summaryrefslogtreecommitdiff
path: root/src/crush/CrushTester.cc
blob: a659787e4f1ba60549823878c85047a3c521943d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

#include "CrushTester.h"

#include <stdlib.h>


void CrushTester::set_device_weight(int dev, float f)
{
  int w = (int)(f * 0x10000);
  if (w < 0)
    w = 0;
  if (w > 0x10000)
    w = 0x10000;
  device_weight[dev] = w;
}

int CrushTester::get_maximum_affected_by_rule(int ruleno)
{
  // get the number of steps in RULENO
  int rule_size = crush.get_rule_len(ruleno);
  vector<int> affected_types;
  map<int,int> replications_by_type;

  for (int i = 0; i < rule_size; i++){
    // get what operation is done by the current step
    int rule_operation = crush.get_rule_op(ruleno, i);

    // if the operation specifies choosing a device type, store it
    if (rule_operation >= 2 && rule_operation != 4){
      int desired_replication = crush.get_rule_arg1(ruleno,i);
      int affected_type = crush.get_rule_arg2(ruleno,i);
      affected_types.push_back(affected_type);
      replications_by_type[affected_type] = desired_replication;
    }
  }

  /*
   * now for each of the affected bucket types, see what is the
   * maximum we are (a) requesting or (b) have
   */

  map<int,int> max_devices_of_type;

  // loop through the vector of affected types
  for (vector<int>::iterator it = affected_types.begin(); it != affected_types.end(); ++it){
    // loop through the number of buckets looking for affected types
    for (map<int,string>::iterator p = crush.name_map.begin(); p != crush.name_map.end(); p++){
      int bucket_type = crush.get_bucket_type(p->first);
      if ( bucket_type == *it)
        max_devices_of_type[*it]++;
    }
  }

  for(std::vector<int>::iterator it = affected_types.begin(); it != affected_types.end(); ++it){
    if ( replications_by_type[*it] > 0 && replications_by_type[*it] < max_devices_of_type[*it] )
      max_devices_of_type[*it] = replications_by_type[*it];
  }

  /*
   * get the smallest number of buckets available of any type as this is our upper bound on
   * the number of replicas we can place
  */
  int max_affected = max( crush.get_max_buckets(), crush.get_max_devices() );

  for(std::vector<int>::iterator it = affected_types.begin(); it != affected_types.end(); ++it){
    if (max_devices_of_type[*it] > 0 && max_devices_of_type[*it] < max_affected )
      max_affected = max_devices_of_type[*it];
  }

  return max_affected;
}


map<int,int> CrushTester::get_collapsed_mapping()
{
  int num_to_check = crush.get_max_devices();
  int next_id = 0;
  map<int, int> collapse_mask;

  for (int i = 0; i < num_to_check; i++){
    if (crush.check_item_present(i)){
      collapse_mask[i] = next_id;
      next_id++;
    }
  }
  
  return collapse_mask;
}

void CrushTester::adjust_weights(vector<__u32>& weight)
{

  if (mark_down_device_ratio > 0) {
    // active buckets
    vector<int> bucket_ids;
    for (int i = 0; i < crush.get_max_buckets(); i++) {
      int id = -1 - i;
      if (crush.get_bucket_weight(id) > 0) {
        bucket_ids.push_back(id);
      }
    }

    // get buckets that are one level above a device
    vector<int> buckets_above_devices;
    for (unsigned i = 0; i < bucket_ids.size(); i++) {
      // grab the first child object of a bucket and check if it's ID is less than 0
      int id = bucket_ids[i];
      if (crush.get_bucket_size(id) == 0)
        continue;
      int first_child = crush.get_bucket_item(id, 0); // returns the ID of the bucket or device
      if (first_child >= 0) {
        buckets_above_devices.push_back(id);
      }
    }

    // permute bucket list
    for (unsigned i = 0; i < buckets_above_devices.size(); i++) {
      unsigned j = lrand48() % (buckets_above_devices.size() - 1);
      std::swap(buckets_above_devices[i], buckets_above_devices[j]);
    }

