/* * * BlueZ - Bluetooth protocol stack for Linux * * Copyright (C) 2011-2014 Intel Corporation * Copyright (C) 2002-2010 Marcel Holtmann * * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include "src/shared/util.h" #include "src/shared/btsnoop.h" #include "display.h" #include "bt.h" #include "ll.h" #include "hwdb.h" #include "keys.h" #include "uuid.h" #include "l2cap.h" #include "control.h" #include "vendor.h" #include "packet.h" #define COLOR_INDEX_LABEL COLOR_WHITE #define COLOR_TIMESTAMP COLOR_YELLOW #define COLOR_NEW_INDEX COLOR_GREEN #define COLOR_DEL_INDEX COLOR_RED #define COLOR_HCI_COMMAND COLOR_BLUE #define COLOR_HCI_COMMAND_UNKNOWN COLOR_WHITE_BG #define COLOR_HCI_EVENT COLOR_MAGENTA #define COLOR_HCI_EVENT_UNKNOWN COLOR_WHITE_BG #define COLOR_HCI_ACLDATA COLOR_CYAN #define COLOR_HCI_SCODATA COLOR_YELLOW #define COLOR_UNKNOWN_ERROR COLOR_WHITE_BG #define COLOR_UNKNOWN_FEATURE_BIT COLOR_WHITE_BG #define COLOR_UNKNOWN_COMMAND_BIT COLOR_WHITE_BG #define COLOR_UNKNOWN_EVENT_MASK COLOR_WHITE_BG #define COLOR_UNKNOWN_LE_STATES COLOR_WHITE_BG #define COLOR_UNKNOWN_SERVICE_CLASS COLOR_WHITE_BG #define COLOR_UNKNOWN_PKT_TYPE_BIT COLOR_WHITE_BG #define COLOR_PHY_PACKET COLOR_BLUE static time_t time_offset = ((time_t) -1); static unsigned long filter_mask = 0; static bool index_filter = false; static uint16_t index_number = 0; static uint16_t index_current = 0; #define MAX_CONN 16 struct conn_data { uint16_t handle; uint8_t type; }; static struct conn_data conn_list[MAX_CONN]; static void assign_handle(uint16_t handle, uint8_t type) { int i; for (i = 0; i < MAX_CONN; i++) { if (conn_list[i].handle == 0x0000) { conn_list[i].handle = handle; conn_list[i].type = type; break; } } } static void release_handle(uint16_t handle) { int i; for (i = 0; i < MAX_CONN; i++) { if (conn_list[i].handle == handle) { conn_list[i].handle = 0x0000; conn_list[i].type = 0x00; break; } } } static uint8_t get_type(uint16_t handle) { int i; for (i = 0; i < MAX_CONN; i++) { if (conn_list[i].handle == handle) return conn_list[i].type; } return 0xff; } void packet_set_filter(unsigned long filter) { filter_mask = filter; } void packet_add_filter(unsigned long filter) { if (index_filter) filter &= ~PACKET_FILTER_SHOW_INDEX; filter_mask |= filter; } void packet_del_filter(unsigned long filter) { filter_mask &= ~filter; } void packet_select_index(uint16_t index) { filter_mask &= ~PACKET_FILTER_SHOW_INDEX; index_filter = true; index_number = index; } #define print_space(x) printf("%*c", (x), ' '); static void print_packet(struct timeval *tv, uint16_t index, char ident, const char *color, const char *label, const char *text, const char *extra) { int col = num_columns(); char line[256], ts_str[64]; int n, ts_len = 0, ts_pos = 0, len = 0, pos = 0; if (filter_mask & PACKET_FILTER_SHOW_INDEX) { if (use_color()) { n = sprintf(ts_str + ts_pos, "%s", COLOR_INDEX_LABEL); if (n > 0) ts_pos += n; } n = sprintf(ts_str + ts_pos, " [hci%d]", index); if (n > 0) { ts_pos += n; ts_len += n; } } if (tv) { time_t t = tv->tv_sec; struct tm tm; localtime_r(&t, &tm); if (use_color()) { n = sprintf(ts_str + ts_pos, "%s", COLOR_TIMESTAMP); if (n > 0) ts_pos += n; } if (filter_mask & PACKET_FILTER_SHOW_DATE) { n = sprintf(ts_str + ts_pos, " %04d-%02d-%02d", tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday); if (n > 0) { ts_pos += n; ts_len += n; } } if (filter_mask & PACKET_FILTER_SHOW_TIME) { n = sprintf(ts_str + ts_pos, " %02d:%02d:%02d.%06lu", tm.tm_hour, tm.tm_min, tm.tm_sec, tv->tv_usec); if (n > 0) { ts_pos += n; ts_len += n; } } if (filter_mask & PACKET_FILTER_SHOW_TIME_OFFSET) { n = sprintf(ts_str + ts_pos, " %lu.%06lu", tv->tv_sec - time_offset, tv->tv_usec); if (n > 0) { ts_pos += n; ts_len += n; } } } if (use_color()) { n = sprintf(ts_str + ts_pos, "%s", COLOR_OFF); if (n > 0) ts_pos += n; } if (use_color()) { n = sprintf(line + pos, "%s", color); if (n > 0) pos += n; } n = sprintf(line + pos, "%c %s", ident, label); if (n > 0) { pos += n; len += n; } if (text) { int extra_len = extra ? strlen(extra) : 0; int max_len = col - len - extra_len - ts_len - 3; n = snprintf(line + pos, max_len + 1, ": %s", text); if (n > max_len) { line[pos + max_len - 1] = '.'; line[pos + max_len - 2] = '.'; if (line[pos + max_len - 3] == ' ') line[pos + max_len - 3] = '.'; n = max_len; } if (n > 0) { pos += n; len += n; } } if (use_color()) { n = sprintf(line + pos, "%s", COLOR_OFF); if (n > 0) pos += n; } if (extra) { n = sprintf(line + pos, " %s", extra); if (n > 0) { pos += n; len += n; } } if (ts_len > 0) { printf("%s", line); if (len < col) print_space(col - len - ts_len - 1); printf("%s%s\n", use_color() ? COLOR_TIMESTAMP : "", ts_str); } else printf("%s\n", line); } static const struct { uint8_t error; const char *str; } error2str_table[] = { { 0x00, "Success" }, { 0x01, "Unknown HCI Command" }, { 0x02, "Unknown Connection Identifier" }, { 0x03, "Hardware Failure" }, { 0x04, "Page Timeout" }, { 0x05, "Authentication Failure" }, { 0x06, "PIN or Key Missing" }, { 0x07, "Memory Capacity Exceeded" }, { 0x08, "Connection Timeout" }, { 0x09, "Connection Limit Exceeded" }, { 0x0a, "Synchronous Connection Limit to a Device Exceeded" }, { 0x0b, "ACL Connection Already Exists" }, { 0x0c, "Command Disallowed" }, { 0x0d, "Connection Rejected due to Limited Resources" }, { 0x0e, "Connection Rejected due to Security Reasons" }, { 0x0f, "Connection Rejected due to Unacceptable BD_ADDR" }, { 0x10, "Connection Accept Timeout Exceeded" }, { 0x11, "Unsupported Feature or Parameter Value" }, { 0x12, "Invalid HCI Command Parameters" }, { 0x13, "Remote User Terminated Connection" }, { 0x14, "Remote Device Terminated due to Low Resources" }, { 0x15, "Remote Device Terminated due to Power Off" }, { 0x16, "Connection Terminated By Local Host" }, { 0x17, "Repeated Attempts" }, { 0x18, "Pairing Not Allowed" }, { 0x19, "Unknown LMP PDU" }, { 0x1a, "Unsupported Remote Feature / Unsupported LMP Feature" }, { 0x1b, "SCO Offset Rejected" }, { 0x1c, "SCO Interval Rejected" }, { 0x1d, "SCO Air Mode Rejected" }, { 0x1e, "Invalid LMP Parameters" }, { 0x1f, "Unspecified Error" }, { 0x20, "Unsupported LMP Parameter Value" }, { 0x21, "Role Change Not Allowed" }, { 0x22, "LMP Response Timeout / LL Response Timeout" }, { 0x23, "LMP Error Transaction Collision" }, { 0x24, "LMP PDU Not Allowed" }, { 0x25, "Encryption Mode Not Acceptable" }, { 0x26, "Link Key cannot be Changed" }, { 0x27, "Requested QoS Not Supported" }, { 0x28, "Instant Passed" }, { 0x29, "Pairing With Unit Key Not Supported" }, { 0x2a, "Different Transaction Collision" }, { 0x2b, "Reserved" }, { 0x2c, "QoS Unacceptable Parameter" }, { 0x2d, "QoS Rejected" }, { 0x2e, "Channel Classification Not Supported" }, { 0x2f, "Insufficient Security" }, { 0x30, "Parameter Out Of Manadatory Range" }, { 0x31, "Reserved" }, { 0x32, "Role Switch Pending" }, { 0x33, "Reserved" }, { 0x34, "Reserved Slot Violation" }, { 0x35, "Role Switch Failed" }, { 0x36, "Extended Inquiry Response Too Large" }, { 0x37, "Secure Simple Pairing Not Supported By Host" }, { 0x38, "Host Busy - Pairing" }, { 0x39, "Connection Rejected due to No Suitable Channel Found" }, { 0x3a, "Controller Busy" }, { 0x3b, "Unacceptable Connection Interval" }, { 0x3c, "Directed Advertising Timeout" }, { 0x3d, "Connection Terminated due to MIC Failure" }, { 0x3e, "Connection Failed to be Established" }, { 0x3f, "MAC Connection Failed" }, { 0x40, "Coarse Clock Adjustment Rejected " "but Will Try to Adjust Using Clock Dragging" }, { } }; static void print_error(const char *label, uint8_t error) { const char *str = "Unknown"; const char *color_on, *color_off; bool unknown = true; int i; for (i = 0; error2str_table[i].str; i++) { if (error2str_table[i].error == error) { str = error2str_table[i].str; unknown = false; break; } } if (use_color()) { if (error) { if (unknown) color_on = COLOR_UNKNOWN_ERROR; else color_on = COLOR_RED; } else color_on = COLOR_GREEN; color_off = COLOR_OFF; } else { color_on = ""; color_off = ""; } print_field("%s: %s%s%s (0x%2.2x)", label, color_on, str, color_off, error); } static void print_status(uint8_t status) { print_error("Status", status); } static void print_reason(uint8_t reason) { print_error("Reason", reason); } void packet_print_error(const char *label, uint8_t error) { print_error(label, error); } static void print_addr_type(const char *label, uint8_t addr_type) { const char *str; switch (addr_type) { case 0x00: str = "Public"; break; case 0x01: str = "Random"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x)", label, str, addr_type); } static void print_addr_resolve(const char *label, const uint8_t *addr, uint8_t addr_type, bool resolve) { const char *str; char *company; switch (addr_type) { case 0x00: if (!hwdb_get_company(addr, &company)) company = NULL; if (company) { print_field("%s: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X" " (%s)", label, addr[5], addr[4], addr[3], addr[2], addr[1], addr[0], company); free(company); } else { print_field("%s: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X" " (OUI %2.2X-%2.2X-%2.2X)", label, addr[5], addr[4], addr[3], addr[2], addr[1], addr[0], addr[5], addr[4], addr[3]); } break; case 0x01: switch ((addr[5] & 0xc0) >> 6) { case 0x00: str = "Non-Resolvable"; break; case 0x01: str = "Resolvable"; break; case 0x03: str = "Static"; break; default: str = "Reserved"; break; } print_field("%s: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X (%s)", label, addr[5], addr[4], addr[3], addr[2], addr[1], addr[0], str); if (resolve && (addr[5] & 0xc0) == 0x40) { uint8_t ident[6], ident_type; if (keys_resolve_identity(addr, ident, &ident_type)) { print_addr_type(" Identity type", ident_type); print_addr_resolve(" Identity", ident, ident_type, false); } } break; default: print_field("%s: %2.2X-%2.2X-%2.2X-%2.2X-%2.2X-%2.2X", label, addr[5], addr[4], addr[3], addr[2], addr[1], addr[0]); break; } } static void print_addr(const char *label, const uint8_t *addr, uint8_t addr_type) { print_addr_resolve(label, addr, addr_type, true); } static void print_bdaddr(const uint8_t *bdaddr) { print_addr("Address", bdaddr, 0x00); } static void print_lt_addr(uint8_t lt_addr) { print_field("LT address: %d", lt_addr); } static void print_handle(uint16_t handle) { print_field("Handle: %d", le16_to_cpu(handle)); } static void print_phy_handle(uint8_t phy_handle) { print_field("Physical handle: %d", phy_handle); } static const struct { uint8_t bit; const char *str; } pkt_type_table[] = { { 1, "2-DH1 may not be used" }, { 2, "3-DH1 may not be used" }, { 3, "DM1 may be used" }, { 4, "DH1 may be used" }, { 8, "2-DH3 may not be used" }, { 9, "3-DH3 may not be used" }, { 10, "DM3 may be used" }, { 11, "DH3 may be used" }, { 12, "3-DH5 may not be used" }, { 13, "3-DH5 may not be used" }, { 14, "DM5 may be used" }, { 15, "DH5 may be used" }, { } }; static void print_pkt_type(uint16_t pkt_type) { uint16_t mask; int i; print_field("Packet type: 0x%4.4x", le16_to_cpu(pkt_type)); mask = le16_to_cpu(pkt_type); for (i = 0; pkt_type_table[i].str; i++) { if (le16_to_cpu(pkt_type) & (1 << pkt_type_table[i].bit)) { print_field(" %s", pkt_type_table[i].str); mask &= ~(1 << pkt_type_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_PKT_TYPE_BIT, " Unknown packet types (0x%4.4x)", mask); } static const struct { uint8_t bit; const char *str; } pkt_type_sco_table[] = { { 0, "HV1 may be used" }, { 1, "HV2 may be used" }, { 2, "HV3 may be used" }, { 3, "EV3 may be used" }, { 4, "EV4 may be used" }, { 5, "EV5 may be used" }, { 6, "2-EV3 may not be used" }, { 7, "3-EV3 may not be used" }, { 8, "2-EV5 may not be used" }, { 9, "3-EV5 may not be used" }, { } }; static void print_pkt_type_sco(uint16_t pkt_type) { uint16_t mask; int i; print_field("Packet type: 0x%4.4x", le16_to_cpu(pkt_type)); mask = le16_to_cpu(pkt_type); for (i = 0; pkt_type_sco_table[i].str; i++) { if (le16_to_cpu(pkt_type) & (1 << pkt_type_sco_table[i].bit)) { print_field(" %s", pkt_type_sco_table[i].str); mask &= ~(1 << pkt_type_sco_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_PKT_TYPE_BIT, " Unknown packet types (0x%4.4x)", mask); } static void print_iac(const uint8_t *lap) { const char *str = ""; if (lap[2] == 0x9e && lap[1] == 0x8b) { switch (lap[0]) { case 0x33: str = " (General Inquiry)"; break; case 0x00: str = " (Limited Inquiry)"; break; } } print_field("Access code: 0x%2.2x%2.2x%2.2x%s", lap[2], lap[1], lap[0], str); } static void print_auth_enable(uint8_t enable) { const char *str; switch (enable) { case 0x00: str = "Authentication not required"; break; case 0x01: str = "Authentication required for all connections"; break; default: str = "Reserved"; break; } print_field("Enable: %s (0x%2.2x)", str, enable); } static void print_encrypt_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Encryption not required"; break; case 0x01: str = "Encryption required for all connections"; break; default: str = "Reserved"; break; } print_field("Mode: %s (0x%2.2x)", str, mode); } static const struct { uint8_t bit; const char *str; } svc_class_table[] = { { 0, "Positioning (Location identification)" }, { 1, "Networking (LAN, Ad hoc)" }, { 2, "Rendering (Printing, Speaker)" }, { 3, "Capturing (Scanner, Microphone)" }, { 4, "Object Transfer (v-Inbox, v-Folder)" }, { 5, "Audio (Speaker, Microphone, Headset)" }, { 6, "Telephony (Cordless telephony, Modem, Headset)" }, { 7, "Information (WEB-server, WAP-server)" }, { } }; static const struct { uint8_t val; const char *str; } major_class_computer_table[] = { { 0x00, "Uncategorized, code for device not assigned" }, { 0x01, "Desktop workstation" }, { 0x02, "Server-class computer" }, { 0x03, "Laptop" }, { 0x04, "Handheld PC/PDA (clam shell)" }, { 0x05, "Palm sized PC/PDA" }, { 0x06, "Wearable computer (Watch sized)" }, { 0x07, "Tablet" }, { } }; static const char *major_class_computer(uint8_t minor) { int i; for (i = 0; major_class_computer_table[i].str; i++) { if (major_class_computer_table[i].val == minor) return major_class_computer_table[i].str; } return NULL; } static const struct { uint8_t val; const char *str; } major_class_phone_table[] = { { 0x00, "Uncategorized, code for device not assigned" }, { 0x01, "Cellular" }, { 0x02, "Cordless" }, { 0x03, "Smart phone" }, { 0x04, "Wired modem or voice gateway" }, { 0x05, "Common ISDN Access" }, { } }; static const char *major_class_phone(uint8_t minor) { int i; for (i = 0; major_class_phone_table[i].str; i++) { if (major_class_phone_table[i].val == minor) return major_class_phone_table[i].str; } return NULL; } static const struct { uint8_t val; const char *str; } major_class_av_table[] = { { 0x00, "Uncategorized, code for device not assigned" }, { 0x01, "Wearable Headset Device" }, { 0x02, "Hands-free Device" }, { 0x04, "Microphone" }, { 0x05, "Loudspeaker" }, { 0x06, "Headphones" }, { 0x07, "Portable Audio" }, { 0x08, "Car audio" }, { 0x09, "Set-top box" }, { 0x0a, "HiFi Audio Device" }, { 0x0b, "VCR" }, { 0x0c, "Video Camera" }, { 0x0d, "Camcorder" }, { 0x0e, "Video Monitor" }, { 0x0f, "Video Display and Loudspeaker" }, { 0x10, "Video Conferencing" }, { 0x12, "Gaming/Toy" }, { } }; static const char *major_class_av(uint8_t minor) { int i; for (i = 0; major_class_av_table[i].str; i++) { if (major_class_av_table[i].val == minor) return major_class_av_table[i].str; } return NULL; } static const struct { uint8_t val; const char *str; } major_class_wearable_table[] = { { 0x01, "Wrist Watch" }, { 0x02, "Pager" }, { 0x03, "Jacket" }, { 0x04, "Helmet" }, { 0x05, "Glasses" }, { } }; static const char *major_class_wearable(uint8_t minor) { int i; for (i = 0; major_class_wearable_table[i].str; i++) { if (major_class_wearable_table[i].val == minor) return major_class_wearable_table[i].str; } return NULL; } static const struct { uint8_t val; const char *str; const char *(*func)(uint8_t minor); } major_class_table[] = { { 0x00, "Miscellaneous" }, { 0x01, "Computer (desktop, notebook, PDA, organizers)", major_class_computer }, { 0x02, "Phone (cellular, cordless, payphone, modem)", major_class_phone }, { 0x03, "LAN /Network Access point" }, { 0x04, "Audio/Video (headset, speaker, stereo, video, vcr)", major_class_av }, { 0x05, "Peripheral (mouse, joystick, keyboards)" }, { 0x06, "Imaging (printing, scanner, camera, display)" }, { 0x07, "Wearable", major_class_wearable }, { 0x08, "Toy" }, { 0x09, "Health" }, { 0x1f, "Uncategorized, specific device code not specified" }, { } }; static void print_dev_class(const uint8_t *dev_class) { uint8_t mask, major_cls, minor_cls; const char *major_str = NULL; const char *minor_str = NULL; int i; print_field("Class: 0x%2.2x%2.2x%2.2x", dev_class[2], dev_class[1], dev_class[0]); if ((dev_class[0] & 0x03) != 0x00) { print_field(" Format type: 0x%2.2x", dev_class[0] & 0x03); print_text(COLOR_ERROR, " invalid format type"); return; } major_cls = dev_class[1] & 0x1f; minor_cls = (dev_class[0] & 0xfc) >> 2; for (i = 0; major_class_table[i].str; i++) { if (major_class_table[i].val == major_cls) { major_str = major_class_table[i].str; if (!major_class_table[i].func) break; minor_str = major_class_table[i].func(minor_cls); break; } } if (major_str) { print_field(" Major class: %s", major_str); if (minor_str) print_field(" Minor class: %s", minor_str); else print_field(" Minor class: 0x%2.2x", minor_cls); } else { print_field(" Major class: 0x%2.2x", major_cls); print_field(" Minor class: 0x%2.2x", minor_cls); } if (dev_class[1] & 0x20) print_field(" Limited Discoverable Mode"); if ((dev_class[1] & 0xc0) != 0x00) { print_text(COLOR_ERROR, " invalid service class"); return; } mask = dev_class[2]; for (i = 0; svc_class_table[i].str; i++) { if (dev_class[2] & (1 << svc_class_table[i].bit)) { print_field(" %s", svc_class_table[i].str); mask &= ~(1 << svc_class_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_SERVICE_CLASS, " Unknown service class (0x%2.2x)", mask); } static const struct { uint16_t val; bool generic; const char *str; } appearance_table[] = { { 0, true, "Unknown" }, { 64, true, "Phone" }, { 128, true, "Computer" }, { 192, true, "Watch" }, { 193, false, "Sports Watch" }, { 256, true, "Clock" }, { 320, true, "Display" }, { 384, true, "Remote Control" }, { 448, true, "Eye-glasses" }, { 512, true, "Tag" }, { 576, true, "Keyring" }, { 640, true, "Media Player" }, { 704, true, "Barcode Scanner" }, { 768, true, "Thermometer" }, { 769, false, "Thermometer: Ear" }, { 832, true, "Heart Rate Sensor" }, { 833, false, "Heart Rate Belt" }, { 896, true, "Blood Pressure" }, { 897, false, "Blood Pressure: Arm" }, { 898, false, "Blood Pressure: Wrist" }, { 960, true, "Human Interface Device" }, { 961, false, "Keyboard" }, { 962, false, "Mouse" }, { 963, false, "Joystick" }, { 964, false, "Gamepad" }, { 965, false, "Digitizer Tablet" }, { 966, false, "Card Reader" }, { 967, false, "Digital Pen" }, { 968, false, "Barcode Scanner" }, { 1024, true, "Glucose Meter" }, { 1088, true, "Running Walking Sensor" }, { 1152, true, "Cycling" }, { 1216, true, "Undefined" }, { 3136, true, "Pulse Oximeter" }, { 3200, true, "Undefined" }, { 5184, true, "Outdoor Sports Activity"}, { 5248, true, "Undefined" }, { } }; static void print_appearance(uint16_t appearance) { const char *str = NULL; int i, type = 0; for (i = 0; appearance_table[i].str; i++) { if (appearance_table[i].generic) { if (appearance < appearance_table[i].val) break; type = i; } if (appearance_table[i].val == appearance) { str = appearance_table[i].str; break; } } if (!str) str = appearance_table[type].str; print_field("Appearance: %s (0x%4.4x)", str, appearance); } static void print_num_broadcast_retrans(uint8_t num_retrans) { print_field("Number of broadcast retransmissions: %u", num_retrans); } static void print_hold_mode_activity(uint8_t activity) { print_field("Activity: 0x%2.2x", activity); if (activity == 0x00) { print_field(" Maintain current Power State"); return; } if (activity & 0x01) print_field(" Suspend Page Scan"); if (activity & 0x02) print_field(" Suspend Inquiry Scan"); if (activity & 0x04) print_field(" Suspend Periodic Inquiries"); } static void print_power_type(uint8_t type) { const char *str; switch (type) { case 0x00: str = "Current Transmit Power Level"; break; case 0x01: str = "Maximum Transmit Power Level"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); } static void print_power_level(int8_t level) { print_field("TX power: %d dBm", level); } static void print_sync_flow_control(uint8_t enable) { const char *str; switch (enable) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Flow control: %s (0x%2.2x)", str, enable); } static void print_host_flow_control(uint8_t enable) { const char *str; switch (enable) { case 0x00: str = "Off"; break; case 0x01: str = "ACL Data Packets"; break; case 0x02: str = "Synchronous Data Packets"; break; case 0x03: str = "ACL and Synchronous Data Packets"; break; default: str = "Reserved"; break; } print_field("Flow control: %s (0x%2.2x)", str, enable); } static void print_voice_setting(uint16_t setting) { uint8_t input_coding = (le16_to_cpu(setting) & 0x0300) >> 8; uint8_t input_data_format = (le16_to_cpu(setting) & 0xc0) >> 6; uint8_t air_coding_format = le16_to_cpu(setting) & 0x0003; const char *str; print_field("Setting: 0x%4.4x", le16_to_cpu(setting)); switch (input_coding) { case 0x00: str = "Linear"; break; case 0x01: str ="u-law"; break; case 0x02: str = "A-law"; break; default: str = "Reserved"; break; } print_field(" Input Coding: %s", str); switch (input_data_format) { case 0x00: str = "1's complement"; break; case 0x01: str = "2's complement"; break; case 0x02: str = "Sign-Magnitude"; break; case 0x03: str = "Unsigned"; break; default: str = "Reserved"; break; } print_field(" Input Data Format: %s", str); if (input_coding == 0x00) { print_field(" Input Sample Size: %s", le16_to_cpu(setting) & 0x20 ? "16-bit" : "8-bit"); print_field(" # of bits padding at MSB: %d", (le16_to_cpu(setting) & 0x1c) >> 2); } switch (air_coding_format) { case 0x00: str = "CVSD"; break; case 0x01: str ="u-law"; break; case 0x02: str = "A-law"; break; case 0x03: str = "Transparent