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Introduction 
 

This document discusses our efforts to rewrite our rigid body simulator, Bullet 3.x, to make it 
suitable for many-core systems, such as GPUs, using OpenCL. Although OpenCL is thought, most of it can 
be applied to projects using other GPU compute languages, such as NVIDIA CUDA and Microsoft DX11 
Direct Compute. 
 
Bullet is physics simulation software, in particular for rigid body dynamics and collision detection in. The 
project started around 2003, as in-house physics engine for a Playstation 2 game. In 2005 it was made 
publically available as open source under a liberal zlib license. Since then it is being used by game 
developers, movie studios and 3d modelers and authoring tools such as Maya, Blender, Cinema 4D etc. 
 
Before the rewrite, we have been optimizing and refactoring Bullet 2.x for multi-code, and we’ll briefly 
touch on those efforts. Previously we have worked on simplified GPU rigid body simulation, such as 
[Harada 2010] and [Coumans 2009]. Our recent GPU rigid body dynamics work has approached the 
same quality compared to the CPU version. 
 
The Bullet 3.x rigid body and collision detection pipeline runs 100% on the GPU using OpenCL. On a high-
end desktop GPU it can simulate 100 thousand rigid bodies in real-time. The source code is available as 
open source at http://github.com/erwincoumans/bullet3 . Appendix B shows how to build and use the 
project on Windows, Linux and Mac OSX. 
 

Bullet 2.x Refactoring 
 
Bullet 2.x is written in modular C++ and its API was initially designed to be flexible and extendible, rather 
than optimized for speed. The API allows the user to derive his own classes and to select or replace 
individual modules that are used for the simulation. A lot of refactoring work has been done to optimize 
its single-threaded performance, without changing the API and data structures. 
 

 Use very efficient acceleration structures to avoid doing expensive computations 

 Incrementally update data structures instead of computing from scratch 

 Pre-compute and cache data so that results that can be reused 

 Optimize the inner loops using SSE and align data along cache lines 

 Reduce the amount of dynamic memory (de)allocations, for example using memory pools 
 
We ported Bullet 2.x to Playstation 3 Cell SPUs. This required some refactoring and we re-used some of 
this effort towards a basic multithreaded version that was cross-platform using pthreads and Win32 
Threads. 
 

Bullet 3.x Full Rewrite 
  

http://github.com/erwincoumans/bullet3


It became clear that the Bullet 2.x API, data structures and algorithms didn’t scale well towards massive 
parallel multi-threading. The following sections explain some of the issues we ran into. To be future 
proof, we started to invest in GPGPU technology, with the expectation that this effort would also help 
towards CPU multi-threading with a larger number of cores. 
 
Optimizing for GPU requires more changes to code and data, in comparison to CPU multithreading. This 
document goes into details of this on-going work on Bullet 3.x. 
 

Getting started with OpenCL 
 
You can use OpenCL to parallelize a program, so that it runs multi-threaded on many cores. Although 
OpenCL seems primarily suitable for GPUs, an OpenCL program can be compiled so it executes multi-
threaded on a CPU target. The performance of an OpenCL program running on CPU is competitive with 
other solutions, such as pthreads or Intel Thread Building Blocks. There are even implementations that 
allow to run OpenCL programs distributed over a network using MPI. So OpenCL is a very flexible and 
cross-platform solution. 
 

OpenCL terminology 
 
If we target a GPU Device to execute our OpenCL code, we still need a Host such as the CPU for 
initialization of the device memory and to start the execution of code on the device. 
 

 
 
The OpenCL code that runs on the Device is called a Kernel. OpenCL kernel code looks very similar to 
regular C code. Such kernel code needs to be compiled using a special compiler, that is usually provided 
by the Device vendor. This is similar to graphics shader compilation, such as GLSL, HLSL and Cg. 
 
To get access to OpenCL we need at minimum the OpenCL header files, and some way to link against the 
OpenCL implementation. Various vendors such as AMD, Intel, NVIDIA and Apple provide an OpenCL 
software development kit, which provides those header files and a library to link against. As an 
alternative, we also added the option to dynamically load the OpenCL dynamic library and import its 
symbols at run-time. This way, the program can continue to run, even if OpenCL is not installed. 
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Our first OpenCL kernel 
Let's start with a very simple example that shows the conversion of some simple code fragment into 
OpenCL kernel. 
 
typedef struct 

{ 

 float4 m_pos; 

 float4 m_linVel; 
} Body; 

 

void   integrateTransforms (Body* bodies, int nodeID, float timeStep) 
{ 

 for (int nodeID = 0;nodeID<numBodies;nodeID++) 

 { 
  if( bodies[nodeID].m_invMass != 0.f) 
  { 
   bodies[nodeID].m_pos +=  bodies[nodeID].m_linVel * timeStep;  

  } 

 } 
} 

 
When we convert this code into an OpenCL kernel it looks like this: 
 
 