    // calculate how many buckets and devices we need to reap...
    int num_buckets_to_visit = (int) (mark_down_bucket_ratio * buckets_above_devices.size());

    for (int i = 0; i < num_buckets_to_visit; i++) {
      int id = buckets_above_devices[i];
      int size = crush.get_bucket_size(id);
      vector<int> items;
      for (int o = 0; o < size; o++)
        items.push_back(crush.get_bucket_item(id, o));

      // permute items
      for (int o = 0; o < size; o++) {
        int j = lrand48() % (crush.get_bucket_size(id) - 1);
        std::swap(items[o], items[j]);
      }

      int local_devices_to_visit = (int) (mark_down_device_ratio*size);
      for (int o = 0; o < local_devices_to_visit; o++){
        int item = crush.get_bucket_item(id, o);
        weight[item] = 0;
      }
    }
  }
}

bool CrushTester::check_valid_placement(int ruleno, vector<int> in, const vector<__u32>& weight)
{

  bool valid_placement = true;
  vector<int> included_devices;
  map<string,string> seen_devices;

  // first do the easy check that all devices are "up"
  for (vector<int>::iterator it = in.begin(); it != in.end(); it++) {
    if (weight[(*it)] == 0) {
      valid_placement = false;
      break;
    } else if (weight[(*it)] > 0) {
      included_devices.push_back( (*it) );
    }
  }

  /*
   * now do the harder test of checking that the CRUSH rule r is not violated
   * we could test that none of the devices mentioned in out are unique,
   * but this is a special case of this test
   */

  // get the number of steps in RULENO
  int rule_size = crush.get_rule_len(ruleno);
  vector<string> affected_types;

  // get the smallest type id, and name
  int min_map_type = crush.get_num_type_names();
  for (map<int,string>::iterator it = crush.type_map.begin(); it != crush.type_map.end(); it++ ) {
    if ( (*it).first < min_map_type ) {
      min_map_type = (*it).first;
    }
  }

  string min_map_type_name = crush.type_map[min_map_type];

  // get the types of devices affected by RULENO
  for (int i = 0; i < rule_size; i++) {
    // get what operation is done by the current step
    int rule_operation = crush.get_rule_op(ruleno, i);

    // if the operation specifies choosing a device type, store it
    if (rule_operation >= 2 && rule_operation != 4) {
      int affected_type = crush.get_rule_arg2(ruleno,i);
      affected_types.push_back( crush.get_type_name(affected_type));
    }
  }

  // find in if we are only dealing with osd's
  bool only_osd_affected = false;
  if (affected_types.size() == 1) {
    if ((affected_types.back() == min_map_type_name) && (min_map_type_name == "osd")) {
      only_osd_affected = true;
    }
  }

  // check that we don't have any duplicate id's
  for (vector<int>::iterator it = included_devices.begin(); it != included_devices.end(); it++) {
    int num_copies = count(included_devices.begin(), included_devices.end(), (*it) );
    if (num_copies > 1) {
      valid_placement = false;
    }
  }

  // if we have more than just osd's affected we need to do a lot more work
  if (!only_osd_affected) {
    // loop through the devices that are "in/up"
    for (vector<int>::iterator it = included_devices.begin(); it != included_devices.end(); it++) {
      if (valid_placement == false)
        break;

      // create a temporary map of the form (device type, device name in map)
      map<string,string> device_location_hierarchy = crush.get_full_location(*it);

      // loop over the types affected by RULENO looking for duplicate bucket assignments
      for (vector<string>::iterator t = affected_types.begin(); t != affected_types.end(); t++) {
        if (seen_devices.count( device_location_hierarchy[*t])) {
          valid_placement = false;
          break;
        } else {
          // store the devices we have seen in the form of (device name, device type)
          seen_devices[ device_location_hierarchy[*t] ] = *t;
        }
      }
    }
  }

  return valid_placement;
}

int CrushTester::random_placement(int ruleno, vector<int>& out, int maxout, vector<__u32>& weight)
{
  // get the total weight of the system
  int total_weight = 0;
  for (unsigned i = 0; i < weight.size(); i++)
    total_weight += weight[i];

  if (total_weight == 0 ||
      crush.get_max_devices() == 0)
    return -EINVAL;

