summaryrefslogtreecommitdiff
path: root/lib/CodeGen/CGExpr.cpp
blob: 4a04bd3f2001e5f4a58ea5d0073b83a4ea8bde61 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Expr nodes as LLVM code.
//
//===----------------------------------------------------------------------===//

#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "CGCall.h"
#include "CGObjCRuntime.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclObjC.h"
#include "llvm/Target/TargetData.h"
using namespace clang;
using namespace CodeGen;

//===--------------------------------------------------------------------===//
//                        Miscellaneous Helper Methods
//===--------------------------------------------------------------------===//

/// CreateTempAlloca - This creates a alloca and inserts it into the entry
/// block.
llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(const llvm::Type *Ty,
                                                    const char *Name) {
  if (!Builder.isNamePreserving())
    Name = "";
  return new llvm::AllocaInst(Ty, 0, Name, AllocaInsertPt);
}

/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
/// expression and compare the result against zero, returning an Int1Ty value.
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
  QualType BoolTy = getContext().BoolTy;
  if (!E->getType()->isAnyComplexType())
    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);

  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
}

/// EmitAnyExpr - Emit code to compute the specified expression which can have
/// any type.  The result is returned as an RValue struct.  If this is an
/// aggregate expression, the aggloc/agglocvolatile arguments indicate where the
/// result should be returned.
RValue CodeGenFunction::EmitAnyExpr(const Expr *E, llvm::Value *AggLoc,
                                    bool IsAggLocVolatile, bool IgnoreResult,
                                    bool IsInitializer) {
  if (!hasAggregateLLVMType(E->getType()))
    return RValue::get(EmitScalarExpr(E, IgnoreResult));
  else if (E->getType()->isAnyComplexType())
    return RValue::getComplex(EmitComplexExpr(E, false, false,
                                              IgnoreResult, IgnoreResult));

  EmitAggExpr(E, AggLoc, IsAggLocVolatile, IgnoreResult, IsInitializer);
  return RValue::getAggregate(AggLoc, IsAggLocVolatile);
}

/// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
/// always be accessible even if no aggregate location is provided.
RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E,
                                          bool IsAggLocVolatile,
                                          bool IsInitializer) {
  llvm::Value *AggLoc = 0;

  if (hasAggregateLLVMType(E->getType()) &&
      !E->getType()->isAnyComplexType())
    AggLoc = CreateTempAlloca(ConvertType(E->getType()), "agg.tmp");
  return EmitAnyExpr(E, AggLoc, IsAggLocVolatile, /*IgnoreResult=*/false,
                     IsInitializer);
}

RValue CodeGenFunction::EmitReferenceBindingToExpr(const Expr* E,
                                                   QualType DestType,
                                                   bool IsInitializer) {
  RValue Val;
  if (E->isLvalue(getContext()) == Expr::LV_Valid) {
    // Emit the expr as an lvalue.
    LValue LV = EmitLValue(E);
    if (LV.isSimple())
      return RValue::get(LV.getAddress());
    Val = EmitLoadOfLValue(LV, E->getType());
  } else {
    // FIXME: Initializers don't work with casts yet. For example
    // const A& a = B();
    // if B inherits from A.
    Val = EmitAnyExprToTemp(E, /*IsAggLocVolatile=*/false,
                            IsInitializer);

    if (IsInitializer) {
      // We might have to destroy the temporary variable.
      if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
        if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
          if (!ClassDecl->hasTrivialDestructor()) {
            const CXXDestructorDecl *Dtor =
              ClassDecl->getDestructor(getContext());

            CleanupScope scope(*this);
            EmitCXXDestructorCall(Dtor, Dtor_Complete, Val.getAggregateAddr());
          }
        }
      }
    }
  }

  if (Val.isAggregate()) {
    Val = RValue::get(Val.getAggregateAddr());
  } else {
    // Create a temporary variable that we can bind the reference to.
    llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()),
                                         "reftmp");
    if (Val.isScalar())
      EmitStoreOfScalar(Val.getScalarVal(), Temp, false, E->getType());
    else
      StoreComplexToAddr(Val.getComplexVal(), Temp, false);
    Val = RValue::get(Temp);
  }

  return Val;
}


/// getAccessedFieldNo - Given an encoded value and a result number, return the
/// input field number being accessed.
unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
                                             const llvm::Constant *Elts) {
  if (isa<llvm::ConstantAggregateZero>(Elts))
    return 0;

  return cast<llvm::ConstantInt>(Elts->getOperand(Idx))->getZExtValue();
}


//===----------------------------------------------------------------------===//
//                         LValue Expression Emission
//===----------------------------------------------------------------------===//

RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
  if (Ty->isVoidType()) {
    return RValue::get(0);
  } else if (const ComplexType *CTy = Ty->getAsComplexType()) {
    const llvm::Type *EltTy = ConvertType(CTy->getElementType());
    llvm::Value *U = llvm::UndefValue::get(EltTy);
    return RValue::getComplex(std::make_pair(U, U));
  } else if (hasAggregateLLVMType(Ty)) {
    const llvm::Type *LTy = llvm::PointerType::getUnqual(ConvertType(Ty));
    return RValue::getAggregate(llvm::UndefValue::get(LTy));
  } else {
    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
  }
}

RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
                                              const char *Name) {
  ErrorUnsupported(E, Name);
  return GetUndefRValue(E->getType());
}

LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
                                              const char *Name) {
  ErrorUnsupported(E, Name);
  llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
  return LValue::MakeAddr(llvm::UndefValue::get(Ty),
                          E->getType().getCVRQualifiers(),
                          getContext().getObjCGCAttrKind(E->getType()),
                          E->getType().getAddressSpace());
}

/// EmitLValue - Emit code to compute a designator that specifies the location
/// of the expression.
///
/// This can return one of two things: a simple address or a bitfield reference.
/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
/// an LLVM pointer type.
///
/// If this returns a bitfield reference, nothing about the pointee type of the
/// LLVM value is known: For example, it may not be a pointer to an integer.
///
/// If this returns a normal address, and if the lvalue's C type is fixed size,
/// this method guarantees that the returned pointer type will point to an LLVM
/// type of the same size of the lvalue's type.  If the lvalue has a variable
/// length type, this is not possible.
///
LValue CodeGenFunction::EmitLValue(const Expr *E) {
  switch (E->getStmtClass()) {
  default: return EmitUnsupportedLValue(E, "l-value expression");

  case Expr::BinaryOperatorClass:
    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
  case Expr::CallExprClass:
  case Expr::CXXMemberCallExprClass:
  case Expr::CXXOperatorCallExprClass:
    return EmitCallExprLValue(cast<CallExpr>(E));
  case Expr::VAArgExprClass:
    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
  case Expr::DeclRefExprClass:
  case Expr::QualifiedDeclRefExprClass:
    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
  case Expr::ParenExprClass:return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
  case Expr::PredefinedExprClass:
    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
  case Expr::StringLiteralClass:
    return EmitStringLiteralLValue(cast<StringLiteral>(E));
  case Expr::ObjCEncodeExprClass:
    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));

  case Expr::BlockDeclRefExprClass:
    return EmitBlockDeclRefLValue(cast<BlockDeclRefExpr>(E));

  case Expr::CXXConditionDeclExprClass:
    return EmitCXXConditionDeclLValue(cast<CXXConditionDeclExpr>(E));
  case Expr::CXXTemporaryObjectExprClass:
  case Expr::CXXConstructExprClass:
    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
  case Expr::CXXBindTemporaryExprClass:
    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));

  case Expr::ObjCMessageExprClass:
    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
  case Expr::ObjCIvarRefExprClass:
    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
  case Expr::ObjCPropertyRefExprClass:
    return EmitObjCPropertyRefLValue(cast<ObjCPropertyRefExpr>(E));
  case Expr::ObjCImplicitSetterGetterRefExprClass:
    return EmitObjCKVCRefLValue(cast<ObjCImplicitSetterGetterRefExpr>(E));
  case Expr::ObjCSuperExprClass:
    return EmitObjCSuperExprLValue(cast<ObjCSuperExpr>(E));

  case Expr::StmtExprClass:
    return EmitStmtExprLValue(cast<StmtExpr>(E));
  case Expr::UnaryOperatorClass:
    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
  case Expr::ArraySubscriptExprClass:
    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
  case Expr::ExtVectorElementExprClass:
    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
  case Expr::MemberExprClass:
    return EmitMemberExpr(cast<MemberExpr>(E));
  case Expr::CompoundLiteralExprClass:
    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
  case Expr::ConditionalOperatorClass:
    return EmitConditionalOperator(cast<ConditionalOperator>(E));
  case Expr::ChooseExprClass:
    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(getContext()));
  case Expr::ImplicitCastExprClass:
  case Expr::CStyleCastExprClass:
  case Expr::CXXFunctionalCastExprClass:
  case Expr::CXXStaticCastExprClass:
  case Expr::CXXDynamicCastExprClass:
  case Expr::CXXReinterpretCastExprClass:
  case Expr::CXXConstCastExprClass:
    return EmitCastLValue(cast<CastExpr>(E));
  }
}

llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
                                               QualType Ty) {
  llvm::Value *V = Builder.CreateLoad(Addr, Volatile, "tmp");