__kernel void   integrateTransformsKernel( __global Body* bodies,const int numNodes, float 

timeStep) 
{ 
 int nodeID = get_global_id(0); 
 if( nodeID < numNodes && (bodies[nodeID].m_invMass != 0.f)) 
 { 
  bodies[nodeID].m_pos +=  bodies[nodeID].m_linVel * timeStep;   

 } 
} 
 

 

We need to write some host code in order to execute this OpenCL kernel. Here are typical steps for this 
host code: 
 

1. Initialize OpenCL context and choose the target device 
2. Compile your OpenCL kernel program 
3. Create/allocate OpenCL device memory buffers 
4. Copy the Host memory buffer to the device buffer 
5. Execute the OpenCL kernel 
6. Copy the results back to Host memory 

 
The OpenCL API is very low-level, so we created a simple wrapper to match our coding style and to make 
it easier to use. This was a good learning experience. We also added additional features in the wrapper, 
you can check out the OpenCL Tips and Tricks section for more information. This wrapper doesn't hide 
the OpenCL API, so at any stage we can use plain OpenCL. 
 
 

Porting existing code to OpenCL 
We ran into many issues that prevented our code to run on GPU at all, let alone efficiently. This section 
shares some experiences, even though the solutions might be obvious. 



Replace C++ by C 
OpenCL is close to plain C, but Bullet 2.x is written in C++. This means that most of the code needs to be 
rewritten to use C and structures, instead of C++ and classes with inheritance etc. This conversion was 
easy, although it took time. It helps that in Bullet 2.x we avoid many C++ features: no exception 
handling, no run-time type information (RTTI), no STL and very limited use of template classes. 
 

Share CPU and GPU code 
In the process of porting, it is easiest to first implement a CPU version of an OpenCL kernel, and then 
port this code to an OpenCL kernel. Once this is done, it is useful to validate the OpenCL kernel with the 
CPU reference version, making sure that the output is the same. 
 
In Bullet 2.x a lot of the algorithms involve a basic linear algebra math library for operations on 3d 
vectors, quaternions and matrices. OpenCL has some built-in support for this, with the float4 data type 
and operators such as the dot, cross product on float4 and many others. It helps to refactor your CPU 
math library so that the same code can run on the GPU: it allows development and debugging of the 
same implementation on the CPU. For compatibility we added some typedefs, global operators and 
access to the scalar operators .x .y .z and .w of the b3Vector3 on CPU, which resembles a float4. 
 

Easy GPU<->CPU data synchronization 
In Bullet 2.x we mainly use a resizable container template, similar to the STL std::vector. The actual 
name is b3AlignedObjectArray, but for simplicity we just call it std::vector here. During porting to 
OpenCL we found that it is really useful to have a container that keeps the data on the GPU. This 
container should make it easy to synchronization between the CPU and GPU data. So we designed the 
btOpenCLArray<> template. 
 

template <typename T> 

class b3OpenCLArray 

{ 

 size_t m_size; 

 size_t m_capacity; 

 cl_mem m_clBuffer; 

. . .  

inline bool push_back(const T& _Val,bool waitForCompletion=true); 

  void copyToHost(std::vector& destArray, bool waitForCompletion=true) const; 

 void copyFromHost(const b3AlignedObjectArray<T>& srcArray, bool waitForCompletion=true) 

   

} 

This simplifies the host code a lot. Here is some example use. 
 

std::vector<b3RigidBody> cpuBodies; 

b3OpenCLArray<b3RigidBody> gpuBodies(clContext,clQueue); 

gpuBodies.copyFromHost(cpuBodies); 

. . .  

gpuBodies.copyToHost(cpuBodies); 



 

Move data to contiguous memory 
 
In the Bullet 2.x API, the user is responsible for allocating objects, such as collision shapes, rigid bodies 
and rigid constraints. Users can create objects on the stack or on the heap, using their own memory 
allocator. You can even derive their own sub class, changing the so that the object size. This means that 
objects are not store in contiguous memory, which makes it hard or even impossible to transfer to the 
GPU.  
The easiest way to solve this is to change the API so that objects creation and removal is handled 
internally by the system. This is a big change in the API and one of many reasons for a full rewrite. 
 

Replace pointers by indices 
 
In Bullet 2.x, our data structures contained pointers from one object to the other. For example, a rigid 
body has a pointer to a collision shape. A rigid constraint has a pointer to two rigid bodies, and so on.  
Those pointers are only valid in CPU Host memory and cannot be used on the GPU. This means that data 
created on the CPU cannot be used on the GPU. This issue can be solved, by replacing pointers by 
indices.  
Generally it may be better to rethink the data structures. For Bullet 3.x the data structures are different, 
and there is not always a one-to-one mapping between new Bullet 3.x and Bullet 2.x types. 
 
struct btTransform 

{ 

 btMatrix3x3  m_basis; 

 btVector3 m_position; 

}; 

class btRigidBody : public btCollisionObject 

{ 

 btMatrix3x m_inverseInertiaWorld; 

 btVector3 m_linearVelocity; 

 btVector3 m_angularVelocity; 

 btScalar m_mass; 

 . . .  

