
pybullet quickstart 
guide 

Erwin Coumans, 2017 
Check most up-to-date Google Docs ​version 

online​ ,comments are welcome online. 

 

Introduction 2 
Hello pybullet World 2 
connect, disconnect 3 
setGravity 5 
loadURDF 5 
loadBullet, loadSDF, loadMJCF 6 
saveWorld 6 
getQuaternionFromEuler and 
getEulerFromQuaternion 7 
getMatrixFromQuaternion 7 
stepSimulation 7 
setRealTimeSimulation 8 
getBasePositionAndOrientation 8 
resetBasePositionAndOrientation 9 

Controlling a robot 10 
Base, Joints, Links 10 
getNumJoints, getJointInfo 10 
setJointMotorControl2 11 
getJointState, resetJointState 13 
enableJointForceTorqueSensor 14 
getLinkState 14 
getBaseVelocity, resetBaseVelocity 15 
applyExternalForce, 
applyExternalTorque 16 
getNumBodies, getBodyInfo, 
getBodyUniqueId 16 
createConstraint, removeConstraint, 
changeConstraint 17 
getNumConstraints 18 
getConstraintInfo 18 
setTimeStep 19 

setPhysicsEngineParameter 19 
resetSimulation 20 
startStateLogging/stopStateLogging 20 

Synthetic Camera Rendering 21 
computeViewMatrix 21 
computeViewMatrixFromYawPitchRoll
22 
computeProjectionMatrix 22 
computeProjectionMatrixFOV 22 
getCameraImage 23 
getVisualShapeData 24 
resetVisualShapeData 25 
loadTexture 25 

Collision Detection Queries 25 
getOverlappingObjects 25 
getContactPoints 26 
getClosestPoints 26 
rayTest 27 

Inverse Dynamics, Kinematics 27 
calculateInverseDynamics 27 
calculateInverseKinematics 28 

Virtual Reality 29 
getVREvents 29 
setVRCameraState 30 

Debug GUI, Lines, Text, Parameters 30 
addUserDebugLine 30 
addUserDebugText 31 
addUserDebugParameter, 
readUserDebugParameter 31 
removeUserDebugItem 32 
setDebugObjectColor 32 
configureDebugVisualizer 32 
resetDebugVisualizerCamera 33 
getKeyboardEvents 33 

Build and install pybullet 34 

FAQ and Tips 35 

https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit?usp=sharing
https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit?usp=sharing


 

Introduction 
 
pybullet is an easy to use Python module for physics simulation, robotics and machine learning.  
With pybullet you can load articulated bodies from URDF, SDF and other file formats. pybullet 
provides forward dynamics simulation, inverse dynamics computation, forward and inverse 
kinematics and collision detection and ray intersection queries. 
 
Aside from physics simulation, there are bindings to rendering, with a CPU renderer 
(TinyRenderer) and OpenGL visualization and support for Virtual Reality headsets such as HTC 
Vive and Oculus Rift. pybullet has also functionality to perform collision detection queries 
(closest points, overlapping pairs, ray intersection test etc) and to add debug rendering (debug 
lines and text). pybullet has cross-platform built-in client-server support for shared memory, 
UDP and TCP networking. So you can run pybullet on Linux connecting to a Windows VR 
server. 
 
pybullet wraps the new ​Bullet C-API​, which is designed to be independent from the underlying 
physics engine and render engine, so we can easily migrate to newer versions of Bullet, or use 
a different physics engine or render engine. By default, pybullet uses the Bullet 2.x API on the 
CPU. We will expose Bullet 3.x running on GPU using OpenCL as well. 
 
pybullet can be easily used with TensorFlow and frameworks such as OpenAI Gym. 
 
 

Hello pybullet World 
 
Here is a pybullet introduction script that we discuss step by step: 
 

import pybullet as p 
physicsClient = p.connect(p.DIRECT) 
p.setGravity(0,0,-10) 
planeId = p.loadURDF("plane.urdf") 
cubeStartPos = [0,0,1] 
cubeStartOrientation = p.getQuaternionFromEuler([0,0,0]) 
boxId = p.loadURDF("r2d2.urdf",cubeStartPos, cubeStartOrientation) 
p.stepSimulation() 
cubePos, cubeOrn = p.getBasePositionAndOrientation(boxId) 

https://github.com/bulletphysics/bullet3/blob/master/examples/SharedMemory/PhysicsClientC_API.h


print(cubePos,cubeOrn) 
p.disconnect() 

 

connect, disconnect 
After importing the pybullet module, the first thing to do is 'connecting' to the physics simulation. 
pybullet is designed around a command-status driven API, with a client sending commands and 
a physics server returning the status. pybullet has some build-in physics servers: DIRECT and 
GUI. DIRECT connection will execute the physics simulation and rendering in the same process 
as pybullet. 
 
connect using DIRECT, GUI 
The DIRECT connection sends the commands directly to the physics engine, without using any 
transport layer, and directly returns the status after executing the command. 
 
The GUI connection will create a new graphical user interface (GUI) with 3D OpenGL rendering, 
within the same process space as pybullet. On Linux and Windows this GUI runs in a separate 
thread, while on OSX it runs in the same thread due to operating system limitations. The 
commands and status messages are sent between pybullet client and the GUI physics 
simulation server using an ordinary memory buffer. 
 
It is also possible to connect to a physics server in a different process on the same machine or 
on a remote machine using SHARED_MEMORY, UDP or TCP networking. See the section 
about Shared Memory, UDP and TCP for details. 
 
Unlike almost all other methods, this method doesn't parse keyword arguments, due to 
backward compatibility. 
 
The connect input arguments are: 
 

required connection mode integer: 
DIRECT, 
GUI, 
SHARED_M
EMORY, 
UDP, TCP 

DIRECT mode create a new physics engine and directly 
communicates with it. GUI will create a physics engine 
with graphical GUI frontend and communicates with it. 
SHARED_MEMORY will connect to an existing physics 
engine process on the same machine, and communicates 
with ot over shared memory. UDP will connect to an 
existing physics server over UDP networking. 

optional key int in SHARED_MEMORY mode, optional shared memory 
key. When starting ExampleBrowser or 
SharedMemoryPhysics_* you can use optional 
command-line --shared_memory_key to set the key. This 
allows to run multiple servers on the same machine. 

optional UdpNetworkAddress string IP address or host name, for example "127.0.0.1" or 



(UDP and TCP) "localhost" or "mymachine.domain.com" 

optional UdpNetworkPort 
(UDP and TCP) 

integer UDP port number. Default UDP port is 1234, default TCP 
port is 6667 (matching the defaults in the server) 

 
connect returns a physics client id or -1 if not connected. The physics client Id is an optional 
argument to most of the other pybullet commands. If you don't provide it, it will assume physics 
client id = 0. You can connect to multiple different physics servers, except for GUI. 
 
For example: 
 
pybullet.connect(pybullet.DIRECT) 
pybullet.connect(pybullet.SHARED_MEMORY,1234) 
pybullet.connect(pybullet.UDP,"192.168.0.1") 
pybullet.connect(pybullet.UDP,"localhost", 1234) 
pybullet.connect(pybullet.TCP,"localhost", 6667) 
 
connect using Shared Memory 
There are a few physics servers that allow shared memory connection: the 
App_SharedMemoryPhysics, App_SharedMemoryPhysics_GUI and the Bullet Example 
Browser has one example under Experimental/Physics Server that allows shared memory 
connection. This will let you execute the physics simulation and rendering in a separate 
process. 
 
