/* * * BlueZ - Bluetooth protocol stack for Linux * * Copyright (C) 2011-2012 Intel Corporation * Copyright (C) 2004-2010 Marcel Holtmann * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include static int activate_amp_controller(int dev_id) { struct hci_dev_info di; struct hci_filter flt; int fd; printf("hci%d: Activating controller\n", dev_id); fd = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI); if (fd < 0) { perror("Failed to open raw HCI socket"); return -1; } di.dev_id = dev_id; if (ioctl(fd, HCIGETDEVINFO, (void *) &di) < 0) { perror("Failed to get HCI device info"); close(fd); return -1; } if (!hci_test_bit(HCI_UP, &di.flags)) { if (ioctl(fd, HCIDEVUP, dev_id) < 0) { if (errno != EALREADY) { perror("Failed to bring up HCI device"); close(fd); return -1; } } } close(fd); fd = hci_open_dev(dev_id); if (fd < 0) { perror("Failed to open HCI device"); return -1; } hci_filter_clear(&flt); hci_filter_set_ptype(HCI_EVENT_PKT, &flt); hci_filter_set_event(EVT_CHANNEL_SELECTED, &flt); hci_filter_set_event(EVT_PHYSICAL_LINK_COMPLETE, &flt); hci_filter_set_event(EVT_DISCONNECT_PHYSICAL_LINK_COMPLETE, &flt); if (setsockopt(fd, SOL_HCI, HCI_FILTER, &flt, sizeof(flt)) < 0) { perror("Failed to setup HCI device filter"); close(fd); return -1; } return fd; } static bool read_local_amp_info(int dev_id, uint16_t *max_assoc_len) { read_local_amp_info_rp rp; struct hci_request rq; int fd; printf("hci%d: Reading local AMP information\n", dev_id); fd = hci_open_dev(dev_id); if (fd < 0) { perror("Failed to open HCI device"); return false; } memset(&rp, 0, sizeof(rp)); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_STATUS_PARAM; rq.ocf = OCF_READ_LOCAL_AMP_INFO; rq.rparam = &rp; rq.rlen = READ_LOCAL_AMP_INFO_RP_SIZE; if (hci_send_req(fd, &rq, 1000) < 0) { perror("Failed sending HCI request"); hci_close_dev(fd); return false; } if (rp.status) { fprintf(stderr, "Failed HCI command: 0x%02x\n", rp.status); hci_close_dev(fd); return false; } printf("\tAMP status: 0x%02x\n", rp.amp_status); printf("\tController type: 0x%02x\n", rp.controller_type); printf("\tMax ASSOC length: %d\n", btohs(rp.max_amp_assoc_length)); *max_assoc_len = btohs(rp.max_amp_assoc_length); hci_close_dev(fd); return true; } static bool read_local_amp_assoc(int dev_id, uint8_t phy_handle, uint16_t max_assoc_len, uint8_t *assoc_data, uint16_t *assoc_len) { read_local_amp_assoc_cp cp; read_local_amp_assoc_rp rp; struct hci_request rq; int fd; printf("hci%d: Reading local AMP association\n", dev_id); fd = hci_open_dev(dev_id); if (fd < 0) { perror("Failed to open HCI device"); return false; } memset(&cp, 0, sizeof(cp)); cp.handle = phy_handle; cp.length_so_far = htobs(0); cp.assoc_length = htobs(max_assoc_len); memset(&rp, 0, sizeof(rp)); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_STATUS_PARAM; rq.ocf = OCF_READ_LOCAL_AMP_ASSOC; rq.cparam = &cp; rq.clen = READ_LOCAL_AMP_ASSOC_CP_SIZE; rq.rparam = &rp; rq.rlen = READ_LOCAL_AMP_ASSOC_RP_SIZE; if (hci_send_req(fd, &rq, 1000) < 0) { perror("Failed sending HCI request"); hci_close_dev(fd); return false; } if (rp.status) { fprintf(stderr, "Failed HCI command: 0x%02x\n", rp.status); hci_close_dev(fd); return false; } printf("\tRemain