//===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This provides C++ code generation targeting the Itanium C++ ABI. The class // in this file generates structures that follow the Itanium C++ ABI, which is // documented at: // http://www.codesourcery.com/public/cxx-abi/abi.html // http://www.codesourcery.com/public/cxx-abi/abi-eh.html // // It also supports the closely-related ARM ABI, documented at: // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0041c/IHI0041C_cppabi.pdf // //===----------------------------------------------------------------------===// #include "CGCXXABI.h" #include "CGCleanup.h" #include "CGRecordLayout.h" #include "CGVTables.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "TargetInfo.h" #include "clang/CodeGen/ConstantInitBuilder.h" #include "clang/AST/Mangle.h" #include "clang/AST/Type.h" #include "clang/AST/StmtCXX.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Value.h" #include "llvm/Support/ScopedPrinter.h" using namespace clang; using namespace CodeGen; namespace { class ItaniumCXXABI : public CodeGen::CGCXXABI { /// VTables - All the vtables which have been defined. llvm::DenseMap VTables; /// All the thread wrapper functions that have been used. llvm::SmallVector, 8> ThreadWrappers; protected: bool UseARMMethodPtrABI; bool UseARMGuardVarABI; bool Use32BitVTableOffsetABI; ItaniumMangleContext &getMangleContext() { return cast(CodeGen::CGCXXABI::getMangleContext()); } public: ItaniumCXXABI(CodeGen::CodeGenModule &CGM, bool UseARMMethodPtrABI = false, bool UseARMGuardVarABI = false) : CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI), UseARMGuardVarABI(UseARMGuardVarABI), Use32BitVTableOffsetABI(false) { } bool classifyReturnType(CGFunctionInfo &FI) const override; RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override { // If C++ prohibits us from making a copy, pass by address. if (!RD->canPassInRegisters()) return RAA_Indirect; return RAA_Default; } bool isThisCompleteObject(GlobalDecl GD) const override { // The Itanium ABI has separate complete-object vs. base-object // variants of both constructors and destructors. if (isa(GD.getDecl())) { switch (GD.getDtorType()) { case Dtor_Complete: case Dtor_Deleting: return true; case Dtor_Base: return false; case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?"); } llvm_unreachable("bad dtor kind"); } if (isa(GD.getDecl())) { switch (GD.getCtorType()) { case Ctor_Complete: return true; case Ctor_Base: return false; case Ctor_CopyingClosure: case Ctor_DefaultClosure: llvm_unreachable("closure ctors in Itanium ABI?"); case Ctor_Comdat: llvm_unreachable("emitting ctor comdat as function?"); } llvm_unreachable("bad dtor kind"); } // No other kinds. return false; } bool isZeroInitializable(const MemberPointerType *MPT) override; llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; CGCallee EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E, Address This, llvm::Value *&ThisPtrForCall, llvm::Value *MemFnPtr, const MemberPointerType *MPT) override; llvm::Value * EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, const MemberPointerType *MPT) override; llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *Src) override; llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, llvm::Constant *Src) override; llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, CharUnits offset) override; llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD, CharUnits ThisAdjustment); llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality) override; llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, llvm::Value *Addr, const MemberPointerType *MPT) override; void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor) override; void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; llvm::CallInst * emitTerminateForUnexpectedException(CodeGenFunction &CGF, llvm::Value *Exn) override; void EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD); llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; CatchTypeInfo getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override { return CatchTypeInfo{getAddrOfRTTIDescriptor(Ty), 0}; } bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; void EmitBadTypeidCall(CodeGenFunction &CGF) override; llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy) override; bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, QualType SrcRecordTy) override; llvm::Value *EmitDynamicCastCall(CodeGenFunction &CGF, Address Value, QualType SrcRecordTy, QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) override; llvm::Value *EmitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, QualType SrcRecordTy, QualType DestTy) override; bool EmitBadCastCall(CodeGenFunction &CGF) override; llvm::Value * GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, const CXXRecordDecl *BaseClassDecl) override; void EmitCXXConstructors(const CXXConstructorDecl *D) override; AddedStructorArgs buildStructorSignature(GlobalDecl GD, SmallVectorImpl &ArgTys) override; bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, CXXDtorType DT) const override { // Itanium does not emit any destructor variant as an inline thunk. // Delegating may occur as an optimization, but all variants are either // emitted with external linkage or as linkonce if they are inline and used. return false; } void EmitCXXDestructors(const CXXDestructorDecl *D) override; void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, FunctionArgList &Params) override; void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; AddedStructorArgs addImplicitConstructorArgs(CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, CallArgList &Args) override; void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This, QualType ThisTy) override; void emitVTableDefinitions(CodeGenVTables &CGVT, const CXXRecordDecl *RD) override; bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) override; bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { return true; } llvm::Constant * getVTableAddressPoint(BaseSubobject Base, const CXXRecordDecl *VTableClass) override; llvm::Value *getVTableAddressPointInStructor( CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; llvm::Value *getVTableAddressPointInStructorWithVTT( CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, const CXXRecordDecl *NearestVBase); llvm::Constant * getVTableAddressPointForConstExpr(BaseSubobject Base, const CXXRecordDecl *VTableClass) override; llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, CharUnits VPtrOffset) override; CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, Address This, llvm::Type *Ty, SourceLocation Loc) override; llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, Address This, DeleteOrMemberCallExpr E) override; void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override; bool canSpeculativelyEmitVTableAsBaseClass(const CXXRecordDecl *RD) const; void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD, bool ReturnAdjustment) override { // Allow inlining of thunks by emitting them with available_externally // linkage together with vtables when needed. if (ForVTable && !Thunk->hasLocalLinkage()) Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); CGM.setGVProperties(Thunk, GD); } bool exportThunk() override { return true; } llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, const ThisAdjustment &TA) override; llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, const ReturnAdjustment &RA) override; size_t getSrcArgforCopyCtor(const CXXConstructorDecl *, FunctionArgList &Args) const override { assert(!Args.empty() && "expected the arglist to not be empty!"); return Args.size() - 1; } StringRef GetPureVirtualCallName() override { return "__cxa_pure_virtual"; } StringRef GetDeletedVirtualCallName() override { return "__cxa_deleted_virtual"; } CharUnits getArrayCookieSizeImpl(QualType elementType) override; Address InitializeArrayCookie(CodeGenFunction &CGF, Address NewPtr, llvm::Value *NumElements, const CXXNewExpr *expr, QualType ElementType) override; llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr, CharUnits cookieSize) override; void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, llvm::GlobalVariable *DeclPtr, bool PerformInit) override; void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, llvm::FunctionCallee dtor, llvm::Constant *addr) override; llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD, llvm::Value *Val); void EmitThreadLocalInitFuncs( CodeGenModule &CGM, ArrayRef CXXThreadLocals, ArrayRef CXXThreadLocalInits, ArrayRef CXXThreadLocalInitVars) override; /// Determine whether we will definitely emit this variable with a constant /// initializer, either because the language semantics demand it or because /// we know that the initializer is a constant. bool isEmittedWithConstantInitializer(const VarDecl *VD) const { VD = VD->getMostRecentDecl(); if (VD->hasAttr()) return true; // All later checks examine the initializer specified on the variable. If // the variable is weak, such examination would not be correct. if (VD->isWeak() || VD->hasAttr()) return false; const VarDecl *InitDecl = VD->getInitializingDeclaration(); if (!InitDecl) return false; // If there's no initializer to run, this is constant initialization. if (!InitDecl->hasInit()) return true; // If we have the only definition, we don't need a thread wrapper if we // will emit the value as a constant. if (isUniqueGVALinkage(getContext().GetGVALinkageForVariable(VD))) return !VD->needsDestruction(getContext()) && InitDecl->evaluateValue(); // Otherwise, we need a thread wrapper unless we know that every // translation unit will emit the value as a constant. We rely on // ICE-ness not varying between translation units, which isn't actually // guaranteed by the standard but is necessary for sanity. return InitDecl->isInitKnownICE() && InitDecl->isInitICE(); } bool usesThreadWrapperFunction(const VarDecl *VD) const override { return !isEmittedWithConstantInitializer(VD) || VD->needsDestruction(getContext()); } LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, QualType LValType) override; bool NeedsVTTParameter(GlobalDecl GD) override; /**************************** RTTI Uniqueness ******************************/ protected: /// Returns true if the ABI requires RTTI type_info objects to be unique /// across a program. virtual bool shouldRTTIBeUnique() const { return true; } public: /// What sort of unique-RTTI behavior should we use? enum RTTIUniquenessKind { /// We are guaranteeing, or need to guarantee, that the RTTI string /// is unique. RUK_Unique, /// We are not guaranteeing uniqueness for the RTTI string, so we /// can demote to hidden visibility but must use string comparisons. RUK_NonUniqueHidden, /// We are not guaranteeing uniqueness for the RTTI string, so we /// have to use string comparisons, but we also have to emit it with /// non-hidden visibility. RUK_NonUniqueVisible }; /// Return the required visibility status for the given type and linkage in /// the current ABI. RTTIUniquenessKind classifyRTTIUniqueness(QualType CanTy, llvm::GlobalValue::LinkageTypes Linkage) const; friend class ItaniumRTTIBuilder; void emitCXXStructor(GlobalDecl GD) override; std::pair LoadVTablePtr(CodeGenFunction &CGF, Address This, const CXXRecordDecl *RD) override; private: bool hasAnyUnusedVirtualInlineFunction(const CXXRecordDecl *RD) const { const auto &VtableLayout = CGM.getItaniumVTableContext().getVTableLayout(RD); for (const auto &VtableComponent : VtableLayout.vtable_components()) { // Skip empty slot. if (!VtableComponent.isUsedFunctionPointerKind()) continue; const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); if (!Method->getCanonicalDecl()->isInlined()) continue; StringRef Name = CGM.getMangledName(VtableComponent.getGlobalDecl()); auto *Entry = CGM.GetGlobalValue(Name); // This checks if virtual inline function has already been emitted. // Note that it is possible that this inline function would be emitted // after trying to emit vtable speculatively. Because of this we do // an extra pass after emitting all deferred vtables to find and emit // these vtables opportunistically. if (!Entry || Entry->isDeclaration()) return true; } return false; } bool isVTableHidden(const CXXRecordDecl *RD) const { const auto &VtableLayout = CGM.getItaniumVTableContext().getVTableLayout(RD); for (const auto &VtableComponent : VtableLayout.vtable_components()) { if (VtableComponent.isRTTIKind()) { const CXXRecordDecl *RTTIDecl = VtableComponent.getRTTIDecl(); if (RTTIDecl->getVisibility() == Visibility::HiddenVisibility) return true; } else if (VtableComponent.isUsedFunctionPointerKind()) { const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); if (Method->getVisibility() == Visibility::HiddenVisibility && !Method->isDefined()) return true; } } return false; } }; class ARMCXXABI : public ItaniumCXXABI { public: ARMCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, /*UseARMGuardVarABI=*/true) {} bool HasThisReturn(GlobalDecl GD) const override { return (isa(GD.getDecl()) || ( isa(GD.getDecl()) && GD.getDtorType() != Dtor_Deleting)); } void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResTy) override; CharUnits getArrayCookieSizeImpl(QualType elementType) override; Address InitializeArrayCookie(CodeGenFunction &CGF, Address NewPtr, llvm::Value *NumElements, const CXXNewExpr *expr, QualType ElementType) override; llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr, CharUnits cookieSize) override; }; class iOS64CXXABI : public ARMCXXABI { public: iOS64CXXABI(CodeGen::CodeGenModule &CGM) : ARMCXXABI(CGM) { Use32BitVTableOffsetABI = true; } // ARM64 libraries are prepared for non-unique RTTI. bool shouldRTTIBeUnique() const override { return false; } }; class WebAssemblyCXXABI final : public ItaniumCXXABI { public: explicit WebAssemblyCXXABI(CodeGen::CodeGenModule &CGM) : ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, /*UseARMGuardVarABI=*/true) {} void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; private: bool HasThisReturn(GlobalDecl GD) const override { return isa(GD.getDecl()) || (isa(GD.getDecl()) && GD.getDtorType() != Dtor_Deleting); } bool canCallMismatchedFunctionType() const override { return false; } }; } CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { switch (CGM.getTarget().getCXXABI().getKind()) { // For IR-generation purposes, there's no significant difference // between the ARM and iOS ABIs. case TargetCXXABI::GenericARM: case TargetCXXABI::iOS: case TargetCXXABI::WatchOS: return new ARMCXXABI(CGM); case TargetCXXABI::iOS64: return new iOS64CXXABI(CGM); // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't // include the other 32-bit ARM oddities: constructor/destructor return values // and array cookies. case TargetCXXABI::GenericAArch64: return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, /*UseARMGuardVarABI=*/true); case TargetCXXABI::GenericMIPS: return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true); case TargetCXXABI::WebAssembly: return new WebAssemblyCXXABI(CGM); case TargetCXXABI::GenericItanium: if (CGM.getContext().getTargetInfo().getTriple().getArch() == llvm::Triple::le32) { // For PNaCl, use ARM-style method pointers so that PNaCl code // does not assume anything about the alignment of function // pointers. return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true); } return new ItaniumCXXABI(CGM); case TargetCXXABI::Microsoft: llvm_unreachable("Microsoft ABI is not Itanium-based"); } llvm_unreachable("bad ABI kind"); } llvm::Type * ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { if (MPT->isMemberDataPointer()) return CGM.PtrDiffTy; return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy); } /// In the Itanium and ARM ABIs, method pointers have the form: /// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; /// /// In the Itanium ABI: /// - method pointers are virtual if (memptr.ptr & 1) is nonzero /// - the this-adjustment is (memptr.adj) /// - the virtual offset is (memptr.ptr - 1) /// /// In the ARM ABI: /// - method pointers are virtual if (memptr.adj & 1) is nonzero /// - the this-adjustment is (memptr.adj >> 1) /// - the virtual offset is (memptr.ptr) /// ARM uses 'adj' for the virtual flag because Thumb functions /// may be only single-byte aligned. /// /// If the member is virtual, the adjusted 'this' pointer points /// to a vtable pointer from which the virtual offset is applied. /// /// If the member is non-virtual, memptr.ptr is the address of /// the function to call. CGCallee ItaniumCXXABI::EmitLoadOfMemberFunctionPointer( CodeGenFunction &CGF, const Expr *E, Address ThisAddr, llvm::Value *&ThisPtrForCall, llvm::Value *MemFnPtr, const MemberPointerType *MPT) { CGBuilderTy &Builder = CGF.Builder; const FunctionProtoType *FPT = MPT->getPointeeType()->getAs(); auto *RD = cast(MPT->getClass()->castAs()->getDecl()); llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType( CGM.getTypes().arrangeCXXMethodType(RD, FPT, /*FD=*/nullptr)); llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1); llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual"); llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual"); llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end"); // Extract memptr.adj, which is in the second field. llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj"); // Compute the true adjustment. llvm::Value *Adj = RawAdj; if (UseARMMethodPtrABI) Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted"); // Apply the adjustment and cast back to the original struct type // for consistency. llvm::Value *This = ThisAddr.getPointer(); llvm::Value *Ptr = Builder.CreateBitCast(This, Builder.getInt8PtrTy()); Ptr = Builder.CreateInBoundsGEP(Ptr, Adj); This = Builder.CreateBitCast(Ptr, This->getType(), "this.adjusted"); ThisPtrForCall = This; // Load the function pointer. llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr"); // If the LSB in the function pointer is 1, the function pointer points to // a virtual function. llvm::Value *IsVirtual; if (UseARMMethodPtrABI) IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1); else IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1); IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual"); Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); // In the virtual path, the adjustment left 'This' pointing to the // vtable of the correct base subobject. The "function pointer" is an // offset within the vtable (+1 for the virtual flag on non-ARM). CGF.EmitBlock(FnVirtual); // Cast the adjusted this to a pointer to vtable pointer and load. llvm::Type *VTableTy = Builder.getInt8PtrTy(); CharUnits VTablePtrAlign = CGF.CGM.getDynamicOffsetAlignment(ThisAddr.getAlignment(), RD, CGF.getPointerAlign()); llvm::Value *VTable = CGF.GetVTablePtr(Address(This, VTablePtrAlign), VTableTy, RD); // Apply the offset. // On ARM64, to reserve extra space in virtual member function pointers, // we only pay attention to the low 32 bits of the offset. llvm::Value *VTableOffset = FnAsInt; if (!UseARMMethodPtrABI) VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1); if (Use32BitVTableOffsetABI) { VTableOffset = Builder.CreateTrunc(VTableOffset, CGF.Int32Ty); VTableOffset = Builder.CreateZExt(VTableOffset, CGM.PtrDiffTy); } // Compute the address of the virtual function pointer. llvm::Value *VFPAddr = Builder.CreateGEP(VTable, VTableOffset); // Check the address of the function pointer if CFI on member function // pointers is enabled. llvm::Constant *CheckSourceLocation; llvm::Constant *CheckTypeDesc; bool ShouldEmitCFICheck = CGF.SanOpts.has(SanitizerKind::CFIMFCall) && CGM.HasHiddenLTOVisibility(RD); if (ShouldEmitCFICheck) { CodeGenFunction::SanitizerScope SanScope(&CGF); CheckSourceLocation = CGF.EmitCheckSourceLocation(E->getBeginLoc()); CheckTypeDesc = CGF.EmitCheckTypeDescriptor(QualType(MPT, 0)); llvm::Constant *StaticData[] = { llvm::ConstantInt::get(CGF.Int8Ty, CodeGenFunction::CFITCK_VMFCall), CheckSourceLocation, CheckTypeDesc, }; llvm::Metadata *MD = CGM.CreateMetadataIdentifierForVirtualMemPtrType(QualType(MPT, 0)); llvm::Value *TypeId = llvm::MetadataAsValue::get(CGF.getLLVMContext(), MD); llvm::Value *TypeTest = Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::type_test), {VFPAddr, TypeId}); if (CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIMFCall)) { CGF.EmitTrapCheck(TypeTest); } else { llvm::Value *AllVtables = llvm::MetadataAsValue::get( CGM.getLLVMContext(), llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); llvm::Value *ValidVtable = Builder.CreateCall( CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables}); CGF.EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIMFCall), SanitizerHandler::CFICheckFail, StaticData, {VTable, ValidVtable}); } FnVirtual = Builder.GetInsertBlock(); } // Load the virtual function to call. VFPAddr = Builder.CreateBitCast(VFPAddr, FTy->getPointerTo()->getPointerTo()); llvm::Value *VirtualFn = Builder.CreateAlignedLoad( VFPAddr, CGF.getPointerAlign(), "memptr.virtualfn"); CGF.EmitBranch(FnEnd); // In the non-virtual path, the function pointer is actually a // function pointer. CGF.EmitBlock(FnNonVirtual); llvm::Value *NonVirtualFn = Builder.CreateIntToPtr(FnAsInt, FTy->getPointerTo(), "memptr.nonvirtualfn"); // Check the function pointer if CFI on member function pointers is enabled. if (ShouldEmitCFICheck) { CXXRecordDecl *RD = MPT->getClass()->getAsCXXRecordDecl(); if (RD->hasDefinition()) { CodeGenFunction::SanitizerScope SanScope(&CGF); llvm::Constant *StaticData[] = { llvm::ConstantInt::get(CGF.Int8Ty, CodeGenFunction::CFITCK_NVMFCall), CheckSourceLocation, CheckTypeDesc, }; llvm::Value *Bit = Builder.getFalse(); llvm::Value *CastedNonVirtualFn = Builder.CreateBitCast(NonVirtualFn, CGF.Int8PtrTy); for (const CXXRecordDecl *Base : CGM.getMostBaseClasses(RD)) { llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType( getContext().getMemberPointerType( MPT->getPointeeType(), getContext().getRecordType(Base).getTypePtr())); llvm::Value *TypeId = llvm::MetadataAsValue::get(CGF.getLLVMContext(), MD); llvm::Value *TypeTest = Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedNonVirtualFn, TypeId}); Bit = Builder.CreateOr(Bit, TypeTest); } CGF.EmitCheck(std::make_pair(Bit, SanitizerKind::CFIMFCall), SanitizerHandler::CFICheckFail, StaticData, {CastedNonVirtualFn, llvm::UndefValue::get(CGF.IntPtrTy)}); FnNonVirtual = Builder.GetInsertBlock(); } } // We're done. CGF.EmitBlock(FnEnd); llvm::PHINode *CalleePtr = Builder.CreatePHI(FTy->getPointerTo(), 2); CalleePtr->addIncoming(VirtualFn, FnVirtual); CalleePtr->addIncoming(NonVirtualFn, FnNonVirtual); CGCallee Callee(FPT, CalleePtr); return Callee; } /// Compute an l-value by applying the given pointer-to-member to a /// base object. llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress( CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, const MemberPointerType *MPT) { assert(MemPtr->getType() == CGM.PtrDiffTy); CGBuilderTy &Builder = CGF.Builder; // Cast to char*. Base = Builder.CreateElementBitCast(Base, CGF.Int8Ty); // Apply the offset, which we assume is non-null. llvm::Value *Addr = Builder.CreateInBoundsGEP(Base.getPointer(), MemPtr, "memptr.offset"); // Cast the address to the appropriate pointer type, adopting the // address space of the base pointer. llvm::Type *PType = CGF.ConvertTypeForMem(MPT->getPointeeType()) ->getPointerTo(Base.getAddressSpace()); return Builder.CreateBitCast(Addr, PType); } /// Perform a bitcast, derived-to-base, or base-to-derived member pointer /// conversion. /// /// Bitcast conversions are always a no-op under Itanium. /// /// Obligatory offset/adjustment diagram: /// <-- offset --> <-- adjustment --> /// |--------------------------|----------------------|--------------------| /// ^Derived address point ^Base address point ^Member address point /// /// So when converting a base member pointer to a derived member pointer, /// we add the offset to the adjustment because the address point has /// decreased; and conversely, when converting a derived MP to a base MP /// we subtract the offset from the adjustment because the address point /// has increased. /// /// The standard forbids (at compile time) conversion to and from /// virtual bases, which is why we don't have to consider them here. /// /// The standard forbids (at run time) casting a derived MP to a base /// MP when the derived MP does not point to a member of the base. /// This is why -1 is a reasonable choice for null data member /// pointers. llvm::Value * ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, const CastExpr *E, llvm::Value *src) { assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || E->getCastKind() == CK_BaseToDerivedMemberPointer || E->getCastKind() == CK_ReinterpretMemberPointer); // Under Itanium, reinterprets don't require any additional processing. if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; // Use constant emission if we can. if (isa(src)) return EmitMemberPointerConversion(E, cast(src)); llvm::Constant *adj = getMemberPointerAdjustment(E); if (!adj) return src; CGBuilderTy &Builder = CGF.Builder; bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); const MemberPointerType *destTy = E->getType()->castAs(); // For member data pointers, this is just a matter of adding the // offset if the source is non-null. if (destTy->isMemberDataPointer()) { llvm::Value *dst; if (isDerivedToBase) dst = Builder.CreateNSWSub(src, adj, "adj"); else dst = Builder.CreateNSWAdd(src, adj, "adj"); // Null check. llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType()); llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull"); return Builder.CreateSelect(isNull, src, dst); } // The this-adjustment is left-shifted by 1 on ARM. if (UseARMMethodPtrABI) { uint64_t offset = cast(adj)->getZExtValue(); offset <<= 1; adj = llvm::ConstantInt::get(adj->getType(), offset); } llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj"); llvm::Value *dstAdj; if (isDerivedToBase) dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj"); else dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj"); return Builder.CreateInsertValue(src, dstAdj, 1); } llvm::Constant * ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E, llvm::Constant *src) { assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || E->getCastKind() == CK_BaseToDerivedMemberPointer || E->getCastKind() == CK_ReinterpretMemberPointer); // Under Itanium, reinterprets don't require any additional processing. if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; // If the adjustment is trivial, we don't need to do anything. llvm::Constant *adj = getMemberPointerAdjustment(E); if (!adj) return src; bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); const MemberPointerType *destTy = E->getType()->castAs(); // For member data pointers, this is just a matter of adding the // offset if the source is non-null. if (destTy->isMemberDataPointer()) { // null maps to null. if (src->isAllOnesValue()) return src; if (isDerivedToBase) return llvm::ConstantExpr::getNSWSub(src, adj); else return llvm::ConstantExpr::getNSWAdd(src, adj); } // The this-adjustment is left-shifted by 1 on ARM. if (UseARMMethodPtrABI) { uint64_t offset = cast(adj)->getZExtValue(); offset <<= 1; adj = llvm::ConstantInt::get(adj->getType(), offset); } llvm::Constant *srcAdj = llvm::ConstantExpr::getExtractValue(src, 1); llvm::Constant *dstAdj; if (isDerivedToBase) dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj); else dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj); return llvm::ConstantExpr::getInsertValue(src, dstAdj, 1); } llvm::Constant * ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { // Itanium C++ ABI 2.3: // A NULL pointer is represented as -1. if (MPT->isMemberDataPointer()) return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true); llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0); llvm::Constant *Values[2] = { Zero, Zero }; return llvm::ConstantStruct::getAnon(Values); } llvm::Constant * ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, CharUnits offset) { // Itanium C++ ABI 2.3: // A pointer to data member is an offset from the base address of // the class object containing it, represented as a ptrdiff_t return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()); } llvm::Constant * ItaniumCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { return BuildMemberPointer(MD, CharUnits::Zero()); } llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD, CharUnits ThisAdjustment) { assert(MD->isInstance() && "Member function must not be static!"); CodeGenTypes &Types = CGM.getTypes(); // Get the function pointer (or index if this is a virtual function). llvm::Constant *MemPtr[2]; if (MD->isVirtual()) { uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(MD); const ASTContext &Context = getContext(); CharUnits PointerWidth = Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); uint64_t VTableOffset = (Index * PointerWidth.getQuantity()); if (UseARMMethodPtrABI) { // ARM C++ ABI 3.2.1: // This ABI specifies that adj contains twice the this // adjustment, plus 1 if the member function is virtual. The // least significant bit of adj then makes exactly the same // discrimination as the least significant bit of ptr does for // Itanium. MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset); MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, 2 * ThisAdjustment.getQuantity() + 1); } else { // Itanium C++ ABI 2.3: // For a virtual function, [the pointer field] is 1 plus the // virtual table offset (in bytes) of the function, // represented as a ptrdiff_t. MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1); MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, ThisAdjustment.getQuantity()); } } else { const FunctionProtoType *FPT = MD->getType()->castAs(); llvm::Type *Ty; // Check whether the function has a computable LLVM signature. if (Types.isFuncTypeConvertible(FPT)) { // The function has a computable LLVM signature; use the correct type. Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); } else { // Use an arbitrary non-function type to tell GetAddrOfFunction that the // function type is incomplete. Ty = CGM.PtrDiffTy; } llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty); MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy); MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, (UseARMMethodPtrABI ? 2 : 1) * ThisAdjustment.getQuantity()); } return llvm::ConstantStruct::getAnon(MemPtr); } llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP, QualType MPType) { const MemberPointerType *MPT = MPType->castAs(); const ValueDecl *MPD = MP.getMemberPointerDecl(); if (!MPD) return EmitNullMemberPointer(MPT); CharUnits ThisAdjustment = getMemberPointerPathAdjustment(MP); if (const CXXMethodDecl *MD = dyn_cast(MPD)) return BuildMemberPointer(MD, ThisAdjustment); CharUnits FieldOffset = getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); } /// The comparison algorithm is pretty easy: the member pointers are /// the same if they're either bitwise identical *or* both null. /// /// ARM is different here only because null-ness is more complicated. llvm::Value * ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, llvm::Value *L, llvm::Value *R, const MemberPointerType *MPT, bool Inequality) { CGBuilderTy &Builder = CGF.Builder; llvm::ICmpInst::Predicate Eq; llvm::Instruction::BinaryOps And, Or; if (Inequality) { Eq = llvm::ICmpInst::ICMP_NE; And = llvm::Instruction::Or; Or = llvm::Instruction::And; } else { Eq = llvm::ICmpInst::ICMP_EQ; And = llvm::Instruction::And; Or = llvm::Instruction::Or; } // Member data pointers are easy because there's a unique null // value, so it just comes down to bitwise equality. if (MPT->isMemberDataPointer()) return Builder.CreateICmp(Eq, L, R); // For member function pointers, the tautologies are more complex. // The Itanium tautology is: // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) // The ARM tautology is: // (L == R) <==> (L.ptr == R.ptr && // (L.adj == R.adj || // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) // The inequality tautologies have exactly the same structure, except // applying De Morgan's laws. llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr"); llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr"); // This condition tests whether L.ptr == R.ptr. This must always be // true for equality to hold. llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr"); // This condition, together with the assumption that L.ptr == R.ptr, // tests whether the pointers are both null. ARM imposes an extra // condition. llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType()); llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null"); // This condition tests whether L.adj == R.adj. If this isn't // true, the pointers are unequal unless they're both null. llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj"); llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj"); llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj"); // Null member function pointers on ARM clear the low bit of Adj, // so the zero condition has to check that neither low bit is set. if (UseARMMethodPtrABI) { llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1); // Compute (l.adj | r.adj) & 1 and test it against zero. llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj"); llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One); llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero, "cmp.or.adj"); EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero); } // Tie together all our conditions. llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq); Result = Builder.CreateBinOp(And, PtrEq, Result, Inequality ? "memptr.ne" : "memptr.eq"); return Result; } llvm::Value * ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, llvm::Value *MemPtr, const MemberPointerType *MPT) { CGBuilderTy &Builder = CGF.Builder; /// For member data pointers, this is just a check against -1. if (MPT->isMemberDataPointer()) { assert(MemPtr->getType() == CGM.PtrDiffTy); llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(MemPtr->getType()); return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool"); } // In Itanium, a member function pointer is not null if 'ptr' is not null. llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr"); llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0); llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool"); // On ARM, a member function pointer is also non-null if the low bit of 'adj' // (the virtual bit) is set. if (UseARMMethodPtrABI) { llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1); llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj"); llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit"); llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero, "memptr.isvirtual"); Result = Builder.CreateOr(Result, IsVirtual); } return Result; } bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo &FI) const { const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); if (!RD) return false; // If C++ prohibits us from making a copy, return by