  // Bool can have different representation in memory than in registers.
  if (Ty->isBooleanType())
    if (V->getType() != llvm::Type::getInt1Ty(VMContext))
      V = Builder.CreateTrunc(V, llvm::Type::getInt1Ty(VMContext), "tobool");

  return V;
}

void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
                                        bool Volatile, QualType Ty) {

  if (Ty->isBooleanType()) {
    // Bool can have different representation in memory than in registers.
    const llvm::Type *SrcTy = Value->getType();
    const llvm::PointerType *DstPtr = cast<llvm::PointerType>(Addr->getType());
    if (DstPtr->getElementType() != SrcTy) {
      const llvm::Type *MemTy =
        llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
      Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
    }
  }
  Builder.CreateStore(Value, Addr, Volatile);
}

/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
/// method emits the address of the lvalue, then loads the result as an rvalue,
/// returning the rvalue.
RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, QualType ExprType) {
  if (LV.isObjCWeak()) {
    // load of a __weak object.
    llvm::Value *AddrWeakObj = LV.getAddress();
    llvm::Value *read_weak = CGM.getObjCRuntime().EmitObjCWeakRead(*this,
                                                                   AddrWeakObj);
    return RValue::get(read_weak);
  }

  if (LV.isSimple()) {
    llvm::Value *Ptr = LV.getAddress();
    const llvm::Type *EltTy =
      cast<llvm::PointerType>(Ptr->getType())->getElementType();

    // Simple scalar l-value.
    if (EltTy->isSingleValueType())
      return RValue::get(EmitLoadOfScalar(Ptr, LV.isVolatileQualified(),
                                          ExprType));

    assert(ExprType->isFunctionType() && "Unknown scalar value");
    return RValue::get(Ptr);
  }

  if (LV.isVectorElt()) {
    llvm::Value *Vec = Builder.CreateLoad(LV.getVectorAddr(),
                                          LV.isVolatileQualified(), "tmp");
    return RValue::get(Builder.CreateExtractElement(Vec, LV.getVectorIdx(),
                                                    "vecext"));
  }

  // If this is a reference to a subset of the elements of a vector, either
  // shuffle the input or extract/insert them as appropriate.
  if (LV.isExtVectorElt())
    return EmitLoadOfExtVectorElementLValue(LV, ExprType);

  if (LV.isBitfield())
    return EmitLoadOfBitfieldLValue(LV, ExprType);

  if (LV.isPropertyRef())
    return EmitLoadOfPropertyRefLValue(LV, ExprType);

  assert(LV.isKVCRef() && "Unknown LValue type!");
  return EmitLoadOfKVCRefLValue(LV, ExprType);
}

RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
                                                 QualType ExprType) {
  unsigned StartBit = LV.getBitfieldStartBit();
  unsigned BitfieldSize = LV.getBitfieldSize();
  llvm::Value *Ptr = LV.getBitfieldAddr();

  const llvm::Type *EltTy =
    cast<llvm::PointerType>(Ptr->getType())->getElementType();
  unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);

  // In some cases the bitfield may straddle two memory locations.  Currently we
  // load the entire bitfield, then do the magic to sign-extend it if
  // necessary. This results in somewhat more code than necessary for the common
  // case (one load), since two shifts accomplish both the masking and sign
  // extension.
  unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
  llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "tmp");

  // Shift to proper location.
  if (StartBit)
    Val = Builder.CreateLShr(Val, llvm::ConstantInt::get(EltTy, StartBit),
                             "bf.lo");

  // Mask off unused bits.
  llvm::Constant *LowMask = llvm::ConstantInt::get(VMContext,
                                llvm::APInt::getLowBitsSet(EltTySize, LowBits));
  Val = Builder.CreateAnd(Val, LowMask, "bf.lo.cleared");

