// SPDX-License-Identifier: GPL-2.0-or-later /* * * BlueZ - Bluetooth protocol stack for Linux * * Copyright (C) 2011-2012 Intel Corporation * Copyright (C) 2004-2010 Marcel Holtmann * * */ #ifdef HAVE_CONFIG_H #include #endif #include #include "lib/bluetooth.h" #include "lib/mgmt.h" #include "src/shared/mainloop.h" #include "src/shared/util.h" #include "src/shared/mgmt.h" #include "src/shared/crypto.h" #define REMOTE_IRK "\x69\x30\xde\xc3\x8f\x84\x74\x14" \ "\xe1\x23\x99\xc1\xca\x9a\xc3\x31" static bool use_bredr = false; static bool use_le = false; static bool use_sc = false; static bool use_sconly = false; static bool use_legacy = false; static bool use_random = false; static bool use_privacy = false; static bool use_debug = false; static bool use_cross = false; static bool provide_tk = false; static bool provide_p192 = false; static bool provide_p256 = false; static bool provide_initiator = false; static bool provide_acceptor = false; static struct mgmt *mgmt; static uint16_t index1 = MGMT_INDEX_NONE; static uint16_t index2 = MGMT_INDEX_NONE; static bdaddr_t bdaddr1; static bdaddr_t bdaddr2; static uint8_t oob_tk[16]; static void pin_code_request_event(uint16_t index, uint16_t len, const void *param, void *user_data) { const struct mgmt_ev_pin_code_request *ev = param; struct mgmt_cp_pin_code_reply cp; char str[18]; ba2str(&ev->addr.bdaddr, str); printf("[Index %u]\n", index); printf(" Pin code request: %s\n", str); memset(&cp, 0, sizeof(cp)); memcpy(&cp.addr, &ev->addr, sizeof(cp.addr)); cp.pin_len = 4; memset(cp.pin_code, '0', 4); mgmt_reply(mgmt, MGMT_OP_PIN_CODE_REPLY, index, sizeof(cp), &cp, NULL, NULL, NULL); } static void new_link_key_event(uint16_t index, uint16_t len, const void *param, void *user_data) { const struct mgmt_ev_new_link_key *ev = param; const char *type; char str[18]; int i; ba2str(&ev->key.addr.bdaddr, str); switch (ev->key.type) { case 0x00: type = "Legacy"; break; case 0x01: type = "Local Unit"; break; case 0x02: type = "Remote Unit"; break; case 0x03: type = "Debug"; break; case 0x04: type = "Unauthenticated, P-192"; break; case 0x05: type = "Authenticated, P-192"; break; case 0x06: type = "Changed"; break; case 0x07: type = "Unauthenticated, P-256"; break; case 0x08: type = "Authenticated, P-256"; break; default: type = ""; break; } printf("[Index %u]\n", index); printf(" New link key: %s\n", str); printf(" Type: %s (%u)\n", type, ev->key.type); printf(" Key: "); for (i = 0; i < 16; i++) printf("%02x", ev->key.val[i]); printf("\n"); } static void new_long_term_key_event(uint16_t index, uint16_t len, const void *param, void *user_data) { const struct mgmt_ev_new_long_term_key *ev = param; const char *type; char str[18]; int i; ba2str(&ev->key.addr.bdaddr, str); switch (ev->key.type) { case 0x00: if (ev->key.central) type = "Unauthenticated, Central"; else type = "Unauthenticated, Peripheral"; break; case 0x01: if (ev->key.central) type = "Authenticated, Central"; else type = "Authenticated, Peripheral"; break; case 0x02: type = "Unauthenticated, P-256"; break; case 0x03: type = "Authenticated, P-256"; break; case 0x04: type = "Debug"; break; default: type = ""; break; } printf("[Index %u]\n", index); printf(" New long term key: %s\n", str); printf(" Type: %s (%u)\n", type, ev->key.type); printf(" Key: "); for (i = 0; i < 