { packet_hexdump(data, size); return; } mgmt_print_commands(data + 4, num_commands); mgmt_print_events(data + 4 + num_commands * 2, num_events); } static void mgmt_read_index_list_rsp(const void *data, uint16_t size) { uint16_t num_controllers = get_le16(data); int i; print_field("Controllers: %u", num_controllers); if (size - 2 != num_controllers * 2) { packet_hexdump(data + 2, size - 2); return; } for (i = 0; i < num_controllers; i++) { uint16_t index = get_le16(data + 2 + (i * 2)); print_field(" hci%u", index); } } static void mgmt_read_controller_info_rsp(const void *data, uint16_t size) { uint8_t version = get_u8(data + 6); uint16_t manufacturer = get_le16(data + 7); uint32_t supported_settings = get_le32(data + 9); uint32_t current_settings = get_le32(data + 13); print_addr_resolve("Address", data, 0x00, false); mgmt_print_version(version); mgmt_print_manufacturer(manufacturer); mgmt_print_settings("Supported settings", supported_settings); mgmt_print_settings("Current settings", current_settings); print_dev_class(data + 17); mgmt_print_name(data + 20); } static void mgmt_set_powered_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); print_enable("Powered", enable); } static void mgmt_set_discoverable_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); uint16_t timeout = get_le16(data + 1); const char *str; switch (enable) { case 0x00: str = "Disabled"; break; case 0x01: str = "General"; break; case 0x02: str = "Limited"; break; default: str = "Reserved"; break; } print_field("Discoverable: %s (0x%2.2x)", str, enable); print_field("Timeout: %u", timeout); } static void mgmt_set_connectable_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); print_enable("Connectable", enable); } static void mgmt_set_fast_connectable_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); print_enable("Fast Connectable", enable); } static void mgmt_set_bondable_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); print_enable("Bondable", enable); } static void mgmt_set_link_security_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); print_enable("Link Security", enable); } static void mgmt_set_secure_simple_pairing_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); print_enable("Secure Simple Pairing", enable); } static void mgmt_set_high_speed_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); print_enable("High Speed", enable); } static void mgmt_set_low_energy_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); print_enable("Low Energy", enable); } static void mgmt_new_settings_rsp(const void *data, uint16_t size) { uint32_t current_settings = get_le32(data); mgmt_print_settings("Current settings", current_settings); } static void mgmt_set_device_class_cmd(const void *data, uint16_t size) { uint8_t major = get_u8(data); uint8_t minor = get_u8(data + 1); print_field("Major class: 0x%2.2x", major); print_field("Minor class: 0x%2.2x", minor); } static void mgmt_set_device_class_rsp(const void *data, uint16_t size) { print_dev_class(data); } static void mgmt_set_local_name_cmd(const void *data, uint16_t size) { mgmt_print_name(data); } static void mgmt_set_local_name_rsp(const void *data, uint16_t size) { mgmt_print_name(data); } static void mgmt_add_uuid_cmd(const void *data, uint16_t size) { uint8_t service_class = get_u8(data + 16); print_field("UUID: %s", bt_uuid128_to_str(data)); print_field("Service class: 0x%2.2x", service_class); } static void mgmt_add_uuid_rsp(const void *data, uint16_t size) { print_dev_class(data); } static void mgmt_remove_uuid_cmd(const void *data, uint16_t size) { print_field("UUID: %s", bt_uuid128_to_str(data)); } static void mgmt_remove_uuid_rsp(const void *data, uint16_t size) { print_dev_class(data); } static void mgmt_load_link_keys_cmd(const void *data, uint16_t size) { uint8_t debug_keys = get_u8(data); uint16_t num_keys = get_le16(data + 1); int i; print_enable("Debug keys", debug_keys); print_field("Keys: %u", num_keys); if (size - 3 != num_keys * 25) { packet_hexdump(data + 3, size - 3); return; } for (i = 0; i < num_keys; i++) mgmt_print_link_key(data + 3 + (i * 25)); } static void mgmt_load_long_term_keys_cmd(const void *data, uint16_t size) { uint16_t num_keys = get_le16(data); int i; print_field("Keys: %u", num_keys); if (size - 2 != num_keys * 36) { packet_hexdump(data + 2, size - 2); return; } for (i = 0; i < num_keys; i++) mgmt_print_long_term_key(data + 2 + (i * 36)); } static void mgmt_disconnect_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_disconnect_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_get_connections_rsp(const void *data, uint16_t size) { uint16_t num_connections = get_le16(data); int i; print_field("Connections: %u", num_connections); if (size - 2 != num_connections * 7) { packet_hexdump(data + 2, size - 2); return; } for (i = 0; i < num_connections; i++) { uint8_t address_type = get_u8(data + 2 + (i * 7) + 6); mgmt_print_address(data + 2 + (i * 7), address_type); } } static void mgmt_pin_code_reply_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint8_t pin_len = get_u8(data + 7); mgmt_print_address(data, address_type); print_field("PIN length: %u", pin_len); print_hex_field("PIN code", data + 8, 16); } static void mgmt_pin_code_reply_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_pin_code_neg_reply_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_pin_code_neg_reply_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_set_io_capability_cmd(const void *data, uint16_t size) { uint8_t capability = get_u8(data); mgmt_print_io_capability(capability); } static void mgmt_pair_device_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint8_t capability = get_u8(data + 7); mgmt_print_address(data, address_type); mgmt_print_io_capability(capability); } static void mgmt_pair_device_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_cancel_pair_device_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_cancel_pair_device_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_unpair_device_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint8_t disconnect = get_u8(data + 7); mgmt_print_address(data, address_type); print_enable("Disconnect", disconnect); } static void mgmt_unpair_device_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_user_confirmation_reply_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_user_confirmation_reply_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_user_confirmation_neg_reply_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_user_confirmation_neg_reply_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_user_passkey_reply_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint32_t passkey = get_le32(data + 7); mgmt_print_address(data, address_type); print_field("Passkey: 0x%4.4x", passkey); } static void mgmt_user_passkey_reply_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_user_passkey_neg_reply_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_user_passkey_neg_reply_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_read_local_oob_data_rsp(const void *data, uint16_t size) { mgmt_print_oob_data(data); } static void mgmt_add_remote_oob_data_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); mgmt_print_oob_data(data + 7); } static void