}; 

class btCollisionObject 

{ 

 btTransform    m_worldTransform; 

 btCollisionShape* m_collisionShape; 

 . . .  

}; 

 
In our current Bullet 3.x we don’t derive the rigid body from the collision object, and we moved some 
data from one class/struct to the other and created some new structures. 

struct b3RigidBody 

{  

 b3Vector3 m_position; 

 b3Quaternion m_orientation; 

 int   m_collidableIndex; 

 . . .  

}; 

struct b3Collidable 

{  

 int m_shapeType; 

 int m_shapeIndex; 

}; 



 
The basic integrateTransforms example in the previous section is embarrassingly parallel: there are no 
data dependencies between the bodies. Many of the algorithms in Bullet 2.x have some data 
dependencies so they cannot be trivially parallelized. The following section briefly covers GPU and 
OpenCL. After that, we discuss how we made effective use of the GPU many-cores and the GPU memory 
hierarchy in our rigid body simulation work. 
  

Exploiting GPU hardware 
 
A high-end desktop GPU has thousands of cores that can execute in parallel, so you need to make effort 
to keep all those cores busy. Those cores are grouped into Compute Units with typically 32 or 64 cores 
each. The cores inside a single Compute Unit execute the same kernel code in lock-step: they are all 
executing the same instruction, like a wide SIMD unit. The work that is performed by executing a kernel 
on a single core is called a Work Item in OpenCL. To make sure that multiple work items are executed on 
the same Compute Unit, you can group them into a Work Group. The hardware is free to map Work 
Groups to Compute Units, and this makes OpenCL scalable: if you add more Compute Units, the same 
program will run faster. The drawback is that there is no synchronization between Compute Units, so 
you need to design your algorithm around this. The host can wait until all Work Groups are finished, 
before starting new work. 
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Dealing with branchy code/thread divergence 
Because all work items in a Compute Units execute in lock step, this means that code that has a lot of 
conditional statements can become very slow and inefficient. 
 
__kernel void   branchyKernel (. . .) 

{ 

if (conditionA) 

{ 

  someCodeA(. . .); 

} else 

{ 

  someCodeNotA(. . .); 

} 

}  

 
If not all the work items in a Compute Unit have the same value for ‘conditionalA’ then they have to wait 
for eachother to finish executing ‘someCodeA’ and ‘someCodeB’. 
 
On the other hand, if all work items in the Compute Unit have the same value for conditionA, then only 
one of the two ‘someCode*’ sections will be executed, and there is no performance penalty for the if-
statement.  

Sort the input 
If we know the conditionalA before executing the OpenCL kernel, we can sort the work items based on 
this conditionalA. This way, it is more likely that all the work items with a similar conditionalA will be 
processed in the same Compute Unit. In Bullet 3 we could use two parallel radix sorts on the overlapping 
pair array, based on each collision shape type (shapeTypeA and shapeTypeB) in a pair: 
 
__kernel void   primitiveContactsKernel(__global int2 pairs, _global b3RigidBody* rigidBodies, 

               __global b3Collidable* collidables, const int numPairs) 
{ 

 int nodeID = get_global_id(0); 

 if (nodeID>=numBodies) 

  return; 

 int bodyIndexA = pairs[i].x; 

  int bodyIndexB = pairs[i].y; 

 int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; 

 int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; 

 int shapeTypeA = collidables[collidableIndexA].m_shapeType; 

 int shapeTypeB = collidables[collidableIndexB].m_shapeType; 

 if (shapeTypeA== SHAPE_PLANE && shapeTypeB==SHAPE_SPHERE) 

  return contactPlaneSphere(. . .); 

 if (shapeTypeA== SHAPE_SPHERE && shapeTypeB==SHAPE_SPHERE) 

  return contactSphereSphere(. . .); 

 . . . 

} 

 

Breakup into pipeline stages 
In some algorithms, we only know the value of the conditional, during the kernel execution. One 
example is the following algorithm, computing the contacts between a pair of convex collision shapes: 
 
bool hasSeparatingAxis = findSeparatingAxis(objectA,objectB) 

if (hasSeparatingAxis) 

{ 

 clipContacts(objectA,objectB); 

} 

 
In this case, we can break up the algorithm into 2 stages, and first execute the ‘findSeparatingAxis’ stage 
for all objects. Then we execute the ‘clipContacts’ stage, only for the objects that have a separating axis. 



The output of the first stage could be some array of boolean values. We would like to discard all the 
work items that have a negative value. Such stream compaction can be done using a parallel prefix scan. 
Essentially this shrinks the array and only leaves the positive elements. Then we can use this array as 
input for the next stage of the pipeline. 
 