  // Fetch the high bits if necessary.
  if (LowBits < BitfieldSize) {
    unsigned HighBits = BitfieldSize - LowBits;
    llvm::Value *HighPtr = Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
                            llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
    llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
                                              LV.isVolatileQualified(),
                                              "tmp");

    // Mask off unused bits.
    llvm::Constant *HighMask = llvm::ConstantInt::get(VMContext,
                               llvm::APInt::getLowBitsSet(EltTySize, HighBits));
    HighVal = Builder.CreateAnd(HighVal, HighMask, "bf.lo.cleared");

    // Shift to proper location and or in to bitfield value.
    HighVal = Builder.CreateShl(HighVal,
                                llvm::ConstantInt::get(EltTy, LowBits));
    Val = Builder.CreateOr(Val, HighVal, "bf.val");
  }

  // Sign extend if necessary.
  if (LV.isBitfieldSigned()) {
    llvm::Value *ExtraBits = llvm::ConstantInt::get(EltTy,
                                                    EltTySize - BitfieldSize);
    Val = Builder.CreateAShr(Builder.CreateShl(Val, ExtraBits),
                             ExtraBits, "bf.val.sext");
  }

  // The bitfield type and the normal type differ when the storage sizes differ
  // (currently just _Bool).
  Val = Builder.CreateIntCast(Val, ConvertType(ExprType), false, "tmp");

  return RValue::get(Val);
}

RValue CodeGenFunction::EmitLoadOfPropertyRefLValue(LValue LV,
                                                    QualType ExprType) {
  return EmitObjCPropertyGet(LV.getPropertyRefExpr());
}

RValue CodeGenFunction::EmitLoadOfKVCRefLValue(LValue LV,
                                               QualType ExprType) {
  return EmitObjCPropertyGet(LV.getKVCRefExpr());
}

// If this is a reference to a subset of the elements of a vector, create an
// appropriate shufflevector.
RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV,
                                                         QualType ExprType) {
  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddr(),
                                        LV.isVolatileQualified(), "tmp");

  const llvm::Constant *Elts = LV.getExtVectorElts();

  // If the result of the expression is a non-vector type, we must be extracting
  // a single element.  Just codegen as an extractelement.
  const VectorType *ExprVT = ExprType->getAsVectorType();
  if (!ExprVT) {
    unsigned InIdx = getAccessedFieldNo(0, Elts);
    llvm::Value *Elt = llvm::ConstantInt::get(
                                      llvm::Type::getInt32Ty(VMContext), InIdx);
    return RValue::get(Builder.CreateExtractElement(Vec, Elt, "tmp"));
  }

  // Always use shuffle vector to try to retain the original program structure
  unsigned NumResultElts = ExprVT->getNumElements();

  llvm::SmallVector<llvm::Constant*, 4> Mask;
  for (unsigned i = 0; i != NumResultElts; ++i) {
    unsigned InIdx = getAccessedFieldNo(i, Elts);
    Mask.push_back(llvm::ConstantInt::get(
                                     llvm::Type::getInt32Ty(VMContext), InIdx));
  }

  llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
  Vec = Builder.CreateShuffleVector(Vec,
                                    llvm::UndefValue::get(Vec->getType()),
                                    MaskV, "tmp");
  return RValue::get(Vec);
}



/// EmitStoreThroughLValue - Store the specified rvalue into the specified
/// lvalue, where both are guaranteed to the have the same type, and that type
/// is 'Ty'.
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
                                             QualType Ty) {
  if (!Dst.isSimple()) {
    if (Dst.isVectorElt()) {
      // Read/modify/write the vector, inserting the new element.
      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddr(),
                                            Dst.isVolatileQualified(), "tmp");
      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
                                        Dst.getVectorIdx(), "vecins");
      Builder.CreateStore(Vec, Dst.getVectorAddr(),Dst.isVolatileQualified());
      return;
    }

    // If this is an update of extended vector elements, insert them as
    // appropriate.
    if (Dst.isExtVectorElt())
      return EmitStoreThroughExtVectorComponentLValue(Src, Dst, Ty);

    if (Dst.isBitfield())
      return EmitStoreThroughBitfieldLValue(Src, Dst, Ty);

    if (Dst.isPropertyRef())
      return EmitStoreThroughPropertyRefLValue(Src, Dst, Ty);

    if (Dst.isKVCRef())
      return EmitStoreThroughKVCRefLValue(Src, Dst, Ty);

    assert(0 && "Unknown LValue type");
  }

  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
    // load of a __weak object.
    llvm::Value *LvalueDst = Dst.getAddress();
    llvm::Value *src = Src.getScalarVal();
     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
    return;
  }