Data"; break; default: str = "Reserved"; break; } print_field(" Air Coding Format: %s", str); } static void print_retransmission_effort(uint8_t effort) { const char *str; switch (effort) { case 0x00: str = "No retransmissions"; break; case 0x01: str = "Optimize for power consumption"; break; case 0x02: str = "Optimize for link quality"; break; case 0xff: str = "Don't care"; break; default: str = "Reserved"; break; } print_field("Retransmission effort: %s (0x%2.2x)", str, effort); } static void print_scan_enable(uint8_t scan_enable) { const char *str; switch (scan_enable) { case 0x00: str = "No Scans"; break; case 0x01: str = "Inquiry Scan"; break; case 0x02: str = "Page Scan"; break; case 0x03: str = "Inquiry Scan + Page Scan"; break; default: str = "Reserved"; break; } print_field("Scan enable: %s (0x%2.2x)", str, scan_enable); } static void print_link_policy(uint16_t link_policy) { uint16_t policy = le16_to_cpu(link_policy); print_field("Link policy: 0x%4.4x", policy); if (policy == 0x0000) { print_field(" Disable All Modes"); return; } if (policy & 0x0001) print_field(" Enable Role Switch"); if (policy & 0x0002) print_field(" Enable Hold Mode"); if (policy & 0x0004) print_field(" Enable Sniff Mode"); if (policy & 0x0008) print_field(" Enabled Park State"); } static void print_air_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "u-law log"; break; case 0x01: str = "A-law log"; break; case 0x02: str = "CVSD"; break; case 0x03: str = "Transparent"; break; default: str = "Reserved"; break; } print_field("Air mode: %s (0x%2.2x)", str, mode); } static void print_inquiry_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Standard Inquiry Result"; break; case 0x01: str = "Inquiry Result with RSSI"; break; case 0x02: str = "Inquiry Result with RSSI or Extended Inquiry Result"; break; default: str = "Reserved"; break; } print_field("Mode: %s (0x%2.2x)", str, mode); } static void print_inquiry_scan_type(uint8_t type) { const char *str; switch (type) { case 0x00: str = "Standard Scan"; break; case 0x01: str = "Interlaced Scan"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); } static void print_pscan_type(uint8_t type) { const char *str; switch (type) { case 0x00: str = "Standard Scan"; break; case 0x01: str = "Interlaced Scan"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); } static void print_afh_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Mode: %s (0x%2.2x)", str, mode); } static void print_simple_pairing_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Mode: %s (0x%2.2x)", str, mode); } static void print_ssp_debug_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Debug mode: %s (0x%2.2x)", str, mode); } static void print_secure_conn_support(uint8_t support) { const char *str; switch (support) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Support: %s (0x%2.2x)", str, support); } static void print_auth_payload_timeout(uint16_t timeout) { print_field("Timeout: %d msec (0x%4.4x)", le16_to_cpu(timeout) * 10, le16_to_cpu(timeout)); } static void print_pscan_rep_mode(uint8_t pscan_rep_mode) { const char *str; switch (pscan_rep_mode) { case 0x00: str = "R0"; break; case 0x01: str = "R1"; break; case 0x02: str = "R2"; break; default: str = "Reserved"; break; } print_field("Page scan repetition mode: %s (0x%2.2x)", str, pscan_rep_mode); } static void print_pscan_period_mode(uint8_t pscan_period_mode) { const char *str; switch (pscan_period_mode) { case 0x00: str = "P0"; break; case 0x01: str = "P1"; break; case 0x02: str = "P2"; break; default: str = "Reserved"; break; } print_field("Page period mode: %s (0x%2.2x)", str, pscan_period_mode); } static void print_pscan_mode(uint8_t pscan_mode) { const char *str; switch (pscan_mode) { case 0x00: str = "Mandatory"; break; case 0x01: str = "Optional I"; break; case 0x02: str = "Optional II"; break; case 0x03: str = "Optional III"; break; default: str = "Reserved"; break; } print_field("Page scan mode: %s (0x%2.2x)", str, pscan_mode); } static void print_clock_offset(uint16_t clock_offset) { print_field("Clock offset: 0x%4.4x", le16_to_cpu(clock_offset)); } static void print_clock(uint32_t clock) { print_field("Clock: 0x%8.8x", le32_to_cpu(clock)); } static void print_clock_type(uint8_t type) { const char *str; switch (type) { case 0x00: str = "Local clock"; break; case 0x01: str = "Piconet clock"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); } static void print_clock_accuracy(uint16_t accuracy) { if (le16_to_cpu(accuracy) == 0xffff) print_field("Accuracy: Unknown (0x%4.4x)", le16_to_cpu(accuracy)); else print_field("Accuracy: %.4f msec (0x%4.4x)", le16_to_cpu(accuracy) * 0.3125, le16_to_cpu(accuracy)); } static void print_lpo_allowed(uint8_t lpo_allowed) { print_field("LPO allowed: 0x%2.2x", lpo_allowed); } static void print_broadcast_fragment(uint8_t fragment) { const char *str; switch (fragment) { case 0x00: str = "Continuation fragment"; break; case 0x01: str = "Starting fragment"; break; case 0x02: str = "Ending fragment"; break; case 0x03: str = "No fragmentation"; break; default: str = "Reserved"; break; } print_field("Fragment: %s (0x%2.2x)", str, fragment); } static void print_link_type(uint8_t link_type) { const char *str; switch (link_type) { case 0x00: str = "SCO"; break; case 0x01: str = "ACL"; break; case 0x02: str = "eSCO"; break; default: str = "Reserved"; break; } print_field("Link type: %s (0x%2.2x)", str, link_type); } static void print_encr_mode(uint8_t encr_mode) { const char *str; switch (encr_mode) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Encryption: %s (0x%2.2x)", str, encr_mode); } static void print_encr_mode_change(uint8_t encr_mode, uint16_t handle) { const char *str; uint8_t conn_type; conn_type = get_type(le16_to_cpu(handle)); switch (encr_mode) { case 0x00: str = "Disabled"; break; case 0x01: switch (conn_type) { case 0x00: str = "Enabled with E0"; break; case 0x01: str = "Enabled with AES-CCM"; break; default: str = "Enabled"; break; } break; case 0x02: str = "Enabled with AES-CCM"; break; default: str = "Reserved"; break; } print_field("Encryption: %s (0x%2.2x)", str, encr_mode); } static void print_pin_type(uint8_t pin_type) { const char *str; switch (pin_type) { case 0x00: str = "Variable"; break; case 0x01: str = "Fixed"; break; default: str = "Reserved"; break; } print_field("PIN type: %s (0x%2.2x)", str, pin_type); } static void print_key_flag(uint8_t key_flag) { const char *str; switch (key_flag) { case 0x00: str = "Semi-permanent"; break; case 0x01: str = "Temporary"; break; default: str = "Reserved"; break; } print_field("Key flag: %s (0x%2.2x)", str, key_flag); } static void print_key_len(uint8_t key_len) { const char *str; switch (key_len) { case 32: str = "802.11 PAL"; break; default: str = "Reserved"; break; } print_field("Key length: %s (%d)", str, key_len); } static void print_key_type(uint8_t key_type) { const char *str; switch (key_type) { case 0x00: str = "Combination key"; break; case 0x01: str = "Local Unit key"; break; case 0x02: str = "Remote Unit key"; break; case 0x03: str = "Debug Combination key"; break; case 0x04: str = "Unauthenticated Combination key from P-192"; break; case 0x05: str = "Authenticated Combination key from P-192"; break; case 0x06: str = "Changed Combination key"; break; case 0x07: str = "Unauthenticated Combination key from P-256"; break; case 0x08: str = "Authenticated Combination key from P-256"; break; default: str = "Reserved"; break; } print_field("Key type: %s (0x%2.2x)", str, key_type); } static void print_key_size(uint8_t key_size) { print_field("Key size: %d", key_size); } static void print_hex_field(const char *label, const uint8_t *data, uint8_t len) { char str[len * 2 + 1]; uint8_t i; str[0] = '\0'; for (i = 0; i < len; i++) sprintf(str + (i * 2), "%2.2x", data[i]); print_field("%s: %s", label, str); } static void print_key(const char *label, const uint8_t *link_key) { print_hex_field(label, link_key, 16); } static void print_link_key(const uint8_t *link_key) { print_key("Link key", link_key); } static void print_pin_code(const uint8_t *pin_code, uint8_t pin_len) { char str[pin_len + 1]; uint8_t i; for (i = 0; i < pin_len; i++) sprintf(str + i, "%c", (const char) pin_code[i]); print_field("PIN code: %s", str); } static void print_hash_p192(const uint8_t *hash) { print_key("Hash C from P-192", hash); } static void print_hash_p256(const uint8_t *hash) { print_key("Hash C from P-256", hash); } static void print_randomizer_p192(const uint8_t *randomizer) { print_key("Randomizer R with P-192", randomizer); } static void print_randomizer_p256(const uint8_t *randomizer) { print_key("Randomizer R with P-256", randomizer); } static void print_passkey(uint32_t passkey) { print_field("Passkey: %06d", le32_to_cpu(passkey)); } static void print_io_capability(uint8_t capability) { const char *str; switch (capability) { case 0x00: str = "DisplayOnly"; break; case 0x01: str = "DisplayYesNo"; break; case 0x02: str = "KeyboardOnly"; break; case 0x03: str = "NoInputNoOutput"; break; default: str = "Reserved"; break; } print_field("IO capability: %s (0x%2.2x)", str, capability); } static void print_oob_data(uint8_t oob_data) { const char *str; switch (oob_data) { case 0x00: str = "Authentication data not present"; break; case 0x01: str = "P-192 authentication data present"; break; case 0x02: str = "P-256 authentication data present"; break; case 0x03: str = "P-192 and P-256 authentication data present"; break; default: str = "Reserved"; break; } print_field("OOB data: %s (0x%2.2x)", str, oob_data); } static void print_authentication(uint8_t authentication) { const char *str; switch (authentication) { case 0x00: str = "No Bonding - MITM not required"; break; case 0x01: str = "No Bonding - MITM required"; break; case 0x02: str = "Dedicated Bonding - MITM not required"; break; case 0x03: str = "Dedicated Bonding - MITM required"; break; case 0x04: str = "General Bonding - MITM not required"; break; case 0x05: str = "General Bonding - MITM required"; break; default: str = "Reserved"; break; } print_field("Authentication: %s (0x%2.2x)", str, authentication); } void packet_print_io_capability(uint8_t capability) { print_io_capability(capability); } void packet_print_io_authentication(uint8_t authentication) { print_authentication(authentication); } static void print_location_domain_aware(uint8_t aware) { const char *str; switch (aware) { case 0x00: str = "Regulatory domain unknown"; break; case 0x01: str = "Regulatory domain known"; break; default: str = "Reserved"; break; } print_field("Domain aware: %s (0x%2.2x)", str, aware); } static void print_location_domain(const uint8_t *domain) { print_field("Domain: %c%c (0x%2.2x%2.2x)", (char) domain[0], (char) domain[1], domain[0], domain[1]); } static void print_location_domain_options(uint8_t options) { print_field("Domain options: %c (0x%2.2x)", (char) options, options); } static void print_location_options(uint8_t options) { print_field("Options: 0x%2.2x", options); } static void print_flow_control_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Packet based"; break; case 0x01: str = "Data block based"; break; default: str = "Reserved"; break; } print_field("Flow control mode: %s (0x%2.2x)", str, mode); } static void print_flow_direction(uint8_t direction) { const char *str; switch (direction) { case 0x00: str = "Outgoing"; break; case 0x01: str = "Incoming"; break; default: str = "Reserved"; break; } print_field("Flow direction: %s (0x%2.2x)", str, direction); } static void print_service_type(uint8_t service_type) { const char *str; switch (service_type) { case 0x00: str = "No Traffic"; break; case 0x01: str = "Best Effort"; break; case 0x02: str = "Guaranteed"; break; default: str = "Reserved"; break; } print_field("Service type: %s (0x%2.2x)", str, service_type); } static void print_flow_spec(const char *label, const uint8_t *data) { const char *str; switch (data[1]) { case 0x00: str = "No traffic"; break; case 0x01: str = "Best effort"; break; case 0x02: str = "Guaranteed"; break; default: str = "Reserved"; break; } print_field("%s flow spec: 0x%2.2x", label, data[0]); print_field(" Service type: %s (0x%2.2x)", str, data[1]); print_field(" Maximum SDU size: 0x%4.4x", get_le16(data + 2)); print_field(" SDU inter-arrival time: 0x%8.8x", get_le32(data + 4)); print_field(" Access latency: 0x%8.8x", get_le32(data + 8)); print_field(" Flush timeout: 0x%8.8x", get_le32(data + 12)); } static void print_short_range_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Short range mode: %s (0x%2.2x)", str, mode); } static void print_amp_status(uint8_t amp_status) { const char *str; switch (amp_status) { case 0x00: str = "Present"; break; case 0x01: str = "Bluetooth only"; break; case 0x02: str = "No capacity"; break; case 0x03: str = "Low capacity"; break; case 0x04: str = "Medium capacity"; break; case 0x05: str = "High capacity"; break; case 0x06: str = "Full capacity"; break; default: str = "Reserved"; break; } print_field("AMP status: %s (0x%2.2x)", str, amp_status); } static void print_num_resp(uint8_t num_resp) { print_field("Num responses: %d", num_resp); } static void print_num_reports(uint8_t num_reports) { print_field("Num reports: %d", num_reports); } static void print_rssi(int8_t rssi) { if ((uint8_t) rssi == 0x99 || rssi == 127) print_field("RSSI: invalid (0x%2.2x)", (uint8_t) rssi); else print_field("RSSI: %d dBm (0x%2.2x)", rssi, (uint8_t) rssi); } static void print_slot_625(const char *label, uint16_t value) { print_field("%s: %.3f msec (0x%4.4x)", label, le16_to_cpu(value) * 0.625, le16_to_cpu(value)); } static void print_slot_125(const char *label, uint16_t value) { print_field("%s: %.2f msec (0x%4.4x)", label, le16_to_cpu(value) * 1.25, le16_to_cpu(value)); } static void print_timeout(uint16_t timeout) { print_slot_625("Timeout", timeout); } static void print_interval(uint16_t interval) { print_slot_625("Interval", interval); } static void print_window(uint16_t window) { print_slot_625("Window", window); } static void print_role(uint8_t role) { const char *str; switch (role) { case 0x00: str = "Master"; break; case 0x01: str = "Slave"; break; default: str = "Reserved"; break; } print_field("Role: %s (0x%2.2x)", str, role); } static void print_mode(uint8_t mode) { const char *str; switch (mode) { case 0x00: str = "Active"; break; case 0x01: str = "Hold"; break; case 0x02: str = "Sniff"; break; case 0x03: str = "Park"; break; default: str = "Reserved"; break; } print_field("Mode: %s (0x%2.2x)", str, mode); } static void print_name(const uint8_t *name) { char str[249]; memcpy(str, name, 248); str[248] = '\0'; print_field("Name: %s", str); } static void print_channel_map(const uint8_t *map) { unsigned int count = 0, start = 0; char str[21]; int i, n; for (i = 0; i < 10; i++) sprintf(str + (i * 2), "%2.2x", map[i]); print_field("Channel map: 0x%s", str); for (i = 0; i < 10; i++) { for (n = 0; n < 8; n++) { if (map[i] & (1 << n)) { if (count == 0) start = (i * 8) + n; count++; continue; } if (count > 1) { print_field(" Channel %u-%u", start, start + count - 1 ); count = 0; } else if (count > 0) { print_field(" Channel %u", start); count = 0; } } } } void packet_print_channel_map_lmp(const uint8_t *map) { print_channel_map(map); } static void print_flush_timeout(uint16_t timeout) { if (timeout) print_timeout(timeout); else print_field("Timeout: No Automatic Flush"); } void packet_print_version(const char *label, uint8_t version, const char *sublabel, uint16_t subversion) { const char *str; switch (version) { case 0x00: str = "Bluetooth 1.0b"; break; case 0x01: str = "Bluetooth 1.1"; break; case 0x02: str = "Bluetooth 1.2"; break; case 0x03: str = "Bluetooth 2.0"; break; case 0x04: str = "Bluetooth 2.1"; break; case 0x05: str = "Bluetooth 3.0"; break; case 0x06: str = "Bluetooth 4.0"; break; case 0x07: str = "Bluetooth 4.1"; break; default: str = "Reserved"; break; } print_field("%s: %s (0x%2.2x) - %s %d (0x%4.4x)", label, str, version, sublabel, subversion, subversion); } static void print_hci_version(uint8_t version, uint16_t revision) { packet_print_version("HCI version", version, "Revision", le16_to_cpu(revision)); } static void print_lmp_version(uint8_t version, uint16_t subversion) { packet_print_version("LMP version", version, "Subversion", le16_to_cpu(subversion)); } static void print_pal_version(uint8_t version, uint16_t subversion) { const char *str; switch (version) { case 0x01: str = "Bluetooth 3.0"; break; default: str = "Reserved"; break; } print_field("PAL version: %s (0x%2.2x) - Subversion %d (0x%4.4x)", str, version, le16_to_cpu(subversion), le16_to_cpu(subversion)); } void packet_print_company(const char *label, uint16_t company) { print_field("%s: %s (%d)", label, bt_compidtostr(company), company); } static void print_manufacturer(uint16_t manufacturer) { packet_print_company("Manufacturer", le16_to_cpu(manufacturer)); } static const char *get_supported_command(int bit); static void print_commands(const uint8_t *commands) { unsigned int count = 0; int i, n; for (i = 0; i < 64; i++) { for (n = 0; n < 8; n++) { if (commands[i] & (1 << n)) count++; } } print_field("Commands: %u entr%s", count, count == 1 ? "y" : "ies"); for (i = 0; i < 64; i++) { for (n = 0; n < 8; n++) { const char *cmd; if (!(commands[i] & (1 << n))) continue; cmd = get_supported_command((i * 8) + n); if (cmd) print_field(" %s (Octet %d - Bit %d)", cmd, i, n); else print_text(COLOR_UNKNOWN_COMMAND_BIT, " Octet %d - Bit %d ", i, n); } } } struct features_data { uint8_t bit; const char *str; }; static const struct features_data features_page0[] = { { 0, "3 slot packets" }, { 1, "5 slot packets" }, { 2, "Encryption" }, { 3, "Slot offset" }, { 4, "Timing accuracy" }, { 5, "Role switch" }, { 6, "Hold mode" }, { 7, "Sniff mode" }, { 8, "Park state" }, { 9, "Power control requests" }, { 10, "Channel quality driven data rate (CQDDR)"}, { 11, "SCO link" }, { 12, "HV2 packets" }, { 13, "HV3 packets" }, { 14, "u-law log synchronous data" }, { 15, "A-law log synchronous data" }, { 16, "CVSD synchronous data" }, { 17, "Paging parameter negotiation" }, { 18, "Power control" }, { 19, "Transparent synchronous data" }, { 20, "Flow control lag (least significant bit)"}, { 21, "Flow control lag (middle bit)" }, { 22, "Flow control lag (most significant bit)" }, { 23, "Broadcast Encryption" }, { 25, "Enhanced Data Rate ACL 2 Mbps mode" }, { 26, "Enhanced Data Rate ACL 3 Mbps mode" }, { 27, "Enhanced inquiry scan" }, { 28, "Interlaced inquiry scan" }, { 29, "Interlaced page scan" }, { 30, "RSSI with inquiry results" }, { 31, "Extended SCO link (EV3 packets)" }, { 32, "EV4 packets" }, { 33, "EV5 packets" }, { 35, "AFH capable slave" }, { 36, "AFH classification slave" }, { 37, "BR/EDR Not Supported" }, { 38, "LE Supported (Controller)" }, { 39, "3-slot Enhanced Data Rate ACL packets" }, { 40, "5-slot Enhanced Data Rate ACL packets" }, { 41, "Sniff subrating" }, { 42, "Pause encryption" }, { 43, "AFH capable master" }, { 44, "AFH classification master" }, { 45, "Enhanced Data Rate eSCO 2 Mbps mode" }, { 46, "Enhanced Data Rate eSCO 3 Mbps mode" }, { 47, "3-slot Enhanced Data Rate eSCO packets" }, { 48, "Extended Inquiry Response" }, { 49, "Simultaneous LE and BR/EDR (Controller)" }, { 51, "Secure Simple Pairing" }, { 52, "Encapsulated PDU" }, { 53, "Erroneous Data Reporting" }, { 54, "Non-flushable Packet Boundary Flag" }, { 56, "Link Supervision Timeout Changed Event" }, { 57, "Inquiry TX Power Level" }, { 58, "Enhanced Power Control" }, { 63, "Extended features" }, { } }; static const struct features_data features_page1[] = { { 0, "Secure Simple Pairing (Host Support)" }, { 1, "LE Supported (Host)" }, { 2, "Simultaneous LE and BR/EDR (Host)" }, { 3, "Secure Connections (Host Support)" }, { } }; static const struct features_data features_page2[] = { { 0, "Connectionless Slave Broadcast - Master" }, { 1, "Connectionless Slave Broadcast - Slave" }, { 2, "Synchronization Train" }, { 3, "Synchronization Scan" }, { 4, "Inquiry Response Notification Event" }, { 5, "Generalized interlaced scan" }, { 6, "Coarse Clock Adjustment" }, { 8, "Secure Connections (Controller Support)" }, { 9, "Ping" }, { 11, "Train nudging" }, { } }; static const struct features_data features_le[] = { { 0, "LE Encryption" }, { 1, "Connection Parameter Request Procedure" }, { 2, "Extended Reject Indication" }, { 3, "Slave-initiated Features Exchange" }, { 4, "LE Ping" }, { } }; static void print_features(uint8_t page, const uint8_t *features_array, uint8_t type) { const struct features_data *features_table = NULL; uint64_t mask, features = 0; char str[41]; int i; for (i = 0; i < 8; i++) { sprintf(str + (i * 5), " 0x%2.2x", features_array[i]); features |= ((uint64_t) features_array[i]) << (i * 8); } print_field("Features:%s", str); switch (type) { case 0x00: switch (page) { case 0: features_table = features_page0; break; case 1: features_table = features_page1; break; case 2: features_table = features_page2; break; } break; case 0x01: switch (page) { case 0: features_table = features_le; break; } break; } if (!features_table) return; mask = features; for (i = 0; features_table[i].str; i++) { if (features & (((uint64_t) 1) << features_table[i].bit)) { print_field(" %s", features_table[i].str); mask &= ~(((uint64_t) 1) << features_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_FEATURE_BIT, " Unknown features " "(0x%16.16" PRIx64 ")", mask); } void packet_print_features_lmp(const uint8_t *features, uint8_t page) { print_features(page, features, 0x00); } void packet_print_features_ll(const uint8_t *features) { print_features(0, features, 0x01); } static const struct { uint8_t bit; const char *str; } le_states_table[] = { { 0, "Non-connectable Advertising State" }, { 1, "Scannable Advertising State" }, { 2, "Connectable Advertising State" }, { 3, "Directed Advertising State" }, { 4, "Passive Scanning State" }, { 5, "Active Scanning State" }, { 6, "Initiating State and Connection State in Master Role" }, { 7, "Connection State in Slave Role" }, { 8, "Non-connectable Advertising State and " "Passive