You can also connect over shared memory to the App_SharedMemoryPhysics_VR, the Virtual 
Reality application with support for head-mounted display and 6-dof tracked controllers such as 
HTC Vive and Oculus Rift with Touch controllers. Since the Valve OpenVR SDK only works 
properly under Windows, the App_SharedMemoryPhysics_VR can only be build under Windows 
using premake. 
 
connect using UDP or TCP networking 
 
For UDP networking, there is a App_PhysicsServerUDP that listens to a certain UDP port. It 
uses the open source ​enet​ library for reliable UDP networking. This allows you to execute the 
physics simulation and rendering on a separate machine. For TCP pybullet uses the ​clsocket 
library. This can be useful when using SSH tunneling from a machine behind a firewall to a 
robot simulation. For example you can run a control stack or machine learning using pybullet on 
Linux, while running the physics server on Windows in Virtual Reality using HTC Vive or Rift. 
 
One more UDP application is the App_PhysicsServerSharedMemoryBridgeUDP application that 
acts as a bridge to an existing physics server: you can connect over UDP to this bridge, and the 

http://enet.bespin.org/
https://github.com/DFHack/clsocket


bridge connects to a physics server using shared memory: the bridge passes messages 
between client and server. In a similar way there is a TCP version. 
 
disconnect 
You can disconnect from a physics server, using the physics client Id returned by the connect 
call (if non-negative). A 'DIRECT' or 'GUI' physics server will shutdown. A separate 
(out-of-process) physics server will keep on running. See also 'resetSimulation' to remove all 
items. 

setGravity 
By default, there is no gravitational force enabled. ​setGravity​  lets you set the default gravity 
force for all objects. 
The setGravity input parameters are: (no return value) 
 

required gravityX float gravity force along the X world axis 

required gravityY float gravity force along the Y world axis 

required gravityZ float gravity force along the Z world axis 

optional physicsClientId int if you connect to multiple physics servers, you can pick which one. 

 

loadURDF 
The loadURDF will send a command to the physics server to load a physics model from a 
Universal Robot Description File (URDF). The URDF file is used by the ROS project (Robot 
Operating System) to describe robots and other objects, it was created by the WillowGarage 
and the Open Source Robotics Foundation (OSRF). Many robots have public URDF files, you 
can find a description and tutorial here: ​http://wiki.ros.org/urdf/Tutorials 
 
Important note: most joints (slider, revolute, continuous) have motors enabled by default that 
prevent free motion. This is similar to a robot joint with a very high-friction harmonic drive. You 
should set the joint motor control mode and target settings using pybullet.setJointMotorControl2. 
See the setJointMotorControl2 API for more information. 
 
The loadURDF arguments are: 
 

required fileName string a relative or absolute path to the URDF file on the file 
system of the physics server. 

optional basePosition vec3 create the base of the object at the specified position in 
world space coordinates [X,Y,Z] 

http://wiki.ros.org/urdf/Tutorials


optional baseOrientation vec4 create the base of the object at the specified orientation 
as world space quaternion [X,Y,Z,W] 

optional useMaximalCoordinates int Experimental. By default, the joints in the URDF file are 
created using the reduced coordinate method: the 
joints are simulated using the Featherstone Articulated 
Body algorithm (btMultiBody in Bullet 2.x). The 
useMaximalCoordinates option will create a 6 degree of 
freedom rigid body for each link, and constraints 
between those rigid bodies are used to model joints. 

optional useFixedBase int force the base of the loaded object to be static 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 
loadURDF returns a body unique id, a non-negative integer value. If the URDF file cannot be 
loaded, this integer will be negative and not a valid body unique id. 

loadBullet, loadSDF, loadMJCF 
You can also load objects from other file formats, such as .bullet, .sdf and .mjcf. Those file 
formats support multiple objects, so the return value is a list of object unique ids. The SDF 
format is explained in detail at ​http://sdformat.org​. The loadSDF command only extracts some 
essential parts of the SDF related to the robot models and geometry, and ignores many 
elements related to cameras, lights and so on. The loadMJCF command performs basic import 
of MuJoCo MJCF xml files, used in OpenAI Gym. See also the Important note under loadURDF 
related to default joint motor settings, and make sure to use setJointMotorControl2. 
 

required fileName string a relative or absolute path 
to the URDF file on the file 
system of the physics 
server. 

optional useMaximalCoordinates int Experimental. See 
loadURDF for more 
details. 

optional physicsClientId int if you connected to 
multiple servers, you can 
pick one. 

 

saveWorld 
You can create a snapshot of the current world as a pybullet Python file, stored on the server. 
saveWorld can be useful as a basic editing feature, setting up the robot, joint angles, object 
positions and environment for example in VR. Later you can just load the pybullet Python file to 
re-create the world. Note that not all settings are stored in the world file at the moment. 

http://sdformat.org/


The input arguments are: 
 

required fileName string filename of the pybullet file. 

optional clientServerId int if you connected to multiple servers, you can pick one 

 

getQuaternionFromEuler and getEulerFromQuaternion 
The pybullet API uses quaternions to represent orientations. Since quaternions are not very 
intuitive for people, there are two APIs to convert between quaternions and Euler angles. 
The getQuaternionFromEuler input arguments are: 
 

required eulerAngle vec3: list of 3 floats The X,Y,Z Euler angles are in radians, accumulating 3 rotations 
around the X, Y and Z axis. 

 
getQuaternionFromEuler returns a list of 3 floating point values, a vec3. 
 
The getEulerFromQuaternion input arguments are: 
 

required quaternion vec4: list of 4 floats The quaternion format is [x,y,z,w] 

 
getEulerFromQuaternion returns a quaternion, vec4 list of 4 floating point values [X,Y,Z,W] 
 

getMatrixFromQuaternion  
getMatrixFromQuaternion is a utility API to create a 3x3 matrix from a quaternion. The input is a 
quaternion and output a list of 9 floats, representing the matrix. 

stepSimulation 
 
stepSimulation will perform all the actions in a single forward dynamics simulation step such as 
collision detection, constraint solving and integration.  
 
stepSimulation input arguments are optional: 
 

optional physicsClientId int if you connected to 
multiple servers, you can 
pick one. 

 



stepSimulation has no return values. 
 
See also setRealTimeSimulation to automatically let the physics server run forward dynamics 
simulation based on its real-time clock. 

setRealTimeSimulation 
By default, the physics server will not step the simulation, unless you explicitly send a 
'stepSimulation' command. This way you can maintain control determinism of the simulation. It 
is possible to run the simulation in real-time by letting the physics server automatically step the 
simulation according to its real-time-clock (RTC) using the setRealTimeSimulation command. If 
you enable the real-time simulation, you don't need to call 'stepSimulation'. 
 
The input parameters are: 

required enableRealTimeSimulation int 0 to disable real-time simulation, 1 to enable 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 

getBasePositionAndOrientation 
 
getBasePositionAndOrientation reports the current position and orientation of the base (or root 
link) of the body in Cartesian world coordinates. The orientation is a quaternion in [x,y,z,w] 
format. 
 
The getBasePositionAndOrientation input parameters are: 
 

required objectUniqueId int object unique id, as returned from loadURDF. 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 
getBasePositionAndOrientation returns the position list of 3 floats and orientation as list of 4 
floats in [x,y,z,w] order. Use getEulerFromQuaternion to convert the quaternion to Euler if 
needed. 
 
See also resetBasePositionAndOrientation to reset the position and orientation of the object. 
 
This completes the first pybullet script. Bullet ships with several URDF files in the Bullet/data 
folder. 



resetBasePositionAndOrientation 
You can reset the position and orientation of the base (root) of each object. It is best only to do 
this at the start, and not during a running simulation, since the command will override the effect 
of all physics simulation. 
 