16; i++) printf("%02x", ev->key.val[i]); printf("\n"); } static void pair_device_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { uint16_t index = PTR_TO_UINT(user_data); if (status) { fprintf(stderr, "Pair device from index %u failed: %s\n", index, mgmt_errstr(status)); } mainloop_quit(); } static void pair_device(uint16_t index, const bdaddr_t *bdaddr) { struct mgmt_cp_pair_device cp; char str[18]; ba2str(bdaddr, str); printf("[Index %u]\n", index); printf(" Starting pairing: %s\n", str); memset(&cp, 0, sizeof(cp)); bacpy(&cp.addr.bdaddr, bdaddr); if (use_bredr) cp.addr.type = BDADDR_BREDR; else if (use_random) cp.addr.type = BDADDR_LE_RANDOM; else cp.addr.type = BDADDR_LE_PUBLIC; cp.io_cap = 0x03; mgmt_send(mgmt, MGMT_OP_PAIR_DEVICE, index, sizeof(cp), &cp, pair_device_complete, UINT_TO_PTR(index), NULL); } static void add_remote_oob_data_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { const struct mgmt_addr_info *rp = param; uint16_t index = PTR_TO_UINT(user_data); char str[18]; if (status) { fprintf(stderr, "Adding OOB data for index %u failed: %s\n", index, mgmt_errstr(status)); } ba2str(&rp->bdaddr, str); printf("[Index %u]\n", index); printf(" Remote data added: %s\n", str); if (index == index1) { uint8_t val = 0x01; mgmt_send(mgmt, MGMT_OP_SET_CONNECTABLE, index2, 1, &val, NULL, NULL, NULL); if (use_le) mgmt_send(mgmt, MGMT_OP_SET_ADVERTISING, index2, 1, &val, NULL, NULL, NULL); pair_device(index1, &bdaddr2); } } static void add_remote_oob_data(uint16_t index, const bdaddr_t *bdaddr, const uint8_t *hash192, const uint8_t *rand192, const uint8_t *hash256, const uint8_t *rand256) { struct mgmt_cp_add_remote_oob_data cp; memset(&cp, 0, sizeof(cp)); bacpy(&cp.addr.bdaddr, bdaddr); if (use_bredr) cp.addr.type = BDADDR_BREDR; else if (use_random) cp.addr.type = BDADDR_LE_RANDOM; else cp.addr.type = BDADDR_LE_PUBLIC; if (hash192) { memcpy(cp.hash192, hash192, 16); if (rand192) memcpy(cp.rand192, rand192, 16); else memset(cp.rand192, 0, 16); } else { memset(cp.hash192, 0, 16); memset(cp.rand192, 0, 16); } if (hash256 && rand256) { memcpy(cp.hash256, hash256, 16); memcpy(cp.rand256, rand256, 16); } else { memset(cp.hash256, 0, 16); memset(cp.rand256, 0, 16); } mgmt_send(mgmt, MGMT_OP_ADD_REMOTE_OOB_DATA, index, sizeof(cp), &cp, add_remote_oob_data_complete, UINT_TO_PTR(index), NULL); } static void read_oob_data_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { const struct mgmt_rp_read_local_oob_data *rp = param; uint16_t index = PTR_TO_UINT(user_data); const uint8_t *hash192, *rand192, *hash256, *rand256; int i; if (status) { fprintf(stderr, "Reading OOB data for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } printf("[Index %u]\n", index); hash192 = NULL; rand192 = NULL; hash256 = NULL; rand256 = NULL; if (index == index1 && !provide_initiator) { printf(" Skipping initiator OOB data\n"); goto done; } else if (index == index2 && !provide_acceptor) { printf(" Skipping acceptor OOB data\n"); goto done; } if (provide_p192) { hash192 = rp->hash192; rand192 = rp->rand192; } printf(" Hash C from P-192: "); for (i = 0; i < 16; i++) printf("%02x", rp->hash192[i]); printf("\n"); printf(" Randomizer R with P-192: "); for (i = 0; i < 16; i++) printf("%02x", rp->rand192[i]); printf("\n"); if (len < sizeof(*rp)) goto done; if (provide_p256) { hash256 = rp->hash256; rand256 = rp->rand256; } printf(" Hash C from P-256: "); for (i = 0; i < 16; i++) printf("%02x", rp->hash256[i]); printf("\n"); printf(" Randomizer R with P-256: "); for (i = 0; i < 16; i++) printf("%02x", rp->rand256[i]); printf("\n"); done: if (index == index1) add_remote_oob_data(index2, &bdaddr1, hash192, rand192, hash256, rand256); else if (index == index2) add_remote_oob_data(index1, &bdaddr2, hash192, rand192, hash256, rand256); } static void read_oob_ext_data_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { const struct mgmt_rp_read_local_oob_ext_data *rp = param; uint16_t index = PTR_TO_UINT(user_data); uint16_t eir_len, parsed; const uint8_t *eir, *tk, *hash256, *rand256; int i; if (status) { fprintf(stderr, "Reading OOB data for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } printf("[Index %u]\n", index); eir_len = le16_to_cpu(rp->eir_len); printf(" OOB data len: %u\n", eir_len); if (provide_tk) tk = oob_tk; else tk = NULL; hash256 = NULL; rand256 = NULL; if (index == index1 && !provide_initiator) { printf(" Skipping initiator OOB data\n"); goto done; } else if (index == index2 && !provide_acceptor) { printf(" Skipping acceptor OOB data\n"); goto done; } if (eir_len < 2) goto done; eir = rp->eir; parsed = 0; while (parsed < eir_len - 1) { uint8_t field_len = eir[0]; if (field_len == 0) break; parsed += field_len + 1; if (parsed > eir_len) break; /* LE Bluetooth Device Address */ if (eir[1] == 0x1b) { char str[18]; ba2str((bdaddr_t *) (eir + 2), str); printf(" Device address: %s (%s)\n", str, eir[8] ? "random" : "public"); } /* LE Role */ if (eir[1] == 0x1c) printf(" Role: 0x%02x\n", eir[2]); /* LE Secure Connections Confirmation Value */ if (eir[1] == 0x22) { hash256 = eir + 2; printf(" Hash C from P-256: "); for (i = 0; i < 16; i++) printf("%02x", hash256[i]); printf("\n"); } /* LE Secure Connections Random Value */ if (eir[1] == 0x23) { rand256 = eir + 2; printf(" Randomizer R with P-256: "); for (i = 0; i < 16; i++) printf("%02x", rand256[i]); printf("\n"); } eir += field_len + 1; } done: if (index == index1) add_remote_oob_data(index2, &bdaddr1, tk, NULL, hash256, rand256); else if (index == index2) add_remote_oob_data(index1, &bdaddr2, tk, NULL, hash256, rand256); } static void set_powered_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { uint16_t index = PTR_TO_UINT(user_data); uint32_t settings; uint8_t val; if (status) { fprintf(stderr, "Powering on for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } settings = get_le32(param); if (!(settings & MGMT_SETTING_POWERED)) { fprintf(stderr, "Controller is not powered\n"); mainloop_quit(); return; } if (use_debug) { if (index == index1) { val = 0x02; mgmt_send(mgmt, MGMT_OP_SET_DEBUG_KEYS, index, 1, &val, NULL, NULL, NULL); } else if (index == index2) { val = 0x01; mgmt_send(mgmt, MGMT_OP_SET_DEBUG_KEYS, index, 1, &val, NULL, NULL, NULL); } } if (use_bredr && (provide_p192 || provide_p256)) { mgmt_send(mgmt, MGMT_OP_READ_LOCAL_OOB_DATA, index, 0, NULL, read_oob_data_complete, UINT_TO_PTR(index), NULL); } else if (use_le && provide_p256) { uint8_t type = (1 << BDADDR_LE_PUBLIC) | (1 << BDADDR_LE_RANDOM); mgmt_send(mgmt, MGMT_OP_READ_LOCAL_OOB_EXT_DATA, index, sizeof(type), &type, read_oob_ext_data_complete, UINT_TO_PTR(index), NULL); } else if (use_le && provide_tk) { const uint8_t *tk = oob_tk; if (index == index1) add_remote_oob_data(index2, &bdaddr1, tk, NULL, NULL, NULL); else if (index == index2) add_remote_oob_data(index1, &bdaddr2, tk, NULL, NULL, NULL); } else { if (index == index1) add_remote_oob_data(index2, &bdaddr1, NULL, NULL, NULL, NULL); else if (index == index2) add_remote_oob_data(index1, &bdaddr2, NULL, NULL, NULL, NULL); } } static void clear_link_keys(uint16_t index) { struct mgmt_cp_load_link_keys cp; memset(&cp, 0, sizeof(cp)); cp.debug_keys = 0x00; cp.key_count = cpu_to_le16(0); mgmt_send(mgmt, MGMT_OP_LOAD_LINK_KEYS, index, sizeof(cp), &cp, NULL, NULL, NULL); } static void clear_long_term_keys(uint16_t index) { struct mgmt_cp_load_long_term_keys cp; memset(&cp, 0, sizeof(cp)); cp.key_count = cpu_to_le16(0); mgmt_send(mgmt, MGMT_OP_LOAD_LONG_TERM_KEYS, index, sizeof(cp), &cp, NULL, NULL, NULL); } static void clear_identity_resolving_keys(uint16_t index) { struct mgmt_cp_load_irks cp; memset(&cp, 0, sizeof(cp)); cp.irk_count = cpu_to_le16(0); mgmt_send(mgmt, MGMT_OP_LOAD_IRKS, index, sizeof(cp), &cp, NULL, NULL, NULL); } static void clear_remote_oob_data(uint16_t index) { struct mgmt_cp_remove_remote_oob_data cp; memset(&cp, 0, sizeof(cp)); bacpy(&cp.addr.bdaddr, BDADDR_ANY); cp.addr.type = BDADDR_BREDR; mgmt_send(mgmt, MGMT_OP_REMOVE_REMOTE_OOB_DATA, index, sizeof(cp), &cp, NULL, NULL, NULL); } static void set_powered_down_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { uint16_t index = PTR_TO_UINT(user_data); if (status) { fprintf(stderr, "Power down for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } } static void set_bredr_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { uint16_t index = PTR_TO_UINT(user_data); if (status) { fprintf(stderr, "Setting BR/EDR for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } } static void set_le_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { uint16_t index = PTR_TO_UINT(user_data); if (status) { fprintf(stderr, "Setting LE for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } } static void set_ssp_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { uint16_t index = PTR_TO_UINT(user_data); if (status) { fprintf(stderr, "Simple Pairing for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } } static void set_static_address_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { uint16_t index = PTR_TO_UINT(user_data); if (status) { fprintf(stderr, "Static address for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } } static void set_secure_conn_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { uint16_t index = PTR_TO_UINT(user_data); if (status) { fprintf(stderr, "Secure connections for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } } static void set_privacy_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { uint16_t index = PTR_TO_UINT(user_data); if (status) { fprintf(stderr, "Setting privacy for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } } static void set_debug_keys_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { uint16_t index = PTR_TO_UINT(user_data); if (status) { fprintf(stderr, "Setting debug keys for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } } static void set_bondable_complete(uint8_t status, uint16_t len, const void *param, void *user_data) { uint16_t index = PTR_TO_UINT(user_data); if (status) { fprintf(stderr, "Setting