  // compute each device's proportional weight
  vector<float> proportional_weights( weight.size() );
  for (unsigned i = 0; i < weight.size(); i++) {
    proportional_weights[i] = (float) weight[i] / (float) total_weight;
  }

  // determine the real maximum number of devices to return
  int devices_requested = min(maxout, get_maximum_affected_by_rule(ruleno));
  bool accept_placement = false;

  vector<int> trial_placement(devices_requested);
  int attempted_tries = 0;
  int max_tries = 100;
  do {
    // create a vector to hold our trial mappings
    int temp_array[devices_requested];
    for (int i = 0; i < devices_requested; i++){
      temp_array[i] = lrand48() % (crush.get_max_devices());
    }

    trial_placement.assign(temp_array, temp_array + devices_requested);
    accept_placement = check_valid_placement(ruleno, trial_placement, weight);
    attempted_tries++;
  } while (accept_placement == false && attempted_tries < max_tries);

  // save our random placement to the out vector
  if (accept_placement)
    out.assign(trial_placement.begin(), trial_placement.end());

  // or don't....
  else if (attempted_tries == max_tries)
    return -EINVAL;

  return 0;
}

void CrushTester::write_integer_indexed_vector_data_string(vector<string> &dst, int index, vector<int> vector_data)
{
  stringstream data_buffer (stringstream::in | stringstream::out);
  unsigned input_size = vector_data.size();

  // pass the indexing variable to the data buffer
  data_buffer << index;

  // pass the rest of the input data to the buffer
  for (unsigned i = 0; i < input_size; i++) {
    data_buffer << ',' << vector_data[i];
  }

  data_buffer << std::endl;

  // write the data buffer to the destination
  dst.push_back( data_buffer.str() );
}

void CrushTester::write_integer_indexed_vector_data_string(vector<string> &dst, int index, vector<float> vector_data)
{
  stringstream data_buffer (stringstream::in | stringstream::out);
  unsigned input_size = vector_data.size();

  // pass the indexing variable to the data buffer
  data_buffer << index;

  // pass the rest of the input data to the buffer
  for (unsigned i = 0; i < input_size; i++) {
    data_buffer << ',' << vector_data[i];
  }

  data_buffer << std::endl;

  // write the data buffer to the destination
  dst.push_back( data_buffer.str() );
}

void CrushTester::write_integer_indexed_scalar_data_string(vector<string> &dst, int index, int scalar_data)
{
  stringstream data_buffer (stringstream::in | stringstream::out);

  // pass the indexing variable to the data buffer
  data_buffer << index;

  // pass the input data to the buffer
  data_buffer << ',' << scalar_data;
  data_buffer << std::endl;

  // write the data buffer to the destination
  dst.push_back( data_buffer.str() );
}
void CrushTester::write_integer_indexed_scalar_data_string(vector<string> &dst, int index, float scalar_data)
{
  stringstream data_buffer (stringstream::in | stringstream::out);

  // pass the indexing variable to the data buffer
  data_buffer << index;

  // pass the input data to the buffer
  data_buffer << ',' << scalar_data;
  data_buffer << std::endl;

  // write the data buffer to the destination
  dst.push_back( data_buffer.str() );
}

int CrushTester::test()
{
  if (min_rule < 0 || max_rule < 0) {
    min_rule = 0;
    max_rule = crush.get_max_rules() - 1;
  }
  if (min_x < 0 || max_x < 0) {
    min_x = 0;
    max_x = 1023;
  }

  // initial osd weights
  vector<__u32> weight;