The input arguments to resetBasePositionAndOrientation are: 
 

required objectUniqueId int object unique id, as returned from loadURDF. 

required basePosition vec3 reset the base of the object at the specified position in world 
space coordinates [X,Y,Z] 

required baseOrientation vec4 reset  the base of the object at the specified orientation as world 
space quaternion [X,Y,Z,W] 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 
There are no return arguments. 

 

  



Controlling a robot 
In the Introduction we already showed how to initialize pybullet and load some objects. If you 
replace the file name in the loadURDF command with "r2d2.urdf" you can simulate a R2D2 
robot from the ROS tutorial. Let's control this R2D2 robot to move, look around and control the 
gripper. For this we need to know how to access its joint motors. 

Base, Joints, Links 
 

 
 
A simulated robot as described in a URDF file has a base, and optionally links connected by 
joints. Each joint connects one parent link to a child link. At the root of the hierarchy there is a 
single root parent that we call base. The base can be either fully fixed, 0 degrees of freedom, or 
fully free, with 6 degrees of freedom. Since each link is connected to a parent with a single joint, 
the number of joints is equal to the number of links. Regular links have link indices in the range 
[0..getNumJoints()] Since the base is not a regular 'link', we use the convention of -1 as its link 
index. We use the convention that joint frames are expressed relative to the parents center of 
mass inertial frame, which is aligned with the principle axis of inertia. 

getNumJoints, getJointInfo 
After you load a robot you can query the number of joints using the getNumJoints API. For the 
r2d2.urdf this should return 15. 
 
getNumJoints input parameters: 

required bodyUniqueId int the body unique id, as returned by loadURDF etc. 



optional physicsClientId int if you connected to multiple servers, you can pick one. 

getNumJoints returns an integer value representing the number of joints. 
 

getJointInfo 
For each joint we can query some information, such as its name and type. 
 
getJointInfo input parameters 
 

required bodyUniqueId int the body unique id, as returned by loadURDF etc. 

required jointIndex int an index in the range [0 .. getNumJoints(bodyUniqueId)] 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 
getJointInfo returns a list of information: 
 

jointIndex int the same joint index as the input parameter 

jointName string the name of the joint, as specified in the URDF (or SDF etc) file 

jointType int type of the joint, this also implies the number of position and velocity variables. 
JOINT_REVOLUTE, JOINT_PRISMATIC, JOINT_SPHERICAL, JOINT_PLANAR, 
JOINT_FIXED. See the section on Base, Joint and Links for more details. 

qIndex int the first position index in the positional state variables for this body 

uIndex int the first velocity index in the velocity state variables for this body 

flags int reserved 

jointDamp
ing 

float the joint damping value, as specified in the URDF file 

jointFrictio
n 

float the joint friction value, as specified in the URDF file 

 

setJointMotorControl2 
Note: setJointMotorControl is obsolete and replaced by setJointMotorControl2 API. 
 
We can control a robot by setting a desired control mode for one or more joint motors. During 
the stepSimulation the physics engine will simulate the motors to reach the given target value 
that can be reached within the maximum motor forces and other constraints. Each revolute joint 
and prismatic joint is motorized by default. There are 3 different motor control modes: position 
control, velocity control and torque control. 
 



You can effectively disable the motor by using a force of 0, for example: 
 

maxForce = 0 
mode = p.VELOCITY_CONTROL 
p.setJointMotorControl2(objUid, linkIndex, controlMode=mode, force=maxForce) 

 
If you want a wheel to maintain a constant velocity, with a max force you can use: 

maxForce = 500 
p.setJointMotorControl2(bodyUniqueId=objUid,  

linkIndex=0,  
controlMode=p.VELOCITY_CONTROL, 
targetVelocity = targetVel, 
force = maxForce) 

 
The input arguments to setJointMotorControl2 are: 

required bodyUniqueId int body unique id as returned from loadURDF etc. 

required linkIndex int link index in range [0..getNumJoints(bodyUniqueId) 

required controlMode int POSITION_CONTROL, VELOCITY_CONTROL, 
TORQUE_CONTROL 

optional targetPosition float in POSITION_CONTROL the targetValue is target position of 
the joint 

optional targetVelocity float in VELOCITY_CONTROL and POSITION_CONTROL  the 
targetValue is target velocity of the joint, see implementation 
note below. 

optional force float in POSITION_CONTROL and VELOCITY_CONTROL this is the 
maximum motor force used to reach the target value. In 
TORQUE_CONTROL this is the force/torque to be applied each 
simulation step. 

optional positionGain float See implementation note below 

optional velocityGain float See implementation note below 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 
Note: the actual implementation of the joint motor controller is as a constraint for 
POSITION_CONTROL and VELOCITY_CONTROL, and as an external force for 
TORQUE_CONTROL: 
 

method implementation component constraint error to be minimized 

POSITION_CONTROL constraint velocity and position 
constraint 

error = 
position_gain*(desired_position-a
ctual_position)+velocity_gain*(de



sired_velocity-actual_velocity) 

VELOCITY_CONTROL constraint pure velocity constraint error = desired_velocity - 
actual_velocity 

TORQUE_CONTROL external force   

 
Generally it is best to start with VELOCITY_CONTROL or POSITION_CONTROL. It is much 
harder to do TORQUE_CONTROL (force control) since simulating the correct forces relies on 
very accurate URDF/SDF file parameters and system identification (correct masses, inertias, 
center of mass location, joint friction etc). 

getJointState, resetJointState 
 
We can query several state variables from the joint using getJointState, such as the joint 
position, velocity, joint reaction forces and joint motor torque. 
 
getJointState input parameters 
 

required bodyUniqueId int body unique id as returned by loadURDF etc 

required jointIndex int link index in range [0..getNumJoints(bodyUniqueId)] 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 
getJointState output 
 

jointPosition float The position value of this joint. 

jointVelocity float The velocity value of this joint. 

jointReactionForces list of 6 floats There are the joint reaction forces, if a torque sensor is enabled for 
this joint. Without torque sensor, it is [0,0,0,0,0,0]. 

appliedJointMotorTorque float This is the motor torque applied during the last stepSimulation 

 

resetJointState 
You can reset the state of the joint. It is best only to do this at the start, while not running the 
simulation: resetJointState overrides all physics simulation. 
 

required bodyUniqueId int body unique id as returned by loadURDF etc 

required jointIndex int link index in range [0..getNumJoints(bodyUniqueId)] 

required targetValue float the joint position (angle in radians) 



optional physicsClientId int if you connected to multiple servers, you can pick one. 

 

enableJointForceTorqueSensor 
You can enable or disable a joint force/torque sensor in each joint. Once enabled, if you perform 
a stepSimulation, the 'getJointState' will report the joint reaction forces in the fixed degrees of 
freedom: a fixed joint will measure all 6DOF joint forces/torques. A revolute/hinge joint 
force/torque sensor will measure 5DOF reaction forces along all axis except the hinge axis. The 
applied force by a joint motor is available in the appliedJointMotorTorque of getJointState. 
 
The input arguments to enableJointForceTorqueSensor are: 
 

required bodyUniqueId int body unique id as returned by loadURDF etc 

required jointIndex int join index in range [0..getNumJoints(bodyUniqueId)] 

optional enableSensor int 1/True to enable, 0/False to disable the force/torque sensor 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 

getLinkState 
You can also query the Cartesian world position and orientation for the center of mass of each 
link using getLinkState. It will also report the local inertial frame of the center of mass to the 
URDF link frame, to make it easier to compute the graphics/visualization frame. 
 
getLinkState input parameters 

required bodyUniqueId int  

required linkIndex int  

optional physicsClientId int if you connected to 
multiple servers, you can 
pick one. 

 
getLinkState return values 
 

linkWorldPosition vec3, list of 3 floats Cartesian position of center of mass 

linkWorldOrientation vec4, list of 4 floats Cartesian orientation of center of mass, in 
quaternion [x,y,z,w] 

localInertialFramePosition vec3, list of 3 floats local position offset of inertial frame (center of 



mass) to URDF link frame 

localInertialFrameOrientation vec4, list of 4 floats local orientation (quaternion [x,y,z,w]) offset of 
the inertial frame to the URDF link frame. 

worldLinkFramePosition vec3, list of 3 floats world position of the URDF link frame 

worldLinkFrameOrientation vec4, list of 4 floats world orientation of the URDF link frame 

 
 
 
Example scripts (could be out-of-date, check actual examples/pybullet folder.) 
 