bondable for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } } static void read_info(uint8_t status, uint16_t len, const void *param, void *user_data) { const struct mgmt_rp_read_info *rp = param; uint16_t index = PTR_TO_UINT(user_data); uint32_t supported_settings; uint8_t val; char str[18]; if (status) { fprintf(stderr, "Reading info for index %u failed: %s\n", index, mgmt_errstr(status)); mainloop_quit(); return; } ba2str(&rp->bdaddr, str); printf("[Index %u]\n", index); printf(" Address: %s\n", str); if (index == index1) bacpy(&bdaddr1, &rp->bdaddr); else if (index == index2) bacpy(&bdaddr2, &rp->bdaddr); supported_settings = le32_to_cpu(rp->supported_settings); if (use_bredr && !(supported_settings & MGMT_SETTING_BREDR)) { fprintf(stderr, "BR/EDR support missing\n"); mainloop_quit(); return; } if (!use_legacy && !(supported_settings & MGMT_SETTING_SSP)) { fprintf(stderr, "Secure Simple Pairing support missing\n"); mainloop_quit(); return; } if (use_le && !(supported_settings & MGMT_SETTING_LE)) { fprintf(stderr, "Low Energy support missing\n"); mainloop_quit(); return; } if (use_sc && !(supported_settings & MGMT_SETTING_SECURE_CONN)) { fprintf(stderr, "Secure Connections support missing\n"); mainloop_quit(); return; } if (use_sconly && !(supported_settings & MGMT_SETTING_SECURE_CONN)) { fprintf(stderr, "Secure Connections Only support missing\n"); mainloop_quit(); return; } if (use_privacy && !(supported_settings & MGMT_SETTING_PRIVACY)) { fprintf(stderr, "Privacy support missing\n"); mainloop_quit(); return; } if (use_debug && !(supported_settings & MGMT_SETTING_DEBUG_KEYS)) { fprintf(stderr, "Debug keys support missing\n"); mainloop_quit(); return; } if (use_cross && (!(supported_settings & MGMT_SETTING_BREDR) || !(supported_settings & MGMT_SETTING_LE))) { fprintf(stderr, "Dual-mode support is support missing\n"); mainloop_quit(); return; } if (provide_tk) { const uint8_t *tk = oob_tk; int i; printf(" TK Value: "); for (i = 0; i < 16; i++) printf("%02x", tk[i]); printf("\n"); } mgmt_register(mgmt, MGMT_EV_PIN_CODE_REQUEST, index, pin_code_request_event, UINT_TO_PTR(index), NULL); mgmt_register(mgmt, MGMT_EV_NEW_LINK_KEY, index, new_link_key_event, UINT_TO_PTR(index), NULL); mgmt_register(mgmt, MGMT_EV_NEW_LONG_TERM_KEY, index, new_long_term_key_event, UINT_TO_PTR(index), NULL); val = 0x00; mgmt_send(mgmt, MGMT_OP_SET_POWERED, index, 1, &val, set_powered_down_complete, UINT_TO_PTR(index), NULL); clear_link_keys(index); clear_long_term_keys(index); clear_identity_resolving_keys(index); clear_remote_oob_data(index); if (use_bredr) { val = 0x01; mgmt_send(mgmt, MGMT_OP_SET_BREDR, index, 1, &val, set_bredr_complete, UINT_TO_PTR(index), NULL); val = use_cross ? 0x01 : 0x00; mgmt_send(mgmt, MGMT_OP_SET_LE, index, 1, &val, set_le_complete, UINT_TO_PTR(index), NULL); val = use_legacy ? 0x00 : 0x01; mgmt_send(mgmt, MGMT_OP_SET_SSP, index, 1, &val, set_ssp_complete, UINT_TO_PTR(index), NULL); } else if (use_le) { val = 0x01; mgmt_send(mgmt, MGMT_OP_SET_LE, index, 1, &val, set_le_complete, UINT_TO_PTR(index), NULL); val = use_cross ? 0x01 : 0x00; mgmt_send(mgmt, MGMT_OP_SET_BREDR, index, 1, &val, set_bredr_complete, UINT_TO_PTR(index), NULL); if (use_cross) { val = use_legacy ? 