  /*
   * note device weight is set by crushtool
   * (likely due to a given a command line option)
   */
  for (int o = 0; o < crush.get_max_devices(); o++) {
    if (device_weight.count(o)) {
      weight.push_back(device_weight[o]);
    } else if (crush.check_item_present(o)) {
      weight.push_back(0x10000);
    } else {
      weight.push_back(0);
    }
  }

  if (output_utilization_all)
    err << "devices weights (hex): " << hex << weight << dec << std::endl;

  // make adjustments
  adjust_weights(weight);


  int num_devices_active = 0;
  for (vector<__u32>::iterator p = weight.begin(); p != weight.end(); ++p)
    if (*p > 0)
      num_devices_active++;

  if (output_choose_tries)
    crush.start_choose_profile();
  
  for (int r = min_rule; r < crush.get_max_rules() && r <= max_rule; r++) {
    if (!crush.rule_exists(r)) {
      if (output_statistics)
        err << "rule " << r << " dne" << std::endl;
      continue;
    }
    int minr = min_rep, maxr = max_rep;
    if (min_rep < 0 || max_rep < 0) {
      minr = crush.get_rule_mask_min_size(r);
      maxr = crush.get_rule_mask_max_size(r);
    }
    
    if (output_statistics)
      err << "rule " << r << " (" << crush.get_rule_name(r)
      << "), x = " << min_x << ".." << max_x
      << ", numrep = " << minr << ".." << maxr
      << std::endl;

    for (int nr = minr; nr <= maxr; nr++) {
      vector<int> per(crush.get_max_devices());
      map<int,int> sizes;

      int num_objects = ((max_x - min_x) + 1);
      float num_devices = (float) per.size(); // get the total number of devices, better to cast as a float here 

      // create a structure to hold data for post-processing
      tester_data_set tester_data;
      vector<int> vector_data_buffer;
      vector<float> vector_data_buffer_f;

      // create a map to hold batch-level placement information
      map<int, vector<int> > batch_per;
      int objects_per_batch = num_objects / num_batches;
      int batch_min = min_x;
      int batch_max = min_x + objects_per_batch - 1;

      // get the total weight of the system
      int total_weight = 0;
      for (unsigned i = 0; i < per.size(); i++)
        total_weight += weight[i];

      if (total_weight == 0)
	continue;

      // compute the expected number of objects stored per device in the absence of weighting
      float expected_objects = min(nr, get_maximum_affected_by_rule(r)) * num_objects;

      // compute each device's proportional weight
      vector<float> proportional_weights( per.size() );

      for (unsigned i = 0; i < per.size(); i++)
        proportional_weights[i] = (float) weight[i] / (float) total_weight;

      if (output_data_file) {
        // stage the absolute weight information for post-processing
        for (unsigned i = 0; i < per.size(); i++) {
          tester_data.absolute_weights[i] = (float) weight[i] / (float)0x10000;
        }

        // stage the proportional weight information for post-processing
        for (unsigned i = 0; i < per.size(); i++) {
          if (proportional_weights[i] > 0 )
            tester_data.proportional_weights[i] = proportional_weights[i];

          tester_data.proportional_weights_all[i] = proportional_weights[i];
        }

      }
      // compute the expected number of objects stored per device when a device's weight is considered
      vector<float> num_objects_expected(num_devices);

      for (unsigned i = 0; i < num_devices; i++)
        num_objects_expected[i] = (proportional_weights[i]*expected_objects);

      for (int current_batch = 0; current_batch < num_batches; current_batch++) {
        if (current_batch == (num_batches - 1)) {
          batch_max = max_x;
          objects_per_batch = (batch_max - batch_min + 1);
        }

        float batch_expected_objects = min(nr, get_maximum_affected_by_rule(r)) * objects_per_batch;
        vector<float> batch_num_objects_expected( per.size() );

        for (unsigned i = 0; i < per.size() ; i++)
          batch_num_objects_expected[i] = (proportional_weights[i]*batch_expected_objects);

