/* ******************************************************************* * * * Open Bloom Filter * * * * Author: Arash Partow - 2000 * * URL: http://www.partow.net/programming/hashfunctions/index.html * * * * Copyright notice: * * Free use of the Open Bloom Filter Library is permitted under * * the guidelines and in accordance with the most current version * * of the Boost Software License, Version 1.0 * * http://www.opensource.org/licenses/bsl1.0.html * * * ******************************************************************* */ #ifndef INCLUDE_BLOOM_FILTER_HPP #define INCLUDE_BLOOM_FILTER_HPP #include #include #include #include #include #include static const std::size_t bits_per_char = 0x08; // 8 bits in 1 char(unsigned) static const unsigned char bit_mask[bits_per_char] = { 0x01, //00000001 0x02, //00000010 0x04, //00000100 0x08, //00001000 0x10, //00010000 0x20, //00100000 0x40, //01000000 0x80 //10000000 }; class bloom_filter { protected: typedef unsigned int bloom_type; typedef unsigned char cell_type; public: bloom_filter(const std::size_t& predicted_inserted_element_count, const double& false_positive_probability, const std::size_t& random_seed) : bit_table_(0), predicted_inserted_element_count_(predicted_inserted_element_count), inserted_element_count_(0), random_seed_((random_seed) ? random_seed : 0xA5A5A5A5), desired_false_positive_probability_(false_positive_probability) { find_optimal_parameters(); generate_unique_salt(); raw_table_size_ = table_size_ / bits_per_char; bit_table_ = new cell_type[raw_table_size_]; std::fill_n(bit_table_,raw_table_size_,0x00); } bloom_filter(const bloom_filter& filter) { this->operator=(filter); } bloom_filter& operator = (const bloom_filter& filter) { salt_count_ = filter.salt_count_; table_size_ = filter.table_size_; raw_table_size_ = filter.raw_table_size_; predicted_inserted_element_count_ = filter.predicted_inserted_element_count_; inserted_element_count_ = filter.inserted_element_count_; random_seed_ = filter.random_seed_; desired_false_positive_probability_ = filter.desired_false_positive_probability_; delete[] bit_table_; bit_table_ = new cell_type[raw_table_size_]; std::copy(filter.bit_table_,filter.bit_table_ + raw_table_size_,bit_table_); salt_ = filter.salt_; return *this; } virtual ~bloom_filter() { delete[] bit_table_; } inline bool operator!() const { return (0 == table_size_); } inline void clear() { std::fill_n(bit_table_,raw_table_size_,0x00); inserted_element_count_ = 0; } inline void insert(const unsigned char* key_begin, const std::size_t& length) { std::size_t bit_index = 0; std::size_t bit = 0; for (std::size_t i = 0; i < salt_.size(); ++i) { compute_indices(hash_ap(key_begin,length,salt_[i]),bit_index,bit); bit_table_[bit_index / bits_per_char] |= bit_mask[bit]; } ++inserted_element_count_; } template inline void insert(const T& t) { // Note: T must be a C++ POD type. insert(reinterpret_cast(&t),sizeof(T)); } inline void insert(const std::string& key) { insert(reinterpret_cast(key.c_str()),key.size()); } inline void insert(const char* data, const std::size_t& length) { insert(reinterpret_cast(data),length); } template inline void insert(const InputIterator begin, const InputIterator end) { InputIterator itr = begin; while (end != itr) { insert(*(itr++)); } } inline virtual bool contains(const unsigned char* key_begin, const std::size_t length) const { std::size_t bit_index = 0; std::size_t bit = 0; for (std::size_t i = 0; i < salt_.size(); ++i) { compute_indices(hash_ap(key_begin,length,salt_[i]),bit_index,bit); if ((bit_table_[bit_index / bits_per_char] & bit_mask[bit]) != bit_mask[bit]) { return false; } } return true; } template inline bool contains(const T& t) const { return contains(reinterpret_cast(&t),static_cast(sizeof(T))); } inline bool contains(const std::string& key) const { return contains(reinterpret_cast(key.c_str()),key.size()); } inline bool contains(const char* data, const std::size_t& length) const { return contains(reinterpret_cast(data),length); } template inline InputIterator contains_all(const InputIterator begin, const InputIterator end) const { InputIterator itr = begin; while (end != itr) { if (!contains(*itr)) { return itr; } ++itr; } return end; } template inline InputIterator contains_none(const InputIterator begin, const InputIterator