// test_nc_beta.cpp // Copyright John Maddock 2008. // Use, modification and distribution are subject to the // Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt // or copy at http://www.boost.org/LICENSE_1_0.txt) // // This must appear *before* any #includes, and precludes pch usage: // #define BOOST_MATH_ASSERT_UNDEFINED_POLICY false #ifdef _MSC_VER #pragma warning (disable:4127 4512) #endif #if !defined(TEST_FLOAT) && !defined(TEST_DOUBLE) && !defined(TEST_LDOUBLE) && !defined(TEST_REAL_CONCEPT) # define TEST_FLOAT # define TEST_DOUBLE # define TEST_LDOUBLE # define TEST_REAL_CONCEPT #endif #include // for real_concept #include // for chi_squared_distribution #include // for poisson_distribution #define BOOST_TEST_MAIN #include // for test_main #include #include #include // for BOOST_CHECK_CLOSE #include "functor.hpp" #include "handle_test_result.hpp" #include "test_ncbeta_hooks.hpp" #include "table_type.hpp" #include using std::cout; using std::endl; #include using std::numeric_limits; #define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \ {\ unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ BOOST_CHECK_CLOSE(a, b, prec); \ if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ {\ std::cerr << "Failure was at row " << i << std::endl;\ std::cerr << std::setprecision(35); \ std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\ }\ } #define BOOST_CHECK_EX(a, i) \ {\ unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ BOOST_CHECK(a); \ if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ {\ std::cerr << "Failure was at row " << i << std::endl;\ std::cerr << std::setprecision(35); \ std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ std::cerr << " , " << data[i][3] << " , " << data[i][4] << " } " << std::endl;\ }\ } void expected_results() { // // Define the max and mean errors expected for // various compilers and platforms. // const char* largest_type; #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::policies::digits >() == boost::math::policies::digits >()) { largest_type = "(long\\s+)?double|real_concept"; } else { largest_type = "long double|real_concept"; } #else largest_type = "(long\\s+)?double|real_concept"; #endif #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS if(boost::math::tools::digits() == 64) { // // Allow a small amount of error leakage from long double to double: // add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "double", // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 5, 5); // test function } if(boost::math::tools::digits() == 64) { add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*medium[^|]*", // test data group "[^|]*", 1200, 500); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 40000, 6000); // test function } #endif // // Catch all cases come last: // add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*medium[^|]*", // test data group "[^|]*", 700, 500); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform "real_concept", // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 30000, 4000); // test function add_expected_result( "[^|]*", // compiler "[^|]*", // stdlib "[^|]*", // platform largest_type, // test type(s) "[^|]*large[^|]*", // test data group "[^|]*", 20000, 2000); // test function // // Finish off by printing out the compiler/stdlib/platform names, // we do this to make it easier to mark up expected error rates. // std::cout << "Tests run with " << BOOST_COMPILER << ", " << BOOST_STDLIB << ", " << BOOST_PLATFORM << std::endl; } template RealType naive_pdf(RealType a, RealType b, RealType lam, RealType x) { using namespace boost::math; RealType term = pdf(poisson_distribution(lam/2), 0) * ibeta_derivative(a, b, x); RealType sum = term; int i = 1; while(term / sum > tools::epsilon()) { term = pdf(poisson_distribution(lam/2), i) * ibeta_derivative(a + i, b, x); ++i; sum += term; } return sum; } template void test_spot( RealType a, // alpha RealType b, // beta RealType ncp, // non-centrality param RealType cs, // Chi Square statistic RealType P, // CDF RealType Q, // Complement of CDF RealType D, // PDF RealType tol) // Test tolerance { boost::math::non_central_beta_distribution dist(a, b, ncp); BOOST_CHECK_CLOSE( cdf(dist, cs), P, tol); // // Sanity checking using the naive PDF calculation above fails at // float