Scanning State combination" }, { 9, "Scannable Advertising State and " "Passive Scanning State combination" }, { 10, "Connectable Advertising State and " "Passive Scanning State combination" }, { 11, "Directed Advertising State and " "Passive Scanning State combination" }, { 12, "Non-connectable Advertising State and " "Active Scanning State combination" }, { 13, "Scannable Advertising State and " "Active Scanning State combination" }, { 14, "Connectable Advertising State and " "Active Scanning State combination" }, { 15, "Directed Advertising State and " "Active Scanning State combination" }, { 16, "Non-connectable Advertising State and " "Initiating State combination" }, { 17, "Scannable Advertising State and " "Initiating State combination" }, { 18, "Non-connectable Advertising State and " "Mater Role combination" }, { 19, "Scannable Advertising State and " "Master Role combination" }, { 20, "Non-connectable Advertising State and " "Slave Role combination" }, { 21, "Scannable Advertising State and " "Slave Role combination" }, { 22, "Passive Scanning State and Initiating State combination" }, { 23, "Active Scanning State and Initiating State combination" }, { 24, "Passive Scanning State and Master Role combination" }, { 25, "Active Scanning State and Master Role combination" }, { 26, "Passive Scanning State and Slave Role combination" }, { 27, "Active Scanning State and Slave Role combination" }, { 28, "Initiating State and Master Role combination" }, { } }; static void print_le_states(const uint8_t *states_array) { uint64_t mask, states = 0; int i; for (i = 0; i < 8; i++) states |= ((uint64_t) states_array[i]) << (i * 8); print_field("States: 0x%16.16" PRIx64, states); mask = states; for (i = 0; le_states_table[i].str; i++) { if (states & (((uint64_t) 1) << le_states_table[i].bit)) { print_field(" %s", le_states_table[i].str); mask &= ~(((uint64_t) 1) << le_states_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_LE_STATES, " Unknown states " "(0x%16.16" PRIx64 ")", mask); } static void print_le_channel_map(const uint8_t *map) { unsigned int count = 0, start = 0; char str[11]; int i, n; for (i = 0; i < 5; i++) sprintf(str + (i * 2), "%2.2x", map[i]); print_field("Channel map: 0x%s", str); for (i = 0; i < 5; i++) { for (n = 0; n < 8; n++) { if (map[i] & (1 << n)) { if (count == 0) start = (i * 8) + n; count++; continue; } if (count > 1) { print_field(" Channel %u-%u", start, start + count - 1 ); count = 0; } else if (count > 0) { print_field(" Channel %u", start); count = 0; } } } } void packet_print_channel_map_ll(const uint8_t *map) { print_le_channel_map(map); } static void print_random_number(uint64_t rand) { print_field("Random number: 0x%16.16" PRIx64, le64_to_cpu(rand)); } static void print_encrypted_diversifier(uint16_t ediv) { print_field("Encrypted diversifier: 0x%4.4x", le16_to_cpu(ediv)); } static const struct { uint8_t bit; const char *str; } events_table[] = { { 0, "Inquiry Complete" }, { 1, "Inquiry Result" }, { 2, "Connection Complete" }, { 3, "Connection Request" }, { 4, "Disconnection Complete" }, { 5, "Authentication Complete" }, { 6, "Remote Name Request Complete" }, { 7, "Encryption Change" }, { 8, "Change Connection Link Key Complete" }, { 9, "Master Link Key Complete" }, { 10, "Read Remote Supported Features Complete" }, { 11, "Read Remote Version Information Complete" }, { 12, "QoS Setup Complete" }, { 13, "Command Complete" }, { 14, "Command Status" }, { 15, "Hardware Error" }, { 16, "Flush Occurred" }, { 17, "Role Change" }, { 18, "Number of Completed Packets" }, { 19, "Mode Change" }, { 20, "Return Link Keys" }, { 21, "PIN Code Request" }, { 22, "Link Key Request" }, { 23, "Link Key Notification" }, { 24, "Loopback Command" }, { 25, "Data Buffer Overflow" }, { 26, "Max Slots Change" }, { 27, "Read Clock Offset Complete" }, { 28, "Connection Packet Type Changed" }, { 29, "QoS Violation" }, { 30, "Page Scan Mode Change" }, { 31, "Page Scan Repetition Mode Change" }, { 32, "Flow Specification Complete" }, { 33, "Inquiry Result with RSSI" }, { 34, "Read Remote Extended Features Complete" }, { 43, "Synchronous Connection Complete" }, { 44, "Synchronous Connection Changed" }, { 45, "Sniff Subrating" }, { 46, "Extended Inquiry Result" }, { 47, "Encryption Key Refresh Complete" }, { 48, "IO Capability Request" }, { 49, "IO Capability Request Reply" }, { 50, "User Confirmation Request" }, { 51, "User Passkey Request" }, { 52, "Remote OOB Data Request" }, { 53, "Simple Pairing Complete" }, { 55, "Link Supervision Timeout Changed" }, { 56, "Enhanced Flush Complete" }, { 58, "User Passkey Notification" }, { 59, "Keypress Notification" }, { 60, "Remote Host Supported Features Notification" }, { 61, "LE Meta" }, { } }; static void print_event_mask(const uint8_t *events_array) { uint64_t mask, events = 0; int i; for (i = 0; i < 8; i++) events |= ((uint64_t) events_array[i]) << (i * 8); print_field("Mask: 0x%16.16" PRIx64, events); mask = events; for (i = 0; events_table[i].str; i++) { if (events & (((uint64_t) 1) << events_table[i].bit)) { print_field(" %s", events_table[i].str); mask &= ~(((uint64_t) 1) << events_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_EVENT_MASK, " Unknown mask " "(0x%16.16" PRIx64 ")", mask); } static const struct { uint8_t bit; const char *str; } events_page2_table[] = { { 0, "Physical Link Complete" }, { 1, "Channel Selected" }, { 2, "Disconnection Physical Link Complete" }, { 3, "Physical Link Loss Early Warning" }, { 4, "Physical Link Recovery" }, { 5, "Logical Link Complete" }, { 6, "Disconnection Logical Link Complete" }, { 7, "Flow Specification Modify Complete" }, { 8, "Number of Completed Data Blocks" }, { 9, "AMP Start Test" }, { 10, "AMP Test End" }, { 11, "AMP Receiver Report" }, { 12, "Short Range Mode Change Complete" }, { 13, "AMP Status Change" }, { 14, "Triggered Clock Capture" }, { 15, "Synchronization Train Complete" }, { 16, "Synchronization Train Received" }, { 17, "Connectionless Slave Broadcast Receive" }, { 18, "Connectionless Slave Broadcast Timeout" }, { 19, "Truncated Page Complete" }, { 20, "Slave Page Response Timeout" }, { 21, "Connectionless Slave Broadcast Channel Map Change" }, { 22, "Inquiry Response Notification" }, { 23, "Authenticated Payload Timeout Expired" }, { } }; static void print_event_mask_page2(const uint8_t *events_array) { uint64_t mask, events = 0; int i; for (i = 0; i < 8; i++) events |= ((uint64_t) events_array[i]) << (i * 8); print_field("Mask: 0x%16.16" PRIx64, events); mask = events; for (i = 0; events_page2_table[i].str; i++) { if (events & (((uint64_t) 1) << events_page2_table[i].bit)) { print_field(" %s", events_page2_table[i].str); mask &= ~(((uint64_t) 1) << events_page2_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_EVENT_MASK, " Unknown mask " "(0x%16.16" PRIx64 ")", mask); } static const struct { uint8_t bit; const char *str; } events_le_table[] = { { 0, "LE Connection Complete" }, { 1, "LE Advertising Report" }, { 2, "LE Connection Update Complete" }, { 3, "LE Read Remote Used Features" }, { 4, "LE Long Term Key Request" }, { 5, "LE Remote Connection Parameter Request" }, { } }; static void print_event_mask_le(const uint8_t *events_array) { uint64_t mask, events = 0; int i; for (i = 0; i < 8; i++) events |= ((uint64_t) events_array[i]) << (i * 8); print_field("Mask: 0x%16.16" PRIx64, events); mask = events; for (i = 0; events_le_table[i].str; i++) { if (events & (((uint64_t) 1) << events_le_table[i].bit)) { print_field(" %s", events_le_table[i].str); mask &= ~(((uint64_t) 1) << events_le_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_EVENT_MASK, " Unknown mask " "(0x%16.16" PRIx64 ")", mask); } static void print_fec(uint8_t fec) { const char *str; switch (fec) { case 0x00: str = "Not required"; break; case 0x01: str = "Required"; break; default: str = "Reserved"; break; } print_field("FEC: %s (0x%02x)", str, fec); } #define BT_EIR_FLAGS 0x01 #define BT_EIR_UUID16_SOME 0x02 #define BT_EIR_UUID16_ALL 0x03 #define BT_EIR_UUID32_SOME 0x04 #define BT_EIR_UUID32_ALL 0x05 #define BT_EIR_UUID128_SOME 0x06 #define BT_EIR_UUID128_ALL 0x07 #define BT_EIR_NAME_SHORT 0x08 #define BT_EIR_NAME_COMPLETE 0x09 #define BT_EIR_TX_POWER 0x0a #define BT_EIR_CLASS_OF_DEV 0x0d #define BT_EIR_SSP_HASH_P192 0x0e #define BT_EIR_SSP_RANDOMIZER_P192 0x0f #define BT_EIR_DEVICE_ID 0x10 #define BT_EIR_SMP_TK 0x10 #define BT_EIR_SMP_OOB_FLAGS 0x11 #define BT_EIR_SLAVE_CONN_INTERVAL 0x12 #define BT_EIR_SERVICE_UUID16 0x14 #define BT_EIR_SERVICE_UUID128 0x15 #define BT_EIR_SERVICE_DATA 0x16 #define BT_EIR_PUBLIC_ADDRESS 0x17 #define BT_EIR_RANDOM_ADDRESS 0x18 #define BT_EIR_GAP_APPEARANCE 0x19 #define BT_EIR_ADVERTISING_INTERVAL 0x1a #define BT_EIR_LE_DEVICE_ADDRESS 0x1b #define BT_EIR_LE_ROLE 0x1c #define BT_EIR_SSP_HASH_P256 0x1d #define BT_EIR_SSP_RANDOMIZER_P256 0x1e #define BT_EIR_3D_INFO_DATA 0x3d #define BT_EIR_MANUFACTURER_DATA 0xff static void print_manufacturer_apple(const void *data, uint8_t data_len) { uint8_t type = *((uint8_t *) data); if (data_len < 1) return; if (type == 0x01) { char identifier[100]; snprintf(identifier, sizeof(identifier) - 1, "%s", (const char *) (data + 1)); print_field(" Identifier: %s", identifier); return; } while (data_len > 0) { uint8_t len; const char *str; type = *((uint8_t *) data); data++; data_len--; if (type == 0x00) continue; if (data_len < 1) break; switch (type) { case 0x02: str = "iBeacon"; break; case 0x05: str = "AirDrop"; break; case 0x09: str = "Apple TV"; break; default: str = "Unknown"; break; } print_field(" Type: %s (%u)", str, type); len = *((uint8_t *) data); data++; data_len--; if (len < 1) continue; if (len > data_len) break; if (type == 0x02 && len == 0x15) { const uint8_t *uuid; uint16_t minor, major; int8_t tx_power; uuid = data; print_field(" UUID: %8.8x-%4.4x-%4.4x-%4.4x-%8.8x%4.4x", get_le32(&uuid[12]), get_le16(&uuid[10]), get_le16(&uuid[8]), get_le16(&uuid[6]), get_le32(&uuid[2]), get_le16(&uuid[0])); major = get_le16(data + 16); minor = get_le16(data + 18); print_field(" Version: %u.%u", major, minor); tx_power = *(int8_t *) (data + 20); print_field(" TX power: %d dB", tx_power); } else print_hex_field(" Data", data, len); data += len; data_len -= len; } packet_hexdump(data, data_len); } static void print_manufacturer_data(const void *data, uint8_t data_len) { uint16_t company = get_le16(data); packet_print_company("Company", company); switch (company) { case 76: case 19456: print_manufacturer_apple(data + 2, data_len - 2); break; default: print_hex_field(" Data", data + 2, data_len - 2); break; } } static void print_device_id(const void *data, uint8_t data_len) { uint16_t source, vendor, product, version; char modalias[26], *vendor_str, *product_str; const char *str; if (data_len < 8) return; source = get_le16(data); vendor = get_le16(data + 2); product = get_le16(data + 4); version = get_le16(data + 6); switch (source) { case 0x0001: str = "Bluetooth SIG assigned"; sprintf(modalias, "bluetooth:v%04Xp%04Xd%04X", vendor, product, version); break; case 0x0002: str = "USB Implementer's Forum assigned"; sprintf(modalias, "usb:v%04Xp%04Xd%04X", vendor, product, version); break; default: str = "Reserved"; modalias[0] = '\0'; break; } print_field("Device ID: %s (0x%4.4x)", str, source); if (!hwdb_get_vendor_model(modalias, &vendor_str, &product_str)) { vendor_str = NULL; product_str = NULL; } if (source != 0x0001) { if (vendor_str) print_field(" Vendor: %s (0x%4.4x)", vendor_str, vendor); else print_field(" Vendor: 0x%4.4x", vendor); } else packet_print_company(" Vendor", vendor); if (product_str) print_field(" Product: %s (0x%4.4x)", product_str, product); else print_field(" Product: 0x%4.4x", product); print_field(" Version: %u.%u.%u (0x%4.4x)", (version & 0xff00) >> 8, (version & 0x00f0) >> 4, (version & 0x000f), version); free(vendor_str); free(product_str); } static void print_uuid16_list(const char *label, const void *data, uint8_t data_len) { uint8_t count = data_len / sizeof(uint16_t); unsigned int i; print_field("%s: %u entr%s", label, count, count == 1 ? "y" : "ies"); for (i = 0; i < count; i++) { uint16_t uuid = get_le16(data + (i * 2)); print_field(" %s (0x%4.4x)", uuid16_to_str(uuid), uuid); } } static void print_uuid32_list(const char *label, const void *data, uint8_t data_len) { uint8_t count = data_len / sizeof(uint32_t); unsigned int i; print_field("%s: %u entr%s", label, count, count == 1 ? "y" : "ies"); for (i = 0; i < count; i++) { uint32_t uuid = get_le32(data + (i * 4)); print_field(" %s (0x%8.8x)", uuid32_to_str(uuid), uuid); } } static void print_uuid128_list(const char *label, const void *data, uint8_t data_len) { uint8_t count = data_len / 16; unsigned int i; print_field("%s: %u entr%s", label, count, count == 1 ? "y" : "ies"); for (i = 0; i < count; i++) { const uint8_t *uuid = data + (i * 16); print_field(" %8.8x-%4.4x-%4.4x-%4.4x-%8.8x%4.4x", get_le32(&uuid[12]), get_le16(&uuid[10]), get_le16(&uuid[8]), get_le16(&uuid[6]), get_le32(&uuid[2]), get_le16(&uuid[0])); } } static const struct { uint8_t bit; const char *str; } eir_flags_table[] = { { 0, "LE Limited Discoverable Mode" }, { 1, "LE General Discoverable Mode" }, { 2, "BR/EDR Not Supported" }, { 3, "Simultaneous LE and BR/EDR (Controller)" }, { 4, "Simultaneous LE and BR/EDR (Host)" }, { } }; static const struct { uint8_t bit; const char *str; } eir_3d_table[] = { { 0, "Association Notification" }, { 1, "Battery Level Reporting" }, { 2, "Send Battery Level Report on Start-up Synchronization" }, { 7, "Factory Test Mode" }, { } }; static void print_eir(const uint8_t *eir, uint8_t eir_len, bool le) { uint16_t len = 0; if (eir_len == 0) return; while (len < eir_len - 1) { uint8_t field_len = eir[0]; const uint8_t *data = &eir[2]; uint8_t data_len; char name[239], label[100]; uint8_t flags, mask; int i; /* Check for the end of EIR */ if (field_len == 0) break; len += field_len + 1; /* Do not continue EIR Data parsing if got incorrect length */ if (len > eir_len) { len -= field_len + 1; break; } data_len = field_len - 1; switch (eir[1]) { case BT_EIR_FLAGS: flags = *data; mask = flags; print_field("Flags: 0x%2.2x", flags); for (i = 0; eir_flags_table[i].str; i++) { if (flags & (1 << eir_flags_table[i].bit)) { print_field(" %s", eir_flags_table[i].str); mask &= ~(1 << eir_flags_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_SERVICE_CLASS, " Unknown flags (0x%2.2x)", mask); break; case BT_EIR_UUID16_SOME: if (data_len < sizeof(uint16_t)) break; print_uuid16_list("16-bit Service UUIDs (partial)", data, data_len); break; case BT_EIR_UUID16_ALL: if (data_len < sizeof(uint16_t)) break; print_uuid16_list("16-bit Service UUIDs (complete)", data, data_len); break; case BT_EIR_UUID32_SOME: if (data_len < sizeof(uint32_t)) break; print_uuid32_list("32-bit Service UUIDs (partial)", data, data_len); break; case BT_EIR_UUID32_ALL: if (data_len < sizeof(uint32_t)) break; print_uuid32_list("32-bit Service UUIDs (complete)", data, data_len); break; case BT_EIR_UUID128_SOME: if (data_len < 16) break; print_uuid128_list("128-bit Service UUIDs (partial)", data, data_len); break; case BT_EIR_UUID128_ALL: if (data_len < 16) break; print_uuid128_list("128-bit Service UUIDs (complete)", data, data_len); break; case BT_EIR_NAME_SHORT: memset(name, 0, sizeof(name)); memcpy(name, data, data_len); print_field("Name (short): %s", name); break; case BT_EIR_NAME_COMPLETE: memset(name, 0, sizeof(name)); memcpy(name, data, data_len); print_field("Name (complete): %s", name); break; case BT_EIR_TX_POWER: if (data_len < 1) break; print_field("TX power: %d dBm", (int8_t) *data); break; case BT_EIR_CLASS_OF_DEV: if (data_len < 3) break; print_dev_class(data); break; case BT_EIR_SSP_HASH_P192: if (data_len < 16) break; print_hash_p192(data); break; case BT_EIR_SSP_RANDOMIZER_P192: if (data_len < 16) break; print_randomizer_p192(data); break; case BT_EIR_DEVICE_ID: /* SMP TK has the same value as Device ID */ if (le) print_hex_field("SMP TK", data, data_len); else if (data_len >= 8) print_device_id(data, data_len); break; case BT_EIR_SMP_OOB_FLAGS: print_field("SMP OOB Flags: 0x%2.2x", *data); break; case BT_EIR_SLAVE_CONN_INTERVAL: if (data_len < 4) break; print_field("Slave Conn. Interval: 0x%4.4x - 0x%4.4x", get_le16(&data[0]), get_le16(&data[2])); break; case BT_EIR_SERVICE_UUID16: if (data_len < sizeof(uint16_t)) break; print_uuid16_list("16-bit Service UUIDs", data, data_len); break; case BT_EIR_SERVICE_UUID128: if (data_len < 16) break; print_uuid128_list("128-bit Service UUIDs", data, data_len); break; case BT_EIR_SERVICE_DATA: if (data_len < 2) break; sprintf(label, "Service Data (UUID 0x%4.4x)", get_le16(&data[0])); print_hex_field(label, &data[2], data_len - 2); break; case BT_EIR_RANDOM_ADDRESS: if (data_len < 6) break; print_addr("Random Address", data, 0x01); break; case BT_EIR_PUBLIC_ADDRESS: if (data_len < 6) break; print_addr("Public Address", data, 0x00); break; case BT_EIR_GAP_APPEARANCE: if (data_len < 2) break; print_appearance(get_le16(data)); break; case BT_EIR_SSP_HASH_P256: if (data_len < 16) break; print_hash_p256(data); break; case BT_EIR_SSP_RANDOMIZER_P256: if (data_len < 16) break; print_randomizer_p256(data); break; case BT_EIR_3D_INFO_DATA: print_hex_field("3D Information Data", data, data_len); if (data_len < 2) break; flags = *data; mask = flags; print_field(" Features: 0x%2.2x", flags); for (i = 0; eir_3d_table[i].str; i++) { if (flags & (1 << eir_3d_table[i].bit)) { print_field(" %s", eir_3d_table[i].str); mask &= ~(1 << eir_3d_table[i].bit); } } if (mask) print_text(COLOR_UNKNOWN_FEATURE_BIT, " Unknown features (0x%2.2x)", mask); print_field(" Path Loss Threshold: %d", data[1]); break; case BT_EIR_MANUFACTURER_DATA: if (data_len < 2) break; print_manufacturer_data(data, data_len); break; default: sprintf(label, "Unknown EIR field 0x%2.2x", eir[1]); print_hex_field(label, data, data_len); break; } eir += field_len + 1; } if (len < eir_len && eir[0] != 0) packet_hexdump(eir, eir_len - len); } void packet_print_addr(const char *label, const void *data, bool random) { print_addr(label ? : "Address", data, random ? 0x01 : 0x00); } void packet_print_ad(const void *data, uint8_t size) { print_eir(data, size, true); } void packet_hexdump(const unsigned char *buf, uint16_t len) { static const char hexdigits[] = "0123456789abcdef"; char str[68]; uint16_t i; if (!len) return; for (i = 0; i < len; i++) { str[((i % 16) * 3) + 0] = hexdigits[buf[i] >> 4]; str[((i % 16) * 3) + 1] = hexdigits[buf[i] & 0xf]; str[((i % 16) * 3) + 2] = ' '; str[(i % 16) + 49] = isprint(buf[i]) ? buf[i] : '.'; if ((i + 1) % 16 == 0) { str[47] = ' '; str[48] = ' '; str[65] = '\0'; print_text(COLOR_WHITE, "%s", str); str[0] = ' '; } } if (i % 16 > 0) { uint16_t j; for (j = (i % 16); j < 16; j++) { str[(j * 3) + 0] = ' '; str[(j * 3) + 1] = ' '; str[(j * 3) + 2] = ' '; str[j + 49] = ' '; } str[47] = ' '; str[48] = ' '; str[65] = '\0'; print_text(COLOR_WHITE, "%s", str); } } void packet_control(struct timeval *tv, uint16_t index, uint16_t opcode, const void *data, uint16_t size) { if (index_filter && index_number != index) return; control_message(opcode, data, size); } static int addr2str(const uint8_t *addr, char *str) { return sprintf(str, "%2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X", addr[5], addr[4], addr[3], addr[2], addr[1], addr[0]); } #define MAX_INDEX 16 struct index_data { uint8_t type; uint8_t bdaddr[6]; }; static struct index_data index_list[MAX_INDEX]; void packet_monitor(struct timeval *tv, uint16_t index, uint16_t opcode, const void *data, uint16_t size) { const struct btsnoop_opcode_new_index *ni; char str[18], extra_str[24]; if (index_filter && index_number != index) return; index_current = index; if (tv && time_offset == ((time_t) -1)) time_offset = tv->tv_sec; switch (opcode) { case BTSNOOP_OPCODE_NEW_INDEX: ni = data; if (index < MAX_INDEX) { index_list[index].type = ni->type; memcpy(index_list[index].bdaddr, ni->bdaddr, 6); } addr2str(ni->bdaddr, str); packet_new_index(tv, index, str, ni->type, ni->bus, ni->name); break; case BTSNOOP_OPCODE_DEL_INDEX: if (index < MAX_INDEX) addr2str(index_list[index].bdaddr, str); else sprintf(str, "00:00:00:00:00:00"); packet_del_index(tv, index, str); break; case BTSNOOP_OPCODE_COMMAND_PKT: packet_hci_command(tv, index, data, size); break; case BTSNOOP_OPCODE_EVENT_PKT: packet_hci_event(tv, index, data, size); break; case BTSNOOP_OPCODE_ACL_TX_PKT: packet_hci_acldata(tv, index, false, data, size); break; case BTSNOOP_OPCODE_ACL_RX_PKT: packet_hci_acldata(tv, index, true, data, size); break; case BTSNOOP_OPCODE_SCO_TX_PKT: packet_hci_scodata(tv, index, false, data, size); break; case BTSNOOP_OPCODE_SCO_RX_PKT: packet_hci_scodata(tv, index, true, data, size); break; default: sprintf(extra_str, "(code %d len %d)", opcode, size); print_packet(tv, index, '*', COLOR_ERROR, "Unknown packet", NULL, extra_str); packet_hexdump(data, size); break; } } void packet_simulator(struct timeval *tv, uint16_t frequency, const void *data, uint16_t size) { char str[10]; if (tv && time_offset == ((time_t) -1)) time_offset = tv->tv_sec; sprintf(str, "%u MHz", frequency); print_packet(tv, 0, '*', COLOR_PHY_PACKET, "Physical packet:", NULL, str); ll_packet(frequency, data, size); } static void null_cmd(const void *data, uint8_t size) { } static void status_rsp(const void *data, uint8_t size) { uint8_t status = *((const uint8_t *) data); print_status(status); } static void status_bdaddr_rsp(const void *data, uint8_t size) { uint8_t status = *((const uint8_t *) data); print_status(status); print_bdaddr(data + 1); } static void inquiry_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_inquiry *cmd = data; print_iac(cmd->lap); print_field("Length: %.2fs (0x%2.2x)", cmd->length * 1.28, cmd->length); print_num_resp(cmd->num_resp); } static void periodic_inquiry_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_periodic_inquiry *cmd = data; print_field("Max period: %.2fs (0x%2.2x)", cmd->max_period * 1.28, cmd->max_period); print_field("Min period: %.2fs (0x%2.2x)", cmd->min_period * 