 

examples/pybullet/quadruped.py load a quadruped from URDF file, step the simulation, 
control the motors for a simple hopping gait based on 
sine waves.Will also log the state to file using 
p.startStateLogging. See ​video​. 

quadruped_playback.py Create a quadruped (Minitaur), read log file and set 
positions as motor control targets. 

examples/pybullet/testrender.py load a URDF file and render an image, get the pixels 
(RGB, depth, segmentation mask) and display the 
image using MatPlotLib. 

examples/pybullet/testrender_np.py Similar to testrender.py, but speed up the pixel 
transfer using NumPy arrays. Also includes simple 
benchmark/timings. 

examples/pybullet/saveWorld.py Save the state (position, orientation) of objects into a 
pybullet Python scripts. This is mainly useful to setup 
a scene in VR and save the initial stte. Not all state is 
serialized. 

examples/pybullet/inverse_kinematic
s.py 

Show how to use the calculateInverseKinematics 
command, creating a Kuka ARM clock 

examples/pybullet/rollPitchYaw.py Show how to use slider GUI widgets 

examples/pybullet/constraint.py Programmatically create a constraint between links. 

examples/pybullet/vrhand.py Control a hand using a VR glove, tracked by a VR 
controller. See ​video​. 

https://www.youtube.com/watch?v=lv7lybtOzeo
https://www.youtube.com/watch?v=0JC-yukK-jo


getBaseVelocity, resetBaseVelocity 
You get access to the linear and angular velocity of the base of a body using getBaseVelocity. 
The input parameters are: 
 

required bodyUniqueId int body unique id, as returned from the load* methods. 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 
This returns a list of two vector3 values (3 floats in a list) representing the linear velocity [x,y,z] 
and angular velocity [wx,wy,wz] in Cartesian worldspace coordinates. 
 
You can reset the linear and/or angular velocity of the base of a body using resetBaseVelocity. 
The input parameters are: 
 

required objectUniqueId int body unique id, as returned from the load* methods. 

optional linearVelocity vec3, list of 3 floats linear velocity [x,y,z] in Cartesian world coordinates. 

optional angularVelocity vec3, list of 3 floats angular velocity [wx,wy,wz] in Cartesian world coordinates. 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 

applyExternalForce, applyExternalTorque 
You can apply a force or torque to a body using applyExternalForce and applyExternalForce. 
Note that this method will only work when explicitly stepping the simulation using 
stepSimulation, in other words: setRealTimeSimulation(0). After each simulation step, the 
external forces are cleared to zero. If you are using 'setRealTimeSimulation(1), 
applyExternalForce/Torque will have undefined behavior (either 0, 1 or multiple force/torque 
applications). 
 
The input parameters are: 

required objectUniqueId int object unique id as returned by load methods. 

required linkIndex int link index or -1 for the base. 

required forceObj vec3, list of 3 floats force vector to be applied [x,y,z]. See flags for coordinate 
system. 

required posObj vec3, list of 3 floats position on the link where the force is applied. See flags 
for coordinate system. 



required flags int Specify the coordinate system of force/position: either 
WORLD_FRAME for Cartesian world coordinates or or 
LINK_FRAME for local link coordinates. 

optional physicsClientId int  

 
 
 

getNumBodies, getBodyInfo, getBodyUniqueId 
getNumBodies will return the total number of bodies in the physics server. 
If you used 'getNumBodies' you can query the body unique ids using 'getBodyUniqueId'. Note 
that all APIs already return body unique ids, so you typically never need to use 
getBodyUniqueId if you keep track of them. 
 
getBodyInfo will return the base name, as extracted from the URDF, SDF, MJCF or other file. 

createConstraint, removeConstraint, changeConstraint 
URDF, SDF and MJCF specify articulated bodies as a tree-structures without loops. The 
'createConstraint' allows you to connect specific links of bodies to close those loops. See 
Bullet/examples/pybullet/quadruped.py how to connect the legs of a quadruped 5-bar closed 
loop linkage. In addition, you can create arbitrary constraints between objects, and between an 
object and a specific world frame. See Bullet/examples/pybullet/constraint.py for an example. 
It can also be used to control the motion of physics objects, driven by animated frames, such as 
a VR controller. It is better to use constraints, instead of setting the position or velocity directly 
for such purpose, since those constraints are solved together with other dynamics constraints. 
 
createConstraint has the following input parameters: 
 

required parentBodyUniqueId int parent body unique id 

required parentLinkIndex int parent link index (or -1 for the base) 

required childBodyUniqueId int child body unique id, or -1 for no body (specify a 
non-dynamic child frame in world coordinates) 

required childLinkIndex int child link index, or -1 for the base 

required jointType int joint type: JOINT_REVOLUTE, 
JOINT_PRISMATIC, JOINT_FIXED, 
JOINT_POINT2POINT 

required jointAxis vec3, list of 3 floats joint axis, in child link frame 



required parentFramePosition vec3, list of 3 floats position of the joint frame relative to parent center 
of mass frame. 

required childFramePosition vec3, list of 3 floats position of the joint frame relative to a given child 
center of mass frame (or world origin if no child 
specified) 

optional parentFrameOrientation vec4, list of 4 floats the orientation of the joint frame relative to parent 
center of mass coordinate frame 

optional childFrameOrientation vec4, list of 4 floats the orientation of the joint frame relative to the 
child center of mass coordinate frame (or world 
origin frame if no child specified) 

optional physicsClientId int if you connected to multiple servers, you can pick 
one. 

 
createConstraint will return an integer unique id, that can be used to change or remove the 
constraint. 
 
changeConstraint allows you to change parameters of an existing constraint. The input 
parameters are: 

required userConstraintUniqueId int unique id returned by createConstraint 

optional jointChildPivot vec3, list of 3 floats updated child pivot, see 'createConstraint' 

optional jointChildFrameOrientation vec4, list of 4 floats updated child frame orientation as 
quaternion 

optional maxForce float maximum force that constraint can apply 

optional physicsClientId int if you connected to multiple servers, you 
can pick one. 

 
See also Bullet/examples/pybullet/constraint.py 
 
removeConstraint will remove a constraint, given by its unique id. Its input parameters are: 
 

required userConstraintUniqueId int unique id as returned by createConstraint 

optional physicsClientId int unique id as returned by 'connect' 

 

getNumConstraints 
You can query for the total number of constraints, created using 'createConstraint'. Optional 
parameter is the int physicsClientId. 
 



getConstraintInfo 
You can query the constraint info give a constraint unique id. 
The input parameters are 
 

required constraintUniqueId int unique id as returned by createConstraint 

optional physicsClientId int unique id as returned by 'connect' 

 
The output list is: 
 

parentBodyIndex int See createConstraint 

parentJointIndex int See createConstraint 

childBodyIndex int See createConstraint 

childLinkIndex int See createConstraint 

constraintType int See createConstraint 

jointAxis vec3, list of 3 floats See createConstraint 

jointPivotInParent vec3, list of 3 floats See createConstraint 

jointPivotInChild vec3, list of 3 floats See createConstraint 

jointFrameOrientationParemt vec4, list of 4 floats See createConstraint 

jointFrameOrientationChild vec4, list of 4 floats See createConstraint 

maxAppliedForce float See createConstraint 

 

setTimeStep 
You can set the physics engine timestep that is used when calling 'stepSimulation'. It is best to 
only call this method at the start of a simulation. Don't change this time step regularly. 
setTimeStep can also be achieved using the new setPhysicsEngineParameter API. 
 