 

Use Parallel Primitives 
When implementing software for GPU, several patterns or parallel primitives are very common: 

 Sorting 

 Counting, bound search 

 Parallel sum, prefix scan 
It is important to have an efficient GPU implementation of those to use as a building block. 
 

Use Local Memory 
 
Most GPUs have a memory hierarchy including  

 Global GPU memory that can be accessed by all Compute Units 

 Local shared memory, that can be accessed by all threads within one Compute Unit 

 Private memory that can only be accessed by a single thread/Work Item 
Local shared memory is usually at least one order or magnitude faster than global GPU memory. The use 
of local shared memory is best when there is data that can be shared by several Work Items in a Work 
Group. Local shared memory can be useful for read-only input data, but also to improve performance of 
writing the output data.  
 

Barrier synchronization 
In order to make use of local shared memory, we also need to make sure that the data is valid, before 
any of the Work Items starts accessing the memory. For this we can use a barrier. A very common usage 
is as follow: 
 

 Copy the data from global GPU memory to local shared memory 

 Add a barrier so that all threads are waiting for the data to be valid 

 Perform some computation using the local shared memory 
 

Atomics 
Atomic operations can be useful in many cases. One way we use atomic operations is to emulate a 
global append buffer. Any Work Item in any Work Group might want to append some data to a global 
array. We can create an integer index in global GPU memory. Each thread can use an atomic_add 
operation to append a number of items to the buffer. 
 

GPU rigid body simulation 
 
A lot of work can go into picking or designing an algorithm that is suitable for GPU. In this section we will 
go more in detail how we implemented each stage of the rigid body pipeline to GPU. 
 
 



Rigid body introduction 
A rigid body is an object that has some properties that generally don’t change over time, such as mass 
and inertia properties and a collision shape representation. A rigid body also has some state variables 
such as position and orientation and linear and angular velocity that change over time, usually due to 
some forces such as gravity, collisions or other constraint forces. A 3d rigid body has 6 degrees of 
freedom for its motion: translation along each of the 3 primary axis (x,y,z) and rotation among those 3 
axis. 
 
It is a physics engine task to update the state of rigid bodies according to the Newton laws. At regular 
intervals it moves the objects and detects collisions between rigid bodies and makes sure that objects 
don’t penetrate. Aside from such non-penetration constraints, there are other constraints that control 
the degrees of freedom between a pair of rigid bodies. 
 
A rigid body pipeline consists of all consecutive stages of computation that are performed during a 
single simulation time step. 
 
A collision shape describes the surface or volume of an object. There are many collision shape 
representations, for example convex shapes such as a sphere, box, cone, cylinder, capsule or a convex 
hull of some vertices/points.  Another popular representation is a triangle mesh geometry. Multiple 
collision shapes can be grouped into a compound collision shape. 
 
To accelerate collision detection between two collision shapes, we first test if the world space bounding 
volumes of the shapes overlap. The bounding volume we use is an Axis Aligned Bounding Box or AABB.  
 
In addition to a single world space AABB, for complex shapes we can have an additional local space 
acceleration structure. We can use a bounding volume hierarchy or BVH such as an AABB tree for this. 
 
Aside from updating the state of all rigid bodies in the world, a physics engine can also provide collision 
queries and ray intersection queries against the collision shapes of the rigid bodies. For example you can 
query the closest points or the penetration depth between two objects. 
 

The rigid body pipeline 
 
The Rigid Body Pipeline 1 diagram shows the data structures and computation stages of a simplified rigid 
body pipeline. In a nutshell, we detect potential overlapping pairs in the Detect Pairs stage. Given n rigid 
bodies, this step will reduce the expected time complexity from O(n*n) to O(n). 
 
Once we have the potential overlapping pairs, we compute the contact points in the Narrow Phase step. 
For a pair of overlapping spheres, this step is trivial, but for a pair of convex hull meshes it becomes 
more complicated. If we deal with large triangle meshes, we usually add an additional culling step, 
known as the Mid Phase collision detection. 
 
The contact points are converted into contact constraints, so that objects will no penetrate at the end of 
the simulation step. The contact constraints are satisfied together with non-contact constraints in the 
Constraint Solving step. We solve all the constraints together, because satisfying one constraint might 
violate another constraint, so this is a global problem. 
 



The output of the constraint solving step is updated velocities. Those are used in the Integrate Position 
step, so update the position and orientation of the rigid bodies. 
  
 
 

Rigid Body Pipeline 1 

 
Computing the object AABBs 
We need to compute the axis aligned bounding box, AABB, for each object. This is an embarrassingly 
parallel operation so we won't go in detail. Normally, the collision shape is used to compute the world 
space AABB. One of the optimizations we made is to cache the local space AABB for the collision shape, 
the grey dotted box in this figure, and use this to recompute the world space AABB, the black dotted 
box. 