address. if (!RD->canPassInRegisters()) { auto Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); return true; } return false; } /// The Itanium ABI requires non-zero initialization only for data /// member pointers, for which '0' is a valid offset. bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { return MPT->isMemberFunctionPointer(); } /// The Itanium ABI always places an offset to the complete object /// at entry -2 in the vtable. void ItaniumCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, Address Ptr, QualType ElementType, const CXXDestructorDecl *Dtor) { bool UseGlobalDelete = DE->isGlobalDelete(); if (UseGlobalDelete) { // Derive the complete-object pointer, which is what we need // to pass to the deallocation function. // Grab the vtable pointer as an intptr_t*. auto *ClassDecl = cast(ElementType->castAs()->getDecl()); llvm::Value *VTable = CGF.GetVTablePtr(Ptr, CGF.IntPtrTy->getPointerTo(), ClassDecl); // Track back to entry -2 and pull out the offset there. llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64( VTable, -2, "complete-offset.ptr"); llvm::Value *Offset = CGF.Builder.CreateAlignedLoad(OffsetPtr, CGF.getPointerAlign()); // Apply the offset. llvm::Value *CompletePtr = CGF.Builder.CreateBitCast(Ptr.getPointer(), CGF.Int8PtrTy); CompletePtr = CGF.Builder.CreateInBoundsGEP(CompletePtr, Offset); // If we're supposed to call the global delete, make sure we do so // even if the destructor throws. CGF.pushCallObjectDeleteCleanup(DE->getOperatorDelete(), CompletePtr, ElementType); } // FIXME: Provide a source location here even though there's no // CXXMemberCallExpr for dtor call. CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); if (UseGlobalDelete) CGF.PopCleanupBlock(); } void ItaniumCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { // void __cxa_rethrow(); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); if (isNoReturn) CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, None); else CGF.EmitRuntimeCallOrInvoke(Fn); } static llvm::FunctionCallee getAllocateExceptionFn(CodeGenModule &CGM) { // void *__cxa_allocate_exception(size_t thrown_size); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*isVarArg=*/false); return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); } static llvm::FunctionCallee getThrowFn(CodeGenModule &CGM) { // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, // void (*dest) (void *)); llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.Int8PtrTy, CGM.Int8PtrTy }; llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); return CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); } void ItaniumCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { QualType ThrowType = E->getSubExpr()->getType(); // Now allocate the exception object. llvm::Type *SizeTy = CGF.ConvertType(getContext().getSizeType()); uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); llvm::FunctionCallee AllocExceptionFn = getAllocateExceptionFn(CGM); llvm::CallInst *ExceptionPtr = CGF.EmitNounwindRuntimeCall( AllocExceptionFn, llvm::ConstantInt::get(SizeTy, TypeSize), "exception"); CharUnits ExnAlign = CGF.getContext().getExnObjectAlignment(); CGF.EmitAnyExprToExn(E->getSubExpr(), Address(ExceptionPtr, ExnAlign)); // Now throw the exception. llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, /*ForEH=*/true); // The address of the destructor. If the exception type has a // trivial destructor (or isn't a record), we just pass null. llvm::Constant *Dtor = nullptr; if (const RecordType *RecordTy = ThrowType->getAs()) { CXXRecordDecl *Record = cast(RecordTy->getDecl()); if (!Record->hasTrivialDestructor()) { CXXDestructorDecl *DtorD = Record->getDestructor(); Dtor = CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)); Dtor = llvm::ConstantExpr::getBitCast(Dtor, CGM.Int8PtrTy); } } if (!Dtor) Dtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor }; CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args); } static llvm::FunctionCallee getItaniumDynamicCastFn(CodeGenFunction &CGF) { // void *__dynamic_cast(const void *sub, // const abi::__class_type_info *src, // const abi::__class_type_info *dst, // std::ptrdiff_t src2dst_offset); llvm::Type *Int8PtrTy = CGF.Int8PtrTy; llvm::Type *PtrDiffTy = CGF.ConvertType(CGF.getContext().getPointerDiffType()); llvm::Type *Args[4] = { Int8PtrTy, Int8PtrTy, Int8PtrTy, PtrDiffTy }; llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); // Mark the function as nounwind readonly. llvm::Attribute::AttrKind FuncAttrs[] = { llvm::Attribute::NoUnwind, llvm::Attribute::ReadOnly }; llvm::AttributeList Attrs = llvm::AttributeList::get( CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, FuncAttrs); return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); } static llvm::FunctionCallee getBadCastFn(CodeGenFunction &CGF) { // void __cxa_bad_cast(); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); } /// Compute the src2dst_offset hint as described in the /// Itanium C++ ABI [2.9.7] static CharUnits computeOffsetHint(ASTContext &Context, const CXXRecordDecl *Src, const CXXRecordDecl *Dst) { CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, /*DetectVirtual=*/false); // If Dst is not derived from Src we can skip the whole computation below and // return that Src is not a public base of Dst. Record all inheritance paths. if (!Dst->isDerivedFrom(Src, Paths)) return CharUnits::fromQuantity(-2ULL); unsigned NumPublicPaths = 0; CharUnits Offset; // Now walk all possible inheritance paths. for (const CXXBasePath &Path : Paths) { if (Path.Access != AS_public) // Ignore non-public inheritance. continue; ++NumPublicPaths; for (const CXXBasePathElement &PathElement : Path) { // If the path contains a virtual base class we can't give any hint. // -1: no hint. if (PathElement.Base->isVirtual()) return CharUnits::fromQuantity(-1ULL); if (NumPublicPaths > 1) // Won't use offsets, skip computation. continue; // Accumulate the base class offsets. const ASTRecordLayout &L = Context.getASTRecordLayout(PathElement.Class); Offset += L.getBaseClassOffset( PathElement.Base->getType()->getAsCXXRecordDecl()); } } // -2: Src is not a public base of Dst. if (NumPublicPaths == 0) return CharUnits::fromQuantity(-2ULL); // -3: Src is a multiple public base type but never a virtual base type. if (NumPublicPaths > 1) return CharUnits::fromQuantity(-3ULL); // Otherwise, the Src type is a unique public nonvirtual base type of Dst. // Return the offset of Src from the origin of Dst. return Offset; } static llvm::FunctionCallee getBadTypeidFn(CodeGenFunction &CGF) { // void __cxa_bad_typeid(); llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); } bool ItaniumCXXABI::shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) { return IsDeref; } void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { llvm::FunctionCallee Fn = getBadTypeidFn(CGF); llvm::CallBase *Call = CGF.EmitRuntimeCallOrInvoke(Fn); Call->setDoesNotReturn(); CGF.Builder.CreateUnreachable(); } llvm::Value *ItaniumCXXABI::EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, Address ThisPtr, llvm::Type *StdTypeInfoPtrTy) { auto *ClassDecl = cast(SrcRecordTy->castAs()->getDecl()); llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, StdTypeInfoPtrTy->getPointerTo(), ClassDecl); // Load the type info. Value = CGF.Builder.CreateConstInBoundsGEP1_64(Value, -1ULL); return CGF.Builder.CreateAlignedLoad(Value, CGF.getPointerAlign()); } bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, QualType SrcRecordTy) { return SrcIsPtr; } llvm::Value *ItaniumCXXABI::EmitDynamicCastCall( CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy, QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { llvm::Type *PtrDiffLTy = CGF.ConvertType(CGF.getContext().getPointerDiffType()); llvm::Type *DestLTy = CGF.ConvertType(DestTy); llvm::Value *SrcRTTI = CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); llvm::Value *DestRTTI = CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); // Compute the offset hint. const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); llvm::Value *OffsetHint = llvm::ConstantInt::get( PtrDiffLTy, computeOffsetHint(CGF.getContext(), SrcDecl, DestDecl).getQuantity()); // Emit the call to __dynamic_cast. llvm::Value *Value = ThisAddr.getPointer(); Value = CGF.EmitCastToVoidPtr(Value); llvm::Value *args[] = {Value, SrcRTTI, DestRTTI, OffsetHint}; Value = CGF.EmitNounwindRuntimeCall(getItaniumDynamicCastFn(CGF), args); Value = CGF.Builder.CreateBitCast(Value, DestLTy); /// C++ [expr.dynamic.cast]p9: /// A failed cast to reference type throws std::bad_cast if (DestTy->isReferenceType()) { llvm::BasicBlock *BadCastBlock = CGF.createBasicBlock("dynamic_cast.bad_cast"); llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); CGF.EmitBlock(BadCastBlock); EmitBadCastCall(CGF); } return Value; } llvm::Value *ItaniumCXXABI::EmitDynamicCastToVoid(CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy, QualType DestTy) { llvm::Type *PtrDiffLTy = CGF.ConvertType(CGF.getContext().getPointerDiffType()); llvm::Type *DestLTy = CGF.ConvertType(DestTy); auto *ClassDecl = cast(SrcRecordTy->castAs()->getDecl()); // Get the vtable pointer. llvm::Value *VTable = CGF.GetVTablePtr(ThisAddr, PtrDiffLTy->getPointerTo(), ClassDecl); // Get the offset-to-top from the vtable. llvm::Value *OffsetToTop = CGF.Builder.CreateConstInBoundsGEP1_64(VTable, -2ULL); OffsetToTop = CGF.Builder.CreateAlignedLoad(OffsetToTop, CGF.getPointerAlign(), "offset.to.top"); // Finally, add the offset to the pointer. llvm::Value *Value = ThisAddr.getPointer(); Value = CGF.EmitCastToVoidPtr(Value); Value = CGF.Builder.CreateInBoundsGEP(Value, OffsetToTop); return CGF.Builder.CreateBitCast(Value, DestLTy); } bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { llvm::FunctionCallee Fn = getBadCastFn(CGF); llvm::CallBase *Call = CGF.EmitRuntimeCallOrInvoke(Fn); Call->setDoesNotReturn(); CGF.Builder.CreateUnreachable(); return true; } llvm::Value * ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl, const CXXRecordDecl *BaseClassDecl) { llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy, ClassDecl); CharUnits VBaseOffsetOffset = CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl, BaseClassDecl); llvm::Value *VBaseOffsetPtr = CGF.Builder.CreateConstGEP1_64(VTablePtr, VBaseOffsetOffset.getQuantity(), "vbase.offset.ptr"); VBaseOffsetPtr = CGF.Builder.CreateBitCast(VBaseOffsetPtr, CGM.PtrDiffTy->getPointerTo()); llvm::Value *VBaseOffset = CGF.Builder.CreateAlignedLoad(VBaseOffsetPtr, CGF.getPointerAlign(), "vbase.offset"); return VBaseOffset; } void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { // Just make sure we're in sync with TargetCXXABI. assert(CGM.getTarget().getCXXABI().hasConstructorVariants()); // The constructor used for constructing this as a base class; // ignores virtual bases. CGM.EmitGlobal(GlobalDecl(D, Ctor_Base)); // The constructor used for constructing this as a complete class; // constructs the virtual bases, then calls the base constructor. if (!D->getParent()->isAbstract()) { // We don't need to emit the complete ctor if the class is abstract. CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); } } CGCXXABI::AddedStructorArgs ItaniumCXXABI::buildStructorSignature(GlobalDecl GD, SmallVectorImpl &ArgTys) { ASTContext &Context = getContext(); // All parameters are already in place except VTT, which goes after 'this'. // These are Clang types, so we don't need to worry about sret yet. // Check if we need to add a VTT parameter (which has type void **). if ((isa(GD.getDecl()) ? GD.getCtorType() == Ctor_Base : GD.getDtorType() == Dtor_Base) && cast(GD.getDecl())->getParent()->getNumVBases() != 0) { ArgTys.insert(ArgTys.begin() + 1, Context.getPointerType(Context.VoidPtrTy)); return AddedStructorArgs::prefix(1); } return AddedStructorArgs{}; } void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { // The destructor used for destructing this as a base class; ignores // virtual bases. CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); // The destructor used for destructing this as a most-derived class; // call the base destructor and then destructs any virtual bases. CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); // The destructor in a virtual table is always a 'deleting' // destructor, which calls the complete destructor and then uses the // appropriate operator delete. if (D->isVirtual()) CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting)); } void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, FunctionArgList &Params) { const CXXMethodDecl *MD = cast(CGF.CurGD.getDecl()); assert(isa(MD) || isa(MD)); // Check if we need a VTT parameter as well. if (NeedsVTTParameter(CGF.CurGD)) { ASTContext &Context = getContext(); // FIXME: avoid the fake decl QualType T = Context.getPointerType(Context.VoidPtrTy); auto *VTTDecl = ImplicitParamDecl::Create( Context, /*DC=*/nullptr, MD->getLocation(), &Context.Idents.get("vtt"), T, ImplicitParamDecl::CXXVTT); Params.insert(Params.begin() + 1, VTTDecl); getStructorImplicitParamDecl(CGF) = VTTDecl; } } void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { // Naked functions have no prolog. if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr()) return; /// Initialize the 'this' slot. In the Itanium C++ ABI, no prologue /// adjustments are required, because they are all handled by thunks. setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); /// Initialize the 'vtt' slot if needed. if (getStructorImplicitParamDecl(CGF)) { getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad( CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "vtt"); } /// If this is a function that the ABI specifies returns 'this', initialize /// the return slot to 'this' at the start of the function. /// /// Unlike the setting of return types, this is done within the ABI /// implementation instead of by clients of CGCXXABI because: /// 1) getThisValue is currently protected /// 2) in theory, an ABI could implement 'this' returns some other way; /// HasThisReturn only specifies a contract, not the implementation if (HasThisReturn(CGF.CurGD)) CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); } CGCXXABI::AddedStructorArgs ItaniumCXXABI::addImplicitConstructorArgs( CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, bool ForVirtualBase, bool Delegating, CallArgList &Args) { if (!NeedsVTTParameter(GlobalDecl(D, Type))) return AddedStructorArgs{}; // Insert the implicit 'vtt' argument as the second argument. llvm::Value *VTT = CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, Delegating); QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy); Args.insert(Args.begin() + 1, CallArg(RValue::get(VTT), VTTTy)); return AddedStructorArgs::prefix(1); // Added one arg. } void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, bool ForVirtualBase, bool Delegating, Address This, QualType ThisTy) { GlobalDecl GD(DD, Type); llvm::Value *VTT = CGF.GetVTTParameter(GD, ForVirtualBase, Delegating); QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy); CGCallee Callee; if (getContext().getLangOpts().AppleKext && Type != Dtor_Base && DD->isVirtual()) Callee = CGF.BuildAppleKextVirtualDestructorCall(DD, Type, DD->getParent()); else Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, VTT, VTTTy, nullptr); } void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, const CXXRecordDecl *RD) { llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits()); if (VTable->hasInitializer()) return; ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext(); const VTableLayout &VTLayout = VTContext.getVTableLayout(RD); llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(CGM.getContext().getTagDeclType(RD)); // Create and set the initializer. ConstantInitBuilder Builder(CGM); auto Components = Builder.beginStruct(); CGVT.createVTableInitializer(Components, VTLayout, RTTI); Components.finishAndSetAsInitializer(VTable); // Set the correct linkage. VTable->setLinkage(Linkage); if (CGM.supportsCOMDAT() && VTable->isWeakForLinker()) VTable->setComdat(CGM.getModule().getOrInsertComdat(VTable->getName())); // Set the right visibility. CGM.setGVProperties(VTable, RD); // If this is the magic class __cxxabiv1::__fundamental_type_info, // we will emit the typeinfo for the fundamental types. This is the // same behaviour as GCC. const DeclContext *DC = RD->getDeclContext(); if (RD->getIdentifier() && RD->getIdentifier()->isStr("__fundamental_type_info") && isa(DC) && cast(DC)->getIdentifier() && cast(DC)->getIdentifier()->isStr("__cxxabiv1") && DC->getParent()->isTranslationUnit()) EmitFundamentalRTTIDescriptors(RD); if (!VTable->isDeclarationForLinker()) CGM.EmitVTableTypeMetadata(VTable, VTLayout); } bool ItaniumCXXABI::isVirtualOffsetNeededForVTableField( CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { if (Vptr.NearestVBase == nullptr) return false; return NeedsVTTParameter(CGF.CurGD); } llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor( CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, const CXXRecordDecl *NearestVBase) { if ((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && NeedsVTTParameter(CGF.CurGD)) { return getVTableAddressPointInStructorWithVTT(CGF, VTableClass, Base, NearestVBase); } return getVTableAddressPoint(Base, VTableClass); } llvm::Constant * ItaniumCXXABI::getVTableAddressPoint(BaseSubobject Base, const CXXRecordDecl *VTableClass) { llvm::GlobalValue *VTable = getAddrOfVTable(VTableClass, CharUnits()); // Find the appropriate vtable within the vtable group, and the address point // within that