The input parameters are: 
 

required timeStep float Each time you call 'stepSimulation' the timeStep will proceed with 
'timeStep'. 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 



setPhysicsEngineParameter 
You can set physics engine parameters using the setPhysicsEngineParameter API. The 
following input parameters are exposed: 
 
 

optional fixedTimeStep float physics engine timestep in fraction of 
seconds, each time you call 
'stepSimulation'. Same as 'setTimeStep' 

optional numSolverIterations int Choose the number of constraint solver 
iterations. 

optional useSplitImpulse int Advanced feature, only when using 
maximial coordinates: split the positional 
constraint solving and velocity constraint 
solving in two stages, to prevent huge 
penetration recovery forces. 

optional splitImpulsePenetrationThreshold float Related to 'useSplitImpulse': if the 
penetration for a particular contact 
constraint is less than this specified 
threshold, no split impulse will happen for 
that contact. 

optional numSubSteps int Subdivide the physics simulation step 
further by 'numSubSteps'. This will trade 
performance over accuracy. 

optional collisionFilterMode int Use 0 for default collision filter: (group 
A&maskB) AND (groupB&maskA). Use 1 to 
switch to the OR collision filter: (group 
A&maskB) OR (groupB&maskA) 

optional contactBreakingThreshold float Contact points with distance exceeding this 
threshold are not processed by the LCP 
solver. In addition, AABBs are extended by 
this number. Defaults to 0.02 in Bullet 2.x. 

optional maxNumCmdPer1ms int Experimental: add 1ms sleep if the number 
of commands executed exceed this 
threshold. 

optional physicsClientId int if you connected to multiple servers, you can 
pick one. 

 
 



resetSimulation 
resetSimulation will remove all objects from the world and reset the world to initial conditions. It 
takes one optional parameter: the physics client Id (in case you created multiple physics server 
connections). 
 

startStateLogging/stopStateLogging 
The saveWorld command lets you store the current state of the world in a pybullet file. State 
logging lets you the state of one or more objects after each simulation step (call to 
stepSimulation or automatically when setRealTimeSimulation is enabled). This allows you to 
record trajectories of objects. We plan to implement various types of logging, including logging 
the state of VR controllers, and all common state of bodies such as base position and 
orientation, joint positions (angles) and joint motor forces. As a starting point we implemented 
the logging of the Minitaur robot. The log file from pybullet simulation is identical to the real 
Minitaur quadruped log file. 
 
See Bullet/examples/pybullet/logMinitaur.py for an example. 
 

required loggingType int At the moment, STATE_LOGGING_MINITAUR is implemented. 
This will require to load the quadruped/quadruped.urdf and object 
unique id from the quadruped. It logs the timestamp, IMU 
roll/pitch/yaw, 8 leg motor positions (q0-q7), 8 leg motor torques 
(u0-u7), the forward speed of the torso and mode (unused in 
simulation). 
 
Todo: STATE_LOGGING_VR_CONTROLLERS, 
STATE_LOGGING_GENERIC_ROBOT_DATA etc. 

required fileName string file name (absolute or relative path) to store the log file data. 

optional objectUniqueIds list of int If left empty, the logger may log every object, otherwise the logger 
just logs the objects in the objectUniqueIds list. 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 
The command will return a non-negative int loggingUniqueId, that can be used with 
stopStateLogging. 
 

stopStateLogging 
You can stop a logger using its loggingUniqueId. 



Synthetic Camera Rendering 
pybullet has a build-in CPU renderer based on TinyRenderer. This makes it very easy to render 
images from an arbitrary camera position.  
 
The synthetic camera is specified by two 4 by 4 matrices: the view matrix and the projection 
matrix. Since those are not very intuitive, there are some helper methods to compute the view 
and projection matrix from understandable parameters. 
 

computeViewMatrix 
The computeViewMatrix input parameters are 
 

required cameraEyePosition vec3, list of 3 floats eye position in Cartesian world 
coordinates 

required cameraTargetPosition vec3, list of 3 floats position of the target (focus) point, in 
Cartesian world coordinates 

required cameraUpVector vec3, list of 3 floats up vector of the camera, in Cartesian 
world coordinates 

 
Output is the 4x4 view matrix, stored as a list of 16 floats. 

computeViewMatrixFromYawPitchRoll 
The input parameters are 
 

required cameraTargetPosition list of 3 floats target focus point in Cartesian world coordinates 

required distance float distance from eye to focus point 

required yaw float yaw angle in degrees, up and down 

required pitch float pitch in degrees around up vector 

required roll float roll in degrees around forward vector 

required upAxisIndex int either 1 for Y or 2 for Z axis up. 

Output is the 4x4 view matrix, stored as a list of 16 floats. 

computeProjectionMatrix 
The input parameters are 



 

required left float left screen (canvas) coordinate 

required right float right screen (canvas) coordinate 

required bottom float bottom screen (canvas) coordinate 

required top float top screen (canvas) coordinate 

required near float near plane distance 

required far float far plane distance 

Output is the 4x4 projection matrix, stored as a list of 16 floats. 

computeProjectionMatrixFOV 
This command also will return a 4x4 projection matrix, using different parameters. You can 
check out OpenGL documentation for the meaning of the parameters. 
The input parameters are: 
 

required fov float field of view 

required aspect float aspect ratio 

required nearVal float near plane distance 

required farVal float far plane distance 

 

getCameraImage 
 
The getCameraImage API will return a RGB image, a depth buffer and a segmentation mask 
buffer with body unique ids of visible objects for each pixel. Note that pybullet can be compiled 
using the numpy option: using numpy will improve the performance of copying the camera 
pixels from C to Python. Note: the old renderImage API is obsolete and replaced by 
getCameraImage. 
 
 
getCameraImage input parameters: 
 

required width int horizontal image resolution in pixels 

required height int vertical image resolution in pixels 

optional viewMatrix 16 floats 4x4 view matrix, see computeViewMatrix* 



optional projectionMatrix 16 floats 4x4 projection matrix, see computeProjection* 

optional lightDirection vec3, list of 3 floats light direction 

optional lightColor vec3, list of 3 floats light color in [RED,GREEN,BLUE] in range 0..1 

optional lightDistance float distance of the light 

optional shadow int 1 for shadows, 0 for no shadows 

optional lightAmbientCoeff float light ambient coefficient 

optional lightDiffuseCoeff float light diffuse coefficient 

optional lightSpecularCoeff float light specular coefficient 

optional physicsClientId int if you connected to multiple servers, you can 
pick one. 

 
 
getCameraImage  returns a list of parameters: 
 

width int width image resolution in pixels 
(horizontal) 

height int height image resolution in pixels 
(vertical) 

rgbPixels list of [char RED,char GREEN,char BLUE] 
[0..width*height] 

list of pixel colors in R,G,B format, in 
range [0..255] for each color 

depthPixels list of float [0..width*height] depth buffer 

segmentationMaskBuffer list of int [0..width*height] for each pixels the visible object 
index 

 
 

getVisualShapeData 
You can access visual shape information using getVisualShapeData. You could use this to 
bridge your own rendering method with pybullet simulation, and synchronize the world 
transforms manually after each simulation step. 
 