0x00 : 0x01; mgmt_send(mgmt, MGMT_OP_SET_SSP, index, 1, &val, set_ssp_complete, UINT_TO_PTR(index), NULL); } } else { fprintf(stderr, "Invalid transport for pairing\n"); mainloop_quit(); return; } if (use_random) { bdaddr_t bdaddr; str2ba("c0:00:aa:bb:00:00", &bdaddr); bdaddr.b[0] = index; mgmt_send(mgmt, MGMT_OP_SET_STATIC_ADDRESS, index, 6, &bdaddr, set_static_address_complete, UINT_TO_PTR(index), NULL); if (index == index1) bacpy(&bdaddr1, &bdaddr); else if (index == index2) bacpy(&bdaddr2, &bdaddr); } else { bdaddr_t bdaddr; bacpy(&bdaddr, BDADDR_ANY); mgmt_send(mgmt, MGMT_OP_SET_STATIC_ADDRESS, index, 6, &bdaddr, set_static_address_complete, UINT_TO_PTR(index), NULL); } if (use_sc) { val = 0x01; mgmt_send(mgmt, MGMT_OP_SET_SECURE_CONN, index, 1, &val, set_secure_conn_complete, UINT_TO_PTR(index), NULL); } else if (use_sconly) { val = 0x02; mgmt_send(mgmt, MGMT_OP_SET_SECURE_CONN, index, 1, &val, set_secure_conn_complete, UINT_TO_PTR(index), NULL); } else { val = 0x00; mgmt_send(mgmt, MGMT_OP_SET_SECURE_CONN, index, 1, &val, set_secure_conn_complete, UINT_TO_PTR(index), NULL); } if (use_privacy) { struct mgmt_cp_set_privacy cp; if (index == index2) { cp.privacy = 0x01; memcpy(cp.irk, REMOTE_IRK, sizeof(cp.irk)); } else { cp.privacy = 0x00; memset(cp.irk, 0, sizeof(cp.irk)); } mgmt_send(mgmt, MGMT_OP_SET_PRIVACY, index, sizeof(cp), &cp, set_privacy_complete, UINT_TO_PTR(index), NULL); } else { struct mgmt_cp_set_privacy cp; cp.privacy = 0x00; memset(cp.irk, 0, sizeof(cp.irk)); mgmt_send(mgmt, MGMT_OP_SET_PRIVACY, index, sizeof(cp), &cp, set_privacy_complete, UINT_TO_PTR(index), NULL); } val = 0x00; mgmt_send(mgmt, MGMT_OP_SET_DEBUG_KEYS, index, 1, &val, set_debug_keys_complete, UINT_TO_PTR(index), NULL); val = 0x01; mgmt_send(mgmt, MGMT_OP_SET_BONDABLE, index, 1, &val, set_bondable_complete, UINT_TO_PTR(index), NULL); val = 0x01; mgmt_send(mgmt, MGMT_OP_SET_POWERED, index, 1, &val, set_powered_complete, UINT_TO_PTR(index), NULL); } static void read_index_list(uint8_t status, uint16_t len, const void *param, void *user_data) { const struct mgmt_rp_read_index_list *rp = param; uint16_t count; int i; if (status) { fprintf(stderr, "Reading index list failed: %s\n", mgmt_errstr(status)); mainloop_quit(); return; } count = le16_to_cpu(rp->num_controllers); if (count < 2) { fprintf(stderr, "At least 2 controllers are required\n"); mainloop_quit(); return; } for (i = 0; i < count; i++) { uint16_t index = cpu_to_le16(rp->index[i]); if (index < index1) index1 = index; } for (i = 0; i < count; i++) { uint16_t index = cpu_to_le16(rp->index[i]); if (index < index2 && index > index1) index2 = index; } printf("Selecting index %u for initiator\n", index1); printf("Selecting index %u for acceptor\n", index2); if (provide_tk) { struct bt_crypto *crypto; printf("Generating Security Manager TK Value\n"); crypto = bt_crypto_new(); bt_crypto_random_bytes(crypto, oob_tk, 16); bt_crypto_unref(crypto); } mgmt_send(mgmt, MGMT_OP_READ_INFO, index1, 0, NULL, read_info, UINT_TO_PTR(index1), NULL); mgmt_send(mgmt, MGMT_OP_READ_INFO, index2, 0, NULL, read_info, UINT_TO_PTR(index2), NULL); } static void signal_callback(int signum, void *user_data) { switch (signum) { case SIGINT: case SIGTERM: mainloop_quit(); break; } } static void usage(void) { printf("oobtest - Out-of-band pairing testing\n" "Usage:\n"); printf("\toobtest [options]\n"); printf("options:\n" "\t-B, --bredr Use BR/EDR