mgmt_add_remote_oob_data_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_remove_remote_oob_data_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_remove_remote_oob_data_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_start_discovery_cmd(const void *data, uint16_t size) { uint8_t type = get_u8(data); mgmt_print_address_type(type); } static void mgmt_start_discovery_rsp(const void *data, uint16_t size) { uint8_t type = get_u8(data); mgmt_print_address_type(type); } static void mgmt_stop_discovery_cmd(const void *data, uint16_t size) { uint8_t type = get_u8(data); mgmt_print_address_type(type); } static void mgmt_stop_discovery_rsp(const void *data, uint16_t size) { uint8_t type = get_u8(data); mgmt_print_address_type(type); } static void mgmt_confirm_name_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint8_t name_known = get_u8(data + 7); const char *str; mgmt_print_address(data, address_type); switch (name_known) { case 0x00: str = "No"; break; case 0x01: str = "Yes"; break; default: str = "Reserved"; break; } print_field("Name known: %s (0x%2.2x)", str, name_known); } static void mgmt_confirm_name_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_block_device_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_block_device_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_unblock_device_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_unblock_device_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_set_device_id_cmd(const void *data, uint16_t size) { print_device_id(data, size); } static void mgmt_set_advertising_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); const char *str; switch (enable) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; case 0x02: str = "Connectable"; break; default: str = "Reserved"; break; } print_field("Advertising: %s (0x%2.2x)", str, enable); } static void mgmt_set_bredr_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); print_enable("BR/EDR", enable); } static void mgmt_set_static_address_cmd(const void *data, uint16_t size) { print_addr_resolve("Address", data, 0x01, false); } static void mgmt_set_scan_parameters_cmd(const void *data, uint16_t size) { uint16_t interval = get_le16(data); uint16_t window = get_le16(data + 2); print_field("Interval: %u (0x%2.2x)", interval, interval); print_field("Window: %u (0x%2.2x)", window, window); } static void mgmt_set_secure_connections_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); const char *str; switch (enable) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; case 0x02: str = "Only"; break; default: str = "Reserved"; break; } print_field("Secure Connections: %s (0x%2.2x)", str, enable); } static void mgmt_set_debug_keys_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); const char *str; switch (enable) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; case 0x02: str = "Generate"; break; default: str = "Reserved"; break; } print_field("Debug Keys: %s (0x%2.2x)", str, enable); } static void mgmt_set_privacy_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); const char *str; switch (enable) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; case 0x02: str = "Limited"; break; default: str = "Reserved"; break; } print_field("Privacy: %s (0x%2.2x)", str, enable); print_hex_field("Key", data + 1, 16); } static void mgmt_load_identity_resolving_keys_cmd(const void *data, uint16_t size) { uint16_t num_keys = get_le16(data); int i; print_field("Keys: %u", num_keys); if (size - 2 != num_keys * 23) { packet_hexdump(data + 2, size - 2); return; } for (i = 0; i < num_keys; i++) mgmt_print_identity_resolving_key(data + 2 + (i * 23)); } static void mgmt_get_connection_information_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_get_connection_information_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); int8_t rssi = get_s8(data + 7); int8_t tx_power = get_s8(data + 8); int8_t max_tx_power = get_s8(data + 9); mgmt_print_address(data, address_type); print_rssi(rssi); print_power_level(tx_power, NULL); print_power_level(max_tx_power, "max"); } static void mgmt_get_clock_information_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_get_clock_information_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint32_t local_clock = get_le32(data + 7); uint32_t piconet_clock = get_le32(data + 11); uint16_t accuracy = get_le16(data + 15); mgmt_print_address(data, address_type); print_field("Local clock: 0x%8.8x", local_clock); print_field("Piconet clock: 0x%8.8x", piconet_clock); print_field("Accuracy: 0x%4.4x", accuracy); } static void mgmt_add_device_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint8_t action = get_u8(data + 7); mgmt_print_address(data, address_type); mgmt_print_device_action(action); } static void mgmt_add_device_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_remove_device_cmd(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_remove_device_rsp(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_load_connection_parameters_cmd(const void *data, uint16_t size) { uint16_t num_parameters = get_le16(data); int i; print_field("Parameters: %u", num_parameters); if (size - 2 != num_parameters * 15) { packet_hexdump(data + 2, size - 2); return; } for (i = 0; i < num_parameters; i++) mgmt_print_connection_parameter(data + 2 + (i * 15)); } static void mgmt_read_unconf_index_list_rsp(const void *data, uint16_t size) { uint16_t num_controllers = get_le16(data); int i; print_field("Controllers: %u", num_controllers); if (size - 2 != num_controllers * 2) { packet_hexdump(data + 2, size - 2); return; } for (i = 0; i < num_controllers; i++) { uint16_t index = get_le16(data + 2 + (i * 2)); print_field(" hci%u", index); } } static void mgmt_read_controller_conf_info_rsp(const void *data, uint16_t size) { uint16_t manufacturer = get_le16(data); uint32_t supported_options = get_le32(data + 2); uint32_t missing_options = get_le32(data + 6); mgmt_print_manufacturer(manufacturer); mgmt_print_options("Supported options", supported_options); mgmt_print_options("Missing options", missing_options); } static void mgmt_set_external_configuration_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); print_enable("Configuration", enable); } static void mgmt_set_public_address_cmd(const void *data, uint16_t size) { print_addr_resolve("Address", data, 0x00, false); } static void mgmt_new_options_rsp(const void *data, uint16_t size) { uint32_t missing_options = get_le32(data); mgmt_print_options("Missing options", missing_options); } static void mgmt_start_service_discovery_cmd(const void *data, uint16_t size) { uint8_t type = get_u8(data); int8_t rssi = get_s8(data + 1); uint16_t num_uuids = get_le16(data + 2); int i; mgmt_print_address_type(type); print_rssi(rssi); print_field("UUIDs: %u", num_uuids); if (size - 4 != num_uuids * 16) { packet_hexdump(data + 4, size - 4); return; } for (i = 0; i < num_uuids; i++) print_field("UUID: %s", bt_uuid128_to_str(data + 4 + (i * 16))); } static void mgmt_start_service_discovery_rsp(const void *data, uint16_t size) { uint8_t type = get_u8(data); mgmt_print_address_type(type); } static void mgmt_read_ext_index_list_rsp(const void *data, uint16_t size) { uint16_t num_controllers = get_le16(data); int i; print_field("Controllers: %u", num_controllers); if (size - 2 != num_controllers * 4) { packet_hexdump(data + 2, size - 2); return; } for (i = 0; i < num_controllers; i++) { uint16_t index = get_le16(data + 2 + (i * 4)); uint8_t type = get_u8(data + 4 + (i * 4)); uint8_t bus = get_u8(data + 5 + (i * 4)); const char *str; switch (type) { case 0x00: str = "Primary"; break; case 0x01: str = "Unconfigured"; break; case 0x02: str = "AMP"; break; default: str = "Reserved"; break; } print_field(" hci%u (%s,%s)", index, str, hci_bustostr(bus)); } } static void mgmt_read_local_oob_ext_data_cmd(const void *data, uint16_t size) { uint8_t type = get_u8(data); mgmt_print_address_type(type); } static void mgmt_read_local_oob_ext_data_rsp(const void *data, uint16_t size) { uint8_t type = get_u8(data); uint16_t data_len = get_le16(data + 1); mgmt_print_address_type(type); print_field("Data length: %u", data_len); print_eir(data + 3, size - 3, true); } static void mgmt_read_advertising_features_rsp(const void *data, uint16_t size) { uint32_t flags = get_le32(data); uint8_t adv_data_len = get_u8(data + 4); uint8_t scan_rsp_len = get_u8(data + 5); uint8_t max_instances = get_u8(data + 6); uint8_t num_instances = get_u8(data + 7); int i; mgmt_print_adv_flags(flags); print_field("Advertising data length: %u", adv_data_len); print_field("Scan response length: %u", scan_rsp_len); print_field("Max instances: %u", max_instances); print_field("Instances: %u", num_instances); if (size - 8 != num_instances) { packet_hexdump(data + 8, size - 8); return; } for (i = 0; i < num_instances; i++) { uint8_t instance = get_u8(data + 8 + i); print_field(" %u", instance); } } static void mgmt_add_advertising_cmd(const void *data, uint16_t size) { uint8_t instance = get_u8(data); uint32_t flags = get_le32(data + 1); uint16_t duration = get_le16(data + 5); uint16_t timeout = get_le16(data + 7); uint8_t adv_data_len = get_u8(data + 9); uint8_t scan_rsp_len = get_u8(data + 10); print_field("Instance: %u", instance); mgmt_print_adv_flags(flags); print_field("Duration: %u", duration); print_field("Timeout: %u", timeout); print_field("Advertising data length: %u", adv_data_len); print_eir(data + 11, adv_data_len, false); print_field("Scan response length: %u", scan_rsp_len); print_eir(data + 11 + adv_data_len, scan_rsp_len, false); } static void mgmt_add_advertising_rsp(const void *data, uint16_t size) { uint8_t instance = get_u8(data); print_field("Instance: %u", instance); } static void mgmt_remove_advertising_cmd(const void *data, uint16_t size) { uint8_t instance = get_u8(data); print_field("Instance: %u", instance); } static void mgmt_remove_advertising_rsp(const void *data, uint16_t size) { uint8_t instance = get_u8(data); print_field("Instance: %u", instance); } static void mgmt_get_advertising_size_info_cmd(const void *data, uint16_t size) { uint8_t instance = get_u8(data); uint32_t flags = get_le32(data + 1); print_field("Instance: %u", instance); mgmt_print_adv_flags(flags); } static void mgmt_get_advertising_size_info_rsp(const void *data, uint16_t size) { uint8_t instance = get_u8(data); uint32_t flags = get_le32(data + 1); uint8_t adv_data_len = get_u8(data + 5); uint8_t scan_rsp_len = get_u8(data + 6); print_field("Instance: %u", instance); mgmt_print_adv_flags(flags); print_field("Advertising data length: %u", adv_data_len); print_field("Scan response length: %u", scan_rsp_len); } static void mgmt_start_limited_discovery_cmd(const void *data, uint16_t size) { uint8_t type = get_u8(data); mgmt_print_address_type(type); } static void mgmt_start_limited_discovery_rsp(const void *data, uint16_t size) { uint8_t type = get_u8(data); mgmt_print_address_type(type); } static void mgmt_read_ext_controller_info_rsp(const void *data, uint16_t size) { uint8_t version = get_u8(data + 6); uint16_t manufacturer = get_le16(data + 7); uint32_t supported_settings = get_le32(data + 9); uint32_t current_settings = get_le32(data + 13); uint16_t data_len = get_le16(data + 17); print_addr_resolve("Address", data, 0x00, false); mgmt_print_version(version); mgmt_print_manufacturer(manufacturer); mgmt_print_settings("Supported settings", supported_settings); mgmt_print_settings("Current settings", current_settings); print_field("Data length: %u", data_len); print_eir(data + 19, size - 19, false); } static void mgmt_set_apperance_cmd(const void *data, uint16_t size) { uint16_t appearance = get_le16(data); print_appearance(appearance); } static const struct bitfield_data mgmt_phy_table[] = { { 0, "BR 1M 1SLOT" }, { 1, "BR 1M 3SLOT" }, { 2, "BR 1M 5SLOT" }, { 3, "EDR 2M 1SLOT" }, { 4, "EDR 2M 3SLOT" }, { 5, "EDR 2M 5SLOT" }, { 6, "EDR 3M 1SLOT" }, { 7, "EDR 3M 3SLOT" }, { 8, "EDR 3M 5SLOT" }, { 9, "LE 1M TX" }, { 10, "LE 1M RX" }, { 11, "LE 2M TX" }, { 12, "LE 2M RX" }, { 13, "LE CODED TX" }, { 14, "LE CODED RX" }, { } }; static void mgmt_print_phys(const char *label, uint16_t phys) { uint16_t mask; print_field("%s: 0x%4.4x", label, phys); mask = print_bitfield(2, phys, mgmt_phy_table); if (mask) print_text(COLOR_UNKNOWN_PHY, " Unknown PHYs" " (0x%8.8x)", mask); } static void mgmt_get_phy_rsp(const void *data, uint16_t size) { uint32_t supported_phys = get_le32(data); uint32_t configurable_phys = get_le32(data + 4); uint32_t selected_phys = get_le32(data + 8); mgmt_print_phys("Supported PHYs", supported_phys); mgmt_print_phys("Configurable PHYs", configurable_phys); mgmt_print_phys("Selected PHYs", selected_phys); } static void mgmt_set_phy_cmd(const void *data, uint16_t size) { uint32_t selected_phys = get_le32(data); mgmt_print_phys("Selected PHYs", selected_phys); } static void mgmt_read_exp_features_info_rsp(const void *data, uint16_t size) { uint16_t num_features = get_le16(data); int i; print_field("Features: %u", num_features); if (size - 2 != num_features * 20) { packet_hexdump(data + 2, size - 2); return; } for (i = 0; i < num_features; i++) mgmt_print_exp_feature(data + 2 + (i * 20)); } static void mgmt_set_exp_feature_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data + 16); print_field("UUID: %s", bt_uuid128_to_str(data)); print_enable("Action", enable); } static void mgmt_set_exp_feature_rsp(const void *data, uint16_t size) { mgmt_print_exp_feature(data); } static const struct bitfield_data mgmt_added_device_flags_table[] = { { 0, "Remote Wakeup" }, { 1, "Device Privacy Mode" }, { } }; static void mgmt_print_added_device_flags(char *label, uint32_t flags) { uint32_t mask; print_field("%s: 0x%8.8x", label, flags); mask = print_bitfield(2, flags, mgmt_added_device_flags_table); if (mask) print_text(COLOR_UNKNOWN_ADDED_DEVICE_FLAG, " Unknown Flags (0x%8.8x)", mask); } static void mgmt_get_device_flags_cmd(const void *data, uint16_t size) { uint8_t type = get_u8(data + 6); mgmt_print_address(data, type); } static void mgmt_get_device_flags_rsp(const void *data, uint16_t size) { uint8_t type = get_u8(data + 6); uint32_t supported_flags = get_le32(data + 7); uint32_t current_flags = get_le32(data + 11); mgmt_print_address(data, type); mgmt_print_added_device_flags("Supported Flags", supported_flags); mgmt_print_added_device_flags("Current Flags", current_flags); } static void mgmt_set_device_flags_cmd(const void *data, uint16_t size) { uint8_t type = get_u8(data + 6); uint32_t current_flags = get_le32(data + 7); mgmt_print_address(data, type); mgmt_print_added_device_flags("Current Flags", current_flags); } static void mgmt_set_device_flags_rsp(const void *data, uint16_t size) { uint8_t type = get_u8(data + 6); mgmt_print_address(data, type); } static void mgmt_add_ext_adv_params_cmd(const void *data, uint16_t size) { uint8_t instance = get_u8(data); uint32_t flags = get_le32(data + 1); uint16_t duration = get_le16(data + 5); uint16_t timeout = get_le16(data + 7); uint8_t *min_interval = (uint8_t *)(data + 9); uint8_t *max_interval = (uint8_t *)(data + 13); int8_t tx_power = get_s8(data + 17); print_field("Instance: %u", instance); mgmt_print_adv_flags(flags); print_field("Duration: %u", duration); print_field("Timeout: %u", timeout); print_ext_slot_625("Min advertising interval", min_interval); print_ext_slot_625("Max advertising interval", max_interval); print_power_level(tx_power, NULL); } static void mgmt_add_ext_adv_params_rsp(const void *data, uint16_t size) { uint8_t instance = get_u8(data); int8_t tx_power = get_s8(data + 1); uint8_t max_adv_data_len = get_u8(data+2); uint8_t max_scan_rsp_len = get_u8(data+3); print_field("Instance: %u", instance); print_power_level(tx_power, NULL); print_field("Available adv data len: %u", max_adv_data_len); print_field("Available scan rsp data len: %u", max_scan_rsp_len); } static void mgmt_add_ext_adv_data_cmd(const void *data, uint16_t size) { uint8_t instance = get_u8(data); uint8_t adv_data_len = get_u8(data + 1); uint8_t scan_rsp_len = get_u8(data + 2); print_field("Instance: %u", instance); print_field("Advertising data length: %u", adv_data_len); print_eir(data + 3, adv_data_len, false); print_field("Scan response length: %u", scan_rsp_len); print_eir(data + 3 + adv_data_len, scan_rsp_len, false); } static void mgmt_add_ext_adv_data_rsp(const void *data, uint16_t size) { uint8_t instance = get_u8(data); print_field("Instance: %u", instance); } static const struct bitfield_data mgmt_adv_monitor_features_table[] = { { 1, "OR Patterns" }, { } }; static void mgmt_print_adv_monitor_features(char *label, uint32_t flags) { uint32_t mask; print_field("%s: 0x%8.8x", label, flags); mask = print_bitfield(2, flags, mgmt_adv_monitor_features_table); if (mask) print_text(COLOR_UNKNOWN_ADVMON_FEATURES, " Unknown Flags (0x%8.8x)", mask); } static void mgmt_print_adv_monitor_handles(const void *data, uint8_t len) { uint8_t idx = 0; while (idx + 2 <= len) { print_field(" Handle: %d", get_le16(data + idx)); idx += 2; } } static void mgmt_read_adv_monitor_features_rsp(const void *data, uint16_t size) { uint32_t supported_features = get_le32(data); uint32_t enabled_features = get_le32(data + 4); uint16_t max_num_handles = get_le16(data + 8); uint8_t max_num_patterns = get_u8(data + 10); uint16_t num_handles = get_le16(data + 11); mgmt_print_adv_monitor_features("Supported Features", supported_features); mgmt_print_adv_monitor_features("Enabled Features", enabled_features); print_field("Max number of handles: %d", max_num_handles); print_field("Max number of patterns: %d", max_num_patterns); print_field("Number of handles: %d", num_handles); mgmt_print_adv_monitor_handles(data + 13, size - 13); } static void mgmt_print_adv_monitor_patterns(const void *data, uint8_t len) { uint8_t data_idx = 0, pattern_idx = 1; /* Reference: struct mgmt_adv_pattern in lib/mgmt.h. */ while (data_idx + 34 <= len) { uint8_t ad_type = get_u8(data); uint8_t offset = get_u8(data + 1); uint8_t length = get_u8(data + 2); print_field(" Pattern %d:", pattern_idx); print_field(" AD type: %d", ad_type); print_field(" Offset: %d", offset); print_field(" Length: %d", length); if (length <= 31) print_hex_field(" Value ", data + 3, length); else print_text(COLOR_ERROR, " invalid length"); pattern_idx += 1; data_idx += 34; data += 34; } } static void mgmt_add_adv_monitor_patterns_cmd(const void *data, uint16_t size) { uint8_t pattern_count = get_u8(data); print_field("Number of patterns: %d", pattern_count); mgmt_print_adv_monitor_patterns(data + 1, size - 1); } static void mgmt_add_adv_monitor_patterns_rssi_cmd(const void *data, uint16_t size) { int8_t high_rssi = get_s8(data); uint16_t high_rssi_timeout = get_le16(data + 1); int8_t low_rssi = get_s8(data + 3); uint16_t low_rssi_timeout = get_le16(data + 4); uint8_t sampling_period = get_u8(data + 6); uint8_t pattern_count = get_u8(data + 7); print_field("RSSI data:"); print_field(" high threshold: %d dBm", high_rssi); print_field(" high timeout: %d seconds", high_rssi_timeout); print_field(" low threshold: %d dBm", low_rssi); print_field(" low timeout: %d seconds", low_rssi_timeout); if (sampling_period == 0) print_field(" sampling: propagate all (0x00)"); else if (sampling_period == 0xff) print_field(" sampling: just once (0xFF)"); else print_field(" sampling: every %d ms", 100 * sampling_period); print_field("Number of patterns: %d", pattern_count); mgmt_print_adv_monitor_patterns(data + 8, size - 8); } static void mgmt_add_adv_monitor_patterns_rsp(const void *data, uint16_t size) { uint16_t handle = get_le16(data); print_field("Handle: %d", handle); } static void mgmt_remove_adv_monitor_patterns_cmd(const void *data, uint16_t size) { uint16_t handle = get_le16(data); print_field("Handle: %d", handle); } static void mgmt_remove_adv_monitor_patterns_rsp(const void *data, uint16_t size) { uint16_t handle = get_le16(data); print_field("Handle: %d", handle); } static void mgmt_set_mesh_receiver_cmd(const void *data, uint16_t size) { uint8_t enable = get_u8(data); uint16_t window = get_le16(data + 1); uint16_t period = get_le16(data + 3); uint8_t num_ad_types = get_u8(data + 5); const uint8_t *ad_types = data + 6; print_field("Enable: %d", enable); print_field("Window: %d", window); print_field("Period: %d", period); print_field("Num AD Types: %d", num_ad_types); size -= 6; while (size--) print_field(" AD Type: %d", *ad_types++); } static void mgmt_read_mesh_features_rsp(const void *data, uint16_t size) { uint16_t index = get_le16(data); uint8_t max_handles = get_u8(data + 2); uint8_t used_handles = get_u8(data + 3); const uint8_t *handles = data + 4; print_field("Index: %d", index); print_field("Max Handles: %d", max_handles); print_field("Used Handles: %d", used_handles); size -= 4; while (size--) print_field(" Used Handle: %d", *handles++); } static void mgmt_mesh_send_cmd(const void *data, uint16_t size) { const uint8_t *addr = data; uint8_t addr_type = get_u8(data + 6); uint64_t instant = get_le64(data + 7); uint16_t delay = get_le16(data + 15); uint8_t cnt = get_u8(data + 17); uint8_t adv_data_len = get_u8(data + 18); data += 19; size -= 19; print_bdaddr(addr); print_field("Addr Type: %d", addr_type); print_field("Instant: 0x%16.16" PRIx64, instant); print_field("Delay: %d", delay); print_field("Count: %d", cnt); print_field("Data Length: %d", adv_data_len); print_hex_field("Data", data, size); } static void mgmt_mesh_send_rsp(const void *data, uint16_t size) { uint8_t handle = get_u8(data); print_field("Handle: %d", handle); } static void mgmt_mesh_send_cancel_cmd(const void *data, uint16_t size) { uint8_t handle = get_u8(data); print_field("Handle: %d", handle); } struct mgmt_data { uint16_t opcode; const char *str; void (*func) (const void *data, uint16_t size); uint16_t size; bool fixed; void (*rsp_func) (const void *data, uint16_t size); uint16_t rsp_size; bool rsp_fixed; }; static const struct mgmt_data mgmt_command_table[] = { { 0x0001, "Read Management Version