The input parameters are: 
 

required objectUniqueId int object unique id, as returned by a load method. 



optional physicsClientId int physics client id as returned by 'connect' 

 
The output is a list of visual shape data, each visual shape is in the following format: 
 

objectUniqueId int object unique id, same as the input 

linkIndex int link index or -1 for the base 

visualGeometryType int visual geometry type (TBD) 

dimensions vec3, list of 3 floats dimensions (size, local scale) of the geometry 

meshAssetFileName string, list of chars path to the triangle mesh, if any. Typically relative to the 
URDF, SDF or MJCF file location, but could be absolute. 

localVisualFrame position vec3, list of 3 floats position of local visual frame, relative to link/joint frame 

localVisualFrame orientation vec4, list of 4 floats orientation of local visual frame relative to link/joint frame 

rgbaColor vec4, list of 4 floats URDF color (if any specified) in red/green/blue/alpha 

 
The physics simulation uses center of mass as a reference for the Cartesian world transforms, 
in getBasePositionAndOrientation and in getLinkState. If you implement your own rendering, 
you need to transform the local visual transform to world space, making use of the center of 
mass world transform and the (inverse) localInertialFrame. You can access the 
localInertialFrame using the getLinkState API. 
 

resetVisualShapeData 
You can use resetVisualShapeData to change the texture of a shape. This texture will currently 
only affect the software renderer (see getCameraImage), not the OpenGL visualization window 
(yet). 
 

required objectUniqueId int object unique id, as returned by load method. 

required jointIndex int link index 

required shapeIndex int shape index, within range. See getVisualShapeData. 

required textureUniqueId int texture unique id, as returned by 'loadTexture' method 

required physicsClientId int physics client id as returned by 'connect' 

 



loadTexture 
Load a texture from file and return a non-negative texture unique id if the loading succeeds. This 
unique id can be used with resetVisualShapeData. 

Collision Detection Queries 
 
You can query the contact point information that existed during the last 'stepSimulation'. To get 
the contact points you can use the 'getContactPoints' API. Note that the 'getContactPoints' will 
not recompute any contact point information. 
 

getOverlappingObjects 
This query will return all the unique ids of objects that have axis aligned bounding box overlap 
with a given axis aligned bounding box. 
 
The getOverlappingObjects input parameters are: 

required aabbMin vec3, list of 3 floats minimum coordinates of 
the aabb 

required aabbMax vec3, list of 3 floats minimum coordinates of 
the aabb 

optional physicsClientId int if you connected to 
multiple servers, you can 
pick one. 

 
The getOverlappingObjects will return a list of object unique ids. 

getContactPoints 
The getContactPoints input parameters are as follows: 

optional filterBodyUniqueIdA int only report contact points that involve body A 

optional filterBodyUniqueIdB int only report contact points that involve body B 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 
getContactPoints will return a list of contact points. Each contact point has the following fields: 
 

contactFlag int reserved 



bodyUniqueIdA int body unique id of body A 

bodyUniqueIdB int body unique id of body B 

linkIndexA int link index of body A, -1 for base 

linkIndexB int link index of body B, -1 for base 

positionOnA vec3, list of 3 floats contact position on A, in Cartesian world coordinates 

positionOnB vec3, list of 3 floats contact position on B, in Cartesian world coordinates 

contactNormalOnB vec3, list of 3 floats contact normal on B, pointing towards A 

contactDistance float contact distance, positive for separation, negative for penetration 

normalForce float normal force applied during the last 'stepSimulation' 

 
 

getClosestPoints 
 
It is also possible to compute the closest points, independent from stepSimulation. This also lets 
you compute closest points of objects with an arbitrary separating distance. In this query there 
will be no normal forces reported. 
 
getClosestPoints input parameters: 
 

required objectUniqueIdA int object unique id for first object (A) 

required objectUniqueIdB int object unique id for second object (B) 

required maxDistance float If the distance between objects exceeds this maximum distance, 
no points may be returned. 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

 
getClosestPoints returns a list of closest points in the same format as getContactPoints (but 
normalForce is always zero in this case) 
 

rayTest 
You can perform a single raycast to find the intersection information of the first object hit. 
 
The rayTest input parameters are: 

required rayFromPosition vec3, list of 3 floats start of the ray in world coordinates 



required rayToPosition vec3, list of 3 floats end of the ray in world coordinates 

optional physicsClientId int if you connected to multiple servers, you can pick 
one. 

 
The raytest query will return the following information in case of an intersection: 
 

objectUniqueId int object unique id of the hit object 

linkIndex int link index of the hit object, or -1 if none/parent. 

hit fraction float hit fraction along the ray in range [0,1] along the ray. 

hit position vec3, list of 3 floats hit position in Cartesian world coordinates 

hit normal vec3, list of 3 floats hit normal in Cartesian world coordinates 

 

Inverse Dynamics, Kinematics 

calculateInverseDynamics 
calculateInverseDynamics will compute the forces needed to reach the given joint accelerations, 
starting from specified joint positions and velocities. 
 
The calculateInverseDynamics input parameters are: 

required bodyUniqueId int body unique id, as returned by loadURDF etc. 

required jointPositions list of float joint positions (angles) 

required jointVelocities list of float joint velocities 

required jointAccelerations list of float desired joint accelerations 

optional physicsClientId int if you connected to multiple servers, you can pick one. 

calculateInverseDynamics returns a list of joint forces. 
 

Inverse Kinematics 
You can compute the joint angles that makes the end-effector reach a given target position in 
Cartesian world space. Internally, Bullet uses an improved version of Samuel Buss Inverse 
Kinematics library. At the moment only the Damped Least Squared method with or without Null 
Space control is exposed, with a single end-effector target. Optionally you can also specify the 
target orientation of the end effector. In addition, there is an option to use the null-space to 
specify joint limits and rest poses. This optional null-space support requires all 4 lists 



(lowerLimits, upperLimits, jointRanges, restPoses), otherwise regular IK will be used. See also 
inverse_kinematics.py example in Bullet/examples/pybullet folder for details. 

calculateInverseKinematics 
calculateInverseKinematics input parameters are: 
 

required bodyUniqueId int body unique id, as returned by loadURDF 

required endEffectorLinkIndex int end effector link index 

required targetPosition vec3, list of 3 floats target position in Cartesian world space 

optional targetOrientation vec3, list of 4 floats target orientation in Cartesian world space, 
quaternion [x,y,w,z]. If not specified, pure 
position IK will be used. 

optional lowerLimits list of floats [0..nDof] Optional null-space IK requires all 4 lists 
(lowerLimits, upperLimits, jointRanges, 
restPoses). Otherwise regular IK will be used. 

optional upperLimits list of floats [0..nDof]  

optional jointRanges list of floats [0..nDof]  

optional restPoses list of floats [0..nDof]  

optional physicsClientId int if you connected to multiple servers, you can 
pick one. 

calculateInverseKinematics returns a list of joint positions.  See 
Bullet/examples/pybullet/inverse_kinematics.py for an example. 

Virtual Reality 
 
When pybullet is connected to a virtual reality physics server, 
you can get access to the VR controller state. The VR physics 
server uses the OpenVR API for HTC Vive and Oculus Rift 
Touch controller support. OpenVR is currently working on 
Windows, Valve is also working on a ​Linux version​. 
 
See also ​https://www.youtube.com/watch?v=VMJyZtHQL50​ for 
an example video of the VR example, part of Bullet, that can be 
fully controlled using pybullet over shared memory, UDP or TCP 
connection. 
 

https://github.com/ValveSoftware/openvr/issues/213
https://www.youtube.com/watch?v=VMJyZtHQL50


getVREvents 
getVREvents will return a list of controllers that changed state since the last call to 
getVREvents. getVREvents has one optional input parameter, physicsClientId.  
 