vtable. VTableLayout::AddressPointLocation AddressPoint = CGM.getItaniumVTableContext() .getVTableLayout(VTableClass) .getAddressPoint(Base); llvm::Value *Indices[] = { llvm::ConstantInt::get(CGM.Int32Ty, 0), llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.VTableIndex), llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.AddressPointIndex), }; return llvm::ConstantExpr::getGetElementPtr(VTable->getValueType(), VTable, Indices, /*InBounds=*/true, /*InRangeIndex=*/1); } llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructorWithVTT( CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, const CXXRecordDecl *NearestVBase) { assert((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && NeedsVTTParameter(CGF.CurGD) && "This class doesn't have VTT"); // Get the secondary vpointer index. uint64_t VirtualPointerIndex = CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base); /// Load the VTT. llvm::Value *VTT = CGF.LoadCXXVTT(); if (VirtualPointerIndex) VTT = CGF.Builder.CreateConstInBoundsGEP1_64(VTT, VirtualPointerIndex); // And load the address point from the VTT. return CGF.Builder.CreateAlignedLoad(VTT, CGF.getPointerAlign()); } llvm::Constant *ItaniumCXXABI::getVTableAddressPointForConstExpr( BaseSubobject Base, const CXXRecordDecl *VTableClass) { return getVTableAddressPoint(Base, VTableClass); } llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, CharUnits VPtrOffset) { assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets"); llvm::GlobalVariable *&VTable = VTables[RD]; if (VTable) return VTable; // Queue up this vtable for possible deferred emission. CGM.addDeferredVTable(RD); SmallString<256> Name; llvm::raw_svector_ostream Out(Name); getMangleContext().mangleCXXVTable(RD, Out); const VTableLayout &VTLayout = CGM.getItaniumVTableContext().getVTableLayout(RD); llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); // Use pointer alignment for the vtable. Otherwise we would align them based // on the size of the initializer which doesn't make sense as only single // values are read. unsigned PAlign = CGM.getTarget().getPointerAlign(0); VTable = CGM.CreateOrReplaceCXXRuntimeVariable( Name, VTableType, llvm::GlobalValue::ExternalLinkage, getContext().toCharUnitsFromBits(PAlign).getQuantity()); VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); CGM.setGVProperties(VTable, RD); return VTable; } CGCallee ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, Address This, llvm::Type *Ty, SourceLocation Loc) { Ty = Ty->getPointerTo()->getPointerTo(); auto *MethodDecl = cast(GD.getDecl()); llvm::Value *VTable = CGF.GetVTablePtr(This, Ty, MethodDecl->getParent()); uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD); llvm::Value *VFunc; if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { VFunc = CGF.EmitVTableTypeCheckedLoad( MethodDecl->getParent(), VTable, VTableIndex * CGM.getContext().getTargetInfo().getPointerWidth(0) / 8); } else { CGF.EmitTypeMetadataCodeForVCall(MethodDecl->getParent(), VTable, Loc); llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64(VTable, VTableIndex, "vfn"); auto *VFuncLoad = CGF.Builder.CreateAlignedLoad(VFuncPtr, CGF.getPointerAlign()); // Add !invariant.load md to virtual function load to indicate that // function didn't change inside vtable. // It's safe to add it without -fstrict-vtable-pointers, but it would not // help in devirtualization because it will only matter if we will have 2 // the same virtual function loads from the same vtable load, which won't // happen without enabled devirtualization with -fstrict-vtable-pointers. if (CGM.getCodeGenOpts().OptimizationLevel > 0 && CGM.getCodeGenOpts().StrictVTablePointers) VFuncLoad->setMetadata( llvm::LLVMContext::MD_invariant_load, llvm::MDNode::get(CGM.getLLVMContext(), llvm::ArrayRef())); VFunc = VFuncLoad; } CGCallee Callee(GD, VFunc); return Callee; } llvm::Value *ItaniumCXXABI::EmitVirtualDestructorCall( CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, Address This, DeleteOrMemberCallExpr E) { auto *CE = E.dyn_cast(); auto *D = E.dyn_cast(); assert((CE != nullptr) ^ (D != nullptr)); assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); GlobalDecl GD(Dtor, DtorType); const CGFunctionInfo *FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(GD); llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); QualType ThisTy; if (CE) { ThisTy = CE->getObjectType(); } else { ThisTy = D->getDestroyedType(); } CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, nullptr, QualType(), nullptr); return nullptr; } void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { CodeGenVTables &VTables = CGM.getVTables(); llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD); VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD); } bool ItaniumCXXABI::canSpeculativelyEmitVTableAsBaseClass( const CXXRecordDecl *RD) const { // We don't emit available_externally vtables if we are in -fapple-kext mode // because kext mode does not permit devirtualization. if (CGM.getLangOpts().AppleKext) return false; // If the vtable is hidden then it is not safe to emit an available_externally // copy of vtable. if (isVTableHidden(RD)) return false; if (CGM.getCodeGenOpts().ForceEmitVTables) return true; // If we don't have any not emitted inline virtual function then we are safe // to emit an available_externally copy of vtable. // FIXME we can still emit a copy of the vtable if we // can emit definition of the inline functions. if (hasAnyUnusedVirtualInlineFunction(RD)) return false; // For a class with virtual bases, we must also be able to speculatively // emit the VTT, because CodeGen doesn't have separate notions of "can emit // the vtable" and "can emit the VTT". For a base subobject, this means we // need to be able to emit non-virtual base vtables. if (RD->getNumVBases()) { for (const auto &B : RD->bases()) { auto *BRD = B.getType()->getAsCXXRecordDecl(); assert(BRD && "no class for base specifier"); if (B.isVirtual() || !BRD->isDynamicClass()) continue; if (!canSpeculativelyEmitVTableAsBaseClass(BRD)) return false; } } return true; } bool ItaniumCXXABI::canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const { if (!canSpeculativelyEmitVTableAsBaseClass(RD)) return false; // For a complete-object vtable (or more specifically, for the VTT), we need // to be able to speculatively emit the vtables of all dynamic virtual bases. for (const auto &B : RD->vbases()) { auto *BRD = B.getType()->getAsCXXRecordDecl(); assert(BRD && "no class for base specifier"); if (!BRD->isDynamicClass()) continue; if (!canSpeculativelyEmitVTableAsBaseClass(BRD)) return false; } return true; } static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF, Address InitialPtr, int64_t NonVirtualAdjustment, int64_t VirtualAdjustment, bool IsReturnAdjustment) { if (!NonVirtualAdjustment && !VirtualAdjustment) return InitialPtr.getPointer(); Address V = CGF.Builder.CreateElementBitCast(InitialPtr, CGF.Int8Ty); // In a base-to-derived cast, the non-virtual adjustment is applied first. if (NonVirtualAdjustment && !IsReturnAdjustment) { V = CGF.Builder.CreateConstInBoundsByteGEP(V, CharUnits::fromQuantity(NonVirtualAdjustment)); } // Perform the virtual adjustment if we have one. llvm::Value *ResultPtr; if (VirtualAdjustment) { llvm::Type *PtrDiffTy = CGF.ConvertType(CGF.getContext().getPointerDiffType()); Address VTablePtrPtr = CGF.Builder.CreateElementBitCast(V, CGF.Int8PtrTy); llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr); llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64(VTablePtr, VirtualAdjustment); OffsetPtr = CGF.Builder.CreateBitCast(OffsetPtr, PtrDiffTy->getPointerTo()); // Load the adjustment offset from the vtable. llvm::Value *Offset = CGF.Builder.CreateAlignedLoad(OffsetPtr, CGF.getPointerAlign()); // Adjust our pointer. ResultPtr = CGF.Builder.CreateInBoundsGEP(V.getPointer(), Offset); } else { ResultPtr = V.getPointer(); } // In a derived-to-base conversion, the non-virtual adjustment is // applied second. if (NonVirtualAdjustment && IsReturnAdjustment) { ResultPtr = CGF.Builder.CreateConstInBoundsGEP1_64(ResultPtr, NonVirtualAdjustment); } // Cast back to the original type. return CGF.Builder.CreateBitCast(ResultPtr, InitialPtr.getType()); } llvm::Value *ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF, Address This, const ThisAdjustment &TA) { return performTypeAdjustment(CGF, This, TA.NonVirtual, TA.Virtual.Itanium.VCallOffsetOffset, /*IsReturnAdjustment=*/false); } llvm::Value * ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, const ReturnAdjustment &RA) { return performTypeAdjustment(CGF, Ret, RA.NonVirtual, RA.Virtual.Itanium.VBaseOffsetOffset, /*IsReturnAdjustment=*/true); } void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, QualType ResultType) { if (!isa(CGF.CurGD.getDecl())) return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); // Destructor thunks in the ARM ABI have indeterminate results. llvm::Type *T = CGF.ReturnValue.getElementType(); RValue Undef = RValue::get(llvm::UndefValue::get(T)); return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType); } /************************** Array allocation cookies **************************/ CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) { // The array cookie is a size_t; pad that up to the element alignment. // The cookie is actually right-justified in that space. return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes), CGM.getContext().getTypeAlignInChars(elementType)); } Address ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, Address NewPtr, llvm::Value *NumElements, const CXXNewExpr *expr, QualType ElementType) { assert(requiresArrayCookie(expr)); unsigned AS = NewPtr.getAddressSpace(); ASTContext &Ctx = getContext(); CharUnits SizeSize = CGF.getSizeSize(); // The size of the cookie. CharUnits CookieSize = std::max(SizeSize, Ctx.getTypeAlignInChars(ElementType)); assert(CookieSize == getArrayCookieSizeImpl(ElementType)); // Compute an offset to the cookie. Address CookiePtr = NewPtr; CharUnits CookieOffset = CookieSize - SizeSize; if (!CookieOffset.isZero()) CookiePtr = CGF.Builder.CreateConstInBoundsByteGEP(CookiePtr, CookieOffset); // Write the number of elements into the appropriate slot. Address NumElementsPtr = CGF.Builder.CreateElementBitCast(CookiePtr, CGF.SizeTy); llvm::Instruction *SI = CGF.Builder.CreateStore(NumElements, NumElementsPtr); // Handle the array cookie specially in ASan. if (CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) && AS == 0 && (expr->getOperatorNew()->isReplaceableGlobalAllocationFunction() || CGM.getCodeGenOpts().SanitizeAddressPoisonCustomArrayCookie)) { // The store to the CookiePtr does not need to be instrumented. CGM.getSanitizerMetadata()->disableSanitizerForInstruction(SI); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, NumElementsPtr.getType(), false); llvm::FunctionCallee F = CGM.CreateRuntimeFunction(FTy, "__asan_poison_cxx_array_cookie"); CGF.Builder.CreateCall(F, NumElementsPtr.getPointer()); } // Finally, compute a pointer to the actual data buffer by skipping // over the cookie completely. return CGF.Builder.CreateConstInBoundsByteGEP(NewPtr, CookieSize); } llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr, CharUnits cookieSize) { // The element size is right-justified in the cookie. Address numElementsPtr = allocPtr; CharUnits numElementsOffset = cookieSize - CGF.getSizeSize(); if (!numElementsOffset.isZero()) numElementsPtr = CGF.Builder.CreateConstInBoundsByteGEP(numElementsPtr, numElementsOffset); unsigned AS = allocPtr.getAddressSpace(); numElementsPtr = CGF.Builder.CreateElementBitCast(numElementsPtr, CGF.SizeTy); if (!CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) || AS != 0) return CGF.Builder.CreateLoad(numElementsPtr); // In asan mode emit a function call instead of a regular load and let the // run-time deal with it: if the shadow is properly poisoned return the // cookie, otherwise return 0 to avoid an infinite loop calling DTORs. // We can't simply ignore this load using nosanitize metadata because // the metadata may be lost. llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.SizeTy, CGF.SizeTy->getPointerTo(0), false); llvm::FunctionCallee F = CGM.CreateRuntimeFunction(FTy, "__asan_load_cxx_array_cookie"); return CGF.Builder.CreateCall(F, numElementsPtr.getPointer()); } CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) { // ARM says that the cookie is always: // struct array_cookie { // std::size_t element_size; // element_size != 0 // std::size_t element_count; // }; // But the base ABI doesn't give anything an alignment greater than // 8, so we can dismiss this as typical ABI-author blindness to // actual language complexity and round up to the element alignment. return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes), CGM.getContext().getTypeAlignInChars(elementType)); } Address ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, Address newPtr, llvm::Value *numElements, const CXXNewExpr *expr, QualType elementType) { assert(requiresArrayCookie(expr)); // The cookie is always at the start of the buffer. Address cookie = newPtr; // The first element is the element size. cookie = CGF.Builder.CreateElementBitCast(cookie, CGF.SizeTy); llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy, getContext().getTypeSizeInChars(elementType).getQuantity()); CGF.Builder.CreateStore(elementSize, cookie); // The second element is the element count. cookie = CGF.Builder.CreateConstInBoundsGEP(cookie, 1); CGF.Builder.CreateStore(numElements, cookie); // Finally, compute a pointer to the actual data buffer by skipping // over the cookie completely. CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType); return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); } llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr, CharUnits cookieSize) { // The number of elements is at offset sizeof(size_t) relative to // the allocated pointer. Address numElementsPtr = CGF.Builder.CreateConstInBoundsByteGEP(allocPtr, CGF.getSizeSize()); numElementsPtr = CGF.Builder.CreateElementBitCast(numElementsPtr, CGF.SizeTy); return CGF.Builder.CreateLoad(numElementsPtr); } /*********************** Static local initialization **************************/ static llvm::FunctionCallee getGuardAcquireFn(CodeGenModule &CGM, llvm::PointerType *GuardPtrTy) { // int __cxa_guard_acquire(__guard *guard_object); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy), GuardPtrTy, /*isVarArg=*/false); return CGM.CreateRuntimeFunction( FTy, "__cxa_guard_acquire", llvm::AttributeList::get(CGM.getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::NoUnwind)); } static llvm::FunctionCallee getGuardReleaseFn(CodeGenModule &CGM, llvm::PointerType *GuardPtrTy) { // void __cxa_guard_release(__guard *guard_object); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); return CGM.CreateRuntimeFunction( FTy, "__cxa_guard_release", llvm::AttributeList::get(CGM.getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::NoUnwind)); } static llvm::FunctionCallee getGuardAbortFn(CodeGenModule &CGM, llvm::PointerType *GuardPtrTy) { // void __cxa_guard_abort(__guard *guard_object); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); return CGM.CreateRuntimeFunction( FTy, "__cxa_guard_abort", llvm::AttributeList::get(CGM.getLLVMContext(), llvm::AttributeList::FunctionIndex, llvm::Attribute::NoUnwind)); } namespace { struct CallGuardAbort final : EHScopeStack::Cleanup { llvm::GlobalVariable *Guard; CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} void Emit(CodeGenFunction &CGF, Flags flags) override { CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()), Guard); } }; } /// The ARM code here follows the Itanium code closely enough that we /// just special-case it at particular places. void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, llvm::GlobalVariable *var, bool shouldPerformInit) { CGBuilderTy &Builder = CGF.Builder; // Inline variables that weren't instantiated from variable templates have // partially-ordered initialization within their translation unit. bool NonTemplateInline = D.isInline() && !isTemplateInstantiation(D.getTemplateSpecializationKind()); // We only need to use thread-safe statics for local non-TLS variables and // inline variables; other global initialization is always single-threaded // or (through lazy dynamic loading in multiple threads) unsequenced. bool threadsafe = getContext().getLangOpts().ThreadsafeStatics && (D.isLocalVarDecl() || NonTemplateInline) && !D.getTLSKind(); // If we have a global variable with internal linkage and thread-safe statics // are disabled, we can just let the guard variable be of type i8. bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage(); llvm::IntegerType *guardTy; CharUnits guardAlignment; if (useInt8GuardVariable) { guardTy = CGF.Int8Ty; guardAlignment = CharUnits::One(); } else { // Guard variables are 64 bits in the generic ABI and size width on ARM // (i.e. 32-bit on AArch32, 64-bit on AArch64). if (UseARMGuardVarABI) { guardTy = CGF.SizeTy; guardAlignment = CGF.getSizeAlign(); } else { guardTy = CGF.Int64Ty; guardAlignment = CharUnits::fromQuantity( CGM.getDataLayout().getABITypeAlignment(guardTy)); } } llvm::PointerType *guardPtrTy = guardTy->getPointerTo(); // Create the guard variable if we don't already have it (as we // might if we're double-emitting this function body). llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D); if (!guard) { // Mangle the name for the guard. SmallString<256> guardName; { llvm::raw_svector_ostream out(guardName); getMangleContext().mangleStaticGuardVariable(&D, out); } // Create