Information", mgmt_null_cmd, 0, true, mgmt_read_version_info_rsp, 3, true }, { 0x0002, "Read Management Supported Commands", mgmt_null_cmd, 0, true, mgmt_read_supported_commands_rsp, 4, false }, { 0x0003, "Read Controller Index List", mgmt_null_cmd, 0, true, mgmt_read_index_list_rsp, 2, false }, { 0x0004, "Read Controller Information", mgmt_null_cmd, 0, true, mgmt_read_controller_info_rsp, 280, true }, { 0x0005, "Set Powered", mgmt_set_powered_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x0006, "Set Discoverable", mgmt_set_discoverable_cmd, 3, true, mgmt_new_settings_rsp, 4, true }, { 0x0007, "Set Connectable", mgmt_set_connectable_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x0008, "Set Fast Connectable", mgmt_set_fast_connectable_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x0009, "Set Bondable", mgmt_set_bondable_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x000a, "Set Link Security", mgmt_set_link_security_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x000b, "Set Secure Simple Pairing", mgmt_set_secure_simple_pairing_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x000c, "Set High Speed", mgmt_set_high_speed_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x000d, "Set Low Energy", mgmt_set_low_energy_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x000e, "Set Device Class", mgmt_set_device_class_cmd, 2, true, mgmt_set_device_class_rsp, 3, true }, { 0x000f, "Set Local Name", mgmt_set_local_name_cmd, 260, true, mgmt_set_local_name_rsp, 260, true }, { 0x0010, "Add UUID", mgmt_add_uuid_cmd, 17, true, mgmt_add_uuid_rsp, 3, true }, { 0x0011, "Remove UUID", mgmt_remove_uuid_cmd, 16, true, mgmt_remove_uuid_rsp, 3, true }, { 0x0012, "Load Link Keys", mgmt_load_link_keys_cmd, 3, false, mgmt_null_rsp, 0, true }, { 0x0013, "Load Long Term Keys", mgmt_load_long_term_keys_cmd, 2, false, mgmt_null_rsp, 0, true }, { 0x0014, "Disconnect", mgmt_disconnect_cmd, 7, true, mgmt_disconnect_rsp, 7, true }, { 0x0015, "Get Connections", mgmt_null_cmd, 0, true, mgmt_get_connections_rsp, 2, false }, { 0x0016, "PIN Code Reply", mgmt_pin_code_reply_cmd, 24, true, mgmt_pin_code_reply_rsp, 7, true }, { 0x0017, "PIN Code Negative Reply", mgmt_pin_code_neg_reply_cmd, 7, true, mgmt_pin_code_neg_reply_rsp, 7, true }, { 0x0018, "Set IO Capability", mgmt_set_io_capability_cmd, 1, true, mgmt_null_rsp, 0, true }, { 0x0019, "Pair Device", mgmt_pair_device_cmd, 8, true, mgmt_pair_device_rsp, 7, true }, { 0x001a, "Cancel Pair Device", mgmt_cancel_pair_device_cmd, 7, true, mgmt_cancel_pair_device_rsp, 7, true }, { 0x001b, "Unpair Device", mgmt_unpair_device_cmd, 8, true, mgmt_unpair_device_rsp, 7, true }, { 0x001c, "User Confirmation Reply", mgmt_user_confirmation_reply_cmd, 7, true, mgmt_user_confirmation_reply_rsp, 7, true }, { 0x001d, "User Confirmation Negative Reply", mgmt_user_confirmation_neg_reply_cmd, 7, true, mgmt_user_confirmation_neg_reply_rsp, 7, true }, { 0x001e, "User Passkey Reply", mgmt_user_passkey_reply_cmd, 11, true, mgmt_user_passkey_reply_rsp, 7, true }, { 0x001f, "User Passkey Negative Reply", mgmt_user_passkey_neg_reply_cmd, 7, true, mgmt_user_passkey_neg_reply_rsp, 7, true }, { 0x0020, "Read Local Out Of Band Data", mgmt_null_cmd, 0, true, mgmt_read_local_oob_data_rsp, 64, true }, { 0x0021, "Add Remote Out Of Band Data", mgmt_add_remote_oob_data_cmd, 71, true, mgmt_add_remote_oob_data_rsp, 7, true }, { 0x0022, "Remove Remote Out Of Band Data", mgmt_remove_remote_oob_data_cmd, 7, true, mgmt_remove_remote_oob_data_rsp, 7, true }, { 0x0023, "Start Discovery", mgmt_start_discovery_cmd, 1, true, mgmt_start_discovery_rsp, 1, true }, { 0x0024, "Stop Discovery", mgmt_stop_discovery_cmd, 1, true, mgmt_stop_discovery_rsp, 1, true }, { 0x0025, "Confirm Name", mgmt_confirm_name_cmd, 8, true, mgmt_confirm_name_rsp, 7, true }, { 0x0026, "Block Device", mgmt_block_device_cmd, 7, true, mgmt_block_device_rsp, 7, true }, { 0x0027, "Unblock Device", mgmt_unblock_device_cmd, 7, true, mgmt_unblock_device_rsp, 7, true }, { 0x0028, "Set Device ID", mgmt_set_device_id_cmd, 8, true, mgmt_null_rsp, 0, true }, { 0x0029, "Set Advertising", mgmt_set_advertising_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x002a, "Set BR/EDR", mgmt_set_bredr_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x002b, "Set Static Address", mgmt_set_static_address_cmd, 6, true, mgmt_new_settings_rsp, 4, true }, { 0x002c, "Set Scan Parameters", mgmt_set_scan_parameters_cmd, 4, true, mgmt_null_rsp, 0, true }, { 0x002d, "Set Secure Connections", mgmt_set_secure_connections_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x002e, "Set Debug Keys", mgmt_set_debug_keys_cmd, 1, true, mgmt_new_settings_rsp, 4, true }, { 0x002f, "Set Privacy", mgmt_set_privacy_cmd, 17, true, mgmt_new_settings_rsp, 4, true }, { 0x0030, "Load Identity Resolving Keys", mgmt_load_identity_resolving_keys_cmd, 2, false, mgmt_null_rsp, 0, true }, { 0x0031, "Get Connection Information", mgmt_get_connection_information_cmd, 7, true, mgmt_get_connection_information_rsp, 10, true }, { 0x0032, "Get Clock Information", mgmt_get_clock_information_cmd, 7, true, mgmt_get_clock_information_rsp, 17, true }, { 0x0033, "Add Device", mgmt_add_device_cmd, 8, true, mgmt_add_device_rsp, 7, true }, { 0x0034, "Remove Device", mgmt_remove_device_cmd, 7, true, mgmt_remove_device_rsp, 7, true }, { 0x0035, "Load Connection Parameters", mgmt_load_connection_parameters_cmd, 2, false, mgmt_null_rsp, 0, true }, { 0x0036, "Read Unconfigured Controller Index List", mgmt_null_cmd, 0, true, mgmt_read_unconf_index_list_rsp, 2, false }, { 0x0037, "Read Controller Configuration Information", mgmt_null_cmd, 0, true, mgmt_read_controller_conf_info_rsp, 10, true }, { 0x0038, "Set External Configuration", mgmt_set_external_configuration_cmd, 1, true, mgmt_new_options_rsp, 4, true }, { 0x0039, "Set Public Address", mgmt_set_public_address_cmd, 6, true, mgmt_new_options_rsp, 4, true }, { 0x003a, "Start Service Discovery", mgmt_start_service_discovery_cmd, 3, false, mgmt_start_service_discovery_rsp, 1, true }, { 0x003b, "Read Local Out Of Band Extended Data", mgmt_read_local_oob_ext_data_cmd, 1, true, mgmt_read_local_oob_ext_data_rsp, 3, false }, { 0x003c, "Read Extended Controller Index List", mgmt_null_cmd, 0, true, mgmt_read_ext_index_list_rsp, 2, false }, { 0x003d, "Read Advertising Features", mgmt_null_cmd, 0, true, mgmt_read_advertising_features_rsp, 8, false }, { 0x003e, "Add Advertising", mgmt_add_advertising_cmd, 11, false, mgmt_add_advertising_rsp, 1, true }, { 0x003f, "Remove Advertising", mgmt_remove_advertising_cmd, 1, true, mgmt_remove_advertising_rsp, 1, true }, { 0x0040, "Get Advertising Size Information", mgmt_get_advertising_size_info_cmd, 5, true, mgmt_get_advertising_size_info_rsp, 7, true }, { 0x0041, "Start Limited Discovery", mgmt_start_limited_discovery_cmd, 1, true, mgmt_start_limited_discovery_rsp, 1, true }, { 0x0042, "Read Extended Controller Information", mgmt_null_cmd, 0, true, mgmt_read_ext_controller_info_rsp, 19, false }, { 0x0043, "Set Appearance", mgmt_set_apperance_cmd, 2, true, mgmt_null_rsp, 0, true }, { 0x0044, "Get PHY Configuration", mgmt_null_cmd, 0, true, mgmt_get_phy_rsp, 12, true }, { 0x0045, "Set PHY Configuration", mgmt_set_phy_cmd, 4, true, mgmt_null_rsp, 0, true }, { 0x0046, "Load Blocked Keys" }, { 