end) const { InputIterator itr = begin; while (end != itr) { if (contains(*itr)) { return itr; } ++itr; } return end; } inline virtual std::size_t size() const { return table_size_; } inline std::size_t element_count() const { return inserted_element_count_; } inline double effective_fpp() const { /* Note: The effective false positive probability is calculated using the designated table size and hash function count in conjunction with the current number of inserted elements - not the user defined predicated/expected number of inserted elements. */ return std::pow(1.0 - std::exp(-1.0 * salt_.size() * inserted_element_count_ / size()), 1.0 * salt_.size()); } inline bloom_filter& operator &= (const bloom_filter& filter) { /* intersection */ if ( (salt_count_ == filter.salt_count_) && (table_size_ == filter.table_size_) && (random_seed_ == filter.random_seed_) ) { for (std::size_t i = 0; i < raw_table_size_; ++i) { bit_table_[i] &= filter.bit_table_[i]; } } return *this; } inline bloom_filter& operator |= (const bloom_filter& filter) { /* union */ if ( (salt_count_ == filter.salt_count_) && (table_size_ == filter.table_size_) && (random_seed_ == filter.random_seed_) ) { for (std::size_t i = 0; i < raw_table_size_; ++i) { bit_table_[i] |= filter.bit_table_[i]; } } return *this; } inline bloom_filter& operator ^= (const bloom_filter& filter) { /* difference */ if ( (salt_count_ == filter.salt_count_) && (table_size_ == filter.table_size_) && (random_seed_ == filter.random_seed_) ) { for (std::size_t i = 0; i < raw_table_size_; ++i) { bit_table_[i] ^= filter.bit_table_[i]; } } return *this; } inline const cell_type* table() const { return bit_table_; } protected: inline virtual void compute_indices(const bloom_type& hash, std::size_t& bit_index, std::size_t& bit) const { bit_index = hash % table_size_; bit = bit_index % bits_per_char; } void generate_unique_salt() { /* Note: A distinct hash function need not be implementation-wise distinct. In the current implementation "seeding" a common hash function with different values seems to be adequate. */ const unsigned int predef_salt_count = 128; static const bloom_type predef_salt[predef_salt_count] = { 0xAAAAAAAA, 0x55555555, 0x33333333, 0xCCCCCCCC, 0x66666666, 0x99999999, 0xB5B5B5B5, 0x4B4B4B4B, 0xAA55AA55, 0x55335533, 0x33CC33CC, 0xCC66CC66, 0x66996699, 0x99B599B5, 0xB54BB54B, 0x4BAA4BAA, 0xAA33AA33, 0x55CC55CC, 0x33663366, 0xCC99CC99, 0x66B566B5, 0x994B994B, 0xB5AAB5AA, 0xAAAAAA33, 0x555555CC, 0x33333366, 0xCCCCCC99, 0x666666B5, 0x9999994B, 0xB5B5B5AA, 0xFFFFFFFF, 0xFFFF0000, 0xB823D5EB, 0xC1191CDF, 0xF623AEB3, 0xDB58499F, 0xC8D42E70, 0xB173F616, 0xA91A5967, 0xDA427D63, 0xB1E8A2EA, 0xF6C0D155, 0x4909FEA3, 0xA68CC6A7, 0xC395E782, 0xA26057EB, 0x0CD5DA28, 0x467C5492, 0xF15E6982, 0x61C6FAD3, 0x9615E352, 0x6E9E355A, 0x689B563E, 0x0C9831A8, 0x6753C18B, 0xA622689B, 0x8CA63C47, 0x42CC2884, 0x8E89919B, 0x6EDBD7D3, 0x15B6796C, 0x1D6FDFE4, 0x63FF9092, 0xE7401432, 0xEFFE9412, 0xAEAEDF79, 0x9F245A31, 0x83C136FC, 0xC3DA4A8C, 0xA5112C8C, 0x5271F491, 0x9A948DAB, 0xCEE59A8D, 0xB5F525AB, 0x59D13217, 0x24E7C331, 0x697C2103, 0x84B0A460, 0x86156DA9, 0xAEF2AC68, 0x23243DA5, 0x3F649643, 0x5FA495A8, 0x67710DF8, 0x9A6C499E, 0xDCFB0227, 0x46A43433, 0x1832B07A, 0xC46AFF3C, 0xB9C8FFF0, 0xC9500467, 0x34431BDF, 0xB652432B, 0xE367F12B, 0x427F4C1B, 0x224C006E, 0x2E7E5A89, 0x96F99AA5, 0x0BEB452A, 0x2FD87C39, 0x74B2E1FB, 0x222EFD24, 0xF357F60C, 0x440FCB1E, 0x8BBE030F, 0x6704DC29, 0x1144D12F, 0x948B1355, 0x6D8FD7E9, 0x1C11A014, 0xADD1592F, 0xFB3C712E, 0xFC77642F, 0xF9C4CE8C, 0x31312FB9, 0x08B0DD79, 0x318FA6E7, 0xC040D23D, 0xC0589AA7, 0x0CA5C075, 0xF874B172, 0x0CF914D5, 0x784D3280, 0x4E8CFEBC, 0xC569F575, 0xCDB2A091, 0x2CC016B4, 0x5C5F4421 }; if (salt_count_ <= predef_salt_count) { std::copy(predef_salt, predef_salt + salt_count_, std::back_inserter(salt_)); for (unsigned int i = 0; i < salt_.size(); ++i) { /* Note: This is done to integrate the user defined random seed, so as to allow for the generation of unique bloom filter instances. */ salt_[i] = salt_[i] * salt_[(i + 3) % salt_.size()] + random_seed_; } } else { std::copy(predef_salt,predef_salt + predef_salt_count,std::back_inserter(salt_)); srand(static_cast(random_seed_)); while (salt_.size() < salt_count_) { bloom_type current_salt = static_cast(rand()) * static_cast(rand()); if (0 == current_salt) continue; if (salt_.end() == std::find(salt_.begin(), salt_.end(), current_salt)) { salt_.push_back(current_salt); } } } } void find_optimal_parameters() { /* Note: The following will attempt to find the number of hash functions and minimum amount of storage bits required to construct a bloom filter consistent with the user defined false positive probability and estimated element insertion count. */ double min_m = std::numeric_limits::infinity(); double min_k = 0.0; double curr_m = 0.0; double k = 1.0; while (k < 1000.0) { double numerator = (- k * predicted_inserted_element_count_); double denominator = std::log(1.0 - std::pow(desired_false_positive_probability_, 1.0 / k)); curr_m = numerator / denominator; if (curr_m < min_m) { min_m = curr_m; min_k = k; } k += 1.0; } salt_count_ = static_cast(min_k); table_size_ = static_cast(min_m); table_size_ += (((table_size_ % bits_per_char) != 0) ? (bits_per_char - (table_size_ % bits_per_char)) : 0); } inline bloom_type hash_ap(const unsigned char* begin, std::size_t remaining_length, bloom_type hash) const { const unsigned char* itr = begin; while (remaining_length >= 4) { hash ^= (hash << 7) ^ (*itr++) * (hash >> 3); hash ^= (~((hash << 11) + ((*itr++) ^ (hash >> 5)))); hash ^= (hash << 7) ^ (*itr++) * (hash >> 3); hash ^= (~((hash << 11) + ((*itr++) ^ (hash >> 5)))); remaining_length -= 4; } while (remaining_length >= 2) { hash ^= (hash << 7) ^ (*itr++) * (hash >> 3); hash ^= (~((hash << 11) + ((*itr++) ^ (hash >> 5)))); remaining_length -= 2; } if (remaining_length) { hash ^= (hash << 7) ^ (*itr) * (hash >> 3); } return hash; } std::vector salt_; unsigned char* bit_table_; std::size_t salt_count_; std::size_t table_size_; std::size_t raw_table_size_; std::size_t predicted_inserted_element_count_; std::size_t inserted_element_count_; std::size_t random_seed_; double desired_false_positive_probability_; }; inline bloom_filter operator & (const bloom_filter& a, const bloom_filter& b) { bloom_filter result = a; result &= b; return result; } inline bloom_filter operator | (const bloom_filter& a, const bloom_filter& b) { bloom_filter result = a; result |= b; return result; } inline bloom_filter operator ^ (const bloom_filter& a, const bloom_filter& b) { bloom_filter result = a; result ^= b; return result; } class compressible_bloom_filter : public bloom_filter { public: compressible_bloom_filter(const std::size_t& predicted_element_count, const double& false_positive_probability, const std::size_t& random_seed) : bloom_filter(predicted_element_count,false_positive_probability,random_seed) { size_list.push_back(table_size_); } inline virtual std::size_t size() const { return size_list.back(); } inline bool compress(const double& percentage) { if ((0.0 >= percentage) || (percentage >= 100.0)) { return false; } std::size_t original_table_size = size_list.back(); std::size_t new_table_size = static_cast((size_list.back() * (1.0 - (percentage / 100.0)))); new_table_size -= (((new_table_size % bits_per_char) != 0) ? (new_table_size % bits_per_char) : 0); if ((bits_per_char > new_table_size) || (new_table_size >= original_table_size)) { return false; } desired_false_positive_probability_ = effective_fpp(); cell_type* tmp = new cell_type[new_table_size / bits_per_char]; std::copy(bit_table_, bit_table_ + (new_table_size / bits_per_char), tmp); cell_type* itr = bit_table_ + (new_table_size / bits_per_char); cell_type* end = bit_table_ + (original_table_size / bits_per_char); cell_type* itr_tmp = tmp; while (end != itr) { *(itr_tmp++) |= (*itr++); } delete[] bit_table_; bit_table_ = tmp; size_list.push_back(new_table_size); return true; } private: inline virtual void compute_indices(const bloom_type& hash, std::size_t& bit_index, std::size_t& bit) const { bit_index = hash; for (std::size_t i = 0; i < size_list.size(); ++i) { bit_index %= size_list[i]; } bit = bit_index % bits_per_char; } std::vector size_list; }; #endif /* Note 1: If it can be guaranteed that bits_per_char will be of the form 2^n then the following optimization can be used: hash_table[bit_index >> n] |= bit_mask[bit_index & (bits_per_char - 1)]; Note 2: For performance reasons where possible when allocating memory it should be aligned (aligned_alloc) according to the architecture being used. */