the guard variable with a zero-initializer. // Just absorb linkage and visibility from the guarded variable. guard = new llvm::GlobalVariable(CGM.getModule(), guardTy, false, var->getLinkage(), llvm::ConstantInt::get(guardTy, 0), guardName.str()); guard->setDSOLocal(var->isDSOLocal()); guard->setVisibility(var->getVisibility()); // If the variable is thread-local, so is its guard variable. guard->setThreadLocalMode(var->getThreadLocalMode()); guard->setAlignment(guardAlignment.getAsAlign()); // The ABI says: "It is suggested that it be emitted in the same COMDAT // group as the associated data object." In practice, this doesn't work for // non-ELF and non-Wasm object formats, so only do it for ELF and Wasm. llvm::Comdat *C = var->getComdat(); if (!D.isLocalVarDecl() && C && (CGM.getTarget().getTriple().isOSBinFormatELF() || CGM.getTarget().getTriple().isOSBinFormatWasm())) { guard->setComdat(C); // An inline variable's guard function is run from the per-TU // initialization function, not via a dedicated global ctor function, so // we can't put it in a comdat. if (!NonTemplateInline) CGF.CurFn->setComdat(C); } else if (CGM.supportsCOMDAT() && guard->isWeakForLinker()) { guard->setComdat(CGM.getModule().getOrInsertComdat(guard->getName())); } CGM.setStaticLocalDeclGuardAddress(&D, guard); } Address guardAddr = Address(guard, guardAlignment); // Test whether the variable has completed initialization. // // Itanium C++ ABI 3.3.2: // The following is pseudo-code showing how these functions can be used: // if (obj_guard.first_byte == 0) { // if ( __cxa_guard_acquire (&obj_guard) ) { // try { // ... initialize the object ...; // } catch (...) { // __cxa_guard_abort (&obj_guard); // throw; // } // ... queue object destructor with __cxa_atexit() ...; // __cxa_guard_release (&obj_guard); // } // } // Load the first byte of the guard variable. llvm::LoadInst *LI = Builder.CreateLoad(Builder.CreateElementBitCast(guardAddr, CGM.Int8Ty)); // Itanium ABI: // An implementation supporting thread-safety on multiprocessor // systems must also guarantee that references to the initialized // object do not occur before the load of the initialization flag. // // In LLVM, we do this by marking the load Acquire. if (threadsafe) LI->setAtomic(llvm::AtomicOrdering::Acquire); // For ARM, we should only check the first bit, rather than the entire byte: // // ARM C++ ABI 3.2.3.1: // To support the potential use of initialization guard variables // as semaphores that are the target of ARM SWP and LDREX/STREX // synchronizing instructions we define a static initialization // guard variable to be a 4-byte aligned, 4-byte word with the // following inline access protocol. // #define INITIALIZED 1 // if ((obj_guard & INITIALIZED) != INITIALIZED) { // if (__cxa_guard_acquire(&obj_guard)) // ... // } // // and similarly for ARM64: // // ARM64 C++ ABI 3.2.2: // This ABI instead only specifies the value bit 0 of the static guard // variable; all other bits are platform defined. Bit 0 shall be 0 when the // variable is not initialized and 1 when it is. llvm::Value *V = (UseARMGuardVarABI && !useInt8GuardVariable) ? Builder.CreateAnd(LI, llvm::ConstantInt::get(CGM.Int8Ty, 1)) : LI; llvm::Value *NeedsInit = Builder.CreateIsNull(V, "guard.uninitialized"); llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check"); llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); // Check if the first byte of the guard variable is zero. CGF.EmitCXXGuardedInitBranch(NeedsInit, InitCheckBlock, EndBlock, CodeGenFunction::GuardKind::VariableGuard, &D); CGF.EmitBlock(InitCheckBlock); // Variables used when coping with thread-safe statics and exceptions. if (threadsafe) { // Call __cxa_guard_acquire. llvm::Value *V = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard); llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"), InitBlock, EndBlock); // Call __cxa_guard_abort along the exceptional edge. CGF.EHStack.pushCleanup(EHCleanup, guard); CGF.EmitBlock(InitBlock); } // Emit the initializer and add a global destructor if appropriate. CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit); if (threadsafe) { // Pop the guard-abort cleanup if we pushed one. CGF.PopCleanupBlock(); // Call __cxa_guard_release. This cannot throw. CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), guardAddr.getPointer()); } else { Builder.CreateStore(llvm::ConstantInt::get(guardTy, 1), guardAddr); } CGF.EmitBlock(EndBlock); } /// Register a global destructor using __cxa_atexit. static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF, llvm::FunctionCallee dtor, llvm::Constant *addr, bool TLS) { assert((TLS || CGF.getTypes().getCodeGenOpts().CXAAtExit) && "__cxa_atexit is disabled"); const char *Name = "__cxa_atexit"; if (TLS) { const llvm::Triple &T = CGF.getTarget().getTriple(); Name = T.isOSDarwin() ? "_tlv_atexit" : "__cxa_thread_atexit"; } // We're assuming that the destructor function is something we can // reasonably call with the default CC. Go ahead and cast it to the // right prototype. llvm::Type *dtorTy = llvm::FunctionType::get(CGF.VoidTy, CGF.Int8PtrTy, false)->getPointerTo(); // Preserve address space of addr. auto AddrAS = addr ? addr->getType()->getPointerAddressSpace() : 0; auto AddrInt8PtrTy = AddrAS ? CGF.Int8Ty->getPointerTo(AddrAS) : CGF.Int8PtrTy; // Create a variable that binds the atexit to this shared object. llvm::Constant *handle = CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle"); auto *GV = cast(handle->stripPointerCasts()); GV->setVisibility(llvm::GlobalValue::HiddenVisibility); // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d); llvm::Type *paramTys[] = {dtorTy, AddrInt8PtrTy, handle->getType()}; llvm::FunctionType *atexitTy = llvm::FunctionType::get(CGF.IntTy, paramTys, false); // Fetch the actual function. llvm::FunctionCallee atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name); if (llvm::Function *fn = dyn_cast(atexit.getCallee())) fn->setDoesNotThrow(); if (!addr) // addr is null when we are trying to register a dtor annotated with // __attribute__((destructor)) in a constructor function. Using null here is // okay because this argument is just passed back to the destructor // function. addr = llvm::Constant::getNullValue(CGF.Int8PtrTy); llvm::Value *args[] = {llvm::ConstantExpr::getBitCast( cast(dtor.getCallee()), dtorTy), llvm::ConstantExpr::getBitCast(addr, AddrInt8PtrTy), handle}; CGF.EmitNounwindRuntimeCall(atexit, args); } void CodeGenModule::registerGlobalDtorsWithAtExit() { for (const auto I : DtorsUsingAtExit) { int Priority = I.first; const llvm::TinyPtrVector &Dtors = I.second; // Create a function that registers destructors that have the same priority. // // Since constructor functions are run in non-descending order of their // priorities, destructors are registered in non-descending order of their // priorities, and since destructor functions are run in the reverse order // of their registration, destructor functions are run in non-ascending // order of their priorities. CodeGenFunction CGF(*this); std::string GlobalInitFnName = std::string("__GLOBAL_init_") + llvm::to_string(Priority); llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); llvm::Function *GlobalInitFn = CreateGlobalInitOrDestructFunction( FTy, GlobalInitFnName, getTypes().arrangeNullaryFunction(), SourceLocation()); ASTContext &Ctx = getContext(); QualType ReturnTy = Ctx.VoidTy; QualType FunctionTy = Ctx.getFunctionType(ReturnTy, llvm::None, {}); FunctionDecl *FD = FunctionDecl::Create( Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), &Ctx.Idents.get(GlobalInitFnName), FunctionTy, nullptr, SC_Static, false, false); CGF.StartFunction(GlobalDecl(FD), ReturnTy, GlobalInitFn, getTypes().arrangeNullaryFunction(), FunctionArgList(), SourceLocation(), SourceLocation()); for (auto *Dtor : Dtors) { // Register the destructor function calling __cxa_atexit if it is // available. Otherwise fall back on calling atexit. if (getCodeGenOpts().CXAAtExit) emitGlobalDtorWithCXAAtExit(CGF, Dtor, nullptr, false); else CGF.registerGlobalDtorWithAtExit(Dtor); } CGF.FinishFunction(); AddGlobalCtor(GlobalInitFn, Priority, nullptr); } } /// Register a global destructor as best as we know how. void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, llvm::FunctionCallee dtor, llvm::Constant *addr) { if (D.isNoDestroy(CGM.getContext())) return; // emitGlobalDtorWithCXAAtExit will emit a call to either __cxa_thread_atexit // or __cxa_atexit depending on whether this VarDecl is a thread-local storage // or not. CXAAtExit controls only __cxa_atexit, so use it if it is enabled. // We can always use __cxa_thread_atexit. if (CGM.getCodeGenOpts().CXAAtExit || D.getTLSKind()) return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind()); // In Apple kexts, we want to add a global destructor entry. // FIXME: shouldn't this be guarded by some variable? if (CGM.getLangOpts().AppleKext) { // Generate a global destructor entry. return CGM.AddCXXDtorEntry(dtor, addr); } CGF.registerGlobalDtorWithAtExit(D, dtor, addr); } static bool isThreadWrapperReplaceable(const VarDecl *VD, CodeGen::CodeGenModule &CGM) { assert(!VD->isStaticLocal() && "static local VarDecls don't need wrappers!"); // Darwin prefers to have references to thread local variables to go through // the thread wrapper instead of directly referencing the backing variable. return VD->getTLSKind() == VarDecl::TLS_Dynamic && CGM.getTarget().getTriple().isOSDarwin(); } /// Get the appropriate linkage for the wrapper function. This is essentially /// the weak form of the variable's linkage; every translation unit which needs /// the wrapper emits a copy, and we want the linker to merge them. static llvm::GlobalValue::LinkageTypes getThreadLocalWrapperLinkage(const VarDecl *VD, CodeGen::CodeGenModule &CGM) { llvm::GlobalValue::LinkageTypes VarLinkage = CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false); // For internal linkage variables, we don't need an external or weak wrapper. if (llvm::GlobalValue::isLocalLinkage(VarLinkage)) return VarLinkage; // If the thread wrapper is replaceable, give it appropriate linkage. if (isThreadWrapperReplaceable(VD, CGM)) if (!llvm::GlobalVariable::isLinkOnceLinkage(VarLinkage) && !llvm::GlobalVariable::isWeakODRLinkage(VarLinkage)) return VarLinkage; return llvm::GlobalValue::WeakODRLinkage; } llvm::Function * ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD, llvm::Value *Val) { // Mangle the name for the thread_local wrapper function. SmallString<256> WrapperName; { llvm::raw_svector_ostream Out(WrapperName); getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out); } // FIXME: If VD is a definition, we should regenerate the function attributes // before returning. if (llvm::Value *V = CGM.getModule().getNamedValue(WrapperName)) return cast(V); QualType RetQT = VD->getType(); if (RetQT->isReferenceType()) RetQT = RetQT.getNonReferenceType(); const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( getContext().getPointerType(RetQT), FunctionArgList()); llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FI); llvm::Function *Wrapper = llvm::Function::Create(FnTy, getThreadLocalWrapperLinkage(VD, CGM), WrapperName.str(), &CGM.getModule()); CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Wrapper); // Always resolve references to the wrapper at link time. if (!Wrapper->hasLocalLinkage()) if (!isThreadWrapperReplaceable(VD, CGM) || llvm::GlobalVariable::isLinkOnceLinkage(Wrapper->getLinkage()) || llvm::GlobalVariable::isWeakODRLinkage(Wrapper->getLinkage()) || VD->getVisibility() == HiddenVisibility) Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility); if (isThreadWrapperReplaceable(VD, CGM)) { Wrapper->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); Wrapper->addFnAttr(llvm::Attribute::NoUnwind); } ThreadWrappers.push_back({VD, Wrapper}); return Wrapper; } void ItaniumCXXABI::EmitThreadLocalInitFuncs( CodeGenModule &CGM, ArrayRef CXXThreadLocals, ArrayRef CXXThreadLocalInits, ArrayRef CXXThreadLocalInitVars) { llvm::Function *InitFunc = nullptr; // Separate initializers into those with ordered (or partially-ordered) // initialization and those with unordered initialization. llvm::SmallVector OrderedInits; llvm::SmallDenseMap UnorderedInits; for (unsigned I = 0; I != CXXThreadLocalInits.size(); ++I) { if (isTemplateInstantiation( CXXThreadLocalInitVars[I]->getTemplateSpecializationKind())) UnorderedInits[CXXThreadLocalInitVars[I]->getCanonicalDecl()] = CXXThreadLocalInits[I]; else OrderedInits.push_back(CXXThreadLocalInits[I]); } if (!OrderedInits.empty()) { // Generate a guarded initialization function. llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); InitFunc = CGM.CreateGlobalInitOrDestructFunction(FTy, "__tls_init", FI, SourceLocation(), /*TLS=*/true); llvm::GlobalVariable *Guard = new llvm::GlobalVariable( CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false, llvm::GlobalVariable::InternalLinkage, llvm::ConstantInt::get(CGM.Int8Ty, 0), "__tls_guard"); Guard->setThreadLocal(true); CharUnits GuardAlign = CharUnits::One(); Guard->setAlignment(GuardAlign.getAsAlign()); CodeGenFunction(CGM).GenerateCXXGlobalInitFunc( InitFunc, OrderedInits, ConstantAddress(Guard, GuardAlign)); // On Darwin platforms, use CXX_FAST_TLS calling convention. if (CGM.getTarget().getTriple().isOSDarwin()) { InitFunc->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); InitFunc->addFnAttr(llvm::Attribute::NoUnwind); } } // Create declarations for thread wrappers for all thread-local variables // with non-discardable definitions in this translation unit. for (const VarDecl *VD : CXXThreadLocals) { if (VD->hasDefinition() && !isDiscardableGVALinkage(getContext().GetGVALinkageForVariable(VD))) { llvm::GlobalValue *GV = CGM.GetGlobalValue(CGM.getMangledName(VD)); getOrCreateThreadLocalWrapper(VD, GV); } } // Emit all referenced thread wrappers. for (auto VDAndWrapper : ThreadWrappers) { const VarDecl *VD = VDAndWrapper.first; llvm::GlobalVariable *Var = cast(CGM.GetGlobalValue(CGM.getMangledName(VD))); llvm::Function *Wrapper = VDAndWrapper.second; // Some targets require that all access to thread local variables go through // the thread wrapper. This means that we cannot attempt to create a thread // wrapper or a thread helper. if (!VD->hasDefinition()) { if (isThreadWrapperReplaceable(VD, CGM)) { Wrapper->setLinkage(llvm::Function::ExternalLinkage); continue; } // If this isn't a TU in which this variable is defined, the thread // wrapper is discardable. if (Wrapper->getLinkage() == llvm::Function::WeakODRLinkage) Wrapper->setLinkage(llvm::Function::LinkOnceODRLinkage); } CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Wrapper); // Mangle the name for the thread_local initialization function. SmallString<256> InitFnName; { llvm::raw_svector_ostream Out(InitFnName); getMangleContext().mangleItaniumThreadLocalInit(VD, Out); } llvm::FunctionType *InitFnTy = llvm::FunctionType::get(CGM.VoidTy, false); // If we have a definition for the variable, emit the initialization // function as an alias to the global Init function (if any). Otherwise, // produce a declaration of the initialization function. llvm::GlobalValue *Init = nullptr; bool InitIsInitFunc = false; bool HasConstantInitialization = false; if (!usesThreadWrapperFunction(VD)) { HasConstantInitialization = true; } else if (VD->hasDefinition()) { InitIsInitFunc = true; llvm::Function *InitFuncToUse = InitFunc; if (isTemplateInstantiation(VD->getTemplateSpecializationKind())) InitFuncToUse = UnorderedInits.lookup(VD->getCanonicalDecl()); if (InitFuncToUse) Init = llvm::GlobalAlias::create(Var->getLinkage(), InitFnName.str(), InitFuncToUse); } else { // Emit a weak global function referring to the initialization function. // This function will not exist if the TU defining the thread_local // variable in question does not need any dynamic initialization for // its thread_local variables. Init = llvm::Function::Create(InitFnTy, llvm::GlobalVariable::ExternalWeakLinkage, InitFnName.str(), &CGM.getModule()); const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, cast(Init)); } if (Init) { Init->setVisibility(Var->getVisibility()); Init->setDSOLocal(Var->isDSOLocal()); } llvm::LLVMContext &Context = CGM.getModule().getContext(); llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper); CGBuilderTy Builder(CGM, Entry); if (HasConstantInitialization) { // No dynamic initialization to invoke. } else if (InitIsInitFunc) { if (Init) { llvm::CallInst *CallVal = Builder.CreateCall(InitFnTy, Init); if (isThreadWrapperReplaceable(VD, CGM)) { CallVal->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); llvm::Function *Fn = cast(cast(Init)->getAliasee()); Fn->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); } } } else { // Don't know whether we have an init function. Call it if it exists. llvm::Value *Have = Builder.CreateIsNotNull(Init); llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper); llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper); Builder.CreateCondBr(Have, InitBB, ExitBB); Builder.SetInsertPoint(InitBB); Builder.CreateCall(InitFnTy, Init); Builder.CreateBr(ExitBB); Builder.SetInsertPoint(ExitBB); } // For a reference, the result of the wrapper function is a pointer to // the referenced object. llvm::Value *Val = Var; if (VD->getType()->isReferenceType()) { CharUnits Align = CGM.getContext().getDeclAlign(VD); Val = Builder.CreateAlignedLoad(Val, Align); } if (Val->getType() != Wrapper->getReturnType()) Val = Builder.CreatePointerBitCastOrAddrSpaceCast( Val, Wrapper->getReturnType(), ""); Builder.CreateRet(Val); } } LValue ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, QualType LValType) { llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD); llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Val); llvm::CallInst *CallVal = CGF.Builder.CreateCall(Wrapper); CallVal->setCallingConv(Wrapper->getCallingConv()); LValue LV; if (VD->getType()->isReferenceType()) LV = CGF.MakeNaturalAlignAddrLValue(CallVal, LValType); else LV = CGF.MakeAddrLValue(CallVal, LValType, CGF.getContext().getDeclAlign(VD)); // FIXME: need setObjCGCLValueClass? return LV; } /// Return whether the given global decl needs a VTT parameter, which it does /// if it's a base constructor or destructor with virtual bases. bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) { const CXXMethodDecl *MD = cast(GD.getDecl()); // We don't have any virtual bases, just return early. if (!MD->getParent()->getNumVBases()) return false; // Check if we have a base constructor. if (isa(MD) && GD.getCtorType() == Ctor_Base) return true; // Check if we have a base destructor. if (isa(MD) && GD.getDtorType() == Dtor_Base) return true; return false; } namespace { class ItaniumRTTIBuilder { CodeGenModule &CGM; // Per-module state. llvm::LLVMContext &VMContext; const ItaniumCXXABI &CXXABI; // Per-module state. /// Fields - The fields of the RTTI descriptor currently being built. SmallVector Fields; /// GetAddrOfTypeName - Returns the mangled type name of the given type. llvm::GlobalVariable * GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage); /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI /// descriptor of the given type. llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty); /// BuildVTablePointer - Build the vtable pointer for the given type. void BuildVTablePointer(const Type *Ty); /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b. void BuildSIClassTypeInfo(const CXXRecordDecl *RD); /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for /// classes with bases that do not satisfy the abi::__si_class_type_info /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. void BuildVMIClassTypeInfo(const CXXRecordDecl *RD); /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used /// for pointer types. void BuildPointerTypeInfo(QualType PointeeTy); /// BuildObjCObjectTypeInfo - Build the appropriate kind of /// type_info for an object type. void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty); /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info /// struct, used for member pointer types. void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty); public: ItaniumRTTIBuilder(const ItaniumCXXABI &ABI) : CGM(ABI.CGM), VMContext(CGM.getModule().getContext()), CXXABI(ABI) {} // Pointer type info flags. enum { /// PTI_Const - Type has const qualifier. PTI_Const = 0x1, /// PTI_Volatile - Type has volatile qualifier. PTI_Volatile = 0x2, /// PTI_Restrict - Type has restrict qualifier. PTI_Restrict = 0x4, /// PTI_Incomplete - Type is incomplete. PTI_Incomplete = 0x8, /// PTI_ContainingClassIncomplete - Containing class is incomplete. /// (in pointer to member). PTI_ContainingClassIncomplete = 0x10, /// PTI_TransactionSafe - Pointee is transaction_safe function (C++ TM TS). //PTI_TransactionSafe = 0x20, /// PTI_Noexcept - Pointee is noexcept function (C++1z). PTI_Noexcept = 0x40, }; // VMI type info flags. enum { /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance. VMI_NonDiamondRepeat = 0x1, /// VMI_DiamondShaped - Class is diamond shaped. VMI_DiamondShaped = 0x2 }; // Base class type info flags. enum { /// BCTI_Virtual - Base class is virtual. BCTI_Virtual = 0x1, /// BCTI_Public - Base class is public. BCTI_Public = 0x2 }; /// BuildTypeInfo - Build the RTTI type info struct for the given type, or /// link to an existing RTTI descriptor if one already exists. llvm::Constant *BuildTypeInfo(QualType Ty); /// BuildTypeInfo - Build the RTTI type info struct for the given type. llvm::Constant *BuildTypeInfo( QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage, llvm::GlobalValue::VisibilityTypes Visibility, llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass); }; } llvm::GlobalVariable *ItaniumRTTIBuilder::GetAddrOfTypeName( QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage) { SmallString<256> Name; llvm::raw_svector_ostream Out(Name); CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out); // We know that the mangled name of the type starts at index 4 of the // mangled name of the typename, so we can just index into it in order to // get the mangled name of the type. llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, Name.substr(4)); auto Align = CGM.getContext().getTypeAlignInChars(CGM.getContext().CharTy); llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( Name, Init->getType(), Linkage, Align.getQuantity()); GV->setInitializer(Init); return GV; } llvm::Constant * ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) { // Mangle the RTTI name. SmallString<256> Name; llvm::raw_svector_ostream Out(Name); CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); // Look for an existing global. llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name); if (!GV) { // Create a new global variable. // Note for the future: If we would ever like to do deferred emission of // RTTI, check if emitting vtables opportunistically need any adjustment. GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy, /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, Name); const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); CGM.setGVProperties(GV, RD); } return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); } /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type /// info for that type is defined in the standard library. static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) { // Itanium C++ ABI 2.9.2: // Basic type information (e.g. for "int", "bool", etc.) will be kept in // the run-time support library. Specifically, the run-time support // library should contain type_info objects for the types X, X* and // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char, // unsigned char, signed char, short, unsigned short, int, unsigned int, // long, unsigned long, long long, unsigned long long, float, double, // long double, char16_t, char32_t, and the IEEE 754r decimal and // half-precision floating point types. // // GCC also emits RTTI for __int128. // FIXME: We do not emit RTTI information for decimal types here. // Types added here must also be added to EmitFundamentalRTTIDescriptors. switch (Ty->getKind()) { case BuiltinType::Void: case BuiltinType::NullPtr: case BuiltinType::Bool: case BuiltinType::WChar_S: case BuiltinType::WChar_U: case BuiltinType::Char_U: case BuiltinType::Char_S: case BuiltinType::UChar: case BuiltinType::SChar: case BuiltinType::Short: case BuiltinType::UShort: case BuiltinType::Int: case BuiltinType::UInt: case BuiltinType::Long: case BuiltinType::ULong: case BuiltinType::LongLong: case BuiltinType::ULongLong: case BuiltinType::Half: case BuiltinType::Float: case BuiltinType::Double: case BuiltinType::LongDouble: case BuiltinType::Float16: case BuiltinType::Float128: case BuiltinType::Char8: case BuiltinType::Char16: case BuiltinType::Char32: case BuiltinType::Int128: case BuiltinType::UInt128: return true; #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ case BuiltinType::Id: #include "clang/Basic/OpenCLImageTypes.def" #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ case BuiltinType::Id: #include "clang/Basic/OpenCLExtensionTypes.def" case BuiltinType::OCLSampler: case BuiltinType::OCLEvent: case BuiltinType::OCLClkEvent: case BuiltinType::OCLQueue: case BuiltinType::OCLReserveID: #define SVE_TYPE(Name, Id, SingletonId) \ case BuiltinType::Id: #include "clang/Basic/AArch64SVEACLETypes.def" case BuiltinType::ShortAccum: case BuiltinType::Accum: case BuiltinType::LongAccum: case BuiltinType::UShortAccum: case BuiltinType::UAccum: case BuiltinType::ULongAccum: case BuiltinType::ShortFract: case BuiltinType::Fract: case BuiltinType::LongFract: case BuiltinType::UShortFract: case BuiltinType::UFract: case BuiltinType::ULongFract: case BuiltinType::SatShortAccum: case BuiltinType::SatAccum: case BuiltinType::SatLongAccum: case BuiltinType::SatUShortAccum: case BuiltinType::SatUAccum: case BuiltinType::SatULongAccum: case BuiltinType::SatShortFract: case BuiltinType::SatFract: case BuiltinType::SatLongFract: case BuiltinType::SatUShortFract: case BuiltinType::SatUFract: case BuiltinType::SatULongFract: return false; case BuiltinType::Dependent: #define BUILTIN_TYPE(Id, SingletonId) #define PLACEHOLDER_TYPE(Id, SingletonId) \ case BuiltinType::Id: #include "clang/AST/BuiltinTypes.def" llvm_unreachable("asking for RRTI for a placeholder type!"); case BuiltinType::ObjCId: case BuiltinType::ObjCClass: case BuiltinType::ObjCSel: llvm_unreachable("FIXME: Objective-C types are unsupported!"); } llvm_unreachable("Invalid BuiltinType Kind!"); } static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) { QualType PointeeTy = PointerTy->getPointeeType(); const BuiltinType *BuiltinTy = dyn_cast(PointeeTy); if (!BuiltinTy) return false; // Check the qualifiers. Qualifiers Quals = PointeeTy.getQualifiers(); Quals.removeConst(); if (!Quals.empty()) return false; return TypeInfoIsInStandardLibrary(BuiltinTy); } /// IsStandardLibraryRTTIDescriptor - Returns whether the type /// information for the given type exists in the standard library. static bool IsStandardLibraryRTTIDescriptor(QualType Ty) { // Type info for builtin types is defined in the standard library. if (const BuiltinType *BuiltinTy = dyn_cast(Ty)) return TypeInfoIsInStandardLibrary(BuiltinTy); // Type info for some pointer types to builtin types is defined in the // standard library. if (const PointerType *PointerTy = dyn_cast(Ty)) return TypeInfoIsInStandardLibrary(PointerTy); return false; } /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for /// the given type exists somewhere else, and that we should not emit the type /// information in this translation unit. Assumes that it is not a /// standard-library type. static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, QualType Ty) { ASTContext &Context = CGM.getContext(); // If RTTI is disabled, assume it might be disabled in the // translation unit that defines any potential key function, too. if (!Context.getLangOpts().RTTI) return false; if (const RecordType *RecordTy = dyn_cast(Ty)) { const CXXRecordDecl *RD = cast(RecordTy->getDecl()); if (!RD->hasDefinition()) return false; if (!RD->isDynamicClass()) return false; // FIXME: this may need to be reconsidered if the key function // changes. // N.B. We must always emit the RTTI data ourselves if there exists a key // function. bool IsDLLImport = RD->hasAttr(); // Don't import the RTTI but emit it locally. if (CGM.getTriple().isWindowsGNUEnvironment()) return false; if (CGM.getVTables().isVTableExternal(RD)) return IsDLLImport && !CGM.getTriple().isWindowsItaniumEnvironment() ? false : true; if (IsDLLImport) return true; } return false; } /// IsIncompleteClassType - Returns whether the given record type is incomplete. static bool IsIncompleteClassType(const RecordType *RecordTy) { return !RecordTy->getDecl()->isCompleteDefinition(); } /// ContainsIncompleteClassType - Returns whether the given type contains an /// incomplete class type. This is true if /// /// * The given type is an incomplete class type. /// * The given type is a pointer type whose pointee type contains an /// incomplete class type. /// * The given type is a member pointer type whose class is an incomplete /// class type. /// * The given type is a member pointer type whoise pointee type contains an /// incomplete class type. /// is an indirect or direct pointer to an incomplete class type. static bool ContainsIncompleteClassType(QualType Ty) { if (const RecordType *RecordTy = dyn_cast(Ty)) { if (IsIncompleteClassType(RecordTy)) return true; } if (const PointerType *PointerTy = dyn_cast(Ty)) return ContainsIncompleteClassType(PointerTy->getPointeeType()); if (const MemberPointerType *MemberPointerTy = dyn_cast(Ty)) { // Check if the class type is incomplete. const RecordType *ClassType = cast(MemberPointerTy->getClass()); if (IsIncompleteClassType(ClassType)) return true; return ContainsIncompleteClassType(MemberPointerTy->getPointeeType()); } return false; } // CanUseSingleInheritance - Return whether the given record decl has a "single, // public, non-virtual base at offset zero (i.e. the derived class is dynamic // iff the base is)", according to Itanium C++ ABI, 2.95p6b. static bool CanUseSingleInheritance(const CXXRecordDecl *RD) { // Check the number of bases. if (RD->getNumBases() != 1) return false; // Get the base. CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(); // Check that the base is not virtual. if (Base->isVirtual()) return false; // Check that the base is public. if (Base->getAccessSpecifier() != AS_public) return false; // Check that the class is dynamic iff the base is. auto *BaseDecl = cast(Base->getType()->castAs()->getDecl()); if (!BaseDecl->isEmpty() && BaseDecl->isDynamicClass() != RD->isDynamicClass()) return false; return true; } void ItaniumRTTIBuilder::BuildVTablePointer(const Type *Ty) { // abi::__class_type_info. static const char * const ClassTypeInfo = "_ZTVN10__cxxabiv117__class_type_infoE"; // abi::__si_class_type_info. static const char * const SIClassTypeInfo = "_ZTVN10__cxxabiv120__si_class_type_infoE"; // abi::__vmi_class_type_info. static const char * const VMIClassTypeInfo = "_ZTVN10__cxxabiv121__vmi_class_type_infoE"; const char *VTableName = nullptr; switch (Ty->getTypeClass()) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: #define DEPENDENT_TYPE(Class, Base) case Type::Class: #include "clang/AST/TypeNodes.inc" llvm_unreachable("Non-canonical and dependent types shouldn't get here"); case Type::LValueReference: case Type::RValueReference: llvm_unreachable("References shouldn't get here"); case Type::Auto: case Type::DeducedTemplateSpecialization: llvm_unreachable("Undeduced type shouldn't get here"); case Type::Pipe: llvm_unreachable("Pipe types shouldn't get here"); case Type::Builtin: // GCC treats vector and complex types as fundamental types. case Type::Vector: case Type::ExtVector: case Type::Complex: case Type::Atomic: // FIXME: GCC treats block pointers as fundamental types?! case Type::BlockPointer: // abi::__fundamental_type_info. VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE"; break; case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: // abi::__array_type_info. VTableName = "_ZTVN10__cxxabiv117__array_type_infoE"; break; case Type::FunctionNoProto: case Type::FunctionProto: // abi::__function_type_info. VTableName = "_ZTVN10__cxxabiv120__function_type_infoE"; break; case Type::Enum: // abi::__enum_type_info. VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE"; break; case Type::Record: { const CXXRecordDecl *RD = cast(cast(Ty)->getDecl()); if (!RD->hasDefinition() || !RD->getNumBases()) { VTableName = ClassTypeInfo; } else if (CanUseSingleInheritance(RD)) { VTableName = SIClassTypeInfo; } else { VTableName = VMIClassTypeInfo; } break; } case Type::ObjCObject: // Ignore protocol qualifiers. Ty = cast(Ty)->getBaseType().getTypePtr(); // Handle id and Class. if (isa(Ty)) { VTableName = ClassTypeInfo; break; } assert(isa(Ty)); LLVM_FALLTHROUGH; case Type::ObjCInterface: if (cast(Ty)->getDecl()->getSuperClass()) { VTableName = SIClassTypeInfo; } else { VTableName = ClassTypeInfo; } break; case Type::ObjCObjectPointer: case Type::Pointer: // abi::__pointer_type_info. VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE"; break; case Type::MemberPointer: // abi::__pointer_to_member_type_info. VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE"; break; } llvm::Constant *VTable = CGM.getModule().getOrInsertGlobal(VTableName, CGM.Int8PtrTy); CGM.setDSOLocal(cast(VTable->stripPointerCasts())); llvm::Type *PtrDiffTy = CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); // The vtable address point is 2. llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2); VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(CGM.Int8PtrTy, VTable, Two); VTable = llvm::ConstantExpr::getBitCast(VTable, CGM.Int8PtrTy); Fields.push_back(VTable); } /// Return the linkage that the type info and type info name constants /// should have for the given type. static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(CodeGenModule &CGM, QualType Ty) { // Itanium C++ ABI 2.9.5p7: // In addition, it and all of the intermediate abi::__pointer_type_info // structs in the chain down to the abi::__class_type_info for the // incomplete class type must be prevented from resolving to the // corresponding type_info structs for the complete class type, possibly // by making them local static objects. Finally, a dummy class RTTI is // generated for the incomplete type that will not resolve to the final // complete class RTTI (because the latter need not exist), possibly by // making it a local static object. if (ContainsIncompleteClassType(Ty)) return llvm::GlobalValue::InternalLinkage; switch (Ty->getLinkage()) { case NoLinkage: case InternalLinkage: case UniqueExternalLinkage: return llvm::GlobalValue::InternalLinkage; case VisibleNoLinkage: case ModuleInternalLinkage: case ModuleLinkage: case ExternalLinkage: // RTTI is not enabled, which means that this type info struct is going // to be used for exception handling. Give it linkonce_odr linkage. if (!CGM.getLangOpts().RTTI) return