0x0047, "Set Wideband Speech" }, { 0x0048, "Read Controller Capabilities" }, { 0x0049, "Read Experimental Features Information", mgmt_null_cmd, 0, true, mgmt_read_exp_features_info_rsp, 2, false }, { 0x004a, "Set Experimental Feature", mgmt_set_exp_feature_cmd, 17, true, mgmt_set_exp_feature_rsp, 20, true }, { 0x004b, "Read Default System Configuration" }, { 0x004c, "Set Default System Configuration" }, { 0x004d, "Read Default Runtime Configuration" }, { 0x004e, "Set Default Runtime Configuration" }, { 0x004f, "Get Device Flags", mgmt_get_device_flags_cmd, 7, true, mgmt_get_device_flags_rsp, 15, true}, { 0x0050, "Set Device Flags", mgmt_set_device_flags_cmd, 11, true, mgmt_set_device_flags_rsp, 7, true}, { 0x0051, "Read Advertisement Monitor Features", mgmt_null_cmd, 0, true, mgmt_read_adv_monitor_features_rsp, 13, false}, { 0x0052, "Add Advertisement Patterns Monitor", mgmt_add_adv_monitor_patterns_cmd, 1, false, mgmt_add_adv_monitor_patterns_rsp, 2, true}, { 0x0053, "Remove Advertisement Monitor", mgmt_remove_adv_monitor_patterns_cmd, 2, true, mgmt_remove_adv_monitor_patterns_rsp, 2, true}, { 0x0054, "Add Extended Advertising Parameters", mgmt_add_ext_adv_params_cmd, 18, false, mgmt_add_ext_adv_params_rsp, 4, true }, { 0x0055, "Add Extended Advertising Data", mgmt_add_ext_adv_data_cmd, 3, false, mgmt_add_ext_adv_data_rsp, 1, true }, { 0x0056, "Add Advertisement Patterns Monitor With RSSI Threshold", mgmt_add_adv_monitor_patterns_rssi_cmd, 8, false, mgmt_add_adv_monitor_patterns_rsp, 2, true}, { 0x0057, "Set Mesh Receiver", mgmt_set_mesh_receiver_cmd, 6, false, mgmt_null_rsp, 0, true}, { 0x0058, "Read Mesh Features", mgmt_null_cmd, 0, true, mgmt_read_mesh_features_rsp, 4, false}, { 0x0059, "Mesh Send", mgmt_mesh_send_cmd, 19, false, mgmt_mesh_send_rsp, 1, true}, { 0x0056, "Mesh Send Cancel", mgmt_mesh_send_cancel_cmd, 1, true, mgmt_null_rsp, 0, true}, { } }; static void mgmt_null_evt(const void *data, uint16_t size) { } static void mgmt_command_complete_evt(const void *data, uint16_t size) { uint16_t opcode; uint8_t status; const struct mgmt_data *mgmt_data = NULL; const char *mgmt_color, *mgmt_str; int i; opcode = get_le16(data); status = get_u8(data + 2); data += 3; size -= 3; for (i = 0; mgmt_command_table[i].str; i++) { if (mgmt_command_table[i].opcode == opcode) { mgmt_data = &mgmt_command_table[i]; break; } } if (mgmt_data) { if (mgmt_data->rsp_func) mgmt_color = COLOR_CTRL_COMMAND; else mgmt_color = COLOR_CTRL_COMMAND_UNKNOWN; mgmt_str = mgmt_data->str; } else { mgmt_color = COLOR_CTRL_COMMAND_UNKNOWN; mgmt_str = "Unknown"; } print_indent(6, mgmt_color, "", mgmt_str, COLOR_OFF, " (0x%4.4x) plen %u", opcode, size); mgmt_print_status(status); if (!mgmt_data || !mgmt_data->rsp_func) { packet_hexdump(data, size); return; } if (mgmt_data->rsp_fixed) { if (size != mgmt_data->rsp_size) { print_text(COLOR_ERROR, "invalid packet size"); packet_hexdump(data, size); return; } } else { if (size < mgmt_data->rsp_size) { print_text(COLOR_ERROR, "too short packet"); packet_hexdump(data, size); return; } } mgmt_data->rsp_func(data, size); } static void mgmt_command_status_evt(const void *data, uint16_t size) { uint16_t opcode; uint8_t status; const struct mgmt_data *mgmt_data = NULL; const char *mgmt_color, *mgmt_str; int i; opcode = get_le16(data); status = get_u8(data + 2); for (i = 0; mgmt_command_table[i].str; i++) { if (mgmt_command_table[i].opcode == opcode) { mgmt_data = &mgmt_command_table[i]; break; } } if (mgmt_data) { mgmt_color = COLOR_CTRL_COMMAND; mgmt_str = mgmt_data->str; } else { mgmt_color = COLOR_CTRL_COMMAND_UNKNOWN; mgmt_str = "Unknown"; } print_indent(6, mgmt_color, "", mgmt_str, COLOR_OFF, " (0x%4.4x)", opcode); mgmt_print_status(status); } static void mgmt_controller_error_evt(const void *data, uint16_t size) { uint8_t error = get_u8(data); print_field("Error: 0x%2.2x", error); } static void mgmt_new_settings_evt(const void *data, uint16_t size) { uint32_t settings = get_le32(data); mgmt_print_settings("Current settings", settings); } static void mgmt_class_of_dev_changed_evt(const void *data, uint16_t size) { print_dev_class(data); } static void mgmt_local_name_changed_evt(const void *data, uint16_t size) { mgmt_print_name(data); } static void mgmt_new_link_key_evt(const void *data, uint16_t size) { uint8_t store_hint = get_u8(data); mgmt_print_store_hint(store_hint); mgmt_print_link_key(data + 1); } static void mgmt_new_long_term_key_evt(const void *data, uint16_t size) { uint8_t store_hint = get_u8(data); mgmt_print_store_hint(store_hint); mgmt_print_long_term_key(data + 1); } static void mgmt_device_connected_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint32_t flags = get_le32(data + 7); uint16_t data_len = get_le16(data + 11); mgmt_print_address(data, address_type); mgmt_print_device_flags(flags); print_field("Data length: %u", data_len); print_eir(data + 13, size - 13, false); } static void mgmt_device_disconnected_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint8_t reason = get_u8(data + 7); const char *str; mgmt_print_address(data, address_type); switch (reason) { case 0x00: str = "Unspecified"; break; case 0x01: str = "Connection timeout"; break; case 0x02: str = "Connection terminated by local host"; break; case 0x03: str = "Connection terminated by remote host"; break; case 0x04: str = "Connection terminated due to authentication failure"; break; case 0x05: str = "Connection terminated by local host for suspend"; break; default: str = "Reserved"; break; } print_field("Reason: %s (0x%2.2x)", str, reason); } static void mgmt_connect_failed_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint8_t status = get_u8(data + 7); mgmt_print_address(data, address_type); mgmt_print_status(status); } static void mgmt_pin_code_request_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint8_t secure_pin = get_u8(data + 7); mgmt_print_address(data, address_type); print_field("Secure PIN: 0x%2.2x", secure_pin); } static void mgmt_user_confirmation_request_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint8_t confirm_hint = get_u8(data + 7); uint32_t value = get_le32(data + 8); mgmt_print_address(data, address_type); print_field("Confirm hint: 0x%2.2x", confirm_hint); print_field("Value: 0x%8.8x", value); } static void mgmt_user_passkey_request_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_authentication_failed_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint8_t status = get_u8(data + 7); mgmt_print_address(data, address_type); mgmt_print_status(status); } static void mgmt_device_found_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); int8_t rssi = get_s8(data + 7); uint32_t flags = get_le32(data + 8); uint16_t data_len = get_le16(data + 12); mgmt_print_address(data, address_type); print_rssi(rssi); mgmt_print_device_flags(flags); print_field("Data length: %u", data_len); print_eir(data + 14, size - 14, false); } static void mgmt_discovering_evt(const void *data, uint16_t size) { uint8_t type = get_u8(data); uint8_t enable = get_u8(data + 1); mgmt_print_address_type(type); print_enable("Discovery", enable); } static void mgmt_device_blocked_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_device_unblocked_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_device_unpaired_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_passkey_notify_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint32_t