 
 
You can find the kernel source code in src/Bullet3OpenCL/RigidBody/kernels/updateAabbsKernel.cl 
 

GPU overlapping pair detection 
Given all the object axis aligned bounding boxes, we need to find all the object pairs that have 
overlapping AABBs. The brute force algorithm would perform O(n^2) checks. The original CPU version 
looks like this: 
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void   computePairsKernelBruteForce (const btAabbCL* aabbs, volatile __global int2* 

pairsOut,volatile  __global int* pairCount, int numObjects, int maxPairs) 

{ 

   for (int i=0;i<numObjects;i++) 

   { 

 for (int j=i+1;j<numObjects;j++) 

 { 

    if (TestAabbAgainstAabb2GlobalGlobal(&aabbs[i],&aabbs[j])) 

  { 

   int2 myPair; 

   myPair.x = aabbs[i].m_objectIndex; 

   myPair.y = aabbs[j].m_objectIndex; 

   int curPair = *pairCount; 

   if (curPair<maxPairs) 

   { 

    pairsOut[curPair] = myPair; //flush to main memory 

    pairCount++; 

   } 

  } 

 } 

   } 

} 

 
When transforming this to an OpenCL kernel, we could drop the outer for-loop, and let individual Work 
Items deal with each i. This would provide some amount of parallelism: 
 
 

__kernel void   computePairsKernelBruteForceKernel ( __global const btAabbCL* aabbs, volatile 

__global int2* pairsOut,volatile  __global int* pairCount, int numObjects, int maxPairs) 

{ 

 int i = get_global_id(0); 

 if (i>=numObjects) 

  return; 

 for (int j=i+1;j<numObjects;j++) 

 { 

    if (TestAabbAgainstAabb2GlobalGlobal(&aabbs[i],&aabbs[j])) 

  { 

   int2 myPair; 

   myPair.x = aabbs[i].m_objectIndex; 

   myPair.y = aabbs[j].m_objectIndex; 

   int curPair = atomic_inc (pairCount); 

   if (curPair<maxPairs) 

   { 

    pairsOut[curPair] = myPair; //flush to main memory 

   } 

  } 

 } 

} 

 
The global pairCount variable keeps track of the output to a global array of overlapping pairs. Each Work 
Item can use the OpenCL atomic_inc operation to increment this variable. The return value of 
atomic_inc is the old value, that we use to store the output. We also need to perform a range check 
against maxPairs, to make sure we don't write beyond the output array. 
 
The use of atomic_inc on a global variable can reduce performance, when many Work Items try to 
increment the variable at the same time. We can optimize this in various ways. One way is to create a 
small temporary buffer in local shared memory, and perform local atomic_inc operations on this buffer. 
Only when the buffer is full, or when the kernel is completed, we can write the results into global 



memory. Instead of writing a single result, we can use the atomic_add operation. This use of a global 
buffer is also known as an Append Buffer. 
 
There are many ways to optimize the pair detection, and there are various factors that affect the 
performance: 

 What percentage of the objects are moving? 

 How fast do the objects move? 

 Do we have large variation in object (bounding volume) sizes? 

 Do we add and/or remove many objects? 

 Do we want to re-use the acceleration structure for ray intersection queries and swept volume? 
 

One GPU friendly acceleration structure is the uniform grid. This can be parallelized very well, but the 
drawback is that the collision shapes of rigid bodies can vary a lot in size, so there is not a suitable grid 
cell size that fits all collision shapes in general. One option is to use a mix of different acceleration 
structures, a uniform grid for small objects and particles, and a different acceleration structure for larger 
objects. 
  
On the CPU, we have incremental algorithms that are unsuitable for GPU in their unmodified form. In 
Bullet 2.x we have the btDbvtBroadphase, based on a dynamic AABB trees, which are incrementally 
updated, instead of rebuild from scratch. The incremental updates have a lot of data dependencies and 
random memory access, so that we cannot easily perform them in parallel. This is still ongoing work. 
 
Another pair search algorithm in Bullet 2.x is the 3-axis sweep and prune. Similar to the previous case, 
this acceleration structure is incrementally updated with a lot of data dependencies. In this case, 
however, we came up with some modifications that make it suitable for GPU. 
 

 
 
In the original sequential CPU version, the AABB min- and max-coordinates for each axis are move to 
their new location. Pairs are added or removed during the swap operations that move the AABB 
coordinate from the old to the new position. The dependencies of data accesses, during this incremental 
sorting operation, prevent a parallel version. 
 
We modified the incremental algorithm and perform a full sort on each of the 3 axes, with projected 
AABB begin and end coordinates. In addition, we keep track of the previous sorted arrays for each axis. 
Then, each object can perform read-only operations that mimic the 'swap' operations to add or remove 
overlapping pairs: for each object we traverse the original and new arrays from the original index to the 
new index to determine added or removed pairs: 
 



 
 

We also have an implementation of a parallel 1-axis sweep and prune, which performs a full sort on a 
single axis. The axis with the best variance is computed using a parallel prefix sum. Both the 1-axis and 3-
axis sweep and prune algorithm requires a parallel radix sort on floating point values. Our radix sort can 
only sort arrays of integers, so we need to convert the floating point values to integers first. 
 