1.28, cmd->min_period); print_iac(cmd->lap); print_field("Length: %.2fs (0x%2.2x)", cmd->length * 1.28, cmd->length); print_num_resp(cmd->num_resp); } static void create_conn_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_create_conn *cmd = data; const char *str; print_bdaddr(cmd->bdaddr); print_pkt_type(cmd->pkt_type); print_pscan_rep_mode(cmd->pscan_rep_mode); print_pscan_mode(cmd->pscan_mode); print_clock_offset(cmd->clock_offset); switch (cmd->role_switch) { case 0x00: str = "Stay master"; break; case 0x01: str = "Allow slave"; break; default: str = "Reserved"; break; } print_field("Role switch: %s (0x%2.2x)", str, cmd->role_switch); } static void disconnect_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_disconnect *cmd = data; print_handle(cmd->handle); print_reason(cmd->reason); } static void add_sco_conn_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_add_sco_conn *cmd = data; print_handle(cmd->handle); print_pkt_type_sco(cmd->pkt_type); } static void create_conn_cancel_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_create_conn_cancel *cmd = data; print_bdaddr(cmd->bdaddr); } static void accept_conn_request_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_accept_conn_request *cmd = data; print_bdaddr(cmd->bdaddr); print_role(cmd->role); } static void reject_conn_request_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_reject_conn_request *cmd = data; print_bdaddr(cmd->bdaddr); print_reason(cmd->reason); } static void link_key_request_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_link_key_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_link_key(cmd->link_key); } static void link_key_request_neg_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_link_key_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void pin_code_request_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_pin_code_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_field("PIN length: %d", cmd->pin_len); print_pin_code(cmd->pin_code, cmd->pin_len); } static void pin_code_request_neg_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_pin_code_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void change_conn_pkt_type_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_change_conn_pkt_type *cmd = data; print_handle(cmd->handle); print_pkt_type(cmd->pkt_type); } static void auth_requested_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_auth_requested *cmd = data; print_handle(cmd->handle); } static void set_conn_encrypt_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_set_conn_encrypt *cmd = data; print_handle(cmd->handle); print_encr_mode(cmd->encr_mode); } static void change_conn_link_key_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_change_conn_link_key *cmd = data; print_handle(cmd->handle); } static void master_link_key_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_master_link_key *cmd = data; print_key_flag(cmd->key_flag); } static void remote_name_request_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_remote_name_request *cmd = data; print_bdaddr(cmd->bdaddr); print_pscan_rep_mode(cmd->pscan_rep_mode); print_pscan_mode(cmd->pscan_mode); print_clock_offset(cmd->clock_offset); } static void remote_name_request_cancel_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_remote_name_request_cancel *cmd = data; print_bdaddr(cmd->bdaddr); } static void read_remote_features_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_remote_features *cmd = data; print_handle(cmd->handle); } static void read_remote_ext_features_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_remote_ext_features *cmd = data; print_handle(cmd->handle); print_field("Page: %d", cmd->page); } static void read_remote_version_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_remote_version *cmd = data; print_handle(cmd->handle); } static void read_clock_offset_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_clock_offset *cmd = data; print_handle(cmd->handle); } static void read_lmp_handle_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_lmp_handle *cmd = data; print_handle(cmd->handle); } static void read_lmp_handle_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_lmp_handle *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_field("LMP handle: %d", rsp->lmp_handle); print_field("Reserved: %d", le32_to_cpu(rsp->reserved)); } static void setup_sync_conn_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_setup_sync_conn *cmd = data; print_handle(cmd->handle); print_field("Transmit bandwidth: %d", le32_to_cpu(cmd->tx_bandwidth)); print_field("Receive bandwidth: %d", le32_to_cpu(cmd->rx_bandwidth)); print_field("Max latency: %d", le16_to_cpu(cmd->max_latency)); print_voice_setting(cmd->voice_setting); print_retransmission_effort(cmd->retrans_effort); print_pkt_type_sco(cmd->pkt_type); } static void accept_sync_conn_request_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_accept_sync_conn_request *cmd = data; print_bdaddr(cmd->bdaddr); print_field("Transmit bandwidth: %d", le32_to_cpu(cmd->tx_bandwidth)); print_field("Receive bandwidth: %d", le32_to_cpu(cmd->rx_bandwidth)); print_field("Max latency: %d", le16_to_cpu(cmd->max_latency)); print_voice_setting(cmd->voice_setting); print_retransmission_effort(cmd->retrans_effort); print_pkt_type_sco(cmd->pkt_type); } static void reject_sync_conn_request_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_reject_sync_conn_request *cmd = data; print_bdaddr(cmd->bdaddr); print_reason(cmd->reason); } static void io_capability_request_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_io_capability_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_io_capability(cmd->capability); print_oob_data(cmd->oob_data); print_authentication(cmd->authentication); } static void user_confirm_request_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_user_confirm_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void user_confirm_request_neg_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_user_confirm_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void user_passkey_request_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_user_passkey_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_passkey(cmd->passkey); } static void user_passkey_request_neg_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_user_passkey_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void remote_oob_data_request_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_remote_oob_data_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_hash_p192(cmd->hash); print_randomizer_p192(cmd->randomizer); } static void remote_oob_data_request_neg_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_remote_oob_data_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); } static void io_capability_request_neg_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_io_capability_request_neg_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_reason(cmd->reason); } static void create_phy_link_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_create_phy_link *cmd = data; print_phy_handle(cmd->phy_handle); print_key_len(cmd->key_len); print_key_type(cmd->key_type); packet_hexdump(data + 3, size - 3); } static void accept_phy_link_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_accept_phy_link *cmd = data; print_phy_handle(cmd->phy_handle); print_key_len(cmd->key_len); print_key_type(cmd->key_type); packet_hexdump(data + 3, size - 3); } static void disconn_phy_link_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_disconn_phy_link *cmd = data; print_phy_handle(cmd->phy_handle); print_reason(cmd->reason); } static void create_logic_link_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_create_logic_link *cmd = data; print_phy_handle(cmd->phy_handle); print_flow_spec("TX", cmd->tx_flow_spec); print_flow_spec("RX", cmd->rx_flow_spec); } static void accept_logic_link_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_accept_logic_link *cmd = data; print_phy_handle(cmd->phy_handle); print_flow_spec("TX", cmd->tx_flow_spec); print_flow_spec("RX", cmd->rx_flow_spec); } static void disconn_logic_link_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_disconn_logic_link *cmd = data; print_handle(cmd->handle); } static void logic_link_cancel_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_logic_link_cancel *cmd = data; print_phy_handle(cmd->phy_handle); print_field("TX flow spec: 0x%2.2x", cmd->flow_spec); } static void logic_link_cancel_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_logic_link_cancel *rsp = data; print_status(rsp->status); print_phy_handle(rsp->phy_handle); print_field("TX flow spec: 0x%2.2x", rsp->flow_spec); } static void flow_spec_modify_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_flow_spec_modify *cmd = data; print_handle(cmd->handle); print_flow_spec("TX", cmd->tx_flow_spec); print_flow_spec("RX", cmd->rx_flow_spec); } static void truncated_page_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_truncated_page *cmd = data; print_bdaddr(cmd->bdaddr); print_pscan_rep_mode(cmd->pscan_rep_mode); print_clock_offset(cmd->clock_offset); } static void truncated_page_cancel_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_truncated_page_cancel *cmd = data; print_bdaddr(cmd->bdaddr); } static void set_slave_broadcast_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_set_slave_broadcast *cmd = data; print_field("Enable: 0x%2.2x", cmd->enable); print_lt_addr(cmd->lt_addr); print_lpo_allowed(cmd->lpo_allowed); print_pkt_type(cmd->pkt_type); print_slot_625("Min interval", cmd->min_interval); print_slot_625("Max interval", cmd->max_interval); print_slot_625("Supervision timeout", cmd->timeout); } static void set_slave_broadcast_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_set_slave_broadcast *rsp = data; print_status(rsp->status); print_lt_addr(rsp->lt_addr); print_interval(rsp->interval); } static void set_slave_broadcast_receive_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_set_slave_broadcast_receive *cmd = data; print_field("Enable: 0x%2.2x", cmd->enable); print_bdaddr(cmd->bdaddr); print_lt_addr(cmd->lt_addr); print_interval(cmd->interval); print_field("Offset: 0x%8.8x", le32_to_cpu(cmd->offset)); print_field("Next broadcast instant: 0x%4.4x", le16_to_cpu(cmd->instant)); print_slot_625("Supervision timeout", cmd->timeout); print_field("Remote timing accuracy: %d ppm", cmd->accuracy); print_field("Skip: 0x%2.2x", cmd->skip); print_pkt_type(cmd->pkt_type); print_channel_map(cmd->map); } static void set_slave_broadcast_receive_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_set_slave_broadcast_receive *rsp = data; print_status(rsp->status); print_bdaddr(rsp->bdaddr); print_lt_addr(rsp->lt_addr); } static void receive_sync_train_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_receive_sync_train *cmd = data; print_bdaddr(cmd->bdaddr); print_timeout(cmd->timeout); print_window(cmd->window); print_interval(cmd->interval); } static void remote_oob_ext_data_request_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_remote_oob_ext_data_request_reply *cmd = data; print_bdaddr(cmd->bdaddr); print_hash_p192(cmd->hash192); print_randomizer_p192(cmd->randomizer192); print_hash_p256(cmd->hash256); print_randomizer_p256(cmd->randomizer256); } static void hold_mode_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_hold_mode *cmd = data; print_handle(cmd->handle); print_slot_625("Hold max interval", cmd->max_interval); print_slot_625("Hold min interval", cmd->min_interval); } static void sniff_mode_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_sniff_mode *cmd = data; print_handle(cmd->handle); print_slot_625("Sniff max interval", cmd->max_interval); print_slot_625("Sniff min interval", cmd->min_interval); print_slot_125("Sniff attempt", cmd->attempt); print_slot_125("Sniff timeout", cmd->timeout); } static void exit_sniff_mode_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_exit_sniff_mode *cmd = data; print_handle(cmd->handle); } static void park_state_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_park_state *cmd = data; print_handle(cmd->handle); print_slot_625("Beacon max interval", cmd->max_interval); print_slot_625("Beacon min interval", cmd->min_interval); } static void exit_park_state_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_exit_park_state *cmd = data; print_handle(cmd->handle); } static void qos_setup_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_qos_setup *cmd = data; print_handle(cmd->handle); print_field("Flags: 0x%2.2x", cmd->flags); print_service_type(cmd->service_type); print_field("Token rate: %d", le32_to_cpu(cmd->token_rate)); print_field("Peak bandwidth: %d", le32_to_cpu(cmd->peak_bandwidth)); print_field("Latency: %d", le32_to_cpu(cmd->latency)); print_field("Delay variation: %d", le32_to_cpu(cmd->delay_variation)); } static void role_discovery_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_role_discovery *cmd = data; print_handle(cmd->handle); } static void role_discovery_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_role_discovery *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_role(rsp->role); } static void switch_role_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_switch_role *cmd = data; print_bdaddr(cmd->bdaddr); print_role(cmd->role); } static void read_link_policy_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_link_policy *cmd = data; print_handle(cmd->handle); } static void read_link_policy_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_link_policy *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_link_policy(rsp->policy); } static void write_link_policy_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_link_policy *cmd = data; print_handle(cmd->handle); print_link_policy(cmd->policy); } static void write_link_policy_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_write_link_policy *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_default_link_policy_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_default_link_policy *rsp = data; print_status(rsp->status); print_link_policy(rsp->policy); } static void write_default_link_policy_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_default_link_policy *cmd = data; print_link_policy(cmd->policy); } static void flow_spec_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_flow_spec *cmd = data; print_handle(cmd->handle); print_field("Flags: 0x%2.2x", cmd->flags); print_flow_direction(cmd->direction); print_service_type(cmd->service_type); print_field("Token rate: %d", le32_to_cpu(cmd->token_rate)); print_field("Token bucket size: %d", le32_to_cpu(cmd->token_bucket_size)); print_field("Peak bandwidth: %d", le32_to_cpu(cmd->peak_bandwidth)); print_field("Access latency: %d", le32_to_cpu(cmd->access_latency)); } static void sniff_subrating_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_sniff_subrating *cmd = data; print_handle(cmd->handle); print_slot_625("Max latency", cmd->max_latency); print_slot_625("Min remote timeout", cmd->min_remote_timeout); print_slot_625("Min local timeout", cmd->min_local_timeout); } static void sniff_subrating_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_sniff_subrating *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void set_event_mask_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_set_event_mask *cmd = data; print_event_mask(cmd->mask); } static void set_event_filter_cmd(const void *data, uint8_t size) { uint8_t type = *((const uint8_t *) data); uint8_t filter; const char *str; switch (type) { case 0x00: str = "Clear All Filters"; break; case 0x01: str = "Inquiry Result"; break; case 0x02: str = "Connection Setup"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, type); switch (type) { case 0x00: if (size > 1) { print_text(COLOR_ERROR, " invalid parameter size"); packet_hexdump(data + 1, size - 1); } break; case 0x01: filter = *((const uint8_t *) (data + 1)); switch (filter) { case 0x00: str = "Return responses from all devices"; break; case 0x01: str = "Device with specific Class of Device"; break; case 0x02: str = "Device with specific BD_ADDR"; break; default: str = "Reserved"; break; } print_field("Filter: %s (0x%2.2x)", str, filter); packet_hexdump(data + 2, size - 2); break; case 0x02: filter = *((const uint8_t *) (data + 1)); switch (filter) { case 0x00: str = "Allow connections all devices"; break; case 0x01: str = "Allow connections with specific Class of Device"; break; case 0x02: str = "Allow connections with specific BD_ADDR"; break; default: str = "Reserved"; break; } print_field("Filter: %s (0x%2.2x)", str, filter); packet_hexdump(data + 2, size - 2); break; default: filter = *((const uint8_t *) (data + 1)); print_field("Filter: Reserved (0x%2.2x)", filter); packet_hexdump(data + 2, size - 2); break; } } static void flush_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_flush *cmd = data; print_handle(cmd->handle); } static void flush_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_flush *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_pin_type_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_pin_type *rsp = data; print_status(rsp->status); print_pin_type(rsp->pin_type); } static void write_pin_type_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_pin_type *cmd = data; print_pin_type(cmd->pin_type); } static void read_stored_link_key_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_stored_link_key *cmd = data; print_bdaddr(cmd->bdaddr); print_field("Read all: 0x%2.2x", cmd->read_all); } static void read_stored_link_key_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_stored_link_key *rsp = data; print_status(rsp->status); print_field("Max num keys: %d", le16_to_cpu(rsp->max_num_keys)); print_field("Num keys: %d", le16_to_cpu(rsp->num_keys)); } static void write_stored_link_key_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_stored_link_key *cmd = data; print_field("Num keys: %d", cmd->num_keys); packet_hexdump(data + 1, size - 1); } static void write_stored_link_key_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_write_stored_link_key *rsp = data; print_status(rsp->status); print_field("Num keys: %d", rsp->num_keys); } static void delete_stored_link_key_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_delete_stored_link_key *cmd = data; print_bdaddr(cmd->bdaddr); print_field("Delete all: 0x%2.2x", cmd->delete_all); } static void delete_stored_link_key_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_delete_stored_link_key *rsp = data; print_status(rsp->status); print_field("Num keys: %d", le16_to_cpu(rsp->num_keys)); } static void write_local_name_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_local_name *cmd = data; print_name(cmd->name); } static void read_local_name_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_name *rsp = data; print_status(rsp->status); print_name(rsp->name); } static void read_conn_accept_timeout_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_conn_accept_timeout *rsp = data; print_status(rsp->status); print_timeout(rsp->timeout); } static void write_conn_accept_timeout_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_conn_accept_timeout *cmd = data; print_timeout(cmd->timeout); } static void read_page_timeout_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_page_timeout *rsp = data; print_status(rsp->status); print_timeout(rsp->timeout); } static void write_page_timeout_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_page_timeout *cmd = data; print_timeout(cmd->timeout); } static void read_scan_enable_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_scan_enable *rsp = data; print_status(rsp->status); print_scan_enable(rsp->enable); } static void write_scan_enable_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_scan_enable *cmd = data; print_scan_enable(cmd->enable); } static void read_page_scan_activity_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_page_scan_activity *rsp = data; print_status(rsp->status); print_interval(rsp->interval); print_window(rsp->window); } static void write_page_scan_activity_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_page_scan_activity *cmd = data; print_interval(cmd->interval); print_window(cmd->window); } static void read_inquiry_scan_activity_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_inquiry_scan_activity *rsp = data; print_status(rsp->status); print_interval(rsp->interval); print_window(rsp->window); } static void write_inquiry_scan_activity_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_inquiry_scan_activity *cmd = data; print_interval(cmd->interval); print_window(cmd->window); } static void read_auth_enable_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_auth_enable *rsp = data; print_status(rsp->status); print_auth_enable(rsp->enable); } static void write_auth_enable_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_auth_enable *cmd = data; print_auth_enable(cmd->enable); } static void read_encrypt_mode_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_encrypt_mode *rsp = data; print_status(rsp->status); print_encrypt_mode(rsp->mode); } static void write_encrypt_mode_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_encrypt_mode *cmd = data; print_encrypt_mode(cmd->mode); } static void read_class_of_dev_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_class_of_dev *rsp = data; print_status(rsp->status); print_dev_class(rsp->dev_class); } static void write_class_of_dev_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_class_of_dev *cmd = data; print_dev_class(cmd->dev_class); } static void read_voice_setting_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_voice_setting *rsp = data; print_status(rsp->status); print_voice_setting(rsp->setting); } static void write_voice_setting_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_voice_setting *cmd = data; print_voice_setting(cmd->setting); } static void read_auto_flush_timeout_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_auto_flush_timeout *cmd = data; print_handle(cmd->handle); } static void read_auto_flush_timeout_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_auto_flush_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_flush_timeout(rsp->timeout); } static void write_auto_flush_timeout_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_auto_flush_timeout *cmd = data; print_handle(cmd->handle); print_flush_timeout(cmd->timeout); } static void write_auto_flush_timeout_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_write_auto_flush_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_num_broadcast_retrans_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_num_broadcast_retrans *rsp = data; print_status(rsp->status); print_num_broadcast_retrans(rsp->num_retrans); } static void write_num_broadcast_retrans_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_num_broadcast_retrans *cmd = data; print_num_broadcast_retrans(cmd->num_retrans); } static void read_hold_mode_activity_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_hold_mode_activity *rsp = data; print_status(rsp->status); print_hold_mode_activity(rsp->activity); } static void write_hold_mode_activity_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_hold_mode_activity *cmd = data; print_hold_mode_activity(cmd->activity); } static void read_tx_power_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_tx_power *cmd = data; print_handle(cmd->handle); print_power_type(cmd->type); } static void read_tx_power_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_tx_power *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_power_level(rsp->level); } static void read_sync_flow_control_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_sync_flow_control *rsp = data; print_status(rsp->status); print_sync_flow_control(rsp->enable); } static void write_sync_flow_control_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_sync_flow_control *cmd = data; print_sync_flow_control(cmd->enable); } static void set_host_flow_control_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_set_host_flow_control *cmd = data; print_host_flow_control(cmd->enable); } static void host_buffer_size_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_host_buffer_size *cmd = data; print_field("ACL MTU: %-4d ACL max packet: %d", le16_to_cpu(cmd->acl_mtu), le16_to_cpu(cmd->acl_max_pkt)); print_field("SCO MTU: %-4d SCO max packet: %d", cmd->sco_mtu, le16_to_cpu(cmd->sco_max_pkt)); } static void read_link_supv_timeout_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_link_supv_timeout *cmd = data; print_handle(cmd->handle); } static void read_link_supv_timeout_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_link_supv_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_timeout(rsp->timeout); } static void write_link_supv_timeout_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_link_supv_timeout *cmd = data; print_handle(cmd->handle); print_timeout(cmd->timeout); } static void write_link_supv_timeout_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_write_link_supv_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_num_supported_iac_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_num_supported_iac *rsp = data; print_status(rsp->status); print_field("Number of IAC: %d", rsp->num_iac); } static void read_current_iac_lap_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_current_iac_lap *rsp = data; uint8_t i; print_status(rsp->status); print_field("Number of IAC: %d", rsp->num_iac); for (i = 0; i < rsp->num_iac; i++) print_iac(rsp->iac_lap + (i * 3)); } static void write_current_iac_lap_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_current_iac_lap *cmd = data; uint8_t i; print_field("Number of IAC: %d", cmd->num_iac); for (i = 0; i < cmd->num_iac; i++) print_iac(cmd->iac_lap + (i * 3)); } static void read_page_scan_period_mode_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_page_scan_period_mode *rsp = data; print_status(rsp->status); print_pscan_period_mode(rsp->mode); } static void write_page_scan_period_mode_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_page_scan_period_mode *cmd = data; print_pscan_period_mode(cmd->mode); } static void read_page_scan_mode_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_page_scan_mode *rsp = data; print_status(rsp->status); print_pscan_mode(rsp->mode); } static void write_page_scan_mode_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_page_scan_mode *cmd = data; print_pscan_mode(cmd->mode); } static void set_afh_host_classification_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_set_afh_host_classification *cmd = data; print_channel_map(cmd->map); } static void read_inquiry_scan_type_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_inquiry_scan_type *rsp = data; print_status(rsp->status); print_inquiry_scan_type(rsp->type); } static void write_inquiry_scan_type_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_inquiry_scan_type *cmd = data; print_inquiry_scan_type(cmd->type); } static void read_inquiry_mode_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_inquiry_mode *rsp = data; print_status(rsp->status); print_inquiry_mode(rsp->mode); } static void write_inquiry_mode_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_inquiry_mode *cmd = data; print_inquiry_mode(cmd->mode); } static void read_page_scan_type_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_page_scan_type *rsp = data; print_status(rsp->status); print_pscan_type(rsp->type); } static void write_page_scan_type_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_page_scan_type *cmd = data; print_pscan_type(cmd->type); } static void read_afh_assessment_mode_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_afh_assessment_mode *rsp = data; print_status(rsp->status); print_afh_mode(rsp->mode); } static void write_afh_assessment_mode_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_afh_assessment_mode *cmd = data; print_afh_mode(cmd->mode); } static void read_ext_inquiry_response_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_ext_inquiry_response *rsp = data; print_status(rsp->status); print_fec(rsp->fec); print_eir(rsp->data, sizeof(rsp->data), false); } static void write_ext_inquiry_response_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_ext_inquiry_response *cmd = data; print_fec(cmd->fec); print_eir(cmd->data, sizeof(cmd->data), false); } static void refresh_encrypt_key_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_refresh_encrypt_key *cmd = data; print_handle(cmd->handle); } static void read_simple_pairing_mode_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_simple_pairing_mode *rsp = data; print_status(rsp->status); print_simple_pairing_mode(rsp->mode); } static void write_simple_pairing_mode_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_simple_pairing_mode *cmd = data; print_simple_pairing_mode(cmd->mode); } static void read_local_oob_data_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_oob_data *rsp = data; print_status(rsp->status); print_hash_p192(rsp->hash); print_randomizer_p192(rsp->randomizer); } static void read_inquiry_resp_tx_power_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_inquiry_resp_tx_power *rsp = data; print_status(rsp->status); print_power_level(rsp->level); } static void write_inquiry_tx_power_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_inquiry_tx_power *cmd = data; print_power_level(cmd->level); } static void enhanced_flush_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_enhanced_flush *cmd = data; const char *str; print_handle(cmd->handle); switch (cmd->type) { case 0x00: str = "Automatic flushable only"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, cmd->type); } static void send_keypress_notify_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_send_keypress_notify *cmd = data; const char *str; print_bdaddr(cmd->bdaddr); switch (cmd->type) { case 0x00: str = "Passkey entry started"; break; case 0x01: str = "Passkey digit entered"; break; case 0x02: str = "Passkey digit erased"; break; case 0x03: str = "Passkey cleared"; break; case 0x04: str = "Passkey entry completed"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, cmd->type); } static void send_keypress_notify_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_send_keypress_notify *rsp = data; print_status(rsp->status); print_bdaddr(rsp->bdaddr); } static void set_event_mask_page2_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_set_event_mask_page2 *cmd = data; print_event_mask_page2(cmd->mask); } static void read_location_data_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_location_data *rsp = data; print_status(rsp->status); print_location_domain_aware(rsp->domain_aware); print_location_domain(rsp->domain); print_location_domain_options(rsp->domain_options); print_location_options(rsp->options); } static void write_location_data_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_location_data *cmd = data; print_location_domain_aware(cmd->domain_aware); print_location_domain(cmd->domain); print_location_domain_options(cmd->domain_options); print_location_options(cmd->options); } static void read_flow_control_mode_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_flow_control_mode *rsp = data; print_status(rsp->status); print_flow_control_mode(rsp->mode); } static void write_flow_control_mode_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_flow_control_mode *cmd = data; print_flow_control_mode(cmd->mode); } static void read_le_host_supported_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_le_host_supported *rsp = data; print_status(rsp->status); print_field("Supported: 0x%2.2x", rsp->supported); print_field("Simultaneous: 0x%2.2x", rsp->simultaneous); } static void write_le_host_supported_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_le_host_supported *cmd = data; print_field("Supported: 0x%2.2x", cmd->supported); print_field("Simultaneous: 0x%2.2x", cmd->simultaneous); } static void set_reserved_lt_addr_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_set_reserved_lt_addr *cmd = data; print_lt_addr(cmd->lt_addr); } static void set_reserved_lt_addr_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_set_reserved_lt_addr *rsp = data; print_status(rsp->status); print_lt_addr(rsp->lt_addr); } static void delete_reserved_lt_addr_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_delete_reserved_lt_addr *cmd = data; print_lt_addr(cmd->lt_addr); } static void delete_reserved_lt_addr_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_delete_reserved_lt_addr *rsp = data; print_status(rsp->status); print_lt_addr(rsp->lt_addr); } static void set_slave_broadcast_data_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_set_slave_broadcast_data *cmd = data; print_lt_addr(cmd->lt_addr); print_broadcast_fragment(cmd->fragment); print_field("Length: %d", cmd->length); if (size - 3 != cmd->length) print_text(COLOR_ERROR, "invalid data size (%d != %d)", size - 3, cmd->length); packet_hexdump(data + 3, size - 3); } static void set_slave_broadcast_data_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_set_slave_broadcast_data *rsp = data; print_status(rsp->status); print_lt_addr(rsp->lt_addr); } static void read_sync_train_params_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_sync_train_params *rsp = data; print_status(rsp->status); print_interval(rsp->interval); print_field("Timeout: %.3f msec (0x%8.8x)", le32_to_cpu(rsp->timeout) * 0.625, le32_to_cpu(rsp->timeout)); print_field("Service Data: 0x%2.2x", rsp->service_data); } static void write_sync_train_params_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_sync_train_params *cmd = data; print_slot_625("Min interval", cmd->min_interval); print_slot_625("Max interval", cmd->max_interval); print_field("Timeout: %.3f msec (0x%8.8x)", le32_to_cpu(cmd->timeout) * 0.625, le32_to_cpu(cmd->timeout)); print_field("Service Data: 0x%2.2x", cmd->service_data); } static void write_sync_train_params_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_write_sync_train_params *rsp = data; print_status(rsp->status); print_interval(rsp->interval); } static void read_secure_conn_support_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_secure_conn_support *rsp = data; print_status(rsp->status); print_secure_conn_support(rsp->support); } static void write_secure_conn_support_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_secure_conn_support *cmd = data; print_secure_conn_support(cmd->support); } static void read_auth_payload_timeout_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_auth_payload_timeout *cmd = data; print_handle(cmd->handle); } static void read_auth_payload_timeout_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_auth_payload_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_auth_payload_timeout(rsp->timeout); } static void write_auth_payload_timeout_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_auth_payload_timeout *cmd = data; print_handle(cmd->handle); print_auth_payload_timeout(cmd->timeout); } static void write_auth_payload_timeout_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_write_auth_payload_timeout *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_local_oob_ext_data_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_oob_ext_data *rsp = data; print_status(rsp->status); print_hash_p192(rsp->hash192); print_randomizer_p192(rsp->randomizer192); print_hash_p256(rsp->hash256); print_randomizer_p256(rsp->randomizer256); } static void read_local_version_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_version *rsp = data; print_status(rsp->status); print_hci_version(rsp->hci_ver, rsp->hci_rev); switch (index_list[index_current].type) { case HCI_BREDR: print_lmp_version(rsp->lmp_ver, rsp->lmp_subver); break; case HCI_AMP: print_pal_version(rsp->lmp_ver, rsp->lmp_subver); break; } print_manufacturer(rsp->manufacturer); } static void read_local_commands_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_commands *rsp = data; print_status(rsp->status); print_commands(rsp->commands); } static void read_local_features_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_features *rsp = data; print_status(rsp->status); print_features(0, rsp->features, 0x00); } static void read_local_ext_features_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_local_ext_features *cmd = data; print_field("Page: %d", cmd->page); } static void read_local_ext_features_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_ext_features *rsp = data; print_status(rsp->status); print_field("Page: %d/%d", rsp->page, rsp->max_page); print_features(rsp->page, rsp->features, 0x00); } static void read_buffer_size_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_buffer_size *rsp = data; print_status(rsp->status); print_field("ACL MTU: %-4d ACL max packet: %d", le16_to_cpu(rsp->acl_mtu), le16_to_cpu(rsp->acl_max_pkt)); print_field("SCO MTU: %-4d SCO max packet: %d", rsp->sco_mtu, le16_to_cpu(rsp->sco_max_pkt)); } static void read_country_code_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_country_code *rsp = data; const char *str; print_status(rsp->status); switch (rsp->code) { case 0x00: str = "North America, Europe*, Japan"; break; case 0x01: str = "France"; break; default: str = "Reserved"; break; } print_field("Country code: %s (0x%2.2x)", str, rsp->code); } static void read_bd_addr_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_bd_addr *rsp = data; print_status(rsp->status); print_bdaddr(rsp->bdaddr); } static void read_data_block_size_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_data_block_size *rsp = data; print_status(rsp->status); print_field("Max ACL length: %d", le16_to_cpu(rsp->max_acl_len)); print_field("Block length: %d", le16_to_cpu(rsp->block_len)); print_field("Num blocks: %d", le16_to_cpu(rsp->num_blocks)); } static void read_failed_contact_counter_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_failed_contact_counter *cmd = data; print_handle(cmd->handle); } static void read_failed_contact_counter_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_failed_contact_counter *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_field("Counter: %u", le16_to_cpu(rsp->counter)); } static void reset_failed_contact_counter_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_reset_failed_contact_counter *cmd = data; print_handle(cmd->handle); } static void reset_failed_contact_counter_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_reset_failed_contact_counter *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void read_link_quality_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_link_quality *cmd = data; print_handle(cmd->handle); } static void read_link_quality_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_link_quality *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_field("Link quality: 0x%2.2x", rsp->link_quality); } static void read_rssi_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_rssi *cmd = data; print_handle(cmd->handle); } static void read_rssi_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_rssi *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_rssi(rsp->rssi); } static void read_afh_channel_map_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_afh_channel_map *cmd = data; print_handle(cmd->handle); } static void read_afh_channel_map_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_afh_channel_map *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_afh_mode(rsp->mode); print_channel_map(rsp->map); } static void read_clock_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_clock *cmd = data; print_handle(cmd->handle); print_clock_type(cmd->type); } static void read_clock_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_clock *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_clock(rsp->clock); print_clock_accuracy(rsp->accuracy); } static void read_encrypt_key_size_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_encrypt_key_size *cmd = data; print_handle(cmd->handle); } static void read_encrypt_key_size_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_encrypt_key_size *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_key_size(rsp->key_size); } static void read_local_amp_info_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_amp_info *rsp = data; const char *str; print_status(rsp->status); print_amp_status(rsp->amp_status); print_field("Total bandwidth: %d kbps", le32_to_cpu(rsp->total_bw)); print_field("Max guaranteed bandwidth: %d kbps", le32_to_cpu(rsp->max_bw)); print_field("Min latency: %d", le32_to_cpu(rsp->min_latency)); print_field("Max PDU size: %d", le32_to_cpu(rsp->max_pdu)); switch (rsp->amp_type) { case 0x00: str = "Primary BR/EDR Controller"; break; case 0x01: str = "802.11 AMP Controller"; break; default: str = "Reserved"; break; } print_field("Controller type: %s (0x%2.2x)", str, rsp->amp_type); print_field("PAL capabilities: 0x%4.4x", le16_to_cpu(rsp->pal_cap)); print_field("Max ASSOC length: %d", le16_to_cpu(rsp->max_assoc_len)); print_field("Max flush timeout: %d", le32_to_cpu(rsp->max_flush_to)); print_field("Best effort flush timeout: %d", le32_to_cpu(rsp->be_flush_to)); } static void read_local_amp_assoc_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_read_local_amp_assoc *cmd = data; print_phy_handle(cmd->phy_handle); print_field("Length so far: %d", le16_to_cpu(cmd->len_so_far)); print_field("Max ASSOC length: %d", le16_to_cpu(cmd->max_assoc_len)); } static void read_local_amp_assoc_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_read_local_amp_assoc *rsp = data; print_status(rsp->status); print_phy_handle(rsp->phy_handle); print_field("Remaining ASSOC length: %d", le16_to_cpu(rsp->remain_assoc_len)); packet_hexdump(data + 4, size - 4); } static void write_remote_amp_assoc_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_remote_amp_assoc *cmd = data; print_phy_handle(cmd->phy_handle); print_field("Length so far: %d", le16_to_cpu(cmd->len_so_far)); print_field("Remaining ASSOC length: %d", le16_to_cpu(cmd->remain_assoc_len)); packet_hexdump(data + 5, size - 5); } static void write_remote_amp_assoc_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_write_remote_amp_assoc *rsp = data; print_status(rsp->status); print_phy_handle(rsp->phy_handle); } static void set_triggered_clock_capture_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_set_triggered_clock_capture *cmd = data; const char *str; print_handle(cmd->handle); switch (cmd->enable) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Capture: %s (0x%2.2x)", str, cmd->enable); print_clock_type(cmd->type); print_lpo_allowed(cmd->lpo_allowed); print_field("Clock captures to filter: %u", cmd->num_filter); } static void write_ssp_debug_mode_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_write_ssp_debug_mode *cmd = data; print_ssp_debug_mode(cmd->mode); } static void le_set_event_mask_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_event_mask *cmd = data; print_event_mask_le(cmd->mask); } static void le_read_buffer_size_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_buffer_size *rsp = data; print_status(rsp->status); print_field("Data packet length: %d", le16_to_cpu(rsp->le_mtu)); print_field("Num data packets: %d", rsp->le_max_pkt); } static void le_read_local_features_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_local_features *rsp = data; print_status(rsp->status); print_features(0, rsp->features, 0x01); } static void le_set_random_address_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_random_address *cmd = data; print_addr("Address", cmd->addr, 0x01); } static void le_set_adv_parameters_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_adv_parameters *cmd = data; const char *str; print_slot_625("Min advertising interval", cmd->min_interval); print_slot_625("Max advertising interval", cmd->max_interval); switch (cmd->type) { case 0x00: str = "Connectable undirected - ADV_IND"; break; case 0x01: str = "Connectable directed - ADV_DIRECT_IND (high duty cycle)"; break; case 0x02: str = "Scannable undirected - ADV_SCAN_IND"; break; case 0x03: str = "Non connectable undirect - ADV_NONCONN_IND"; break; case 0x04: str = "Connectable directed - ADV_DIRECT_IND (low duty cycle)"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, cmd->type); print_addr_type("Own address type", cmd->own_addr_type); print_addr_type("Direct address type", cmd->direct_addr_type); print_addr("Direct address", cmd->direct_addr, cmd->direct_addr_type); switch (cmd->channel_map) { case 0x01: str = "37"; break; case 0x02: str = "38"; break; case 0x03: str = "37, 38"; break; case 0x04: str = "39"; break; case 0x05: str = "37, 39"; break; case 0x06: str = "38, 39"; break; case 0x07: str = "37, 38, 39"; break; default: str = "Reserved"; break; } print_field("Channel map: %s (0x%2.2x)", str, cmd->channel_map); switch (cmd->filter_policy) { case 0x00: str = "Allow Scan Request from Any, " "Allow Connect Request from Any"; break; case 0x01: str = "Allow Scan Request from White List Only, " "Allow Connect Request from Any"; break; case 0x02: str = "Allow Scan Request from Any, " "Allow Connect Request from White List Only"; break; case 0x03: str = "Allow Scan Request from White List Only, " "Allow Connect Request from White List Only"; break; default: str = "Reserved"; break; } print_field("Filter policy: %s (0x%2.2x)", str, cmd->filter_policy); } static void le_read_adv_tx_power_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_adv_tx_power *rsp = data; print_status(rsp->status); print_power_level(rsp->level); } static void le_set_adv_data_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_adv_data *cmd = data; print_field("Length: %d", cmd->len); print_eir(cmd->data, cmd->len, true); } static void le_set_scan_rsp_data_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_scan_rsp_data *cmd = data; print_field("Length: %d", cmd->len); print_eir(cmd->data, cmd->len, true); } static void le_set_adv_enable_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_adv_enable *cmd = data; const char *str; switch (cmd->enable) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Advertising: %s (0x%2.2x)", str, cmd->enable); } static void le_set_scan_parameters_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_scan_parameters *cmd = data; const char *str; switch (cmd->type) { case 0x00: str = "Passive"; break; case 0x01: str = "Active"; break; default: str = "Reserved"; break; } print_field("Type: %s (0x%2.2x)", str, cmd->type); print_interval(cmd->interval); print_window(cmd->window); print_addr_type("Own address type", cmd->own_addr_type); switch (cmd->filter_policy) { case 0x00: str = "Accept all advertisement"; break; case 0x01: str = "Ignore not in white list"; break; default: str = "Reserved"; break; } print_field("Filter policy: %s (0x%2.2x)", str, cmd->filter_policy); } static void le_set_scan_enable_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_scan_enable *cmd = data; const char *str; switch (cmd->enable) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Scanning: %s (0x%2.2x)", str, cmd->enable); switch (cmd->filter_dup) { case 0x00: str = "Disabled"; break; case 0x01: str = "Enabled"; break; default: str = "Reserved"; break; } print_field("Filter duplicates: %s (0x%2.2x)", str, cmd->filter_dup); } static void le_create_conn_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_create_conn *cmd = data; const char *str; print_slot_625("Scan interval", cmd->scan_interval); print_slot_625("Scan window", cmd->scan_window); switch (cmd->filter_policy) { case 0x00: str = "White list is not used"; break; case 0x01: str = "White list is used"; break; default: str = "Reserved"; break; } print_field("Filter policy: %s (0x%2.2x)", str, cmd->filter_policy); print_addr_type("Peer address type", cmd->peer_addr_type); print_addr("Peer address", cmd->peer_addr, cmd->peer_addr_type); print_addr_type("Own address type", cmd->own_addr_type); print_slot_125("Min connection interval", cmd->min_interval); print_slot_125("Max connection interval", cmd->max_interval); print_field("Connection latency: 0x%4.4x", le16_to_cpu(cmd->latency)); print_field("Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(cmd->supv_timeout) * 10, le16_to_cpu(cmd->supv_timeout)); print_slot_625("Min connection length", cmd->min_length); print_slot_625("Max connection length", cmd->max_length); } static void le_read_white_list_size_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_white_list_size *rsp = data; print_status(rsp->status); print_field("Size: %u", rsp->size); } static void le_add_to_white_list_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_add_to_white_list *cmd = data; print_addr_type("Address type", cmd->addr_type); print_addr("Address", cmd->addr, cmd->addr_type); } static void le_remove_from_white_list_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_remove_from_white_list *cmd = data; print_addr_type("Address type", cmd->addr_type); print_addr("Address", cmd->addr, cmd->addr_type); } static void le_conn_update_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_conn_update *cmd = data; print_handle(cmd->handle); print_slot_125("Min connection interval", cmd->min_interval); print_slot_125("Max connection interval", cmd->max_interval); print_field("Connection latency: 0x%4.4x", le16_to_cpu(cmd->latency)); print_field("Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(cmd->supv_timeout) * 10, le16_to_cpu(cmd->supv_timeout)); print_slot_625("Min connection length", cmd->min_length); print_slot_625("Max connection length", cmd->max_length); } static void le_set_host_classification_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_set_host_classification *cmd = data; print_le_channel_map(cmd->map); } static void le_read_channel_map_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_read_channel_map *cmd = data; print_handle(cmd->handle); } static void le_read_channel_map_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_channel_map *rsp = data; print_status(rsp->status); print_handle(rsp->handle); print_le_channel_map(rsp->map); } static void le_read_remote_features_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_read_remote_features *cmd = data; print_handle(cmd->handle); } static void le_encrypt_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_encrypt *cmd = data; print_key("Key", cmd->key); print_key("Plaintext data", cmd->plaintext); } static void le_encrypt_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_le_encrypt *rsp = data; print_status(rsp->status); print_key("Encrypted data", rsp->data); } static void le_rand_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_le_rand *rsp = data; print_status(rsp->status); print_random_number(rsp->number); } static void le_start_encrypt_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_start_encrypt *cmd = data; print_handle(cmd->handle); print_random_number(cmd->rand); print_encrypted_diversifier(cmd->ediv); print_key("Long term key", cmd->ltk); } static void le_ltk_req_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_ltk_req_reply *cmd = data; print_handle(cmd->handle); print_key("Long term key", cmd->ltk); } static void le_ltk_req_reply_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_le_ltk_req_reply *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void le_ltk_req_neg_reply_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_ltk_req_neg_reply *cmd = data; print_handle(cmd->handle); } static void le_ltk_req_neg_reply_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_le_ltk_req_neg_reply *rsp = data; print_status(rsp->status); print_handle(rsp->handle); } static void le_read_supported_states_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_le_read_supported_states *rsp = data; print_status(rsp->status); print_le_states(rsp->states); } static void le_receiver_test_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_receiver_test *cmd = data; print_field("RX frequency: %d MHz (0x%2.2x)", (cmd->frequency * 2) + 2402, cmd->frequency); } static void le_transmitter_test_cmd(const void *data, uint8_t size) { const struct bt_hci_cmd_le_transmitter_test *cmd = data; print_field("TX frequency: %d MHz (0x%2.2x)", (cmd->frequency * 2) + 2402, cmd->frequency); print_field("Test data length: %d bytes", cmd->data_len); print_field("Packet payload: 0x%2.2x", cmd->payload); } static void le_test_end_rsp(const void *data, uint8_t size) { const struct bt_hci_rsp_le_test_end *rsp = data; print_status(rsp->status); print_field("Number of packets: %d", le16_to_cpu(rsp->num_packets)); } struct opcode_data { uint16_t opcode; int bit; const char *str; void (*cmd_func) (const void *data, uint8_t size); uint8_t cmd_size; bool cmd_fixed; void (*rsp_func) (const void *data, uint8_t size); uint8_t rsp_size; bool rsp_fixed; }; static const struct opcode_data opcode_table[] = { { 0x0000, -1, "NOP" }, /* OGF 1 - Link Control */ { 0x0401, 0, "Inquiry", inquiry_cmd, 5, true }, { 0x0402, 1, "Inquiry Cancel", null_cmd, 0, true, status_rsp, 1, true }, { 0x0403, 2, "Periodic Inquiry Mode", periodic_inquiry_cmd, 9, true, status_rsp, 1, true }, { 0x0404, 3, "Exit Periodic Inquiry Mode", null_cmd, 0, true, status_rsp, 1, true }, { 0x0405, 4, "Create Connection", create_conn_cmd, 13, true }, { 0x0406, 5, "Disconnect", disconnect_cmd, 3, true }, { 0x0407, 6, "Add SCO Connection", add_sco_conn_cmd, 4, true }, { 0x0408, 7, "Create Connection Cancel", create_conn_cancel_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x0409, 8, "Accept Connection Request", accept_conn_request_cmd, 7, true }, { 0x040a, 9, "Reject Connection Request", reject_conn_request_cmd, 7, true }, { 0x040b, 10, "Link Key Request Reply", link_key_request_reply_cmd, 22, true, status_bdaddr_rsp, 7, true }, { 0x040c, 11, "Link Key Request Negative Reply", link_key_request_neg_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x040d, 12, "PIN Code Request Reply", pin_code_request_reply_cmd, 23, true, status_bdaddr_rsp, 7, true }, { 0x040e, 13, "PIN Code Request Negative Reply", pin_code_request_neg_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x040f, 14, "Change Connection Packet Type", change_conn_pkt_type_cmd, 4, true }, { 0x0411, 15, "Authentication Requested", auth_requested_cmd, 2, true }, { 0x0413, 16, "Set Connection Encryption", set_conn_encrypt_cmd, 3, true }, { 0x0415, 17, "Change Connection Link Key", change_conn_link_key_cmd, 2, true }, { 0x0417, 18, "Master Link Key", master_link_key_cmd, 1, true }, { 0x0419, 19, "Remote Name Request", remote_name_request_cmd, 10, true }, { 0x041a, 20, "Remote Name Request Cancel", remote_name_request_cancel_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x041b, 21, "Read Remote Supported Features", read_remote_features_cmd, 2, true }, { 0x041c, 22, "Read Remote Extended Features", read_remote_ext_features_cmd, 3, true }, { 0x041d, 23, "Read Remote Version Information", read_remote_version_cmd, 2, true }, { 0x041f, 24, "Read Clock Offset", read_clock_offset_cmd, 2, true }, { 0x0420, 25, "Read LMP Handle", read_lmp_handle_cmd, 2, true, read_lmp_handle_rsp, 8, true }, { 0x0428, 131, "Setup Synchronous Connection", setup_sync_conn_cmd, 17, true }, { 0x0429, 132, "Accept Synchronous Connection Request", accept_sync_conn_request_cmd, 21, true }, { 0x042a, 133, "Reject Synchronous Connection Request", reject_sync_conn_request_cmd, 7, true }, { 0x042b, 151, "IO Capability Request Reply", io_capability_request_reply_cmd, 9, true, status_bdaddr_rsp, 7, true }, { 0x042c, 152, "User Confirmation Request Reply", user_confirm_request_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x042d, 153, "User Confirmation Request Neg Reply", user_confirm_request_neg_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x042e, 154, "User Passkey Request Reply", user_passkey_request_reply_cmd, 10, true, status_bdaddr_rsp, 7, true }, { 0x042f, 155, "User Passkey Request Negative Reply", user_passkey_request_neg_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x0430, 156, "Remote OOB Data Request Reply", remote_oob_data_request_reply_cmd, 38, true, status_bdaddr_rsp, 7, true }, { 0x0433, 159, "Remote OOB Data Request Neg Reply", remote_oob_data_request_neg_reply_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x0434, 163, "IO Capability Request Negative Reply", io_capability_request_neg_reply_cmd, 7, true, status_bdaddr_rsp, 7, true }, { 0x0435, 168, "Create Physical Link", create_phy_link_cmd, 3, false }, { 0x0436, 169, "Accept Physical Link", accept_phy_link_cmd, 3, false }, { 0x0437, 170, "Disconnect Physical Link", disconn_phy_link_cmd, 2, true }, { 0x0438, 171, "Create Logical Link", create_logic_link_cmd, 33, true }, { 0x0439, 172, "Accept Logical Link", accept_logic_link_cmd, 33, true }, { 0x043a, 173, "Disconnect Logical Link", disconn_logic_link_cmd, 2, true }, { 0x043b, 174, "Logical Link Cancel", logic_link_cancel_cmd, 2, true, logic_link_cancel_rsp, 3, true }, { 0x043c, 175, "Flow Specifcation Modify", flow_spec_modify_cmd, 34, true }, { 0x043d, 235, "Enhanced Setup Synchronous Connection" }, { 0x043e, 236, "Enhanced Accept Synchronous Connection Request" }, { 0x043f, 246, "Truncated Page", truncated_page_cmd, 9, true }, { 0x0440, 247, "Truncated Page Cancel", truncated_page_cancel_cmd, 6, true, status_bdaddr_rsp, 7, true }, { 0x0441, 248, "Set Connectionless Slave Broadcast", set_slave_broadcast_cmd, 11, true, set_slave_broadcast_rsp, 4, true }, { 0x0442, 249, "Set Connectionless Slave Broadcast Receive", set_slave_broadcast_receive_cmd, 34, true, set_slave_broadcast_receive_rsp, 8, true }, { 0x0443, 250, "Start Synchronization Train", null_cmd, 0, true }, { 0x0444, 251, "Receive Synchronization Train", receive_sync_train_cmd, 12, true }, { 0x0445, 257, "Remote OOB Extended Data Request Reply", remote_oob_ext_data_request_reply_cmd, 70, true, status_bdaddr_rsp, 7, true }, /* OGF 2 - Link Policy */ { 0x0801, 33, "Holde Mode", hold_mode_cmd, 6, true }, { 0x0803, 34, "Sniff Mode", sniff_mode_cmd, 10, true }, { 0x0804, 35, "Exit Sniff Mode", exit_sniff_mode_cmd, 2, true }, { 0x0805, 36, "Park State", park_state_cmd, 6, true }, { 0x0806, 37, "Exit Park State", exit_park_state_cmd, 2, true }, { 0x0807, 38, "QoS Setup", qos_setup_cmd, 20, true }, { 0x0809, 39, "Role Discovery", role_discovery_cmd, 2, true, role_discovery_rsp, 4, true }, { 0x080b, 40, "Switch Role", switch_role_cmd, 7, true }, { 0x080c, 41, "Read Link Policy Settings", read_link_policy_cmd, 2, true, read_link_policy_rsp, 5, true }, { 0x080d, 42, "Write Link Policy Settings", write_link_policy_cmd, 4, true, write_link_policy_rsp, 3, true }, { 0x080e, 43, "Read Default Link Policy Settings", null_cmd, 0, true, read_default_link_policy_rsp, 3, true }, { 0x080f, 44, "Write Default Link Policy Settings", write_default_link_policy_cmd, 2, true, status_rsp, 1, true }, { 0x0810, 45, "Flow Specification", flow_spec_cmd, 21, true }, { 0x0811, 140, "Sniff Subrating", sniff_subrating_cmd, 8, true, sniff_subrating_rsp, 3, true }, /* OGF 3 - Host Control */ { 0x0c01, 46, "Set Event Mask", set_event_mask_cmd, 8, true, status_rsp, 1, true }, { 0x0c03, 47, "Reset", null_cmd, 0, true, status_rsp, 1, true }, { 0x0c05, 48, "Set Event Filter", set_event_filter_cmd, 1, false, status_rsp, 1, true }, { 0x0c08, 49, "Flush", flush_cmd, 2, true, flush_rsp, 3, true }, { 0x0c09, 50, "Read PIN Type", null_cmd, 0, true, read_pin_type_rsp, 2, true }, { 0x0c0a, 51, "Write PIN Type", write_pin_type_cmd, 1, true, status_rsp, 1, true }, { 0x0c0b, 52, "Create New Unit Key", null_cmd, 0, true, status_rsp, 1, true }, { 0x0c0d, 53, "Read Stored Link Key", read_stored_link_key_cmd, 7, true, read_stored_link_key_rsp, 5, true }, { 0x0c11, 54, "Write Stored Link Key", write_stored_link_key_cmd, 1, false, write_stored_link_key_rsp, 2, true }, { 0x0c12, 55, "Delete Stored Link Key", delete_stored_link_key_cmd, 7, true, delete_stored_link_key_rsp, 3, true }, { 0x0c13, 56, "Write Local Name", write_local_name_cmd, 248, true, status_rsp, 1, true }, { 0x0c14, 57, "Read Local Name", null_cmd, 0, true, read_local_name_rsp, 249, true }, { 0x0c15, 58, "Read Connection Accept Timeout", null_cmd, 0, true, read_conn_accept_timeout_rsp, 3, true }, { 0x0c16, 59, "Write Connection Accept Timeout", write_conn_accept_timeout_cmd, 2, true, status_rsp, 1, true }, { 0x0c17, 60, "Read Page Timeout", null_cmd, 0, true, read_page_timeout_rsp, 3, true }, { 0x0c18, 61, "Write Page Timeout", write_page_timeout_cmd, 2, true, status_rsp, 1, true }, { 0x0c19, 62, "Read Scan Enable", null_cmd, 0, true, read_scan_enable_rsp, 2, true }, { 0x0c1a, 63, "Write Scan Enable", write_scan_enable_cmd, 1, true, status_rsp, 1, true }, { 0x0c1b, 64, "Read Page Scan Activity", null_cmd, 0, true, read_page_scan_activity_rsp, 5, true }, { 0x0c1c, 65, "Write Page Scan Activity", write_page_scan_activity_cmd, 4, true, status_rsp, 1, true }, { 0x0c1d, 66, "Read Inquiry Scan Activity", null_cmd, 0, true, read_inquiry_scan_activity_rsp, 5, true }, { 0x0c1e, 67, "Write Inquiry Scan Activity", write_inquiry_scan_activity_cmd, 4, true, status_rsp, 1, true }, { 0x0c1f, 68, "Read Authentication Enable", null_cmd, 0, true, read_auth_enable_rsp, 2, true }, { 0x0c20, 69, "Write Authentication Enable", write_auth_enable_cmd, 1, true, status_rsp, 1, true }, { 0x0c21, 70, "Read Encryption Mode", null_cmd, 0, true, read_encrypt_mode_rsp, 2, true }, { 0x0c22, 71, "Write Encryption Mode", write_encrypt_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c23, 72, "Read Class of Device", null_cmd, 0, true, read_class_of_dev_rsp, 4, true }, { 0x0c24, 73, "Write Class of Device", write_class_of_dev_cmd, 3, true, status_rsp, 1, true }, { 0x0c25, 74, "Read Voice Setting", null_cmd, 0, true, read_voice_setting_rsp, 3, true }, { 0x0c26, 75, "Write Voice Setting", write_voice_setting_cmd, 2, true, status_rsp, 1, true }, { 0x0c27, 76, "Read Automatic Flush Timeout", read_auto_flush_timeout_cmd, 2, true, read_auto_flush_timeout_rsp, 5, true }, { 0x0c28, 77, "Write Automatic Flush Timeout", write_auto_flush_timeout_cmd, 4, true, write_auto_flush_timeout_rsp, 3, true }, { 0x0c29, 78, "Read Num Broadcast Retransmissions", null_cmd, 0, true, read_num_broadcast_retrans_rsp, 2, true }, { 0x0c2a, 79, "Write Num Broadcast Retransmissions", write_num_broadcast_retrans_cmd, 1, true, status_rsp, 1, true }, { 0x0c2b, 80, "Read Hold Mode Activity", null_cmd, 0, true, read_hold_mode_activity_rsp, 2, true }, { 0x0c2c, 81, "Write Hold Mode Activity", write_hold_mode_activity_cmd, 1, true, status_rsp, 1, true }, { 0x0c2d, 82, "Read Transmit Power Level", read_tx_power_cmd, 3, true, read_tx_power_rsp, 4, true }, { 0x0c2e, 83, "Read Sync Flow Control Enable", null_cmd, 0, true, read_sync_flow_control_rsp, 2, true }, { 0x0c2f, 84, "Write Sync Flow Control Enable", write_sync_flow_control_cmd, 1, true, status_rsp, 1, true }, { 0x0c31, 85, "Set Controller To Host Flow Control", set_host_flow_control_cmd, 1, true, status_rsp, 1, true }, { 0x0c33, 86, "Host Buffer Size", host_buffer_size_cmd, 7, true, status_rsp, 1, true }, { 0x0c35, 87, "Host Number of Completed Packets" }, { 0x0c36, 88, "Read Link Supervision Timeout", read_link_supv_timeout_cmd, 2, true, read_link_supv_timeout_rsp, 5, true }, { 0x0c37, 89, "Write Link Supervision Timeout", write_link_supv_timeout_cmd, 4, true, write_link_supv_timeout_rsp, 3, true }, { 0x0c38, 90, "Read Number of Supported IAC", null_cmd, 0, true, read_num_supported_iac_rsp, 2, true }, { 0x0c39, 91, "Read Current IAC LAP", null_cmd, 0, true, read_current_iac_lap_rsp, 2, false }, { 0x0c3a, 92, "Write Current IAC LAP", write_current_iac_lap_cmd, 1, false, status_rsp, 1, true }, { 0x0c3b, 93, "Read Page Scan Period Mode", null_cmd, 0, true, read_page_scan_period_mode_rsp, 2, true }, { 0x0c3c, 94, "Write Page Scan Period Mode", write_page_scan_period_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c3d, 95, "Read Page Scan Mode", null_cmd, 0, true, read_page_scan_mode_rsp, 2, true }, { 0x0c3e, 96, "Write Page Scan Mode", write_page_scan_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c3f, 97, "Set AFH Host Channel Classification", set_afh_host_classification_cmd, 10, true, status_rsp, 1, true }, { 0x0c42, 100, "Read Inquiry Scan Type", null_cmd, 0, true, read_inquiry_scan_type_rsp, 2, true }, { 0x0c43, 101, "Write Inquiry Scan Type", write_inquiry_scan_type_cmd, 1, true, status_rsp, 1, true }, { 0x0c44, 102, "Read Inquiry Mode", null_cmd, 0, true, read_inquiry_mode_rsp, 2, true }, { 0x0c45, 103, "Write Inquiry Mode", write_inquiry_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c46, 104, "Read Page Scan Type", null_cmd, 0, true, read_page_scan_type_rsp, 2, true }, { 0x0c47, 105, "Write Page Scan Type", write_page_scan_type_cmd, 1, true, status_rsp, 1, true }, { 0x0c48, 106, "Read AFH Channel Assessment Mode", null_cmd, 0, true, read_afh_assessment_mode_rsp, 2, true }, { 0x0c49, 107, "Write AFH Channel Assessment Mode", write_afh_assessment_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c51, 136, "Read Extended Inquiry Response", null_cmd, 0, true, read_ext_inquiry_response_rsp, 242, true }, { 0x0c52, 137, "Write Extended Inquiry Response", write_ext_inquiry_response_cmd, 241, true, status_rsp, 1, true }, { 0x0c53, 138, "Refresh Encryption Key", refresh_encrypt_key_cmd, 2, true }, { 0x0c55, 141, "Read Simple Pairing Mode", null_cmd, 0, true, read_simple_pairing_mode_rsp, 2, true }, { 0x0c56, 142, "Write Simple Pairing Mode", write_simple_pairing_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c57, 143, "Read Local OOB Data", null_cmd, 0, true, read_local_oob_data_rsp, 33, true }, { 0x0c58, 144, "Read Inquiry Response TX Power Level", null_cmd, 0, true, read_inquiry_resp_tx_power_rsp, 2, true }, { 0x0c59, 145, "Write Inquiry Transmit Power Level", write_inquiry_tx_power_cmd, 1, true, status_rsp, 1, true }, { 0x0c5a, 146, "Read Default Erroneous Reporting" }, { 0x0c5b, 147, "Write Default Erroneous Reporting" }, { 0x0c5f, 158, "Enhanced Flush", enhanced_flush_cmd, 3, true }, { 0x0c60, 162, "Send Keypress