llvm::GlobalValue::LinkOnceODRLinkage; if (const RecordType *Record = dyn_cast(Ty)) { const CXXRecordDecl *RD = cast(Record->getDecl()); if (RD->hasAttr()) return llvm::GlobalValue::WeakODRLinkage; if (CGM.getTriple().isWindowsItaniumEnvironment()) if (RD->hasAttr() && ShouldUseExternalRTTIDescriptor(CGM, Ty)) return llvm::GlobalValue::ExternalLinkage; // MinGW always uses LinkOnceODRLinkage for type info. if (RD->isDynamicClass() && !CGM.getContext() .getTargetInfo() .getTriple() .isWindowsGNUEnvironment()) return CGM.getVTableLinkage(RD); } return llvm::GlobalValue::LinkOnceODRLinkage; } llvm_unreachable("Invalid linkage!"); } llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty) { // We want to operate on the canonical type. Ty = Ty.getCanonicalType(); // Check if we've already emitted an RTTI descriptor for this type. SmallString<256> Name; llvm::raw_svector_ostream Out(Name); CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name); if (OldGV && !OldGV->isDeclaration()) { assert(!OldGV->hasAvailableExternallyLinkage() && "available_externally typeinfos not yet implemented"); return llvm::ConstantExpr::getBitCast(OldGV, CGM.Int8PtrTy); } // Check if there is already an external RTTI descriptor for this type. if (IsStandardLibraryRTTIDescriptor(Ty) || ShouldUseExternalRTTIDescriptor(CGM, Ty)) return GetAddrOfExternalRTTIDescriptor(Ty); // Emit the standard library with external linkage. llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty); // Give the type_info object and name the formal visibility of the // type itself. llvm::GlobalValue::VisibilityTypes llvmVisibility; if (llvm::GlobalValue::isLocalLinkage(Linkage)) // If the linkage is local, only default visibility makes sense. llvmVisibility = llvm::GlobalValue::DefaultVisibility; else if (CXXABI.classifyRTTIUniqueness(Ty, Linkage) == ItaniumCXXABI::RUK_NonUniqueHidden) llvmVisibility = llvm::GlobalValue::HiddenVisibility; else llvmVisibility = CodeGenModule::GetLLVMVisibility(Ty->getVisibility()); llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass = llvm::GlobalValue::DefaultStorageClass; if (CGM.getTriple().isWindowsItaniumEnvironment()) { auto RD = Ty->getAsCXXRecordDecl(); if (RD && RD->hasAttr()) DLLStorageClass = llvm::GlobalValue::DLLExportStorageClass; } return BuildTypeInfo(Ty, Linkage, llvmVisibility, DLLStorageClass); } llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo( QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage, llvm::GlobalValue::VisibilityTypes Visibility, llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass) { // Add the vtable pointer. BuildVTablePointer(cast(Ty)); // And the name. llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage); llvm::Constant *TypeNameField; // If we're supposed to demote the visibility, be sure to set a flag // to use a string comparison for type_info comparisons. ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness = CXXABI.classifyRTTIUniqueness(Ty, Linkage); if (RTTIUniqueness != ItaniumCXXABI::RUK_Unique) { // The flag is the sign bit, which on ARM64 is defined to be clear // for global pointers. This is very ARM64-specific. TypeNameField = llvm::ConstantExpr::getPtrToInt(TypeName, CGM.Int64Ty); llvm::Constant *flag = llvm::ConstantInt::get(CGM.Int64Ty, ((uint64_t)1) << 63); TypeNameField = llvm::ConstantExpr::getAdd(TypeNameField, flag); TypeNameField = llvm::ConstantExpr::getIntToPtr(TypeNameField, CGM.Int8PtrTy); } else { TypeNameField = llvm::ConstantExpr::getBitCast(TypeName, CGM.Int8PtrTy); } Fields.push_back(TypeNameField); switch (Ty->getTypeClass()) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: #define DEPENDENT_TYPE(Class, Base) case Type::Class: #include "clang/AST/TypeNodes.inc" llvm_unreachable("Non-canonical and dependent types shouldn't get here"); // GCC treats vector types as fundamental types. case Type::Builtin: case Type::Vector: case Type::ExtVector: case Type::Complex: case Type::BlockPointer: // Itanium C++ ABI 2.9.5p4: // abi::__fundamental_type_info adds no data members to std::type_info. break; case Type::LValueReference: case Type::RValueReference: llvm_unreachable("References shouldn't get here"); case Type::Auto: case Type::DeducedTemplateSpecialization: llvm_unreachable("Undeduced type shouldn't get here"); case Type::Pipe: llvm_unreachable("Pipe type shouldn't get here"); case Type::ConstantArray: case Type::IncompleteArray: case Type::VariableArray: // Itanium C++ ABI 2.9.5p5: // abi::__array_type_info adds no data members to std::type_info. break; case Type::FunctionNoProto: case Type::FunctionProto: // Itanium C++ ABI 2.9.5p5: // abi::__function_type_info adds no data members to std::type_info. break; case Type::Enum: // Itanium C++ ABI 2.9.5p5: // abi::__enum_type_info adds no data members to std::type_info. break; case Type::Record: { const CXXRecordDecl *RD = cast(cast(Ty)->getDecl()); if (!RD->hasDefinition() || !RD->getNumBases()) { // We don't need to emit any fields. break; } if (CanUseSingleInheritance(RD)) BuildSIClassTypeInfo(RD); else BuildVMIClassTypeInfo(RD); break; } case Type::ObjCObject: case Type::ObjCInterface: BuildObjCObjectTypeInfo(cast(Ty)); break; case Type::ObjCObjectPointer: BuildPointerTypeInfo(cast(Ty)->getPointeeType()); break; case Type::Pointer: BuildPointerTypeInfo(cast(Ty)->getPointeeType()); break; case Type::MemberPointer: BuildPointerToMemberTypeInfo(cast(Ty)); break; case Type::Atomic: // No fields, at least for the moment. break; } llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields); SmallString<256> Name; llvm::raw_svector_ostream Out(Name); CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); llvm::Module &M = CGM.getModule(); llvm::GlobalVariable *OldGV = M.getNamedGlobal(Name); llvm::GlobalVariable *GV = new llvm::GlobalVariable(M, Init->getType(), /*isConstant=*/true, Linkage, Init, Name); // If there's already an old global variable, replace it with the new one. if (OldGV) { GV->takeName(OldGV); llvm::Constant *NewPtr = llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); OldGV->replaceAllUsesWith(NewPtr); OldGV->eraseFromParent(); } if (CGM.supportsCOMDAT() && GV->isWeakForLinker()) GV->setComdat(M.getOrInsertComdat(GV->getName())); CharUnits Align = CGM.getContext().toCharUnitsFromBits(CGM.getTarget().getPointerAlign(0)); GV->setAlignment(Align.getAsAlign()); // The Itanium ABI specifies that type_info objects must be globally // unique, with one exception: if the type is an incomplete class // type or a (possibly indirect) pointer to one. That exception // affects the general case of comparing type_info objects produced // by the typeid operator, which is why the comparison operators on // std::type_info generally use the type_info name pointers instead // of the object addresses. However, the language's built-in uses // of RTTI generally require class types to be complete, even when // manipulating pointers to those class types. This allows the // implementation of dynamic_cast to rely on address equality tests, // which is much faster. // All of this is to say that it's important that both the type_info // object and the type_info name be uniqued when weakly emitted. TypeName->setVisibility(Visibility); CGM.setDSOLocal(TypeName); GV->setVisibility(Visibility); CGM.setDSOLocal(GV); TypeName->setDLLStorageClass(DLLStorageClass); GV->setDLLStorageClass(DLLStorageClass); TypeName->setPartition(CGM.getCodeGenOpts().SymbolPartition); GV->setPartition(CGM.getCodeGenOpts().SymbolPartition); return llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy); } /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info /// for the given Objective-C object type. void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) { // Drop qualifiers. const Type *T = OT->getBaseType().getTypePtr(); assert(isa(T) || isa(T)); // The builtin types are abi::__class_type_infos and don't require // extra fields. if (isa(T)) return; ObjCInterfaceDecl *Class = cast(T)->getDecl(); ObjCInterfaceDecl *Super = Class->getSuperClass(); // Root classes are also __class_type_info. if (!Super) return; QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super); // Everything else is single inheritance. llvm::Constant *BaseTypeInfo = ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(SuperTy); Fields.push_back(BaseTypeInfo); } /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single /// inheritance, according to the Itanium C++ ABI, 2.95p6b. void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) { // Itanium C++ ABI 2.9.5p6b: // It adds to abi::__class_type_info a single member pointing to the // type_info structure for the base type, llvm::Constant *BaseTypeInfo = ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(RD->bases_begin()->getType()); Fields.push_back(BaseTypeInfo); } namespace { /// SeenBases - Contains virtual and non-virtual bases seen when traversing /// a class hierarchy. struct SeenBases { llvm::SmallPtrSet NonVirtualBases; llvm::SmallPtrSet VirtualBases; }; } /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in /// abi::__vmi_class_type_info. /// static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base, SeenBases &Bases) { unsigned Flags = 0; auto *BaseDecl = cast(Base->getType()->castAs()->getDecl()); if (Base->isVirtual()) { // Mark the virtual base as seen. if (!Bases.VirtualBases.insert(BaseDecl).second) { // If this virtual base has been seen before, then the class is diamond // shaped. Flags |= ItaniumRTTIBuilder::VMI_DiamondShaped; } else { if (Bases.NonVirtualBases.count(BaseDecl)) Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; } } else { // Mark the non-virtual base as seen. if (!Bases.NonVirtualBases.insert(BaseDecl).second) { // If this non-virtual base has been seen before, then the class has non- // diamond shaped repeated inheritance. Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; } else { if (Bases.VirtualBases.count(BaseDecl)) Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; } } // Walk all bases. for (const auto &I : BaseDecl->bases()) Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases); return Flags; } static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) { unsigned Flags = 0; SeenBases Bases; // Walk all bases. for (const auto &I : RD->bases()) Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases); return Flags; } /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for /// classes with bases that do not satisfy the abi::__si_class_type_info /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) { llvm::Type *UnsignedIntLTy = CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); // Itanium C++ ABI 2.9.5p6c: // __flags is a word with flags describing details about the class // structure, which may be referenced by using the __flags_masks // enumeration. These flags refer to both direct and indirect bases. unsigned Flags = ComputeVMIClassTypeInfoFlags(RD); Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); // Itanium C++ ABI 2.9.5p6c: // __base_count is a word with the number of direct proper base class // descriptions that follow. Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases())); if (!RD->getNumBases()) return; // Now add the base class descriptions. // Itanium C++ ABI 2.9.5p6c: // __base_info[] is an array of base class descriptions -- one for every // direct proper base. Each description is of the type: // // struct abi::__base_class_type_info { // public: // const __class_type_info *__base_type; // long __offset_flags; // // enum __offset_flags_masks { // __virtual_mask = 0x1, // __public_mask = 0x2, // __offset_shift = 8 // }; // }; // If we're in mingw and 'long' isn't wide enough for a pointer, use 'long // long' instead of 'long' for __offset_flags. libstdc++abi uses long long on // LLP64 platforms. // FIXME: Consider updating libc++abi to match, and extend this logic to all // LLP64 platforms. QualType OffsetFlagsTy = CGM.getContext().LongTy; const TargetInfo &TI = CGM.getContext().getTargetInfo(); if (TI.getTriple().isOSCygMing() && TI.getPointerWidth(0) > TI.getLongWidth()) OffsetFlagsTy = CGM.getContext().LongLongTy; llvm::Type *OffsetFlagsLTy = CGM.getTypes().ConvertType(OffsetFlagsTy); for (const auto &Base : RD->bases()) { // The __base_type member points to the RTTI for the base type. Fields.push_back(ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Base.getType())); auto *BaseDecl = cast(Base.getType()->castAs()->getDecl()); int64_t OffsetFlags = 0; // All but the lower 8 bits of __offset_flags are a signed offset. // For a non-virtual base, this is the offset in the object of the base // subobject. For a virtual base, this is the offset in the virtual table of // the virtual base offset for the virtual base referenced (negative). CharUnits Offset; if (Base.isVirtual()) Offset = CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl); else { const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); Offset = Layout.getBaseClassOffset(BaseDecl); }; OffsetFlags = uint64_t(Offset.getQuantity()) << 8; // The low-order byte of __offset_flags contains flags, as given by the // masks from the enumeration __offset_flags_masks. if (Base.isVirtual()) OffsetFlags |= BCTI_Virtual; if (Base.getAccessSpecifier() == AS_public) OffsetFlags |= BCTI_Public; Fields.push_back(llvm::ConstantInt::get(OffsetFlagsLTy, OffsetFlags)); } } /// Compute the flags for a __pbase_type_info, and remove the corresponding /// pieces from \p Type. static unsigned extractPBaseFlags(ASTContext &Ctx, QualType &Type) { unsigned Flags = 0; if (Type.isConstQualified()) Flags |= ItaniumRTTIBuilder::PTI_Const; if (Type.isVolatileQualified()) Flags |= ItaniumRTTIBuilder::PTI_Volatile; if (Type.isRestrictQualified()) Flags |= ItaniumRTTIBuilder::PTI_Restrict; Type = Type.getUnqualifiedType(); // Itanium C++ ABI 2.9.5p7: // When the abi::__pbase_type_info is for a direct or indirect pointer to an // incomplete class type, the incomplete target type flag is set. if (ContainsIncompleteClassType(Type)) Flags |= ItaniumRTTIBuilder::PTI_Incomplete; if (auto *Proto = Type->getAs()) { if (Proto->isNothrow()) { Flags |= ItaniumRTTIBuilder::PTI_Noexcept; Type = Ctx.getFunctionTypeWithExceptionSpec(Type, EST_None); } } return Flags; } /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, /// used for pointer types. void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) { // Itanium C++ ABI 2.9.5p7: // __flags is a flag word describing the cv-qualification and other // attributes of the type pointed to unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy); llvm::Type *UnsignedIntLTy = CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); // Itanium C++ ABI 2.9.5p7: // __pointee is a pointer to the std::type_info derivation for the // unqualified type being pointed to. llvm::Constant *PointeeTypeInfo = ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy); Fields.push_back(PointeeTypeInfo); } /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info /// struct, used for member pointer types. void ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) { QualType PointeeTy = Ty->getPointeeType(); // Itanium C++ ABI 2.9.5p7: // __flags is a flag word describing the cv-qualification and other // attributes of the type pointed to. unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy); const RecordType *ClassType = cast(Ty->getClass()); if (IsIncompleteClassType(ClassType)) Flags |= PTI_ContainingClassIncomplete; llvm::Type *UnsignedIntLTy = CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); // Itanium C++ ABI 2.9.5p7: // __pointee is a pointer to the std::type_info derivation for the // unqualified type being pointed to. llvm::Constant *PointeeTypeInfo = ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy); Fields.push_back(PointeeTypeInfo); // Itanium C++ ABI 2.9.5p9: // __context is a pointer to an abi::__class_type_info corresponding to the // class type containing the member pointed to // (e.g., the "A" in "int A::*"). Fields.push_back( ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(QualType(ClassType, 0))); } llvm::Constant *ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty) { return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty); } void ItaniumCXXABI::EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD) { // Types added here must also be added to TypeInfoIsInStandardLibrary. QualType FundamentalTypes[] = { getContext().VoidTy, getContext().NullPtrTy, getContext().BoolTy, getContext().WCharTy, getContext().CharTy, getContext().UnsignedCharTy, getContext().SignedCharTy, getContext().ShortTy, getContext().UnsignedShortTy, getContext().IntTy, getContext().UnsignedIntTy, getContext().LongTy, getContext().UnsignedLongTy, getContext().LongLongTy, getContext().UnsignedLongLongTy, getContext().Int128Ty, getContext().UnsignedInt128Ty, getContext().HalfTy, getContext().FloatTy, getContext().DoubleTy, getContext().LongDoubleTy, getContext().Float128Ty, getContext().Char8Ty, getContext().Char16Ty, getContext().Char32Ty }; llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass = RD->hasAttr() ? llvm::GlobalValue::DLLExportStorageClass : llvm::GlobalValue::DefaultStorageClass; llvm::GlobalValue::VisibilityTypes Visibility = CodeGenModule::GetLLVMVisibility(RD->getVisibility()); for (const QualType &FundamentalType : FundamentalTypes) { QualType PointerType = getContext().getPointerType(FundamentalType); QualType PointerTypeConst = getContext().getPointerType( FundamentalType.withConst()); for (QualType Type : {FundamentalType, PointerType, PointerTypeConst}) ItaniumRTTIBuilder(*this).BuildTypeInfo( Type, llvm::GlobalValue::ExternalLinkage, Visibility, DLLStorageClass); } } /// What