You can find the implementation in src/Bullet3OpenCL/BroadphaseCollision/kernels/sapFast.cl 
 
More details about the 1-axis GPU sweep and prune can be found in the paper "Real-time Collision 
Culling of a Million Bodies on Graphics Processing Units" [Liu 2010] 
 

GPU local space BVH culling for complex shapes 
Some of the overlapping pairs contain complex concave shapes that need additional culling before 
performing exact contact detection. This will effectively simplify overlapping pairs that contain concave 
triangle meshes and concave compound shapes to new overlapping pairs containing only convex shapes. 
  
We can use a precomputed local space AABB tree to find overlapping child shapes. For a concave 
triangle mesh shape, the child nodes of the tree refer to individual triangles. For compound collision 
shapes, the child nodes in the tree refer to individual convex child collision shapes. 
 
Among the GPU optimizations, we compressed the AABB nodes to 16 bytes using quantization. 
Additionally, we use a stackless tree traversal, which is very efficient on the GPU. 
 

 
 
The implementation is in src/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl 
 

Sorted x-axis old

Sorted x-axis new



GPU contact computation 
Once we finish the pair detection, we have access to overlapping pairs of convex shapes. The algorithm 
that we use depends on each of the collision shape type in the overlapping pair. 
 

 
 
In Bullet 2.x we use the GJK and EPA algorithm to compute contacts between convex shapes, but those 
algorithms not trivially optimized for GPU. 
 
For Bullet 3.x we compute contacts between convex polyhedral collision shapes using the separating 
axis test (SAT), contact clipping and contact reduction. The CPU version is very branchy and not suitable 
for GPU. The pseudo code looks like this: 
 
 
 
 

void   computeContactsSAT(convexHullA,convexHullB,transformA,transformB) 

{ 

 b3Vector3 satAxis; 

 if (findSeparatingAxis(convexHullA,convexHullB,transformA,transformB)) 

 { 

  if (clipHullHull(satAxis, convexHullA,convexHullB,transformA,transformB)) 

  { 

   findClippingFacesKernel(. . .) 

   clipFacesAndContact(. . .) 

   contactReduction(...) 

  } 

 } 

} 

 

 
We refactored the code into a collection of kernels that form a pipeline: first we compute the separating 
axis for all pairs. Once we have the results, we can discard all pairs that don't overlap, using stream 
compaction (using a prefix sum parallel primitive). The next stage is clippHullHull for all pairs in parallel, 
followed by the clipFacesAndContactReductionKernel stage. This way, we the main branches in the 
original algorithm become kernel executions between the different pipeline stages. 
 



 
The contact reduction in Bullet 2.x was based on an incremental algorithm that can add or remove one 
point at a time, using a persistent contact point cache. In Bullet 3.x we compute the full set of contact 
points, and perform contact reduction on the resulting points. 
 
We also refactored the data structures for convex shapes, faces, edges and vertices in a GPU friendly 
way. 
 

GPU parallel contact solving 
Solving pair-wise constraints means we have to update data for each of the bodies involved. This means 
that solving multiple constraints is not embarrasingly parallel: they might try to access the same bodies. 
In the following example, the constraints are numbered 1,2,3,4 and the bodies A,B,C,D.  

 
Constraint 1 and constraint 2 both have read-write access to B, and this means those two constraints 
cannot be executed in parallel, without synchronization. In order to solve this, we can sort the 
constraints in independent batches, where the constraints in each batch don't have read-write access to 
the same bodies. 
 
The pseudo code of the sequential batch sorting looks like this: 
 
 
void   batchConstraints(constraints, int numConstraints) 

{ 

 int batchIdx=0; 

 while( numValidConstraints < numConstraints) 

 { 

  clear(bodiesUsed); 

  for(int i=numValidConstraints; i<numConstraints; i++)  

  { 

   int bodyA = constraints[i].m_bodyA; 

   int bodyB = constraints [i].m_bodyB; 

   if (isAvailable(bodyA,bodyB,bodiesUsed)) 

   { 

    markUsed(bodyA,bodyB,bodiesUsed); 

    constraint[i].m_batchId = batchIdx;//assign the batch index 

   } 

  } 

  batchIdx ++; 

 } 

} 
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If we want to move the batch generation onto GPU, there are several considerations. We can separate 
batch generation in two stages: 

1. Local batching: batching within a single compute unit 
2. Global batching: split the input so that it can be processed on different compute units  

 
 
If we only deal with a single compute unit, we could process the batch generation within a single 
thread/work item. For a compute unit that has 64 threads, 63 threads would be idle, so that is a waste. 
If we use more then a single work item/thread to perform batch generation, we need to implement a 
parallel version of 'isAvailable' and 'markUsed'. This can be done using local shared memory, with a 
small buffer representing the bodies that marked as used. Threads can try to mark bodies as used. After 
this step, each thread can check if their marked bodies are not overwritten by other constraints. If not, 
then they succeeded in marking the bodies as used, and the constraint can be added to a batch. Due to 
lack of local shared memory, we have only limited storage for the marked-as-used bodies. Using a 
modulo operation, multiple bodies can map to the same 'marked-as-used' storage. A drawback is that 
some threads might fail to add constraints to a batch, so we need to execute the attempt of body 
reservation multiple times. 
 