        // create a vector to hold placement results temporarily 
        vector<int> temporary_per ( per.size() );

        for (int x = batch_min; x <= batch_max; x++) {
          // create a vector to hold the results of a CRUSH placement or RNG simulation
          vector<int> out;

          if (use_crush) {
            if (output_statistics)
              err << "CRUSH"; // prepend CRUSH to placement output
            crush.do_rule(r, x, out, nr, weight);
          } else {
            if (output_statistics)
              err << "RNG"; // prepend RNG to placement output to denote simulation
            // test our new monte carlo placement generator
            random_placement(r, out, nr, weight);
          }

          if (output_statistics)
            err << " rule " << r << " x " << x << " " << out << std::endl;

          if (output_data_file)
            write_integer_indexed_vector_data_string(tester_data.placement_information, x, out);

          for (unsigned i = 0; i < out.size(); i++) {
            per[out[i]]++;
            temporary_per[out[i]]++;
          }

          batch_per[current_batch] = temporary_per;
          sizes[out.size()]++;
          if (output_bad_mappings && out.size() != (unsigned)nr) {
            cout << "bad mapping rule " << r << " x " << x << " num_rep " << nr << " result " << out << std::endl;
          }
        }

        batch_min = batch_max + 1;
        batch_max = batch_min + objects_per_batch - 1;
      }

      for (unsigned i = 0; i < per.size(); i++)
        if (output_utilization && !output_statistics)
          err << "  device " << i
          << ":\t" << per[i] << std::endl;

      for (map<int,int>::iterator p = sizes.begin(); p != sizes.end(); p++)
        if (output_statistics)
          err << "rule " << r << " (" << crush.get_rule_name(r) << ") num_rep " << nr
          << " result size == " << p->first << ":\t"
          << p->second << "/" << (max_x-min_x+1) << std::endl;

      if (output_statistics)
        for (unsigned i = 0; i < per.size(); i++) {
          if (output_utilization && num_batches > 1){
            if (num_objects_expected[i] > 0 && per[i] > 0) {
              err << "  device " << i << ":\t"
                  << "\t" << " stored " << ": " << per[i]
                  << "\t" << " expected " << ": " << num_objects_expected[i]
                  << std::endl;
            }
          } else if (output_utilization_all && num_batches > 1) {
            err << "  device " << i << ":\t"
                << "\t" << " stored " << ": " << per[i]
                << "\t" << " expected " << ": " << num_objects_expected[i]
                << std::endl;
          }
        }

      if (output_data_file)
        for (unsigned i = 0; i < per.size(); i++) {
          vector_data_buffer_f.clear();
          vector_data_buffer_f.push_back( (float) per[i]);
          vector_data_buffer_f.push_back( (float) num_objects_expected[i]);

          write_integer_indexed_vector_data_string(tester_data.device_utilization_all, i, vector_data_buffer_f);

          if (num_objects_expected[i] > 0 && per[i] > 0)
            write_integer_indexed_vector_data_string(tester_data.device_utilization, i, vector_data_buffer_f);
        }

      if (output_data_file && num_batches > 1) {
        // stage batch utilization information for post-processing
        for (int i = 0; i < num_batches; i++) {
          write_integer_indexed_vector_data_string(tester_data.batch_device_utilization_all, i, batch_per[i]);
          write_integer_indexed_vector_data_string(tester_data.batch_device_expected_utilization_all, i, batch_per[i]);
        }
      }

      string rule_tag = crush.get_rule_name(r);

      if (output_csv)
        write_data_set_to_csv(output_data_file_name+rule_tag,tester_data);
    }
  }

  if (output_choose_tries) {
    __u32 *v = 0;
    int n = crush.get_choose_profile(&v);
    for (int i=0; i<n; i++) {
      cout.setf(std::ios::right);
      cout << std::setw(2)
      << i << ": " << std::setw(9) << v[i];
      cout.unsetf(std::ios::right);
      cout << std::endl;
    }

    crush.stop_choose_profile();
  }

  return 0;
}