sort of uniqueness rules should we use for the RTTI for the /// given type? ItaniumCXXABI::RTTIUniquenessKind ItaniumCXXABI::classifyRTTIUniqueness( QualType CanTy, llvm::GlobalValue::LinkageTypes Linkage) const { if (shouldRTTIBeUnique()) return RUK_Unique; // It's only necessary for linkonce_odr or weak_odr linkage. if (Linkage != llvm::GlobalValue::LinkOnceODRLinkage && Linkage != llvm::GlobalValue::WeakODRLinkage) return RUK_Unique; // It's only necessary with default visibility. if (CanTy->getVisibility() != DefaultVisibility) return RUK_Unique; // If we're not required to publish this symbol, hide it. if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage) return RUK_NonUniqueHidden; // If we're required to publish this symbol, as we might be under an // explicit instantiation, leave it with default visibility but // enable string-comparisons. assert(Linkage == llvm::GlobalValue::WeakODRLinkage); return RUK_NonUniqueVisible; } // Find out how to codegen the complete destructor and constructor namespace { enum class StructorCodegen { Emit, RAUW, Alias, COMDAT }; } static StructorCodegen getCodegenToUse(CodeGenModule &CGM, const CXXMethodDecl *MD) { if (!CGM.getCodeGenOpts().CXXCtorDtorAliases) return StructorCodegen::Emit; // The complete and base structors are not equivalent if there are any virtual // bases, so emit separate functions. if (MD->getParent()->getNumVBases()) return StructorCodegen::Emit; GlobalDecl AliasDecl; if (const auto *DD = dyn_cast(MD)) { AliasDecl = GlobalDecl(DD, Dtor_Complete); } else { const auto *CD = cast(MD); AliasDecl = GlobalDecl(CD, Ctor_Complete); } llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl); if (llvm::GlobalValue::isDiscardableIfUnused(Linkage)) return StructorCodegen::RAUW; // FIXME: Should we allow available_externally aliases? if (!llvm::GlobalAlias::isValidLinkage(Linkage)) return StructorCodegen::RAUW; if (llvm::GlobalValue::isWeakForLinker(Linkage)) { // Only ELF and wasm support COMDATs with arbitrary names (C5/D5). if (CGM.getTarget().getTriple().isOSBinFormatELF() || CGM.getTarget().getTriple().isOSBinFormatWasm()) return StructorCodegen::COMDAT; return StructorCodegen::Emit; } return StructorCodegen::Alias; } static void emitConstructorDestructorAlias(CodeGenModule &CGM, GlobalDecl AliasDecl, GlobalDecl TargetDecl) { llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl); StringRef MangledName = CGM.getMangledName(AliasDecl); llvm::GlobalValue *Entry = CGM.GetGlobalValue(MangledName); if (Entry && !Entry->isDeclaration()) return; auto *Aliasee = cast(CGM.GetAddrOfGlobal(TargetDecl)); // Create the alias with no name. auto *Alias = llvm::GlobalAlias::create(Linkage, "", Aliasee); // Constructors and destructors are always unnamed_addr. Alias->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); // Switch any previous uses to the alias. if (Entry) { assert(Entry->getType() == Aliasee->getType() && "declaration exists with different type"); Alias->takeName(Entry); Entry->replaceAllUsesWith(Alias); Entry->eraseFromParent(); } else { Alias->setName(MangledName); } // Finally, set up the alias with its proper name and attributes. CGM.SetCommonAttributes(AliasDecl, Alias); } void ItaniumCXXABI::emitCXXStructor(GlobalDecl GD) { auto *MD = cast(GD.getDecl()); auto *CD = dyn_cast(MD); const CXXDestructorDecl *DD = CD ? nullptr : cast(MD); StructorCodegen CGType = getCodegenToUse(CGM, MD); if (CD ? GD.getCtorType() == Ctor_Complete : GD.getDtorType() == Dtor_Complete) { GlobalDecl BaseDecl; if (CD) BaseDecl = GD.getWithCtorType(Ctor_Base); else BaseDecl = GD.getWithDtorType(Dtor_Base); if (CGType == StructorCodegen::Alias || CGType == StructorCodegen::COMDAT) { emitConstructorDestructorAlias(CGM, GD, BaseDecl); return; } if (CGType == StructorCodegen::RAUW) { StringRef MangledName = CGM.getMangledName(GD); auto *Aliasee = CGM.GetAddrOfGlobal(BaseDecl); CGM.addReplacement(MangledName, Aliasee); return; } } // The base destructor is equivalent to the base destructor of its // base class if there is exactly one non-virtual base class with a // non-trivial destructor, there are no fields with a non-trivial // destructor, and the body of the destructor is trivial. if (DD && GD.getDtorType() == Dtor_Base && CGType != StructorCodegen::COMDAT && !CGM.TryEmitBaseDestructorAsAlias(DD)) return; // FIXME: The deleting destructor is equivalent to the selected operator // delete if: // * either the delete is a destroying operator delete or the destructor // would be trivial if it weren't virtual, // * the conversion from the 'this' parameter to the first parameter of the // destructor is equivalent to a bitcast, // * the destructor does not have an implicit "this" return, and // * the operator delete has the same calling convention and IR function type // as the destructor. // In such cases we should try to emit the deleting dtor as an alias to the // selected 'operator delete'. llvm::Function *Fn = CGM.codegenCXXStructor(GD); if (CGType == StructorCodegen::COMDAT) { SmallString<256> Buffer; llvm::raw_svector_ostream Out(Buffer); if (DD) getMangleContext().mangleCXXDtorComdat(DD, Out); else getMangleContext().mangleCXXCtorComdat(CD, Out); llvm::Comdat *C = CGM.getModule().getOrInsertComdat(Out.str()); Fn->setComdat(C); } else { CGM.maybeSetTrivialComdat(*MD, *Fn); } } static llvm::FunctionCallee getBeginCatchFn(CodeGenModule &CGM) { // void *__cxa_begin_catch(void*); llvm::FunctionType *FTy = llvm::FunctionType::get( CGM.Int8PtrTy, CGM.Int8PtrTy, /*isVarArg=*/false); return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); } static llvm::FunctionCallee getEndCatchFn(CodeGenModule &CGM) { // void __cxa_end_catch(); llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); } static llvm::FunctionCallee getGetExceptionPtrFn(CodeGenModule &CGM) { // void *__cxa_get_exception_ptr(void*); llvm::FunctionType *FTy = llvm::FunctionType::get( CGM.Int8PtrTy, CGM.Int8PtrTy, /*isVarArg=*/false); return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); } namespace { /// A cleanup to call __cxa_end_catch. In many cases, the caught /// exception type lets us state definitively that the thrown exception /// type does not have a destructor. In particular: /// - Catch-alls tell us nothing, so we have to conservatively /// assume that the thrown exception might have a destructor. /// - Catches by reference behave according to their base types. /// - Catches of non-record types will only trigger for exceptions /// of non-record types, which never have destructors. /// - Catches of record types can trigger for arbitrary subclasses /// of the caught type, so we have to assume the actual thrown /// exception type might have a throwing destructor, even if the /// caught type's destructor is trivial or nothrow. struct CallEndCatch final : EHScopeStack::Cleanup { CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} bool MightThrow; void Emit(CodeGenFunction &CGF, Flags flags) override { if (!MightThrow) { CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM)); return; } CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM)); } }; } /// Emits a call to __cxa_begin_catch and enters a cleanup to call /// __cxa_end_catch. /// /// \param EndMightThrow - true if __cxa_end_catch might throw static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, llvm::Value *Exn, bool EndMightThrow) { llvm::CallInst *call = CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn); CGF.EHStack.pushCleanup(NormalAndEHCleanup, EndMightThrow); return call; } /// A "special initializer" callback for initializing a catch /// parameter during catch initialization. static void InitCatchParam(CodeGenFunction &CGF, const VarDecl &CatchParam, Address ParamAddr, SourceLocation Loc) { // Load the exception from where the landing pad saved it. llvm::Value *Exn = CGF.getExceptionFromSlot(); CanQualType CatchType = CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); // If we're catching by reference, we can just cast the object // pointer to the appropriate pointer. if (isa(CatchType)) { QualType CaughtType = cast(CatchType)->getPointeeType(); bool EndCatchMightThrow = CaughtType->isRecordType(); // __cxa_begin_catch returns the adjusted object pointer. llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); // We have no way to tell the personality function that we're // catching by reference, so if we're catching a pointer, // __cxa_begin_catch will actually return that pointer by value. if (const PointerType *PT = dyn_cast(CaughtType)) { QualType PointeeType = PT->getPointeeType(); // When catching by reference, generally we should just ignore // this by-value pointer and use the exception object instead. if (!PointeeType->isRecordType()) { // Exn points to the struct _Unwind_Exception header, which // we have to skip past in order to reach the exception data. unsigned HeaderSize = CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); AdjustedExn = CGF.Builder.CreateConstGEP1_32(Exn, HeaderSize); // However, if we're catching a pointer-to-record type that won't // work, because the personality function might have adjusted // the pointer. There's actually no way for us to fully satisfy // the language/ABI contract here: we can't use Exn because it // might have the wrong adjustment, but we can't use the by-value // pointer because it's off by a level of abstraction. // // The current solution is to dump the adjusted pointer into an // alloca, which breaks language semantics (because changing the // pointer doesn't change the exception) but at least works. // The better solution would be to filter out non-exact matches // and rethrow them, but this is tricky because the rethrow // really needs to be catchable by other sites at this landing // pad. The best solution is to fix the personality function. } else { // Pull the pointer for the reference type off. llvm::Type *PtrTy = cast(LLVMCatchTy)->getElementType(); // Create the temporary and write the adjusted pointer into it. Address ExnPtrTmp = CGF.CreateTempAlloca(PtrTy, CGF.getPointerAlign(), "exn.byref.tmp"); llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); CGF.Builder.CreateStore(Casted, ExnPtrTmp); // Bind the reference to the temporary. AdjustedExn = ExnPtrTmp.getPointer(); } } llvm::Value *ExnCast = CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); CGF.Builder.CreateStore(ExnCast, ParamAddr); return; } // Scalars and complexes. TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType); if (TEK != TEK_Aggregate) { llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); // If the catch type is a pointer type, __cxa_begin_catch returns // the pointer by value. if (CatchType->hasPointerRepresentation()) { llvm::Value *CastExn = CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); switch (CatchType.getQualifiers().getObjCLifetime()) { case Qualifiers::OCL_Strong: CastExn = CGF.EmitARCRetainNonBlock(CastExn); LLVM_FALLTHROUGH; case Qualifiers::OCL_None: case Qualifiers::OCL_ExplicitNone: case Qualifiers::OCL_Autoreleasing: CGF.Builder.CreateStore(CastExn, ParamAddr); return; case Qualifiers::OCL_Weak: CGF.EmitARCInitWeak(ParamAddr, CastExn); return; } llvm_unreachable("bad ownership qualifier!"); } // Otherwise, it returns a pointer into the exception object. llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok llvm::Value *Cast = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); LValue srcLV = CGF.MakeNaturalAlignAddrLValue(Cast, CatchType); LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType); switch (TEK) { case TEK_Complex: CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV, Loc), destLV, /*init*/ true); return; case TEK_Scalar: { llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV, Loc); CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true); return; } case TEK_Aggregate: llvm_unreachable("evaluation kind filtered out!"); } llvm_unreachable("bad evaluation kind"); } assert(isa(CatchType) && "unexpected catch type!"); auto catchRD = CatchType->getAsCXXRecordDecl(); CharUnits caughtExnAlignment = CGF.CGM.getClassPointerAlignment(catchRD); llvm::Type *PtrTy = LLVMCatchTy->getPointerTo(0); // addrspace 0 ok // Check for a copy expression. If we don't have a copy expression, // that means a trivial copy is okay. const Expr *copyExpr = CatchParam.getInit(); if (!copyExpr) { llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy), caughtExnAlignment); LValue Dest = CGF.MakeAddrLValue(ParamAddr, CatchType); LValue Src = CGF.MakeAddrLValue(adjustedExn, CatchType); CGF.EmitAggregateCopy(Dest, Src, CatchType, AggValueSlot::DoesNotOverlap); return; } // We have to call __cxa_get_exception_ptr to get the adjusted // pointer before copying. llvm::CallInst *rawAdjustedExn = CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn); // Cast that to the appropriate type. Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy), caughtExnAlignment); // The copy expression is defined in terms of an OpaqueValueExpr. // Find it and map it to the adjusted expression. CodeGenFunction::OpaqueValueMapping opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); // Call the copy ctor in a terminate scope. CGF.EHStack.pushTerminate(); // Perform the copy construction. CGF.EmitAggExpr(copyExpr, AggValueSlot::forAddr(ParamAddr, Qualifiers(), AggValueSlot::IsNotDestructed, AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, AggValueSlot::DoesNotOverlap)); // Leave the terminate scope. CGF.EHStack.popTerminate(); // Undo the opaque value mapping. opaque.pop(); // Finally we can call __cxa_begin_catch. CallBeginCatch(CGF, Exn, true); } /// Begins a catch statement by initializing the catch variable and /// calling __cxa_begin_catch. void ItaniumCXXABI::emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *S) { // We have to be very careful with the ordering of cleanups here: // C++ [except.throw]p4: // The destruction [of the exception temporary] occurs // immediately after the destruction of the object declared in // the exception-declaration in the handler. // // So the precise ordering is: // 1. Construct catch variable. // 2. __cxa_begin_catch // 3. Enter __cxa_end_catch cleanup // 4. Enter dtor cleanup // // We do this by using a slightly abnormal initialization process. // Delegation sequence: // - ExitCXXTryStmt opens a RunCleanupsScope // - EmitAutoVarAlloca creates the variable and debug info // - InitCatchParam initializes the variable from the exception // - CallBeginCatch calls __cxa_begin_catch // - CallBeginCatch enters the __cxa_end_catch cleanup // - EmitAutoVarCleanups enters the variable destructor cleanup // - EmitCXXTryStmt emits the code for the catch body // - EmitCXXTryStmt close the RunCleanupsScope VarDecl *CatchParam = S->getExceptionDecl(); if (!CatchParam) { llvm::Value *Exn = CGF.getExceptionFromSlot(); CallBeginCatch(CGF, Exn, true); return; } // Emit the local. CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF), S->getBeginLoc()); CGF.EmitAutoVarCleanups(var); } /// Get or define the following function: /// void @__clang_call_terminate(i8* %exn) nounwind noreturn /// This code is used only in C++. static llvm::FunctionCallee getClangCallTerminateFn(CodeGenModule &CGM) { llvm::FunctionType *fnTy = llvm::FunctionType::get(CGM.VoidTy, CGM.Int8PtrTy, /*isVarArg=*/false); llvm::FunctionCallee fnRef = CGM.CreateRuntimeFunction( fnTy, "__clang_call_terminate", llvm::AttributeList(), /*Local=*/true); llvm::Function *fn = cast(fnRef.getCallee()->stripPointerCasts()); if (fn->empty()) { fn->setDoesNotThrow(); fn->setDoesNotReturn(); // What we really want is to massively penalize inlining without // forbidding it completely. The difference between that and // 'noinline' is negligible. fn->addFnAttr(llvm::Attribute::NoInline); // Allow this function to be shared across translation units, but // we don't want it to turn into an exported symbol. fn->setLinkage(llvm::Function::LinkOnceODRLinkage); fn->setVisibility(llvm::Function::HiddenVisibility); if (CGM.supportsCOMDAT()) fn->setComdat(CGM.getModule().getOrInsertComdat(fn->getName())); // Set up the function. llvm::BasicBlock *entry = llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn); CGBuilderTy builder(CGM, entry); // Pull the exception pointer out of the parameter list. llvm::Value *exn = &*fn->arg_begin(); // Call __cxa_begin_catch(exn). llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn); catchCall->setDoesNotThrow(); catchCall->setCallingConv(CGM.getRuntimeCC()); // Call std::terminate(). llvm::CallInst *termCall = builder.CreateCall(CGM.getTerminateFn()); termCall->setDoesNotThrow(); termCall->setDoesNotReturn(); termCall->setCallingConv(CGM.getRuntimeCC()); // std::terminate cannot return. builder.CreateUnreachable(); } return fnRef; } llvm::CallInst * ItaniumCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF, llvm::Value *Exn) { // In C++, we want to call __cxa_begin_catch() before terminating. if (Exn) { assert(CGF.CGM.getLangOpts().CPlusPlus); return CGF.EmitNounwindRuntimeCall(getClangCallTerminateFn(CGF.CGM), Exn); } return CGF.EmitNounwindRuntimeCall(CGF.CGM.getTerminateFn()); } std::pair ItaniumCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, const CXXRecordDecl *RD) { return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; } void WebAssemblyCXXABI::emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) { if (CGF.getTarget().hasFeature("exception-handling")) CGF.EHStack.pushCleanup( NormalCleanup, cast(CGF.CurrentFuncletPad)); ItaniumCXXABI::emitBeginCatch(CGF, C); }