passkey = get_le32(data + 7); uint8_t entered = get_u8(data + 11); mgmt_print_address(data, address_type); print_field("Passkey: 0x%8.8x", passkey); print_field("Entered: %u", entered); } static void mgmt_new_identity_resolving_key_evt(const void *data, uint16_t size) { uint8_t store_hint = get_u8(data); mgmt_print_store_hint(store_hint); print_addr_resolve("Random address", data + 1, 0x01, false); mgmt_print_identity_resolving_key(data + 7); } static void mgmt_new_signature_resolving_key_evt(const void *data, uint16_t size) { uint8_t store_hint = get_u8(data); mgmt_print_store_hint(store_hint); mgmt_print_signature_resolving_key(data + 1); } static void mgmt_device_added_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); uint8_t action = get_u8(data + 7); mgmt_print_address(data, address_type); mgmt_print_device_action(action); } static void mgmt_device_removed_evt(const void *data, uint16_t size) { uint8_t address_type = get_u8(data + 6); mgmt_print_address(data, address_type); } static void mgmt_new_connection_parameter_evt(const void *data, uint16_t size) { uint8_t store_hint = get_u8(data); mgmt_print_store_hint(store_hint); mgmt_print_connection_parameter(data + 1); } static void mgmt_new_conf_options_evt(const void *data, uint16_t size) { uint32_t missing_options = get_le32(data); mgmt_print_options("Missing options", missing_options); } static void mgmt_ext_index_added_evt(const void *data, uint16_t size) { uint8_t type = get_u8(data); uint8_t bus = get_u8(data + 1); print_field("type 0x%2.2x - bus 0x%2.2x", type, bus); } static void mgmt_ext_index_removed_evt(const void *data, uint16_t size) { uint8_t type = get_u8(data); uint8_t bus = get_u8(data + 1); print_field("type 0x%2.2x - bus 0x%2.2x", type, bus); } static void mgmt_local_oob_ext_data_updated_evt(const void *data, uint16_t size) { uint8_t type = get_u8(data); uint16_t data_len = get_le16(data + 1); mgmt_print_address_type(type); print_field("Data length: %u", data_len); print_eir(data + 3, size - 3, true); } static void mgmt_advertising_added_evt(const void *data, uint16_t size) { uint8_t instance = get_u8(data); print_field("Instance: %u", instance); } static void mgmt_advertising_removed_evt(const void *data, uint16_t size) { uint8_t instance = get_u8(data); print_field("Instance: %u", instance); } static void mgmt_ext_controller_info_changed_evt(const void *data, uint16_t size) { uint16_t data_len = get_le16(data); print_field("Data length: %u", data_len); print_eir(data + 2, size - 2, false); } static void mgmt_phy_changed_evt(const void *data, uint16_t size) { uint32_t selected_phys = get_le32(data); mgmt_print_phys("Selected PHYs", selected_phys); } static void mgmt_exp_feature_changed_evt(const void *data, uint16_t size) { mgmt_print_exp_feature(data); } static void mgmt_device_flags_changed_evt(const void *data, uint16_t size) { uint8_t type = get_u8(data + 6); uint32_t supported_flags = get_le32(data + 7); uint32_t current_flags = get_le32(data + 11); mgmt_print_address(data, type); mgmt_print_added_device_flags("Supported Flags", supported_flags); mgmt_print_added_device_flags("Current Flags", current_flags); } static void mgmt_adv_monitor_added_evt(const void *data, uint16_t size) { uint16_t handle = get_le16(data); print_field("Handle: %d", handle); } static void mgmt_adv_monitor_removed_evt(const void *data, uint16_t size) { uint16_t handle = get_le16(data); print_field("Handle: %d", handle); } static void mgmt_controller_suspend_evt(const void *data, uint16_t size) { uint8_t state = get_u8(data); char *str; switch (state) { case 0x0: str = "Controller running (failed to suspend)"; break; case 0x1: str = "Disconnected and not scanning"; break; case 0x2: str = "Page scanning and/or passive scanning"; break; default: str = "Unknown suspend state"; break; } print_field("Suspend state: %s (%d)", str, state); } static void mgmt_controller_resume_evt(const void *data, uint16_t size) { uint8_t addr_type = get_u8(data + 6); uint8_t wake_reason = get_u8(data + 7); char *str; switch (wake_reason) { case 0x0: str = "Resume from non-Bluetooth wake source"; break; case 0x1: str = "Wake due to unexpected event"; break; case 0x2: str = "Remote wake due to peer device connection"; break; default: str = "Unknown wake reason"; break; } print_field("Wake reason: %s (%d)", str, wake_reason); mgmt_print_address(data, addr_type); } static void mgmt_adv_monitor_device_found_evt(const void *data, uint16_t size) { uint16_t handle = get_le16(data); const uint8_t *addr = data + 2; uint8_t addr_type = get_u8(data + 8); int8_t rssi = get_s8(data + 9); uint32_t flags = get_le32(data + 10); uint16_t ad_data_len = get_le16(data + 14); const uint8_t *ad_data = data + 16; print_field("Handle: %d", handle); print_bdaddr(addr); print_field("Addr Type: %d", addr_type); print_field("RSSI: %d", rssi); mgmt_print_device_flags(flags); print_field("AD Data Len: %d", ad_data_len); size -= 16; print_hex_field("AD Data", ad_data, size); } static void mgmt_adv_monitor_device_lost_evt(const void *data, uint16_t size) { uint16_t handle = get_le16(data); const uint8_t *addr = data + 2; uint8_t addr_type = get_u8(data + 8); print_field("Handle: %d", handle); print_bdaddr(addr); print_field("Addr Type: %d", addr_type); } static void mgmt_mesh_device_found_evt(const void *data, uint16_t size) { const uint8_t *addr = data; uint8_t addr_type = get_u8(data + 6); int8_t rssi = get_s8(data + 7); uint64_t instant = get_le64(data + 8); uint32_t flags = get_le32(data + 16); uint16_t eir_len = get_le16(data + 20); const uint8_t *eir_data = data + 22; print_bdaddr(addr); print_field("Addr Type: %d", addr_type); print_field("RSSI: %d", rssi); print_field("Instant: 0x%16.16" PRIx64, instant); mgmt_print_device_flags(flags); print_field("EIR Length: %d", eir_len); size -= 22; print_hex_field("EIR Data", eir_data, size); } static void mgmt_mesh_packet_cmplt_evt(const void *data, uint16_t size) { uint8_t handle = get_u8(data); print_field("Handle: %d", handle); } static const struct mgmt_data mgmt_event_table[] = { { 0x0001, "Command Complete", mgmt_command_complete_evt, 3, false }, { 0x0002, "Command Status", mgmt_command_status_evt, 3, true }, { 0x0003, "Controller Error", mgmt_controller_error_evt, 1, true }, { 0x0004, "Index Added", mgmt_null_evt, 0, true }, { 0x0005, "Index Removed", mgmt_null_evt, 0, true }, { 0x0006, "New Settings", mgmt_new_settings_evt, 4, true }, { 0x0007, "Class Of Device Changed", mgmt_class_of_dev_changed_evt, 3, true }, { 0x0008, "Local Name Changed", mgmt_local_name_changed_evt, 260, true }, { 0x0009, "New Link Key", mgmt_new_link_key_evt, 26, true }, { 0x000a, "New Long Term Key", mgmt_new_long_term_key_evt, 37, true }, { 0x000b, "Device Connected", mgmt_device_connected_evt, 13, false }, { 0x000c, "Device Disconnected", mgmt_device_disconnected_evt, 8, true }, { 0x000d, "Connect Failed", mgmt_connect_failed_evt, 8, true }, { 0x000e, "PIN Code Request", mgmt_pin_code_request_evt, 8, true }, { 0x000f, "User Confirmation Request", mgmt_user_confirmation_request_evt, 12, true }, { 0x0010, "User Passkey Request", mgmt_user_passkey_request_evt, 7, true }, { 0x0011, "Authentication Failed", mgmt_authentication_failed_evt, 8, true }, { 