ASSOC length: %d\n", btohs(rp.length)); *assoc_len = btohs(rp.length); memcpy(assoc_data, rp.fragment, *assoc_len); hci_close_dev(fd); return true; } static bool write_remote_amp_assoc(int dev_id, uint8_t phy_handle, uint8_t *assoc_data, uint16_t assoc_len) { write_remote_amp_assoc_cp cp; write_remote_amp_assoc_rp rp; struct hci_request rq; int fd; printf("hci%d: Writing remote AMP association\n", dev_id); fd = hci_open_dev(dev_id); if (fd < 0) { perror("Failed to open HCI device"); return false; } memset(&cp, 0, sizeof(cp)); cp.handle = phy_handle; cp.length_so_far = htobs(0); cp.remaining_length = htobs(assoc_len); memcpy(cp.fragment, assoc_data, assoc_len); memset(&rp, 0, sizeof(rp)); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_STATUS_PARAM; rq.ocf = OCF_WRITE_REMOTE_AMP_ASSOC; rq.cparam = &cp; rq.clen = 5 + assoc_len; rq.rparam = &rp; rq.rlen = WRITE_REMOTE_AMP_ASSOC_RP_SIZE; if (hci_send_req(fd, &rq, 1000) < 0) { perror("Failed sending HCI request"); hci_close_dev(fd); return false; } if (rp.status) { fprintf(stderr, "Failed HCI command: 0x%02x\n", rp.status); hci_close_dev(fd); return false; } hci_close_dev(fd); return true; } static bool channel_selected_event(int dev_id, int fd, uint8_t phy_handle) { printf("hci%d: Waiting for channel selected event\n", dev_id); while (1) { uint8_t buf[HCI_MAX_EVENT_SIZE]; hci_event_hdr *hdr; struct pollfd p; int n, len; p.fd = fd; p.events = POLLIN; n = poll(&p, 1, 10000); if (n < 0) { if (errno == EAGAIN || errno == EINTR) continue; perror("Failed to poll HCI device"); return false; } if (n == 0) { fprintf(stderr, "Failure to receive event\n"); return false; } len = read(fd, buf, sizeof(buf)); if (len < 0) { if (errno == EAGAIN || errno == EINTR) continue; perror("Failed to read from HCI device"); return false; } hdr = (void *) (buf + 1); if (hdr->evt == EVT_CHANNEL_SELECTED) break; } return true; } static bool create_physical_link(int dev_id, uint8_t phy_handle) { create_physical_link_cp cp; evt_cmd_status evt; struct hci_request rq; int i, fd; printf("hci%d: Creating physical link\n", dev_id); fd = hci_open_dev(dev_id); if (fd < 0) { perror("Failed to open HCI device"); return false; } memset(&cp, 0, sizeof(cp)); cp.handle = phy_handle; cp.key_length = 32; cp.key_type = 0x03; for (i = 0; i < cp.key_length; i++) cp.key[i] = 0x23; memset(&evt, 0, sizeof(evt)); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_CREATE_PHYSICAL_LINK; rq.event = EVT_CMD_STATUS; rq.cparam = &cp; rq.clen = CREATE_PHYSICAL_LINK_CP_SIZE; rq.rparam = &evt; rq.rlen = EVT_CMD_STATUS_SIZE; if (hci_send_req(fd, &rq, 1000) < 0) { perror("Failed sending HCI request"); hci_close_dev(fd); return false; } if (evt.status) { fprintf(stderr, "Failed HCI command: 0x%02x\n", evt.status); hci_close_dev(fd); return false; } hci_close_dev(fd); return true; } static bool accept_physical_link(int dev_id, uint8_t phy_handle) { accept_physical_link_cp cp; evt_cmd_status evt; struct hci_request rq; int i, fd; printf("hci%d: Accepting physical link\n", dev_id); fd = hci_open_dev(dev_id); if (fd < 0) { perror("Failed to open HCI device"); return false; } memset(&cp, 0, sizeof(cp)); cp.handle = phy_handle; cp.key_length = 32; cp.key_type = 0x03; for (i = 0; i < cp.key_length; i++) cp.key[i] = 0x23; memset(&evt, 0, sizeof(evt)); memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_ACCEPT_PHYSICAL_LINK; rq.event = EVT_CMD_STATUS; rq.cparam = &cp; rq.clen = ACCEPT_PHYSICAL_LINK_CP_SIZE; rq.rparam = &evt; rq.rlen = EVT_CMD_STATUS_SIZE; if (hci_send_req(fd, &rq, 1000) < 0) { perror("Failed sending HCI request"); hci_close_dev(fd); return false; } if (evt.status) { fprintf(stderr, "Failed HCI command: 0x%02x\n", evt.status); hci_close_dev(fd); return false; } hci_close_dev(fd); return true; } static bool disconnect_physical_link(int dev_id, uint8_t phy_handle, uint8_t reason) { disconnect_physical_link_cp cp; evt_cmd_status evt; struct hci_request rq; int fd; printf("hci%d: Disconnecting physical link\n", dev_id); fd = hci_open_dev(dev_id); if (fd < 0) { perror("Failed to open HCI device"); return false; } memset(&cp, 0, sizeof(cp)); cp.handle = phy_handle; cp.reason = reason; memset(&rq, 0, sizeof(rq)); rq.ogf = OGF_LINK_CTL; rq.ocf = OCF_DISCONNECT_PHYSICAL_LINK; rq.event = EVT_CMD_STATUS; rq.cparam = &cp; rq.clen = DISCONNECT_PHYSICAL_LINK_CP_SIZE; rq.rparam = &evt; rq.rlen = EVT_CMD_STATUS_SIZE; if (hci_send_req(fd, &rq, 1000) < 0) { perror("Failed sending HCI request"); hci_close_dev(fd); return false; } if (evt.status) { fprintf(stderr, "Failed HCI command: 0x%02x\n", evt.status); hci_close_dev(fd); return false; } hci_close_dev(fd); return true; } static bool physical_link_complete_event(int dev_id, int fd, uint8_t phy_handle) { printf("hci%d: Waiting for physical link complete event\n", dev_id); while (1) { uint8_t buf[HCI_MAX_EVENT_SIZE]; hci_event_hdr *hdr; int len; len = read(fd, buf, sizeof(buf)); if (len < 0) { if (errno == EAGAIN || errno == EINTR) continue; perror("Failed to read from HCI device"); return false; } hdr = (void *) (buf + 1); if (hdr->evt == EVT_PHYSICAL_LINK_COMPLETE) break; } return true; } static bool disconnect_physical_link_complete_event(int dev_id, int fd, uint8_t phy_handle) { printf("hci%d: Waiting for physical link disconnect event\n", dev_id); while (1) { uint8_t buf[HCI_MAX_EVENT_SIZE]; hci_event_hdr *hdr; int len; len = read(fd, buf, sizeof(buf)); if (len < 0) { if (errno == EAGAIN || errno == EINTR) continue; perror("Failed to read from HCI device"); return false; } hdr = (void *) (buf + 1); if (hdr->evt == EVT_DISCONNECT_PHYSICAL_LINK_COMPLETE) break; } return true; } static int amp1_dev_id = -1; static int amp2_dev_id = -1; static bool find_amp_controller(void) { struct hci_dev_list_req *dl; struct hci_dev_req *dr; int fd, i; fd = socket(AF_BLUETOOTH, SOCK_RAW, BTPROTO_HCI); if (fd < 0) { perror("Failed to open raw HCI socket"); return false; } dl = malloc(HCI_MAX_DEV * sizeof(struct hci_dev_req) + sizeof(uint16_t)); if (!dl) { perror("Failed allocate HCI device request memory"); close(fd); return false; } dl->dev_num = HCI_MAX_DEV; dr = dl->dev_req; if (ioctl(fd, HCIGETDEVLIST, (void *) dl) < 0) { perror("Failed to get HCI device list"); close(fd); return false; } for (i = 0; i< dl->dev_num; i++) { struct hci_dev_info di; di.dev_id = (dr + i)->dev_id; if (ioctl(fd, HCIGETDEVINFO, (void *) &di) < 0) continue; if (((di.type & 0x30) >> 4) != HCI_AMP) continue; if (amp1_dev_id < 0) amp1_dev_id = di.dev_id; else if (amp2_dev_id < 0) { if (di.dev_id < amp1_dev_id) { amp2_dev_id = amp1_dev_id; amp1_dev_id = di.dev_id; } else amp2_dev_id = di.dev_id; } } close(fd); return true; } int main(int argc ,char *argv[]) { int amp1_event_fd, amp2_event_fd; uint16_t amp1_max_assoc_len, amp2_max_assoc_len; uint8_t *amp1_assoc_data, *amp2_assoc_data; uint16_t amp1_assoc_len, amp2_assoc_len; uint8_t amp1_phy_handle, amp2_phy_handle; if (!find_amp_controller()) return EXIT_FAILURE; if (amp1_dev_id < 0 || amp2_dev_id < 0) { fprintf(stderr, "Two AMP controllers are required\n"); return EXIT_FAILURE; } printf("hci%d: AMP initiator\n", amp1_dev_id); printf("hci%d: AMP acceptor\n", amp2_dev_id); amp1_event_fd = activate_amp_controller(amp1_dev_id); if (amp1_event_fd < 0) return EXIT_FAILURE; amp2_event_fd = activate_amp_controller(amp2_dev_id); if (amp2_event_fd < 0) { hci_close_dev(amp1_event_fd); return EXIT_FAILURE; } if (!read_local_amp_info(amp1_dev_id, &1_max_assoc_len)) return EXIT_FAILURE; amp1_assoc_data = alloca(amp1_max_assoc_len); printf("--> AMP_Get_Info_Request (Amp_ID B)\n"); if (!read_local_amp_info(amp2_dev_id, &2_max_assoc_len)) return EXIT_FAILURE; amp2_assoc_data = alloca(amp2_max_assoc_len); printf("<-- AMP_Get_Info_Response (Amp_ID B, Status)\n"); printf("--> AMP_Get_AMP_Assoc_Request (Amp_ID B)\n"); if (!read_local_amp_assoc(amp2_dev_id, 0x00, amp2_max_assoc_len, amp2_assoc_data, &2_assoc_len)) return EXIT_FAILURE; printf("<-- AMP_Get_AMP_Assoc_Response (Amp_ID B, AMP_Assoc B)\n"); amp1_phy_handle = 0x04; if (!create_physical_link(amp1_dev_id, amp1_phy_handle)) return EXIT_FAILURE; if (!write_remote_amp_assoc(amp1_dev_id, amp1_phy_handle, amp2_assoc_data, amp2_assoc_len)) return EXIT_FAILURE; printf("hci%d: Signal MAC to scan\n", amp1_dev_id); printf("hci%d: Signal MAC to start\n", amp1_dev_id); if (!channel_selected_event(amp1_dev_id, amp1_event_fd, amp1_phy_handle)) return EXIT_FAILURE; if (!read_local_amp_assoc(amp1_dev_id, amp1_phy_handle, amp1_max_assoc_len, amp1_assoc_data, &1_assoc_len)) return EXIT_FAILURE; printf("--> AMP_Create_Physical_Link_Request (Remote-Amp-ID B, AMP_Assoc A)\n"); amp2_phy_handle = 0x05; if (!accept_physical_link(amp2_dev_id, amp2_phy_handle)) return EXIT_FAILURE; if (!write_remote_amp_assoc(amp2_dev_id, amp2_phy_handle, amp1_assoc_data, amp1_assoc_len)) return EXIT_FAILURE; printf("hci%d: Signal MAC to start\n", amp2_dev_id); printf("<-- AMP_Create_Physical_Link_Response (Local-Amp-ID B, Status)\n"); if (!physical_link_complete_event(amp2_dev_id, amp2_event_fd, amp2_phy_handle)) return EXIT_FAILURE; if (!physical_link_complete_event(amp1_dev_id, amp1_event_fd, amp1_phy_handle)) return EXIT_FAILURE; /* physical link established */ if (!disconnect_physical_link(amp1_dev_id, amp1_phy_handle, 0x13)) return EXIT_FAILURE; if (!disconnect_physical_link_complete_event(amp1_dev_id, amp1_event_fd, amp1_phy_handle)) return EXIT_FAILURE; if (!disconnect_physical_link_complete_event(amp2_dev_id, amp2_event_fd, amp2_phy_handle)) return EXIT_FAILURE; hci_close_dev(amp2_event_fd); hci_close_dev(amp1_event_fd); return EXIT_SUCCESS; }