For the global batching among multiple compute units, we cannot rely on synchronization. A way to split 
the input for global batching is using spatial information: objects that are further away than the 
maximum object size cannot collide. We can divide space in cells, and solve non-neighboring cells in 
parallel: the blue cells can be processed in parallel, and the same for the yellow, red and green cells. 
 

 
 
Another way to split the input is by creating groups of objects, and compute the pair interactions of the 
groups carefully to avoid conflicts. A simple example of this would be a grouping in bodies with an odd 
and even index. The pair search within the ODD group is independent from the EVEN group, so they can 
be performed in parallel on separate compute units. The pair search between a body of the ODD group 
and the EVEN group needs to be performed in a later batch. On high-end GPUs we have tens of compute 
units, so we need to create enough separate groups. Bodies can be added to the same group, if they 
have the same lower n-bits, creating 2^n groups. Given 2^n groups, we can create a static interaction 
table to determine what groups can be solved in parallel, similar to the spatial grouping. For more 
information see "A parallel constraint solver for a rigid body simulation" by Takahiro Harada [Harada 
2011]. 
 



GPU parallel joint solving 
 
Once the constraints are sorted in independent batches, the constraint solver can solve all constraints in 
a batch in parallel. The global batching also enables multiple compute units to process constraint rows in 
parallel. We just have to make sure that we finish all constraints in one batch, before we proceed solving 
the constraints in the next batch. If we dispatch each batch from the host, the batch execution is 
synchronized, so the order is guaranteed. Typically we use 4 to 10 PGS iterations, and for each iteration 
we need to execute the n local batches sequentially. If we have 20 local batches, this would require 200 
kernel enqueue (clEnqueueNDRangeKernel) commands. The overhead of the clEnqueueNDRangeKernel 
can become a bottleneck. This can be avoided by letting the compute unit manage the synchronization 
of the local batches, using local atomic operations. Each work item keeps on solving constraints, as long 
as the batch index is the same as the current batch index in local shared memory. 
Here is an OpenCL code snippet: 
 
 
 
while (ldsCurBatch < maxBatch) 

{ 

 for(; idx<end; ) 

 { 

  if (gConstraints[idx].m_batchIdx == ldsCurBatch) 

  { 

   solveContactConstraint( gBodies, gShapes, &gConstraints[idx] ); 

   idx+=64; 

  } else 

  { 

   break; 

  } 

 } 

 barrier(CLK_LOCAL_MEM_FENCE); 

  

 if( lIdx == 0 ) 

 { 

  ldsCurBatch++; 

 } 

 barrier(CLK_LOCAL_MEM_FENCE); 

} 

   
We also implemented a parallel GPU Jacobi solver [Tonge 2012] but the convergence was not as good as 
the Projected Gauss Seidel algorithm. 
 

GPU deterministic simulation 
 
The work items and compute units in a GPU are executed in parallel, and the order in which work items 
are executed can be different each time. This non-determinism, or lack of consistency, can affect the 
results. For instance, if the pair search appends pairs using an atomic_inc operation, there is no 
guarantee that pairs are inserted in the same order. 
 
If we have a different order of overlapping pairs, and contact points, we may also have a different order 
of contact constraints. The Projected Gauss Seidel algorithm produces different results, if the constraint 
rows are solved in a different order. If we want the same results each time we run the simulation (on 
the same hardware/compiler) we need to make sure that the order is always the same.  
 



We can sort the overlapping pairs, or contact points, using a parallel radix sort. In a similar way, we need 
to sort the output that is generated during parallel tree traversals for complex concave collision shapes. 
 
 
  

Debugging and Performance Profiling 
 

Debug on the CPU 
Debugging OpenCL kernels is much harder than debugging regular CPU code. So the best way is to keep 
a duplicate implementation running on CPU, and do the debugging and development there first. 

Intel OpenCL debugger 
Intel provides an OpenCL debugger that allows us to step through the OpenCL kernels, when using a CPU 
OpenCL Device. Some of our kernels don't run on CPU though, because of minimum Work Group size 
requirements. Here is a screenshot: 
 

 
 
 

printf debugging 
If the CPU version is working all fine, but the GPU version doesn’t, we need other tools. One of them is 
printf debugging, from within an OpenCL kernel. Not all OpenCL implementations support printf 
debugging, it depends on the version and the vendor. 
 

Debug buffers 
Another way to debug the OpenCL kernels is to add additional kernel buffers, especially for debugging. 
This way, we can inspect any data, after the kernel finishes execution. 
 