transport\n" "\t-L, --le Use LE transport\n" "\t-S, --sc Use Secure Connections\n" "\t-O, --sconly Use Secure Connections Only\n" "\t-P, --legacy Use Legacy Pairing\n" "\t-R, --random Use Static random address\n" "\t-Y, --privacy Use LE privacy feature\n" "\t-D, --debug Use Pairing debug keys\n" "\t-C, --cross Use cross-transport pairing\n" "\t-0, --tk Provide LE legacy OOB data\n" "\t-1, --p192 Provide P-192 OOB data\n" "\t-2, --p256 Provide P-256 OOB data\n" "\t-I, --initiator Initiator provides OOB data\n" "\t-A, --acceptor Acceptor provides OOB data\n" "\t-h, --help Show help options\n"); } static const struct option main_options[] = { { "bredr", no_argument, NULL, 'B' }, { "le", no_argument, NULL, 'L' }, { "sc", no_argument, NULL, 'S' }, { "sconly", no_argument, NULL, 'O' }, { "legacy", no_argument, NULL, 'P' }, { "random", no_argument, NULL, 'R' }, { "static", no_argument, NULL, 'R' }, { "privacy", no_argument, NULL, 'Y' }, { "debug", no_argument, NULL, 'D' }, { "cross", no_argument, NULL, 'C' }, { "dual", no_argument, NULL, 'C' }, { "tk", no_argument, NULL, '0' }, { "p192", no_argument, NULL, '1' }, { "p256", no_argument, NULL, '2' }, { "initiator", no_argument, NULL, 'I' }, { "acceptor", no_argument, NULL, 'A' }, { "version", no_argument, NULL, 'v' }, { "help", no_argument, NULL, 'h' }, { } }; int main(int argc ,char *argv[]) { int exit_status; for (;;) { int opt; opt = getopt_long(argc, argv, "BLSOPRYDC012IAvh", main_options, NULL); if (opt < 0) break; switch (opt) { case 'B': use_bredr = true; break; case 'L': use_le = true; break; case 'S': use_sc = true; break; case 'O': use_sconly = true; break; case 'P': use_legacy = true; break; case 'R': use_random = true; break; case 'Y': use_privacy = true; break; case 'D': use_debug = true; break; case 'C': use_cross = true; break; case '0': provide_tk = true; break; case '1': provide_p192 = true; break; case '2': provide_p256 = true; break; case 'I': provide_initiator = true; break; case 'A': provide_acceptor = true; break; case 'v': printf("%s\n", VERSION); return EXIT_SUCCESS; case 'h': usage(); return EXIT_SUCCESS; default: return EXIT_FAILURE; } } if (argc - optind > 0) { fprintf(stderr, "Invalid command line parameters\n"); return EXIT_FAILURE; } if (use_bredr == use_le) { fprintf(stderr, "Specify either --bredr or --le\n"); return EXIT_FAILURE; } if (use_legacy && !use_bredr) { fprintf(stderr, "Specify --legacy with --bredr\n"); return EXIT_FAILURE; } if (use_privacy && !use_le && !use_cross ) { fprintf(stderr, "Specify --privacy with --le or --cross\n"); return EXIT_FAILURE; } if (use_random && !use_le) { fprintf(stderr, "Specify --random with --le\n"); return EXIT_FAILURE; } if (use_random && use_cross) { fprintf(stderr, "Only --random or --cross can be used\n"); return EXIT_FAILURE; } if (use_sc && use_sconly) { fprintf(stderr, "Only --sc or --sconly can be used\n"); return EXIT_FAILURE; } mainloop_init(); mgmt = mgmt_new_default(); if (!mgmt) { fprintf(stderr, "Failed to open management socket\n"); return EXIT_FAILURE; } if (!mgmt_send(mgmt, MGMT_OP_READ_INDEX_LIST, MGMT_INDEX_NONE, 0, NULL, read_index_list, NULL, NULL)) { fprintf(stderr, "Failed to read index list\n"); exit_status = EXIT_FAILURE; goto done; } exit_status = mainloop_run_with_signal(signal_callback, NULL); done: mgmt_unref(mgmt); return exit_status; }