The output parameters are: 
 

controllerId int controller index (0..MAX_VR_CONTROLLERS) 

controllerPosition vec3, list of 3 floats controller position, in world space Cartesian coordinates 

controllerOrientation vec4, list of 4 floats controller orientation quaternion [x,y,z,w] in world space 

controllerAnalogueAxis float analogue axis value 

numButtonEvents int number of button events since last call to getVREvents 

numMoveEvents int number of move events since last call to getVREvents 

buttons int[8], list of 8 integers flags for each button: VR_BUTTON_IS_DOWN (currently 
held down), VR_BUTTON_WAS_TRIGGERED (went down 
at least once since last cal to getVREvents, 
VR_BUTTON_WAS_RELEASED (was released at least 
once since last call to getVREvents). Note that only 
VR_BUTTON_IS_DOWN reports actual current state. For 
example if the button went down and up, you can tell from 
the RELEASE/TRIGGERED flags, even though IS_DOWN is 
still false. 

 
See Bullet/examples/pybullet/vrEvents.py for an example of VR drawing. 

setVRCameraState 
setVRCameraState allows to set the camera root transform offset position and orientation. This 
allows to control the position of the VR camera in the virtual world. It is also possible to let the 
VR Camera track an object, such as a vehicle. 
 
setVRCameraState has the following arguments (there are no return values): 
 

optional rootPosition vec3, vector of 3 floats camera root position 

optional rootOrientation vec3, vector of 3 floats camera root orientation 

optional trackObject vec3, vector of 3 floats the object unique id to track 

optional physicsClientId int if you connected to multiple servers, you can pick 
one. 

 



Debug GUI, Lines, Text, Parameters 
pybullet has some functionality to make it easier to debug, visualize and tune the simulation. 
This feature is only useful if there is some 3D visualization window, such as GUI mode or when 
connected to a separate physics server (such as Example Browser in 'Physics Server' mode or 
standalone Physics Server with OpenGL GUI). 

addUserDebugLine 
You can add a 3d line specified by a 3d starting point (from) and end point (to), a color 
[red,green,blue], a line width and a duration in seconds. The arguments to addUserDebugline 
are: 
 

required lineFromXYZ vec3, list of 3 floats starting point of the line in Cartesian world coordinates 

required lineToXYZ vec3, list of 3 floats end point of the line in Cartesian world coordinates 

optional lineColorRGB vec3, list of 3 floats RGB color [Red, Green, Blue] each component in 
range [0..1] 

optional lineWidth float line width (limited by OpenGL implementation) 

optional lifeTime float use 0 for permanent line, or positive time in seconds 
(afterwards the line with be removed automatically) 

optional physicsClientId int if you connected to multiple servers, you can pick one 

 
addUserDebugLine will return a non-negative unique id, that lets you remove the line using 
removeUserDebugItem. 

addUserDebugText 
You can add some 3d text at a specific location using a color and size. The input arguments 
are: 
 

required text text text represented as a string (array of characters) 

required textPosition vec3, list of 3 floats 3d position of the text in Cartesian world coordinates 
[x,y,z] 

optional textColorRGB vec3, list of 3 floats RGB color [Red, Green, Blue] each component in 
range [0..1] 

optional textSize float Text size  



optional lifeTime float use 0 for permanent text, or positive time in seconds 
(afterwards the text with be removed automatically) 

optional physicsClientId int if you connected to multiple servers, you can pick one 

 
addUserDebugText  will return a non-negative unique id, that lets you remove the line using 
removeUserDebugItem. 

addUserDebugParameter, readUserDebugParameter 
addUserDebugParameter lets you add custom sliders to tune parameters. It will return a unique 
id. This lets you read the value of the parameter using readUserDebugParameter. The input 
parameters of addUserDebugParameter are: 
 
 

required paramName string name of the parameter 

required rangeMin float minimum value 

required rangeMax float maximum value 

required startValue float starting value 

optional physicsClientI
d 

int if you connected to multiple servers, you can pick one 

 
The input parameters of readUserDebugParameter are: 
 

required itemUniqueId int the unique id returned by 'addUserDebugParameter) 

optional physicsClientId int if you connected to multiple servers, you can pick one 

 
Return value is the most up-to-date reading of the parameter. 
 

removeUserDebugItem 
The functions to add user debug lines, text or parameters will return a non-negative unique id if 
it succeeded. You can remove the debug item using this unique id using the 
removeUserDebugItem method.The input parameters are: 
 

required itemUniqueId int unique id of the debug item to be removed (line, text etc) 

optional physicsClientId int if you connected to multiple servers, you can pick one 



 

setDebugObjectColor 
The built-in OpenGL visualizers have a wireframe debug rendering feature: press 'w' to toggle. 
The wireframe has some default colors. You can override the color of a specific object and link 
using setDebugObjectColor. The input parameters are: 
 
 

required objectUniqueId int unique id of the object 

required linkIndex int link index 

optional objectDebugColorRGB vec3, list of 3 floats debug color in [Red,Green,Blue]. If not 
provided, the custom color will be removed. 

optional physicsClientId int if you connected to multiple servers, you can 
pick one 

 

configureDebugVisualizer 
You can configure some settings of the built-in OpenGL visualizer, such as enabling or disabling 
wireframe, shadows and GUI rendering. This is useful since some laptops or Desktop GUIs 
have performance issues with our OpenGL 3 visualizer. 
 

required flag int The feature to enable or disable, such as 
COV_ENABLE_WIREFRAME, 
COV_ENABLE_SHADOW,COV_ENABLE_GUI 

required enable int 0 or 1 

optional physicsClientId int if you connected to multiple servers, you can pick one 

 
Example: 
pybullet.configureDebugVisualizer(pybullet.COV_ENABLE_WIREFRAME,1) 

resetDebugVisualizerCamera 
You can set the 3D OpenGL debug visualizer camera distance (between eye and camera target 
position), camera yaw and pitch and camera target position. 
 

required cameraDistance float distance from eye to camera target position 

required cameraYaw float camera yaw angle (in degrees) up/down 



required cameraPitch float camera pitch angle (in degrees) left/right 

required cameraTargetPositio
n 

vec3, list of 3 floats cameraTargetPosition is the camera focus point 

optional physicsClientId int if you connected to multiple servers, you can pick one 

 
Example: pybullet.resetDebugVisualizerCamera( cameraDistance=3, cameraYaw=30, 
cameraPitch=52, cameraTargetPosition=[0,0,0]) 

getKeyboardEvents 
You can receive all keyboard events that happened since the last time you called 
'getKeyboardEvents'. Each event has a keycode and a state. The state is a bit flag combination 
of KEY_DOWN, KEY_WAS_TRIGGED and KEY_WAS_RELEASED. If a key is going from 'up' 
to 'down' state, you receive the KEY_WAS_TRIGGED state, as well as the 'KEY_DOWN' state. 
If a key was pressed and released, the state will be KEY_WAS_TRIGGED and 
KEY_WAS_RELEASED. 
 
Some special keys are defined: B3G_F1 … B3G_F12, B3G_LEFT_ARROW, 
B3G_RIGHT_ARROW, B3G_UP_ARROW, B3G_DOWN_ARROW, B3G_PAGE_UP, 
B3G_PAGE_DOWN, B3G_PAGE_END, B3G_HOME, B3G_DELETE, B3G_INSERT. 
 
The input of getKeyBoardEvents is an optional physicsClientId: 
 

optional physicsClientId int if you connected to multiple servers, you can pick one 

 
The output is a dictionary of keycode 'key' and keyboard state 'value'. 