Debugging a frozen system 
Sometime we encounter a system hang during testing of OpenCL kernels. In most cases on Windows PC, 
there is some mechanism that resets the GPU when this happens, so we can continue our work. In other 
cases, especially on Mac OSX, the entire operating system can freeze when an issue happens. We need 
to figure out what kernel causes the hang, and to do this, we add instrumentation that output some 
message to the console or to a file. This instrumentation can be added to an OpenCL wrapper, or it can 
be added to performance profiling zones. 
 



Profile Zones 
We add profile zones to our code on the CPU side, to get a course-grain hierarchical profile timings. For 
more detailed GPU performance statistics we use either CodeXL or NVIDIA NSight. 

 

CodeXL Performance Profiler 
AMD CodeXL also contains a performance profiler that gives a lot of profile information: 
 

 
 

NVIDIA NSIGHT Profiler 
The NVIDIA NSight can also show performance profile for OpenCL kernels: 
 

 



 

OpenCL Tips and Tricks 
 
Here are a few practical tips from our experience with OpenCL: 
 

Create your own OpenCL wrapper 
OpenCL is a low level API and it can be cumbersome to use. With very little effort, you can create your 
own wrapper to make it much easier to use. There are several benefits of writing your own wrapper, 
rather than using an of-the-shell wrapper. First of all, you can make it fit very well with your own coding 
style. Secondly, it is a very good learning experience to learn the details of the low-level OpenCL API. 
Third, you can add extra features in your wrapper library. We implemented several of the other tips and 
tricks using our wrapper.  
 

Dynamically load OpenCL 
If you link against an OpenCL SDK from a vendor, your program will abort if the user doesn't have any 
OpenCL driver installed. You can deal with this in a better way so that the program can continue 
running, even if the OpenCL driver is missing. You can to load the OpenCL dynamic library at run-time 
and bind against the API dynamically using the clew library. You can download it from 
https://code.google.com/p/clew 
 

Cache the precompiled OpenCL kernel binaries 
The compilation of OpenCL kernels normally happens after you start running your program. This kernel 
compilation can take a lot of time, so if you have many kernels it is better to store the compiled kernels 
to disk, and load the binaries. 
 

Keep a host implementation of your kernel 
Debugging OpenCL kernels can be very hard and time consuming. We find it very useful to first 
implement a host implementation, and maintain it even after you get the OpenCL kernel up and 
running. It can be very hard to locate a bug in a program with many OpenCL kernels, and if you can 
enable/disable OpenCL kernels individually, it makes bugs easier to find and fix. 
 

Unit test an OpenCL kernel 
We added the option to serialize all the input and output data of an OpenCL kernel, so we can debug the 
kernel outside of our program. Sometimes it takes a lot of time and effort to reproduce a bug, and with 
this serialization effort, we can directly run a buggy kernel separately. This makes life much easier. 
 
 

  

https://code.google.com/p/clew/
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Appendix A: Bullet 3.x Source code 
 
The source code of Bullet 3.x is available under a permissive zlib/BSD style license on Github at 
http://github.com/erwincoumans/bullet3.  
 

Requirements 
The code is tested on Windows 7/8, Linux and Mac OSX desktops with a recent high-end GPU such as an 
AMD Radon 7970 or AMD W9000, or an NVIDIA GTX 680. Most laptop GPUs are too slow and don’t have 
enough memory for this project to be useful. 
 

Building on Windows using Visual Studio 
You can click on build3/vs2010.bat 
Open Bullet3/build3/vs2010/0MySolution.sln 
 

Building on Linux (or Mac OSX) using gcc 
Open a terminal 
 
cd build3 

./premake_linux64 gmake 

cd gmake 

make 

 

Building on Max OSX using XCode 
Click on build3/xcode.command and open build3/xcode4/0MySolution.xcodeproj 
 

Usage 
You can execute the demo application from the bin directory. It looks like this: 
 

http://dl.acm.org/citation.cfm?id=2185601
http://www.richardtonge.com/
http://dl.acm.org/citation.cfm?id=2077406
http://graphics.ewha.ac.kr/gSaP
http://www.nvidia.com/content/GTC/documents/1077_GTC09.pdf
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch29.html
http://github.com/erwincoumans/bullet3


 
Benchmark 
The demo includes a benchmark mode that export a comma separated file (for Excel)  
bin/App_Bullet3_OpenCL_Demos_clew_vs2010 --benchmark 
You can use the F1 key to create a screenshot and the Escape key will terminate the demo. 
 

Feedback 
Although the new Bullet 3.x OpenCL rigid body work is still work-in-progress, it can already be useful for 
VFX projects that need to simulate a large amount of bodies on a single desktop computer.  
 
If you have any feedback about the software, please contact the author at erwin.coumans@gmail.com 
or visit the Bullet physics forums at http://bulletphysics.org 
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