Notification", send_keypress_notify_cmd, 7, true, send_keypress_notify_rsp, 7, true }, { 0x0c61, 176, "Read Logical Link Accept Timeout" }, { 0x0c62, 177, "Write Logical Link Accept Timeout" }, { 0x0c63, 178, "Set Event Mask Page 2", set_event_mask_page2_cmd, 8, true, status_rsp, 1, true }, { 0x0c64, 179, "Read Location Data", null_cmd, 0, true, read_location_data_rsp, 6, true }, { 0x0c65, 180, "Write Location Data", write_location_data_cmd, 5, true, status_rsp, 1, true }, { 0x0c66, 184, "Read Flow Control Mode", null_cmd, 0, true, read_flow_control_mode_rsp, 2, true }, { 0x0c67, 185, "Write Flow Control Mode", write_flow_control_mode_cmd, 1, true, status_rsp, 1, true }, { 0x0c68, 192, "Read Enhanced Transmit Power Level" }, { 0x0c69, 194, "Read Best Effort Flush Timeout" }, { 0x0c6a, 195, "Write Best Effort Flush Timeout" }, { 0x0c6b, 196, "Short Range Mode" }, { 0x0c6c, 197, "Read LE Host Supported", null_cmd, 0, true, read_le_host_supported_rsp, 3, true }, { 0x0c6d, 198, "Write LE Host Supported", write_le_host_supported_cmd, 2, true, status_rsp, 1, true }, { 0x0c6e, 238, "Set MWS Channel Parameters" }, { 0x0c6f, 239, "Set External Frame Configuration" }, { 0x0c70, 240, "Set MWS Signaling" }, { 0x0c71, 241, "Set MWS Transport Layer" }, { 0x0c72, 242, "Set MWS Scan Frequency Table" }, { 0x0c73, 244, "Set MWS Pattern Configuration" }, { 0x0c74, 252, "Set Reserved LT_ADDR", set_reserved_lt_addr_cmd, 1, true, set_reserved_lt_addr_rsp, 2, true }, { 0x0c75, 253, "Delete Reserved LT_ADDR", delete_reserved_lt_addr_cmd, 1, true, delete_reserved_lt_addr_rsp, 2, true }, { 0x0c76, 254, "Set Connectionless Slave Broadcast Data", set_slave_broadcast_data_cmd, 3, false, set_slave_broadcast_data_rsp, 2, true }, { 0x0c77, 255, "Read Synchronization Train Parameters", null_cmd, 0, true, read_sync_train_params_rsp, 8, true }, { 0x0c78, 256, "Write Synchronization Train Parameters", write_sync_train_params_cmd, 9, true, write_sync_train_params_rsp, 3, true }, { 0x0c79, 258, "Read Secure Connections Host Support", null_cmd, 0, true, read_secure_conn_support_rsp, 2, true }, { 0x0c7a, 259, "Write Secure Connections Host Support", write_secure_conn_support_cmd, 1, true, status_rsp, 1, true }, { 0x0c7b, 260, "Read Authenticated Payload Timeout", read_auth_payload_timeout_cmd, 2, true, read_auth_payload_timeout_rsp, 5, true }, { 0x0c7c, 261, "Write Authenticated Payload Timeout", write_auth_payload_timeout_cmd, 4, true, write_auth_payload_timeout_rsp, 3, true }, { 0x0c7d, 262, "Read Local OOB Extended Data", null_cmd, 0, true, read_local_oob_ext_data_rsp, 65, true }, { 0x0c7e, 264, "Read Extended Page Timeout" }, { 0x0c7f, 265, "Write Extended Page Timeout" }, { 0x0c80, 266, "Read Extended Inquiry Length" }, { 0x0c81, 267, "Write Extended Inquiry Length" }, /* OGF 4 - Information Parameter */ { 0x1001, 115, "Read Local Version Information", null_cmd, 0, true, read_local_version_rsp, 9, true }, { 0x1002, 116, "Read Local Supported Commands", null_cmd, 0, true, read_local_commands_rsp, 65, true }, { 0x1003, 117, "Read Local Supported Features", null_cmd, 0, true, read_local_features_rsp, 9, true }, { 0x1004, 118, "Read Local Extended Features", read_local_ext_features_cmd, 1, true, read_local_ext_features_rsp, 11, true }, { 0x1005, 119, "Read Buffer Size", null_cmd, 0, true, read_buffer_size_rsp, 8, true }, { 0x1007, 120, "Read Country Code", null_cmd, 0, true, read_country_code_rsp, 2, true }, { 0x1009, 121, "Read BD ADDR", null_cmd, 0, true, read_bd_addr_rsp, 7, true }, { 0x100a, 186, "Read Data Block Size", null_cmd, 0, true, read_data_block_size_rsp, 7, true }, { 0x100b, 237, "Read Local Supported Codecs" }, /* OGF 5 - Status Parameter */ { 0x1401, 122, "Read Failed Contact Counter", read_failed_contact_counter_cmd, 2, true, read_failed_contact_counter_rsp, 5, true }, { 0x1402, 123, "Reset Failed Contact Counter", reset_failed_contact_counter_cmd, 2, true, reset_failed_contact_counter_rsp, 3, true }, { 0x1403, 124, "Read Link Quality", read_link_quality_cmd, 2, true, read_link_quality_rsp, 4, true }, { 0x1405, 125, "Read RSSI", read_rssi_cmd, 2, true, read_rssi_rsp, 4, true }, { 0x1406, 126, "Read AFH Channel Map", read_afh_channel_map_cmd, 2, true, read_afh_channel_map_rsp, 14, true }, { 0x1407, 127, "Read Clock", read_clock_cmd, 3, true, read_clock_rsp, 9, true }, { 0x1408, 164, "Read Encryption Key Size", read_encrypt_key_size_cmd, 2, true, read_encrypt_key_size_rsp, 4, true }, { 0x1409, 181, "Read Local AMP Info", null_cmd, 0, true, read_local_amp_info_rsp, 31, true }, { 0x140a, 182, "Read Local AMP ASSOC", read_local_amp_assoc_cmd, 5, true, read_local_amp_assoc_rsp, 5, false }, { 0x140b, 183, "Write Remote AMP ASSOC", write_remote_amp_assoc_cmd, 6, false, write_remote_amp_assoc_rsp, 2, true }, { 0x140c, 243, "Get MWS Transport Layer Configuration" }, { 0x140d, 245, "Set Triggered Clock Capture", set_triggered_clock_capture_cmd, 6, true, status_rsp, 1, true }, /* OGF 6 - Testing */ { 0x1801, 128, "Read Loopback Mode" }, { 0x1802, 129, "Write Loopback Mode" }, { 0x1803, 130, "Enable Device Under Test Mode", null_cmd, 0, true, status_rsp, 1, true }, { 0x1804, 157, "Write Simple Pairing Debug Mode", write_ssp_debug_mode_cmd, 1, true, status_rsp, 1, true }, { 0x1807, 189, "Enable AMP Receiver Reports" }, { 0x1808, 190, "AMP Test End" }, { 0x1809, 191, "AMP Test" }, { 0x180a, 263, "Write Secure Connections Test Mode" }, /* OGF 8 - LE Control */ { 0x2001, 200, "LE Set Event Mask", le_set_event_mask_cmd, 8, true, status_rsp, 1, true }, { 0x2002, 201, "LE Read Buffer Size", null_cmd, 0, true, le_read_buffer_size_rsp, 4, true }, { 0x2003, 202, "LE Read Local Supported Features", null_cmd, 0, true, le_read_local_features_rsp, 9, true }, { 0x2005, 204, "LE Set Random Address", le_set_random_address_cmd, 6, true, status_rsp, 1, true }, { 0x2006, 205, "LE Set Advertising Parameters", le_set_adv_parameters_cmd, 15, true, status_rsp, 1, true }, { 0x2007, 206, "LE Read Advertising Channel TX Power", null_cmd, 0, true, le_read_adv_tx_power_rsp, 2, true }, { 0x2008, 207, "LE Set Advertising Data", le_set_adv_data_cmd, 32, true, status_rsp, 1, true }, { 0x2009, 208, "LE Set Scan Response Data", le_set_scan_rsp_data_cmd, 32, true, status_rsp, 1, true }, { 0x200a, 209, "LE Set Advertise Enable", le_set_adv_enable_cmd, 1, true, status_rsp, 1, true }, { 0x200b, 210, "LE Set Scan Parameters", le_set_scan_parameters_cmd, 7, true, status_rsp, 1, true }, { 0x200c, 211, "LE Set Scan Enable", le_set_scan_enable_cmd, 2, true, status_rsp, 1, true }, { 0x200d, 212, "LE Create Connection", le_create_conn_cmd, 25, true }, { 0x200e, 213, "LE Create Connection Cancel", null_cmd, 0, true, status_rsp, 1, true }, { 0x200f, 214, "LE Read White List Size", null_cmd, 0, true, le_read_white_list_size_rsp, 2, true }, { 0x2010, 215, "LE Clear White List", null_cmd, 0, true, status_rsp, 1, true }, { 0x2011, 216, "LE Add Device To White List", le_add_to_white_list_cmd, 7, true, status_rsp, 1, true }, { 0x2012, 217, "LE Remove Device From White List", le_remove_from_white_list_cmd, 7, true, status_rsp, 1, true }, { 0x2013, 218, "LE Connection Update", le_conn_update_cmd, 14, true }, { 0x2014, 219, "LE Set Host Channel Classification", le_set_host_classification_cmd, 5, true, status_rsp, 1, true }, { 0x2015, 220, "LE Read Channel Map", le_read_channel_map_cmd, 2, true, le_read_channel_map_rsp, 8, true }, { 0x2016, 221, "LE Read Remote Used Features", le_read_remote_features_cmd, 2, true }, { 0x2017, 222, "LE Encrypt", le_encrypt_cmd, 32, true, le_encrypt_rsp, 17, true }, { 0x2018, 223, "LE Rand", null_cmd, 0, true, le_rand_rsp, 9, true }, { 0x2019, 224, "LE Start Encryption", le_start_encrypt_cmd, 28, true }, { 0x201a, 225, "LE Long Term Key Request Reply", le_ltk_req_reply_cmd, 18, true, le_ltk_req_reply_rsp, 3, true }, { 0x201b, 226, "LE Long Term Key Request Neg Reply", le_ltk_req_neg_reply_cmd, 2, true, le_ltk_req_neg_reply_rsp, 3, true }, { 0x201c, 227, "LE Read Supported States", null_cmd, 0, true, le_read_supported_states_rsp, 9, true }, { 0x201d, 228, "LE Receiver Test", le_receiver_test_cmd, 1, true, status_rsp, 1, true }, { 0x201e, 229, "LE Transmitter Test", le_transmitter_test_cmd, 3, true, status_rsp, 1, true }, { 0x201f, 230, "LE Test End", null_cmd, 0, true, le_test_end_rsp, 3, true }, { 0x2020, 268, "LE Remote Connection Parameter Request Reply" }, { 0x2021, 269, "LE Remote Connection Parameter Request Negative Reply" }, { } }; static const char *get_supported_command(int bit) { int i; for (i = 0; opcode_table[i].str; i++) { if (opcode_table[i].bit == bit) return opcode_table[i].str; } return NULL; } static void inquiry_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_inquiry_complete *evt = data; print_status(evt->status); } static void inquiry_result_evt(const void *data, uint8_t size) { const struct bt_hci_evt_inquiry_result *evt = data; print_num_resp(evt->num_resp); print_bdaddr(evt->bdaddr); print_pscan_rep_mode(evt->pscan_rep_mode); print_pscan_period_mode(evt->pscan_period_mode); print_pscan_mode(evt->pscan_mode); print_dev_class(evt->dev_class); print_clock_offset(evt->clock_offset); if (size > sizeof(*evt)) packet_hexdump(data + sizeof(*evt), size - sizeof(*evt)); } static void conn_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_conn_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_bdaddr(evt->bdaddr); print_link_type(evt->link_type); print_encr_mode(evt->encr_mode); if (evt->status == 0x00) assign_handle(le16_to_cpu(evt->handle), 0x00); } static void conn_request_evt(const void *data, uint8_t size) { const struct bt_hci_evt_conn_request *evt = data; print_bdaddr(evt->bdaddr); print_dev_class(evt->dev_class); print_link_type(evt->link_type); } static void disconnect_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_disconnect_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_reason(evt->reason); if (evt->status == 0x00) release_handle(le16_to_cpu(evt->handle)); } static void auth_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_auth_complete *evt = data; print_status(evt->status); print_handle(evt->handle); } static void remote_name_request_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_remote_name_request_complete *evt = data; print_status(evt->status); print_bdaddr(evt->bdaddr); print_name(evt->name); } static void encrypt_change_evt(const void *data, uint8_t size) { const struct bt_hci_evt_encrypt_change *evt = data; print_status(evt->status); print_handle(evt->handle); print_encr_mode_change(evt->encr_mode, evt->handle); } static void change_conn_link_key_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_change_conn_link_key_complete *evt = data; print_status(evt->status); print_handle(evt->handle); } static void master_link_key_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_master_link_key_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_key_flag(evt->key_flag); } static void remote_features_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_remote_features_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_features(0, evt->features, 0x00); } static void remote_version_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_remote_version_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_lmp_version(evt->lmp_ver, evt->lmp_subver); print_manufacturer(evt->manufacturer); } static void qos_setup_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_qos_setup_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_field("Flags: 0x%2.2x", evt->flags); print_service_type(evt->service_type); print_field("Token rate: %d", le32_to_cpu(evt->token_rate)); print_field("Peak bandwidth: %d", le32_to_cpu(evt->peak_bandwidth)); print_field("Latency: %d", le32_to_cpu(evt->latency)); print_field("Delay variation: %d", le32_to_cpu(evt->delay_variation)); } static void cmd_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_cmd_complete *evt = data; uint16_t opcode = le16_to_cpu(evt->opcode); uint16_t ogf = cmd_opcode_ogf(opcode); uint16_t ocf = cmd_opcode_ocf(opcode); const struct opcode_data *opcode_data = NULL; const char *opcode_color, *opcode_str; int i; for (i = 0; opcode_table[i].str; i++) { if (opcode_table[i].opcode == opcode) { opcode_data = &opcode_table[i]; break; } } if (opcode_data) { if (opcode_data->rsp_func) opcode_color = COLOR_HCI_COMMAND; else opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = opcode_data->str; } else { if (ogf == 0x3f) { opcode_color = COLOR_HCI_COMMAND; opcode_str = "Vendor"; } else { opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = "Unknown"; } } print_indent(6, opcode_color, "", opcode_str, COLOR_OFF, " (0x%2.2x|0x%4.4x) ncmd %d", ogf, ocf, evt->ncmd); if (!opcode_data || !opcode_data->rsp_func) { if (size > 3) { uint8_t status = *((uint8_t *) (data + 3)); print_status(status); packet_hexdump(data + 4, size - 4); } return; } if (opcode_data->rsp_size > 1 && size - 3 == 1) { uint8_t status = *((uint8_t *) (data + 3)); print_status(status); return; } if (opcode_data->rsp_fixed) { if (size - 3 != opcode_data->rsp_size) { print_text(COLOR_ERROR, "invalid packet size"); packet_hexdump(data + 3, size - 3); return; } } else { if (size - 3 < opcode_data->rsp_size) { print_text(COLOR_ERROR, "too short packet"); packet_hexdump(data + 3, size - 3); return; } } opcode_data->rsp_func(data + 3, size - 3); } static void cmd_status_evt(const void *data, uint8_t size) { const struct bt_hci_evt_cmd_status *evt = data; uint16_t opcode = le16_to_cpu(evt->opcode); uint16_t ogf = cmd_opcode_ogf(opcode); uint16_t ocf = cmd_opcode_ocf(opcode); const struct opcode_data *opcode_data = NULL; const char *opcode_color, *opcode_str; int i; for (i = 0; opcode_table[i].str; i++) { if (opcode_table[i].opcode == opcode) { opcode_data = &opcode_table[i]; break; } } if (opcode_data) { opcode_color = COLOR_HCI_COMMAND; opcode_str = opcode_data->str; } else { if (ogf == 0x3f) { opcode_color = COLOR_HCI_COMMAND; opcode_str = "Vendor"; } else { opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = "Unknown"; } } print_indent(6, opcode_color, "", opcode_str, COLOR_OFF, " (0x%2.2x|0x%4.4x) ncmd %d", ogf, ocf, evt->ncmd); print_status(evt->status); } static void hardware_error_evt(const void *data, uint8_t size) { const struct bt_hci_evt_hardware_error *evt = data; print_field("Code: 0x%2.2x", evt->code); } static void flush_occurred_evt(const void *data, uint8_t size) { const struct bt_hci_evt_flush_occurred *evt = data; print_handle(evt->handle); } static void role_change_evt(const void *data, uint8_t size) { const struct bt_hci_evt_role_change *evt = data; print_status(evt->status); print_bdaddr(evt->bdaddr); print_role(evt->role); } static void num_completed_packets_evt(const void *data, uint8_t size) { const struct bt_hci_evt_num_completed_packets *evt = data; print_field("Num handles: %d", evt->num_handles); print_handle(evt->handle); print_field("Count: %d", le16_to_cpu(evt->count)); if (size > sizeof(*evt)) packet_hexdump(data + sizeof(*evt), size - sizeof(*evt)); } static void mode_change_evt(const void *data, uint8_t size) { const struct bt_hci_evt_mode_change *evt = data; print_status(evt->status); print_handle(evt->handle); print_mode(evt->mode); print_interval(evt->interval); } static void return_link_keys_evt(const void *data, uint8_t size) { uint8_t num_keys = *((uint8_t *) data); print_field("Num keys: %d", num_keys); packet_hexdump(data + 1, size - 1); } static void pin_code_request_evt(const void *data, uint8_t size) { const struct bt_hci_evt_pin_code_request *evt = data; print_bdaddr(evt->bdaddr); } static void link_key_request_evt(const void *data, uint8_t size) { const struct bt_hci_evt_link_key_request *evt = data; print_bdaddr(evt->bdaddr); } static void link_key_notify_evt(const void *data, uint8_t size) { const struct bt_hci_evt_link_key_notify *evt = data; print_bdaddr(evt->bdaddr); print_link_key(evt->link_key); print_key_type(evt->key_type); } static void loopback_command_evt(const void *data, uint8_t size) { packet_hexdump(data, size); } static void data_buffer_overflow_evt(const void *data, uint8_t size) { const struct bt_hci_evt_data_buffer_overflow *evt = data; print_link_type(evt->link_type); } static void max_slots_change_evt(const void *data, uint8_t size) { const struct bt_hci_evt_max_slots_change *evt = data; print_handle(evt->handle); print_field("Max slots: %d", evt->max_slots); } static void clock_offset_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_clock_offset_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_clock_offset(evt->clock_offset); } static void conn_pkt_type_changed_evt(const void *data, uint8_t size) { const struct bt_hci_evt_conn_pkt_type_changed *evt = data; print_status(evt->status); print_handle(evt->handle); print_pkt_type(evt->pkt_type); } static void qos_violation_evt(const void *data, uint8_t size) { const struct bt_hci_evt_qos_violation *evt = data; print_handle(evt->handle); } static void pscan_mode_change_evt(const void *data, uint8_t size) { const struct bt_hci_evt_pscan_mode_change *evt = data; print_bdaddr(evt->bdaddr); print_pscan_mode(evt->pscan_mode); } static void pscan_rep_mode_change_evt(const void *data, uint8_t size) { const struct bt_hci_evt_pscan_rep_mode_change *evt = data; print_bdaddr(evt->bdaddr); print_pscan_rep_mode(evt->pscan_rep_mode); } static void flow_spec_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_flow_spec_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_field("Flags: 0x%2.2x", evt->flags); print_flow_direction(evt->direction); print_service_type(evt->service_type); print_field("Token rate: %d", le32_to_cpu(evt->token_rate)); print_field("Token bucket size: %d", le32_to_cpu(evt->token_bucket_size)); print_field("Peak bandwidth: %d", le32_to_cpu(evt->peak_bandwidth)); print_field("Access latency: %d", le32_to_cpu(evt->access_latency)); } static void inquiry_result_with_rssi_evt(const void *data, uint8_t size) { const struct bt_hci_evt_inquiry_result_with_rssi *evt = data; print_num_resp(evt->num_resp); print_bdaddr(evt->bdaddr); print_pscan_rep_mode(evt->pscan_rep_mode); print_pscan_period_mode(evt->pscan_period_mode); print_dev_class(evt->dev_class); print_clock_offset(evt->clock_offset); print_rssi(evt->rssi); if (size > sizeof(*evt)) packet_hexdump(data + sizeof(*evt), size - sizeof(*evt)); } static void remote_ext_features_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_remote_ext_features_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_field("Page: %d/%d", evt->page, evt->max_page); print_features(evt->page, evt->features, 0x00); } static void sync_conn_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_sync_conn_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_bdaddr(evt->bdaddr); print_link_type(evt->link_type); print_field("Transmission interval: 0x%2.2x", evt->tx_interval); print_field("Retransmission window: 0x%2.2x", evt->retrans_window); print_field("RX packet length: %d", le16_to_cpu(evt->rx_pkt_len)); print_field("TX packet length: %d", le16_to_cpu(evt->tx_pkt_len)); print_air_mode(evt->air_mode); } static void sync_conn_changed_evt(const void *data, uint8_t size) { const struct bt_hci_evt_sync_conn_changed *evt = data; print_status(evt->status); print_handle(evt->handle); print_field("Transmission interval: 0x%2.2x", evt->tx_interval); print_field("Retransmission window: 0x%2.2x", evt->retrans_window); print_field("RX packet length: %d", le16_to_cpu(evt->rx_pkt_len)); print_field("TX packet length: %d", le16_to_cpu(evt->tx_pkt_len)); } static void sniff_subrating_evt(const void *data, uint8_t size) { const struct bt_hci_evt_sniff_subrating *evt = data; print_status(evt->status); print_handle(evt->handle); print_slot_625("Max transmit latency", evt->max_tx_latency); print_slot_625("Max receive latency", evt->max_rx_latency); print_slot_625("Min remote timeout", evt->min_remote_timeout); print_slot_625("Min local timeout", evt->min_local_timeout); } static void ext_inquiry_result_evt(const void *data, uint8_t size) { const struct bt_hci_evt_ext_inquiry_result *evt = data; print_num_resp(evt->num_resp); print_bdaddr(evt->bdaddr); print_pscan_rep_mode(evt->pscan_rep_mode); print_pscan_period_mode(evt->pscan_period_mode); print_dev_class(evt->dev_class); print_clock_offset(evt->clock_offset); print_rssi(evt->rssi); print_eir(evt->data, sizeof(evt->data), false); } static void encrypt_key_refresh_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_encrypt_key_refresh_complete *evt = data; print_status(evt->status); print_handle(evt->handle); } static void io_capability_request_evt(const void *data, uint8_t size) { const struct bt_hci_evt_io_capability_request *evt = data; print_bdaddr(evt->bdaddr); } static void io_capability_response_evt(const void *data, uint8_t size) { const struct bt_hci_evt_io_capability_response *evt = data; print_bdaddr(evt->bdaddr); print_io_capability(evt->capability); print_oob_data(evt->oob_data); print_authentication(evt->authentication); } static void user_confirm_request_evt(const void *data, uint8_t size) { const struct bt_hci_evt_user_confirm_request *evt = data; print_bdaddr(evt->bdaddr); print_passkey(evt->passkey); } static void user_passkey_request_evt(const void *data, uint8_t size) { const struct bt_hci_evt_user_passkey_request *evt = data; print_bdaddr(evt->bdaddr); } static void remote_oob_data_request_evt(const void *data, uint8_t size) { const struct bt_hci_evt_remote_oob_data_request *evt = data; print_bdaddr(evt->bdaddr); } static void simple_pairing_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_simple_pairing_complete *evt = data; print_status(evt->status); print_bdaddr(evt->bdaddr); } static void link_supv_timeout_changed_evt(const void *data, uint8_t size) { const struct bt_hci_evt_link_supv_timeout_changed *evt = data; print_handle(evt->handle); print_timeout(evt->timeout); } static void enhanced_flush_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_enhanced_flush_complete *evt = data; print_handle(evt->handle); } static void user_passkey_notify_evt(const void *data, uint8_t size) { const struct