0x0012, "Device Found", mgmt_device_found_evt, 14, false }, { 0x0013, "Discovering", mgmt_discovering_evt, 2, true }, { 0x0014, "Device Blocked", mgmt_device_blocked_evt, 7, true }, { 0x0015, "Device Unblocked", mgmt_device_unblocked_evt, 7, true }, { 0x0016, "Device Unpaired", mgmt_device_unpaired_evt, 7, true }, { 0x0017, "Passkey Notify", mgmt_passkey_notify_evt, 12, true }, { 0x0018, "New Identity Resolving Key", mgmt_new_identity_resolving_key_evt, 30, true }, { 0x0019, "New Signature Resolving Key", mgmt_new_signature_resolving_key_evt, 25, true }, { 0x001a, "Device Added", mgmt_device_added_evt, 8, true }, { 0x001b, "Device Removed", mgmt_device_removed_evt, 7, true }, { 0x001c, "New Connection Parameter", mgmt_new_connection_parameter_evt, 16, true }, { 0x001d, "Unconfigured Index Added", mgmt_null_evt, 0, true }, { 0x001e, "Unconfigured Index Removed", mgmt_null_evt, 0, true }, { 0x001f, "New Configuration Options", mgmt_new_conf_options_evt, 4, true }, { 0x0020, "Extended Index Added", mgmt_ext_index_added_evt, 2, true }, { 0x0021, "Extended Index Removed", mgmt_ext_index_removed_evt, 2, true }, { 0x0022, "Local Out Of Band Extended Data Updated", mgmt_local_oob_ext_data_updated_evt, 3, false }, { 0x0023, "Advertising Added", mgmt_advertising_added_evt, 1, true }, { 0x0024, "Advertising Removed", mgmt_advertising_removed_evt, 1, true }, { 0x0025, "Extended Controller Information Changed", mgmt_ext_controller_info_changed_evt, 2, false }, { 0x0026, "PHY Configuration Changed", mgmt_phy_changed_evt, 4, true }, { 0x0027, "Experimental Feature Changed", mgmt_exp_feature_changed_evt, 20, true }, { 0x002a, "Device Flags Changed", mgmt_device_flags_changed_evt, 15, true }, { 0x002b, "Advertisement Monitor Added", mgmt_adv_monitor_added_evt, 2, true }, { 0x002c, "Advertisement Monitor Removed", mgmt_adv_monitor_removed_evt, 2, true }, { 0x002d, "Controller Suspended", mgmt_controller_suspend_evt, 1, true }, { 0x002e, "Controller Resumed", mgmt_controller_resume_evt, 8, true }, { 0x002f, "ADV Monitor Device Found", mgmt_adv_monitor_device_found_evt, 16, false }, { 0x0030, "ADV Monitor Device Lost", mgmt_adv_monitor_device_lost_evt, 9, true }, { 0x0031, "Mesh Device Found", mgmt_mesh_device_found_evt, 22, false }, { 0x0032, "Mesh Packet Complete", mgmt_mesh_packet_cmplt_evt, 1, true }, { } }; static void mgmt_print_commands(const void *data, uint16_t num) { int i; print_field("Commands: %u", num); for (i = 0; i < num; i++) { uint16_t opcode = get_le16(data + (i * 2)); const char *str = NULL; int n; for (n = 0; mgmt_command_table[n].str; n++) { if (mgmt_command_table[n].opcode == opcode) { str = mgmt_command_table[n].str; break; } } print_field(" %s (0x%4.4x)", str ?: "Reserved", opcode); } } static void mgmt_print_events(const void *data, uint16_t num) { int i; print_field("Events: %u", num); for (i = 0; i < num; i++) { uint16_t opcode = get_le16(data + (i * 2)); const char *str = NULL; int n; for (n = 0; mgmt_event_table[n].str; n++) { if (mgmt_event_table[n].opcode == opcode) { str = mgmt_event_table[n].str; break; } } print_field(" %s (0x%4.4x)", str ?: "Reserved", opcode); } } void packet_ctrl_command(struct timeval *tv, struct ucred *cred, uint16_t index, const void *data, uint16_t size) { uint32_t cookie; uint16_t format, opcode; const struct mgmt_data *mgmt_data = NULL; const char *mgmt_color, *mgmt_str; char channel[11], extra_str[25]; int i; if (size < 4) { print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed Control Command packet", NULL, NULL); packet_hexdump(data, size); return; } cookie = get_le32(data); data += 4; size -= 4; sprintf(channel, "0x%4.4x", cookie); format = get_format(cookie); if (format != CTRL_MGMT) { char label[7]; sprintf(label, "0x%4.4x", format); print_packet(tv, cred, '@', index, channel, COLOR_CTRL_CLOSE, "Control Command", label, NULL); packet_hexdump(data, size); return; } if (size < 2) { print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed MGMT Command packet", NULL, NULL); packet_hexdump(data, size); return; } opcode = get_le16(data); data += 2; size -= 2; for (i = 0; mgmt_command_table[i].str; i++) { if (mgmt_command_table[i].opcode == opcode) { mgmt_data = &mgmt_command_table[i]; break; } } if (mgmt_data) { if (mgmt_data->func) mgmt_color = COLOR_CTRL_COMMAND; else mgmt_color = COLOR_CTRL_COMMAND_UNKNOWN; mgmt_str = mgmt_data->str; } else { mgmt_color = COLOR_CTRL_COMMAND_UNKNOWN; mgmt_str = "Unknown"; } sprintf(extra_str, "(0x%4.4x) plen %d", opcode, size); print_packet(tv, cred, '@', index, channel, mgmt_color, "MGMT Command", mgmt_str, extra_str); if (!mgmt_data || !mgmt_data->func) { packet_hexdump(data, size); return; } if (mgmt_data->fixed) { if (size != mgmt_data->size) { print_text(COLOR_ERROR, "invalid packet size"); packet_hexdump(data, size); return; } } else { if (size < mgmt_data->size) { print_text(COLOR_ERROR, "too short packet"); packet_hexdump(data, size); return; } } mgmt_data->func(data, size); } void packet_ctrl_event(struct timeval *tv, struct ucred *cred, uint16_t index, const void *data, uint16_t size) { uint32_t cookie; uint16_t format, opcode; const struct mgmt_data *mgmt_data = NULL; const char *mgmt_color, *mgmt_str; char channel[11], extra_str[25]; int i; if (size < 4) { print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed Control Event packet", NULL, NULL); packet_hexdump(data, size); return; } cookie = get_le32(data); data += 4; size -= 4; sprintf(channel, "0x%4.4x", cookie); format = get_format(cookie); if (format != CTRL_MGMT) { char label[7]; sprintf(label, "0x%4.4x", format); print_packet(tv, cred, '@', index, channel, COLOR_CTRL_CLOSE, "Control Event", label, NULL); packet_hexdump(data, size); return; } if (size < 2) { print_packet(tv, cred, '*', index, NULL, COLOR_ERROR, "Malformed MGMT Event packet", NULL, NULL); packet_hexdump(data, size); return; } opcode = get_le16(data); data += 2; size -= 2; for (i = 0; mgmt_event_table[i].str; i++) { if (mgmt_event_table[i].opcode == opcode) { mgmt_data = &mgmt_event_table[i]; break; } } if (mgmt_data) { if (mgmt_data->func) mgmt_color = COLOR_CTRL_EVENT; else mgmt_color = COLOR_CTRL_EVENT_UNKNOWN; mgmt_str = mgmt_data->str; } else { mgmt_color = COLOR_CTRL_EVENT_UNKNOWN; mgmt_str = "Unknown"; } sprintf(extra_str, "(0x%4.4x) plen %d", opcode, size); print_packet(tv, cred, '@', index, channel, mgmt_color, "MGMT Event", mgmt_str, extra_str); if (!mgmt_data || !mgmt_data->func) { packet_hexdump(data, size); return; } if (mgmt_data->fixed) { if (size != mgmt_data->size) { print_text(COLOR_ERROR, "invalid packet size"); packet_hexdump(data, size); return; } } else { if (size < mgmt_data->size) { print_text(COLOR_ERROR, "too short packet"); packet_hexdump(data, size); return; } } mgmt_data->func(data, size); } void packet_todo(void) { int i; printf("HCI commands with missing decodings:\n"); for (i = 0; opcode_table[i].str; i++) { if (opcode_table[i].bit < 0) continue; if (opcode_table[i].cmd_func) continue; printf("\t%s\n", opcode_table[i].str); } printf("HCI events with missing decodings:\n"); for (i = 0; event_table[i].str; i++) { if (event_table[i].func) continue; printf("\t%s\n", event_table[i].str); } for (i = 0; le_meta_event_table[i].str; i++) { if (le_meta_event_table[i].func) continue; printf("\t%s\n", le_meta_event_table[i].str); } }