precision: // if(!boost::is_same::value) { BOOST_CHECK_CLOSE( pdf(dist, cs), naive_pdf(dist.alpha(), dist.beta(), ncp, cs), tol); } BOOST_CHECK_CLOSE( pdf(dist, cs), D, tol); if((P < 0.99) && (Q < 0.99)) { // // We can only check this if P is not too close to 1, // so that we can guarentee Q is reasonably free of error: // BOOST_CHECK_CLOSE( cdf(complement(dist, cs)), Q, tol); BOOST_CHECK_CLOSE( quantile(dist, P), cs, tol * 10); BOOST_CHECK_CLOSE( quantile(complement(dist, Q)), cs, tol * 10); } } template // Any floating-point type RealType. void test_spots(RealType) { RealType tolerance = (std::max)( boost::math::tools::epsilon() * 100, (RealType)1e-6) * 100; RealType abs_tolerance = boost::math::tools::epsilon() * 100; cout << "Tolerance = " << tolerance << "%." << endl; // // Spot tests use values computed by the R statistical // package and the pbeta and dbeta functions: // test_spot( RealType(2), // alpha RealType(5), // beta RealType(1), // non-centrality param RealType(0.25), // Chi Square statistic RealType(0.3658349), // CDF RealType(1-0.3658349), // Complement of CDF RealType(2.184465), // PDF RealType(tolerance)); test_spot( RealType(20), // alpha RealType(15), // beta RealType(35), // non-centrality param RealType(0.75), // Chi Square statistic RealType(0.6994175), // CDF RealType(1-0.6994175), // Complement of CDF RealType(5.576146), // PDF RealType(tolerance)); test_spot( RealType(100), // alpha RealType(3), // beta RealType(63), // non-centrality param RealType(0.95), // Chi Square statistic RealType(0.03529306), // CDF RealType(1-0.03529306), // Complement of CDF RealType(3.637894), // PDF RealType(tolerance)); test_spot( RealType(0.25), // alpha RealType(0.75), // beta RealType(150), // non-centrality param RealType(0.975), // Chi Square statistic RealType(0.09752216), // CDF RealType(1-0.09752216), // Complement of CDF RealType(8.020935), // PDF RealType(tolerance)); BOOST_MATH_STD_USING boost::math::non_central_beta_distribution dist(100, 3, 63); BOOST_CHECK_CLOSE(mean(dist), RealType(4.82280451915522329944315287538684030781836554279474240490936e13L) * exp(-RealType(31.5)) * 100 / 103, tolerance); // Variance only guarentees small absolute error: BOOST_CHECK_SMALL(variance(dist) - static_cast(RealType(4.85592267707818899235900237275021938334418424134218087127572e13L) * exp(RealType(-31.5)) * 100 * 101 / (103 * 104) - RealType(4.82280451915522329944315287538684030781836554279474240490936e13L) * RealType(4.82280451915522329944315287538684030781836554279474240490936e13L) * exp(RealType(-63)) * 10000 / (103 * 103)), abs_tolerance); BOOST_CHECK_THROW(skewness(dist), boost::math::evaluation_error); BOOST_CHECK_THROW(kurtosis(dist), boost::math::evaluation_error); BOOST_CHECK_THROW(kurtosis_excess(dist), boost::math::evaluation_error); } // template void test_spots(RealType) template T nc_beta_cdf(T a, T b, T nc, T x) { return cdf(boost::math::non_central_beta_distribution(a, b, nc), x); } template T nc_beta_ccdf(T a, T b, T nc, T x) { return cdf(complement(boost::math::non_central_beta_distribution(a, b, nc), x)); } template void do_test_nc_chi_squared(T& data, const char* type_name, const char* test) { typedef Real value_type; std::cout << "Testing: " << test << std::endl; value_type (*fp1)(value_type, value_type, value_type, value_type) = nc_beta_cdf; boost::math::tools::test_result result; result = boost::math::tools::test_hetero( data, bind_func(fp1, 0, 1, 2, 3), extract_result(4)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "CDF", test); fp1 = nc_beta_ccdf; result = boost::math::tools::test_hetero( data, bind_func(fp1, 0, 1, 2, 3), extract_result(5)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "CCDF", test); #ifdef TEST_OTHER fp1 = other::ncbeta_cdf; result = boost::math::tools::test_hetero( data, bind_func(fp1, 0, 1, 2, 3), extract_result(4)); handle_test_result(result, data[result.worst()], result.worst(), type_name, "Other::CDF", test); #endif std::cout << std::endl; } template void quantile_sanity_check(T& data, const char* type_name, const char* test) { typedef Real value_type; // // Tests with type real_concept take rather too long to run, so // for now we'll disable them: // if(!boost::is_floating_point::value) return; std::cout << "Testing: " << type_name << " quantile sanity check, with tests " << test << std::endl; // // These sanity checks test for a round trip accuracy of one half // of the bits in T, unless T is type float, in which case we check // for just one decimal digit. The problem here is the sensitivity // of the functions, not their accuracy. This test data was generated // for the forward functions, which means that when it is used as // the input to the inverses then it is necessarily inexact. This rounding // of the input is what makes the data unsuitable for use as an accuracy check, // and also demonstrates that you can't in general round-trip these functions. // It is however a useful sanity check. // value_type precision = static_cast(ldexp(1.0, 1-boost::math::policies::digits >()/2)) * 100; if(boost::math::policies::digits >() < 50) precision = 1; // 1% or two decimal digits, all we can hope for when the input is truncated to float for(unsigned i = 0; i < data.size(); ++i) { // // Test case 493 fails at float precision: not enough bits to get // us back where we started: // if((i == 493) && boost::is_same::value) continue; if(data[i][4] == 0) { BOOST_CHECK(0 == quantile(boost::math::non_central_beta_distribution(data[i][0], data[i][1], data[i][2]), data[i][4])); } else if(data[i][4] < 0.9999f) { value_type p = quantile(boost::math::non_central_beta_distribution(data[i][0], data[i][1], data[i][2]), data[i][4]); value_type pt = data[i][3]; BOOST_CHECK_CLOSE_EX(pt, p, precision, i); } if(data[i][5] == 0) { BOOST_CHECK(1 == quantile(complement(boost::math::non_central_beta_distribution(data[i][0], data[i][1], data[i][2]), data[i][5]))); } else if(data[i][5] < 0.9999f) { value_type p = quantile(complement(boost::math::non_central_beta_distribution(data[i][0], data[i][1], data[i][2]), data[i][5])); value_type pt = data[i][3]; BOOST_CHECK_CLOSE_EX(pt, p, precision, i); } if(boost::math::tools::digits() > 50) { // // Sanity check mode, accuracy of // the mode is at *best* the square root of the accuracy of the PDF: // value_type m = mode(boost::math::non_central_beta_distribution(data[i][0], data[i][1], data[i][2])); if((m == 1) || (m == 0)) break; value_type p = pdf(boost::math::non_central_beta_distribution(data[i][0], data[i][1], data[i][2]), m); if(m * (1 + sqrt(precision) * 10) < 1) { BOOST_CHECK_EX(pdf(boost::math::non_central_beta_distribution(data[i][0], data[i][1], data[i][2]), m * (1 + sqrt(precision) * 10)) <= p, i); } if(m * (1 - sqrt(precision)) * 10 > boost::math::tools::min_value()) { BOOST_CHECK_EX(pdf(boost::math::non_central_beta_distribution(data[i][0], data[i][1], data[i][2]), m * (1 - sqrt(precision)) * 10) <= p, i); } } } } template void test_accuracy(T, const char* type_name) { #if !defined(TEST_DATA) || (TEST_DATA == 1) #include "ncbeta.ipp" do_test_nc_chi_squared(ncbeta, type_name, "Non Central Beta, medium parameters"); quantile_sanity_check(ncbeta, type_name, "Non Central Beta, medium parameters"); #endif #if !defined(TEST_DATA) || (TEST_DATA == 2) #include "ncbeta_big.ipp" do_test_nc_chi_squared(ncbeta_big, type_name, "Non Central Beta, large parameters"); // Takes too long to run: // quantile_sanity_check(ncbeta_big, type_name, "Non Central Beta, large parameters"); #endif } BOOST_AUTO_TEST_CASE( test_main ) { BOOST_MATH_CONTROL_FP; // Basic sanity-check spot values. expected_results(); // (Parameter value, arbitrarily zero, only communicates the floating point type). #ifdef TEST_FLOAT test_spots(0.0F); // Test float. #endif #ifdef TEST_DOUBLE test_spots(0.0); // Test double. #endif #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS #ifdef TEST_LDOUBLE test_spots(0.0L); // Test long double. #endif #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) #ifdef TEST_REAL_CONCEPT test_spots(boost::math::concepts::real_concept(0.)); // Test real concept. #endif #endif #endif #ifdef TEST_FLOAT test_accuracy(0.0F, "float"); // Test float. #endif #ifdef TEST_DOUBLE test_accuracy(0.0, "double"); // Test double. #endif #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS #ifdef TEST_LDOUBLE test_accuracy(0.0L, "long double"); // Test long double. #endif #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x582)) #ifdef TEST_REAL_CONCEPT test_accuracy(boost::math::concepts::real_concept(0.), "real_concept"); // Test real concept. #endif #endif #endif } // BOOST_AUTO_TEST_CASE( test_main )