bt_hci_evt_user_passkey_notify *evt = data; print_bdaddr(evt->bdaddr); print_passkey(evt->passkey); } static void keypress_notify_evt(const void *data, uint8_t size) { const struct bt_hci_evt_keypress_notify *evt = data; const char *str; print_bdaddr(evt->bdaddr); switch (evt->type) { case 0x00: str = "Passkey entry started"; break; case 0x01: str = "Passkey digit entered"; break; case 0x02: str = "Passkey digit erased"; break; case 0x03: str = "Passkey clared"; break; case 0x04: str = "Passkey entry completed"; break; default: str = "Reserved"; break; } print_field("Notification type: %s (0x%2.2x)", str, evt->type); } static void remote_host_features_notify_evt(const void *data, uint8_t size) { const struct bt_hci_evt_remote_host_features_notify *evt = data; print_bdaddr(evt->bdaddr); print_features(1, evt->features, 0x00); } static void phy_link_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_phy_link_complete *evt = data; print_status(evt->status); print_phy_handle(evt->phy_handle); } static void channel_selected_evt(const void *data, uint8_t size) { const struct bt_hci_evt_channel_selected *evt = data; print_phy_handle(evt->phy_handle); } static void disconn_phy_link_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_disconn_phy_link_complete *evt = data; print_status(evt->status); print_phy_handle(evt->phy_handle); print_reason(evt->reason); } static void phy_link_loss_early_warning_evt(const void *data, uint8_t size) { const struct bt_hci_evt_phy_link_loss_early_warning *evt = data; const char *str; print_phy_handle(evt->phy_handle); switch (evt->reason) { case 0x00: str = "Unknown"; break; case 0x01: str = "Range related"; break; case 0x02: str = "Bandwidth related"; break; case 0x03: str = "Resolving conflict"; break; case 0x04: str = "Interference"; break; default: str = "Reserved"; break; } print_field("Reason: %s (0x%2.2x)", str, evt->reason); } static void phy_link_recovery_evt(const void *data, uint8_t size) { const struct bt_hci_evt_phy_link_recovery *evt = data; print_phy_handle(evt->phy_handle); } static void logic_link_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_logic_link_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_phy_handle(evt->phy_handle); print_field("TX flow spec: 0x%2.2x", evt->flow_spec); } static void disconn_logic_link_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_disconn_logic_link_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_reason(evt->reason); } static void flow_spec_modify_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_flow_spec_modify_complete *evt = data; print_status(evt->status); print_handle(evt->handle); } static void num_completed_data_blocks_evt(const void *data, uint8_t size) { const struct bt_hci_evt_num_completed_data_blocks *evt = data; print_field("Total num data blocks: %d", le16_to_cpu(evt->total_num_blocks)); print_field("Num handles: %d", evt->num_handles); print_handle(evt->handle); print_field("Num packets: %d", evt->num_packets); print_field("Num blocks: %d", evt->num_blocks); if (size > sizeof(*evt)) packet_hexdump(data + sizeof(*evt), size - sizeof(*evt)); } static void short_range_mode_change_evt(const void *data, uint8_t size) { const struct bt_hci_evt_short_range_mode_change *evt = data; print_status(evt->status); print_phy_handle(evt->phy_handle); print_short_range_mode(evt->mode); } static void amp_status_change_evt(const void *data, uint8_t size) { const struct bt_hci_evt_amp_status_change *evt = data; print_status(evt->status); print_amp_status(evt->amp_status); } static void sync_train_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_sync_train_complete *evt = data; print_status(evt->status); } static void sync_train_received_evt(const void *data, uint8_t size) { const struct bt_hci_evt_sync_train_received *evt = data; print_status(evt->status); print_bdaddr(evt->bdaddr); print_field("Offset: 0x%8.8x", le32_to_cpu(evt->offset)); print_channel_map(evt->map); print_lt_addr(evt->lt_addr); print_field("Next broadcast instant: 0x%4.4x", le16_to_cpu(evt->instant)); print_interval(evt->interval); print_field("Service Data: 0x%2.2x", evt->service_data); } static void slave_broadcast_receive_evt(const void *data, uint8_t size) { const struct bt_hci_evt_slave_broadcast_receive *evt = data; print_bdaddr(evt->bdaddr); print_lt_addr(evt->lt_addr); print_field("Clock: 0x%8.8x", le32_to_cpu(evt->clock)); print_field("Offset: 0x%8.8x", le32_to_cpu(evt->offset)); print_field("Receive status: 0x%2.2x", evt->status); print_broadcast_fragment(evt->fragment); print_field("Length: %d", evt->length); if (size - 18 != evt->length) print_text(COLOR_ERROR, "invalid data size (%d != %d)", size - 18, evt->length); packet_hexdump(data + 18, size - 18); } static void slave_broadcast_timeout_evt(const void *data, uint8_t size) { const struct bt_hci_evt_slave_broadcast_timeout *evt = data; print_bdaddr(evt->bdaddr); print_lt_addr(evt->lt_addr); } static void truncated_page_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_truncated_page_complete *evt = data; print_status(evt->status); print_bdaddr(evt->bdaddr); } static void slave_page_response_timeout_evt(const void *data, uint8_t size) { } static void slave_broadcast_channel_map_change_evt(const void *data, uint8_t size) { const struct bt_hci_evt_slave_broadcast_channel_map_change *evt = data; print_channel_map(evt->map); } static void inquiry_response_notify_evt(const void *data, uint8_t size) { const struct bt_hci_evt_inquiry_response_notify *evt = data; print_iac(evt->lap); print_rssi(evt->rssi); } static void auth_payload_timeout_expired_evt(const void *data, uint8_t size) { const struct bt_hci_evt_auth_payload_timeout_expired *evt = data; print_handle(evt->handle); } static void le_conn_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_le_conn_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_role(evt->role); print_addr_type("Peer address type", evt->peer_addr_type); print_addr("Peer address", evt->peer_addr, evt->peer_addr_type); print_slot_125("Connection interval", evt->interval); print_slot_125("Connection latency", evt->latency); print_field("Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(evt->supv_timeout) * 10, le16_to_cpu(evt->supv_timeout)); print_field("Master clock accuracy: 0x%2.2x", evt->clock_accuracy); if (evt->status == 0x00) assign_handle(le16_to_cpu(evt->handle), 0x01); } static void le_adv_report_evt(const void *data, uint8_t size) { const struct bt_hci_evt_le_adv_report *evt = data; const char *str; uint8_t evt_len; int8_t *rssi; print_num_reports(evt->num_reports); report: switch (evt->event_type) { case 0x00: str = "Connectable undirected - ADV_IND"; break; case 0x01: str = "Connectable directed - ADV_DIRECT_IND"; break; case 0x02: str = "Scannable undirected - ADV_SCAN_IND"; break; case 0x03: str = "Non connectable undirected - ADV_NONCONN_IND"; break; case 0x04: str = "Scan response - SCAN_RSP"; break; default: str = "Reserved"; break; } print_field("Event type: %s (0x%2.2x)", str, evt->event_type); print_addr_type("Address type", evt->addr_type); print_addr("Address", evt->addr, evt->addr_type); print_field("Data length: %d", evt->data_len); print_eir(evt->data, evt->data_len, true); rssi = (int8_t *) (evt->data + evt->data_len); print_rssi(*rssi); evt_len = sizeof(*evt) + evt->data_len + 1; if (size > evt_len) { data += evt_len - 1; size -= evt_len - 1; evt = data; goto report; } } static void le_conn_update_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_le_conn_update_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_slot_125("Connection interval", evt->interval); print_slot_125("Connection latency", evt->latency); print_field("Supervision timeout: %d msec (0x%4.4x)", le16_to_cpu(evt->supv_timeout) * 10, le16_to_cpu(evt->supv_timeout)); } static void le_remote_features_complete_evt(const void *data, uint8_t size) { const struct bt_hci_evt_le_remote_features_complete *evt = data; print_status(evt->status); print_handle(evt->handle); print_features(0, evt->features, 0x01); } static void le_long_term_key_request_evt(const void *data, uint8_t size) { const struct bt_hci_evt_le_long_term_key_request *evt = data; print_handle(evt->handle); print_random_number(evt->rand); print_encrypted_diversifier(evt->ediv); } struct subevent_data { uint8_t subevent; const char *str; void (*func) (const void *data, uint8_t size); uint8_t size; bool fixed; }; static const struct subevent_data subevent_table[] = { { 0x01, "LE Connection Complete", le_conn_complete_evt, 18, true }, { 0x02, "LE Advertising Report", le_adv_report_evt, 1, false }, { 0x03, "LE Connection Update Complete", le_conn_update_complete_evt, 9, true }, { 0x04, "LE Read Remote Used Features", le_remote_features_complete_evt, 11, true }, { 0x05, "LE Long Term Key Request", le_long_term_key_request_evt, 12, true }, { 0x06, "LE Remote Connection Parameter Request" }, { } }; static void le_meta_event_evt(const void *data, uint8_t size) { uint8_t subevent = *((const uint8_t *) data); const struct subevent_data *subevent_data = NULL; const char *subevent_color, *subevent_str; int i; for (i = 0; subevent_table[i].str; i++) { if (subevent_table[i].subevent == subevent) { subevent_data = &subevent_table[i]; break; } } if (subevent_data) { if (subevent_data->func) subevent_color = COLOR_HCI_EVENT; else subevent_color = COLOR_HCI_EVENT_UNKNOWN; subevent_str = subevent_data->str; } else { subevent_color = COLOR_HCI_EVENT_UNKNOWN; subevent_str = "Unknown"; } print_indent(6, subevent_color, "", subevent_str, COLOR_OFF, " (0x%2.2x)", subevent); if (!subevent_data || !subevent_data->func) { packet_hexdump(data + 1, size - 1); return; } if (subevent_data->fixed) { if (size - 1 != subevent_data->size) { print_text(COLOR_ERROR, "invalid packet size"); packet_hexdump(data + 1, size - 1); return; } } else { if (size - 1 < subevent_data->size) { print_text(COLOR_ERROR, "too short packet"); packet_hexdump(data + 1, size - 1); return; } } subevent_data->func(data + 1, size - 1); } static void vendor_evt(const void *data, uint8_t size) { vendor_event(0xffff, data, size); } struct event_data { uint8_t event; const char *str; void (*func) (const void *data, uint8_t size); uint8_t size; bool fixed; }; static const struct event_data event_table[] = { { 0x01, "Inquiry Complete", inquiry_complete_evt, 1, true }, { 0x02, "Inquiry Result", inquiry_result_evt, 1, false }, { 0x03, "Connect Complete", conn_complete_evt, 11, true }, { 0x04, "Connect Request", conn_request_evt, 10, true }, { 0x05, "Disconnect Complete", disconnect_complete_evt, 4, true }, { 0x06, "Auth Complete", auth_complete_evt, 3, true }, { 0x07, "Remote Name Req Complete", remote_name_request_complete_evt, 255, true }, { 0x08, "Encryption Change", encrypt_change_evt, 4, true }, { 0x09, "Change Connection Link Key Complete", change_conn_link_key_complete_evt, 3, true }, { 0x0a, "Master Link Key Complete", master_link_key_complete_evt, 4, true }, { 0x0b, "Read Remote Supported Features", remote_features_complete_evt, 11, true }, { 0x0c, "Read Remote Version Complete", remote_version_complete_evt, 8, true }, { 0x0d, "QoS Setup Complete", qos_setup_complete_evt, 21, true }, { 0x0e, "Command Complete", cmd_complete_evt, 3, false }, { 0x0f, "Command Status", cmd_status_evt, 4, true }, { 0x10, "Hardware Error", hardware_error_evt, 1, true }, { 0x11, "Flush Occurred", flush_occurred_evt, 2, true }, { 0x12, "Role Change", role_change_evt, 8, true }, { 0x13, "Number of Completed Packets", num_completed_packets_evt, 1, false }, { 0x14, "Mode Change", mode_change_evt, 6, true }, { 0x15, "Return Link Keys", return_link_keys_evt, 1, false }, { 0x16, "PIN Code Request", pin_code_request_evt, 6, true }, { 0x17, "Link Key Request", link_key_request_evt, 6, true }, { 0x18, "Link Key Notification", link_key_notify_evt, 23, true }, { 0x19, "Loopback Command", loopback_command_evt, 3, false }, { 0x1a, "Data Buffer Overflow", data_buffer_overflow_evt, 1, true }, { 0x1b, "Max Slots Change", max_slots_change_evt, 3, true }, { 0x1c, "Read Clock Offset Complete", clock_offset_complete_evt, 5, true }, { 0x1d, "Connection Packet Type Changed", conn_pkt_type_changed_evt, 5, true }, { 0x1e, "QoS Violation", qos_violation_evt, 2, true }, { 0x1f, "Page Scan Mode Change", pscan_mode_change_evt, 7, true }, { 0x20, "Page Scan Repetition Mode Change", pscan_rep_mode_change_evt, 7, true }, { 0x21, "Flow Specification Complete", flow_spec_complete_evt, 22, true }, { 0x22, "Inquiry Result with RSSI", inquiry_result_with_rssi_evt, 1, false }, { 0x23, "Read Remote Extended Features", remote_ext_features_complete_evt, 13, true }, { 0x2c, "Synchronous Connect Complete", sync_conn_complete_evt, 17, true }, { 0x2d, "Synchronous Connect Changed", sync_conn_changed_evt, 9, true }, { 0x2e, "Sniff Subrating", sniff_subrating_evt, 11, true }, { 0x2f, "Extended Inquiry Result", ext_inquiry_result_evt, 1, false }, { 0x30, "Encryption Key Refresh Complete", encrypt_key_refresh_complete_evt, 3, true }, { 0x31, "IO Capability Request", io_capability_request_evt, 6, true }, { 0x32, "IO Capability Response", io_capability_response_evt, 9, true }, { 0x33, "User Confirmation Request", user_confirm_request_evt, 10, true }, { 0x34, "User Passkey Request", user_passkey_request_evt, 6, true }, { 0x35, "Remote OOB Data Request", remote_oob_data_request_evt, 6, true }, { 0x36, "Simple Pairing Complete", simple_pairing_complete_evt, 7, true }, { 0x38, "Link Supervision Timeout Changed", link_supv_timeout_changed_evt, 4, true }, { 0x39, "Enhanced Flush Complete", enhanced_flush_complete_evt, 2, true }, { 0x3b, "User Passkey Notification", user_passkey_notify_evt, 10, true }, { 0x3c, "Keypress Notification", keypress_notify_evt, 7, true }, { 0x3d, "Remote Host Supported Features", remote_host_features_notify_evt, 14, true }, { 0x3e, "LE Meta Event", le_meta_event_evt, 1, false }, { 0x40, "Physical Link Complete", phy_link_complete_evt, 2, true }, { 0x41, "Channel Selected", channel_selected_evt, 1, true }, { 0x42, "Disconnect Physical Link Complete", disconn_phy_link_complete_evt, 3, true }, { 0x43, "Physical Link Loss Early Warning", phy_link_loss_early_warning_evt, 2, true }, { 0x44, "Physical Link Recovery", phy_link_recovery_evt, 1, true }, { 0x45, "Logical Link Complete", logic_link_complete_evt, 5, true }, { 0x46, "Disconnect Logical Link Complete", disconn_logic_link_complete_evt, 4, true }, { 0x47, "Flow Specification Modify Complete", flow_spec_modify_complete_evt, 3, true }, { 0x48, "Number of Completed Data Blocks", num_completed_data_blocks_evt, 3, false }, { 0x49, "AMP Start Test" }, { 0x4a, "AMP Test End" }, { 0x4b, "AMP Receiver Report" }, { 0x4c, "Short Range Mode Change Complete", short_range_mode_change_evt, 3, true }, { 0x4d, "AMP Status Change", amp_status_change_evt, 2, true }, { 0x4e, "Triggered Clock Capture" }, { 0x4f, "Synchronization Train Complete", sync_train_complete_evt, 1, true }, { 0x50, "Synchronization Train Received", sync_train_received_evt, 29, true }, { 0x51, "Connectionless Slave Broadcast Receive", slave_broadcast_receive_evt, 18, false }, { 0x52, "Connectionless Slave Broadcast Timeout", slave_broadcast_timeout_evt, 7, true }, { 0x53, "Truncated Page Complete", truncated_page_complete_evt, 7, true }, { 0x54, "Slave Page Response Timeout", slave_page_response_timeout_evt, 0, true }, { 0x55, "Connectionless Slave Broadcast Channel Map Change", slave_broadcast_channel_map_change_evt, 10, true }, { 0x56, "Inquiry Response Notification", inquiry_response_notify_evt, 4, true }, { 0x57, "Authenticated Payload Timeout Expired", auth_payload_timeout_expired_evt, 2, true }, { 0xfe, "Testing" }, { 0xff, "Vendor", vendor_evt, 0, false }, { } }; void packet_new_index(struct timeval *tv, uint16_t index, const char *label, uint8_t type, uint8_t bus, const char *name) { char details[48]; sprintf(details, "(%s,%s,%s)", hci_typetostr(type), hci_bustostr(bus), name); print_packet(tv, index, '=', COLOR_NEW_INDEX, "New Index", label, details); } void packet_del_index(struct timeval *tv, uint16_t index, const char *label) { print_packet(tv, index, '=', COLOR_DEL_INDEX, "Delete Index", label, NULL); } void packet_hci_command(struct timeval *tv, uint16_t index, const void *data, uint16_t size) { const hci_command_hdr *hdr = data; uint16_t opcode = le16_to_cpu(hdr->opcode); uint16_t ogf = cmd_opcode_ogf(opcode); uint16_t ocf = cmd_opcode_ocf(opcode); const struct opcode_data *opcode_data = NULL; const char *opcode_color, *opcode_str; char extra_str[25]; int i; if (size < HCI_COMMAND_HDR_SIZE) { sprintf(extra_str, "(len %d)", size); print_packet(tv, index, '*', COLOR_ERROR, "Malformed HCI Command packet", NULL, extra_str); packet_hexdump(data, size); return; } data += HCI_COMMAND_HDR_SIZE; size -= HCI_COMMAND_HDR_SIZE; for (i = 0; opcode_table[i].str; i++) { if (opcode_table[i].opcode == opcode) { opcode_data = &opcode_table[i]; break; } } if (opcode_data) { if (opcode_data->cmd_func) opcode_color = COLOR_HCI_COMMAND; else opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = opcode_data->str; } else { if (ogf == 0x3f) { opcode_color = COLOR_HCI_COMMAND; opcode_str = "Vendor"; } else { opcode_color = COLOR_HCI_COMMAND_UNKNOWN; opcode_str = "Unknown"; } } sprintf(extra_str, "(0x%2.2x|0x%4.4x) plen %d", ogf, ocf, hdr->plen); print_packet(tv, index, '<', opcode_color, "HCI Command", opcode_str, extra_str); if (!opcode_data || !opcode_data->cmd_func) { packet_hexdump(data, size); return; } if (size != hdr->plen) { print_text(COLOR_ERROR, "invalid packet size (%u != %u)", size, hdr->plen); packet_hexdump(data, size); return; } if (opcode_data->cmd_fixed) { if (hdr->plen != opcode_data->cmd_size) { print_text(COLOR_ERROR, "invalid packet size"); packet_hexdump(data, size); return; } } else { if (hdr->plen < opcode_data->cmd_size) { print_text(COLOR_ERROR, "too short packet"); packet_hexdump(data, size); return; } } opcode_data->cmd_func(data, hdr->plen); } void packet_hci_event(struct timeval *tv, uint16_t index, const void *data, uint16_t size) { const hci_event_hdr *hdr = data; const struct event_data *event_data = NULL; const char *event_color, *event_str; char extra_str[25]; int i; if (size < HCI_EVENT_HDR_SIZE) { sprintf(extra_str, "(len %d)", size); print_packet(tv, index, '*', COLOR_ERROR, "Malformed HCI Event packet", NULL, extra_str); packet_hexdump(data, size); return; } data += HCI_EVENT_HDR_SIZE; size -= HCI_EVENT_HDR_SIZE; for (i = 0; event_table[i].str; i++) { if (event_table[i].event == hdr->evt) { event_data = &event_table[i]; break; } } if (event_data) { if (event_data->func) event_color = COLOR_HCI_EVENT; else event_color = COLOR_HCI_EVENT_UNKNOWN; event_str = event_data->str; } else { event_color = COLOR_HCI_EVENT_UNKNOWN; event_str = "Unknown"; } sprintf(extra_str, "(0x%2.2x) plen %d", hdr->evt, hdr->plen); print_packet(tv, index, '>', event_color, "HCI Event", event_str, extra_str); if (!event_data || !event_data->func) { packet_hexdump(data, size); return; } if (size != hdr->plen) { print_text(COLOR_ERROR, "invalid packet size (%u != %u)", size, hdr->plen); packet_hexdump(data, size); return; } if (event_data->fixed) { if (hdr->plen != event_data->size) { print_text(COLOR_ERROR, "invalid packet size"); packet_hexdump(data, size); return; } } else { if (hdr->plen < event_data->size) { print_text(COLOR_ERROR, "too short packet"); packet_hexdump(data, size); return; } } event_data->func(data, hdr->plen); } void packet_hci_acldata(struct timeval *tv, uint16_t index, bool in, const void *data, uint16_t size) { const struct bt_hci_acl_hdr *hdr = data; uint16_t handle = le16_to_cpu(hdr->handle); uint16_t dlen = le16_to_cpu(hdr->dlen); uint8_t flags = acl_flags(handle); char handle_str[16], extra_str[32]; if (size < sizeof(*hdr)) { if (in) print_packet(tv, index, '*', COLOR_ERROR, "Malformed ACL Data RX packet", NULL, NULL); else print_packet(tv, index, '*', COLOR_ERROR, "Malformed ACL Data TX packet", NULL, NULL); packet_hexdump(data, size); return; } data += sizeof(*hdr); size -= sizeof(*hdr); sprintf(handle_str, "Handle %d", acl_handle(handle)); sprintf(extra_str, "flags 0x%2.2x dlen %d", flags, dlen); print_packet(tv, index, in ? '>' : '<', COLOR_HCI_ACLDATA, in ? "ACL Data RX" : "ACL Data TX", handle_str, extra_str); if (size != dlen) { print_text(COLOR_ERROR, "invalid packet size (%d != %d)", size, dlen); packet_hexdump(data, size); return; } if (filter_mask & PACKET_FILTER_SHOW_ACL_DATA) packet_hexdump(data, size); l2cap_packet(index, in, acl_handle(handle), flags, data, size); } void packet_hci_scodata(struct timeval *tv, uint16_t index, bool in, const void *data, uint16_t size) { const hci_sco_hdr *hdr = data; uint16_t handle = le16_to_cpu(hdr->handle); uint8_t flags = acl_flags(handle); char handle_str[16], extra_str[32]; if (size < HCI_SCO_HDR_SIZE) { if (in) print_packet(tv, index, '*', COLOR_ERROR, "Malformed SCO Data RX packet", NULL, NULL); else print_packet(tv, index, '*', COLOR_ERROR, "Malformed SCO Data TX packet", NULL, NULL); packet_hexdump(data, size); return; } data += HCI_SCO_HDR_SIZE; size -= HCI_SCO_HDR_SIZE; sprintf(handle_str, "Handle %d", acl_handle(handle)); sprintf(extra_str, "flags 0x%2.2x dlen %d", flags, hdr->dlen); print_packet(tv, index, in ? '>' : '<', COLOR_HCI_SCODATA, in ? "SCO Data RX" : "SCO Data TX", handle_str, extra_str); if (size != hdr->dlen) { print_text(COLOR_ERROR, "invalid packet size (%d != %d)", size, hdr->dlen); packet_hexdump(data, size); return; } if (filter_mask & PACKET_FILTER_SHOW_SCO_DATA) packet_hexdump(data, size); } void packet_todo(void) { int i; printf("HCI commands with missing decodings:\n"); for (i = 0; opcode_table[i].str; i++) { if (opcode_table[i].bit < 0) continue; if (opcode_table[i].cmd_func) continue; printf("\t%s\n", opcode_table[i].str); } printf("HCI events with missing decodings:\n"); for (i = 0; event_table[i].str; i++) { if (event_table[i].func) continue; printf("\t%s\n", event_table[i].str); } for (i = 0; subevent_table[i].str; i++) { if (subevent_table[i].func) continue; printf("\t%s\n", subevent_table[i].str); } }