Build and install pybullet 
There are a few different ways to install pybullet on Windows, Mac OSX and Linux. We use 
Python 2.7 and Python 3.5.2, but expect most Python 2.x and Python 3.x versions should work. 
First get the source code from github, using 
 
git clone ​https://github.com/bulletphysics/bullet3 
 

Using cmake on Linux and Mac OSX 
 

1) Download and install cmake 
2) Run the shell script in the root of Bullet: 

build_and_run_cmake_pybullet_double.sh 

https://github.com/bulletphysics/bullet3


3) On Mac OSX, create symbolic link: 
ln -s pybullet.dylib pybullet.so 

4) Make sure Python finds our pybullet.so module: 
export PYTHONPATH = /your_path_to_bullet/build_cmake/examples/pybullet 

 
That's it. Test pybullet by running a python interpreter and enter 'import pybullet' to see if the 
module loads. If so, you can play with the pybullet scripts in Bullet/examples/pybullet. 

Possible Linux Issues 
● Make sure OpenGL is installed 
● When using Anaconda as Python distribution, conda install libgcc so that ‘GLIBCXX’ is 

found (see 
http://askubuntu.com/questions/575505/glibcxx-3-4-20-not-found-how-to-fix-this-error​) 

● It is possible that cmake cannot find the python libs when using Anaconda as Python 
distribution. You can add them manually by going to the ../build_cmake/CMakeCache.txt 
file and changing following line: 
‘PYTHON_LIBRARY:FILEPATH=/usr/lib/python2.7/config-x86_64-linux-gnu/libpython2.7
.so’ 

Using premake for Window 
 
Make sure some Python version is installed in c:\python-3.5.2 (or other version folder name) 
 
Click on build_visual_studio_vr_pybullet_double.bat and open the 0_Bullet3Solution.sln project 
in Visual Studio, convert projects if needed. 
Switch to Release mode, and compile the 'pybullet' project. 

 

 
 
Then there are a few options to import pybullet in a Python interpreter: 
 

1) Rename pybullet_vs2010..dll to pybullet.pyd and start the Python.exe interpreter using 
bullet/bin as the current working directory. Optionally for debugging: rename 
bullet/bin/pybullet_vs2010_debug.dll to pybullet_d.pyd and start python_d.exe) 

2) Rename bullet/bin/pybullet_vs2010..dll to pybullet.pyd  and use command prompt: 
export PYTHONPATH=c:\develop\bullet3\bin (replace with actual folder where Bullet is 
located) or create this PYTHONPATH environment variable using Windows GUI 

3) create an administrator prompt (cmd.exe) and create a symbolic link as follows 
cd c:\python-3.5.2\dlls 

http://askubuntu.com/questions/575505/glibcxx-3-4-20-not-found-how-to-fix-this-error


 
mklink pybullet.pyd c:\develop\bullet3\bin\pybullet_vs2010.dll 

 
Then run python.exe and import pybullet should work. 
 
TODO: Using setup.py and pip easier installation of pybullet. 
 

FAQ and Tips 
 
Question: What happens to Bullet 2.x and the Bullet 3 OpenCL implementation? 
Answer: pybullet is wrapping the ​Bullet C-API​. We will put the Bullet 3 OpenCL GPU API 

(and future Bullet 4.x API) behind this C-API. So if you use pybullet or the C-API 
you are future-proof. Not to be confused with the Bullet 2.x C++ API. 

 
Question: Should I use torque/force control or velocity/position control mode? 

In general it is best to start with position or velocity control.  
It will take much more effort to get force/torque control working reliably. 
 

Question: How to turn off gravity only for some parts of a robot (for example the arm)? 
At the moment this is not exposed, so you would need to either turn of gravity 
acceleration for all objects, and manually apply gravity for the objects that need it. 
Or you can actively compute gravity compensation forces, like happens on a real 
robot. Since Bullet has a full constraint system, it would be trivial to compute 
those anti-gravity forces: You could run a second simulation (pybullet lets you 
connect to multiple physics servers) and position the robot under gravity, set joint 
position control to keep the position as desired, and gather those 'anti-gravity' 
forces. Then apply those in the main simulation. 
 

Question: How to scale up/down objects? 
Answer:  

Scaling of visual shapes and collision shapes is part of most file formats, such as 
URDF and SDF. There is currently no programmatic access to modify scaling 
after loading. 
 

Question: How can I get textures in my models? 
Answer: You can use the Wavefront .obj file format. This will support material files (.mtl). 

There are various examples using textures in the Bullet/data folder. 
There is no programmatic way of changing textures (aside from using 
TinyRenderer, the C++ software renderer to get camera image data). 

 

https://github.com/bulletphysics/bullet3/blob/master/examples/SharedMemory/PhysicsClientC_API.h


Question: Which texture file formats are valid for pybullet? 
Bullet uses stb_image to load texture files, which loads PNG, JPG,TGA, GIF etc. 
see ​stb_image.h​ for details. 

Question: How can I improve the performance and stability of the collision detection? 
Answer: There are many ways to optimize, for example: 

shape type 
1) Choose one or multiple primitive collision shape types such as box, sphere, capsule, 

cylinder to approximate an object, instead of using convex or concave triangle meshes. 
2) If you really need to use triangle meshes, create a convex decomposition using 

Hierarchical Approximate Convex Decomposition (v-HACD). The​ test_hacd utility 
converts convex triangle mesh in an OBJ file into a new OBJ file with multiple convex 
hull objects. See for example​ Bullet/data/teddy_vhacd.urdf​ pointing to 
Bullet/data/teddy2_VHACD_CHs.obj​, or duck_vhacd.urdf pointing to duck_vhacd.obj. 

3) Reduce the number of vertices in a triangle mesh. For example Blender 3D has a great 
mesh decimation modifier that interactively lets you see the result of the mesh 
simplification. 

4) Use rolling friction and spinning friction for round objects such as sphere and capsules 
and robotic grippers using the <rolling_friction> and <spinning_friction> nodes inside 
<link><contact> nodes. See for example Bullet/data/sphere2.urdf 

5) Use a small amount of compliance for wheels using the <stiffness value="30000"/> 
<damping value="1000"/> inside the URDF <link><contact> xml node. See for example 
the Bullet/data/husky/husky.urdf vehicle. 

6) Use the double precision build of Bullet, this is good both for contact stability and 
collision accuracy. Choose some good constraint solver setting and time step. 

7) Decouple the physics simulation from the graphics. pybullet already does this for the GUI 
and various physics servers: the OpenGL graphics visualization runs in its own thread, 
independent of the physics simulation. 

 
Question: What are the options for friction handling? 

Answer: by default, Bullet and pybullet uses a pyramidal approximation of the  
Coulomb friction model. You can enable rolling and spinning friction by adding a 
<rolling_friction> and <spinning_friction> node inside the <link><contact> node, see the 
Bullet/data/sphere2.urdf​ for example. Instead of the pyramid approximation, we will 
enable the option for Coulomb friction using an actual implicit cone. 

 
Question: What kind of constant or threshold inside Bullet, that makes high speeds impossible? 

Answer: By default, Bullet relies on discrete collision detection in combination with 
penetration recovery. Relying purely on discrete collision detection means that an object 
should not travel faster than its own radius within one timestep. Bullet has is an option 
for continuous collision detection to catch collisions for objects that move faster than 
their own radius within one timestep. This will be enabled in pybullet. 

 

https://github.com/bulletphysics/bullet3/blob/master/examples/ThirdPartyLibs/stb_image/stb_image.h
https://github.com/bulletphysics/bullet3/blob/master/Extras/VHACD/test/src/premake4.lua
https://github.com/bulletphysics/bullet3/blob/master/data/teddy_vhacd.urdf
https://github.com/bulletphysics/bullet3/blob/master/data/teddy2_VHACD_CHs.obj
https://github.com/bulletphysics/bullet3/blob/master/data/sphere2.urdf