  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
    // load of a __strong object.
    llvm::Value *LvalueDst = Dst.getAddress();
    llvm::Value *src = Src.getScalarVal();
#if 0
    // FIXME: We cannot positively determine if we have an 'ivar' assignment,
    // object assignment or an unknown assignment. For now, generate call to
    // objc_assign_strongCast assignment which is a safe, but consevative
    // assumption.
    if (Dst.isObjCIvar())
      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, LvalueDst);
    else
      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst);
#endif
    if (Dst.isGlobalObjCRef())
      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst);
    else
      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
    return;
  }

  assert(Src.isScalar() && "Can't emit an agg store with this method");
  EmitStoreOfScalar(Src.getScalarVal(), Dst.getAddress(),
                    Dst.isVolatileQualified(), Ty);
}

void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
                                                     QualType Ty,
                                                     llvm::Value **Result) {
  unsigned StartBit = Dst.getBitfieldStartBit();
  unsigned BitfieldSize = Dst.getBitfieldSize();
  llvm::Value *Ptr = Dst.getBitfieldAddr();

  const llvm::Type *EltTy =
    cast<llvm::PointerType>(Ptr->getType())->getElementType();
  unsigned EltTySize = CGM.getTargetData().getTypeSizeInBits(EltTy);

  // Get the new value, cast to the appropriate type and masked to exactly the
  // size of the bit-field.
  llvm::Value *SrcVal = Src.getScalarVal();
  llvm::Value *NewVal = Builder.CreateIntCast(SrcVal, EltTy, false, "tmp");
  llvm::Constant *Mask = llvm::ConstantInt::get(VMContext,
                           llvm::APInt::getLowBitsSet(EltTySize, BitfieldSize));
  NewVal = Builder.CreateAnd(NewVal, Mask, "bf.value");

  // Return the new value of the bit-field, if requested.
  if (Result) {
    // Cast back to the proper type for result.
    const llvm::Type *SrcTy = SrcVal->getType();
    llvm::Value *SrcTrunc = Builder.CreateIntCast(NewVal, SrcTy, false,
                                                  "bf.reload.val");

    // Sign extend if necessary.
    if (Dst.isBitfieldSigned()) {
      unsigned SrcTySize = CGM.getTargetData().getTypeSizeInBits(SrcTy);
      llvm::Value *ExtraBits = llvm::ConstantInt::get(SrcTy,
                                                      SrcTySize - BitfieldSize);
      SrcTrunc = Builder.CreateAShr(Builder.CreateShl(SrcTrunc, ExtraBits),
                                    ExtraBits, "bf.reload.sext");
    }

    *Result = SrcTrunc;
  }

  // In some cases the bitfield may straddle two memory locations.  Emit the low
  // part first and check to see if the high needs to be done.
  unsigned LowBits = std::min(BitfieldSize, EltTySize - StartBit);
  llvm::Value *LowVal = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
                                           "bf.prev.low");

  // Compute the mask for zero-ing the low part of this bitfield.
  llvm::Constant *InvMask =
    llvm::ConstantInt::get(VMContext,
             ~llvm::APInt::getBitsSet(EltTySize, StartBit, StartBit + LowBits));

  // Compute the new low part as
  //   LowVal = (LowVal & InvMask) | (NewVal << StartBit),
  // with the shift of NewVal implicitly stripping the high bits.
  llvm::Value *NewLowVal =
    Builder.CreateShl(NewVal, llvm::ConstantInt::get(EltTy, StartBit),
                      "bf.value.lo");
  LowVal = Builder.CreateAnd(LowVal, InvMask, "bf.prev.lo.cleared");
  LowVal = Builder.CreateOr(LowVal, NewLowVal, "bf.new.lo");

  // Write back.
  Builder.CreateStore(LowVal, Ptr, Dst.isVolatileQualified());

  // If the low part doesn't cover the bitfield emit a high part.
  if (LowBits < BitfieldSize) {
    unsigned HighBits = BitfieldSize - LowBits;
    llvm::Value *HighPtr =  Builder.CreateGEP(Ptr, llvm::ConstantInt::get(
                            llvm::Type::getInt32Ty(VMContext), 1), "bf.ptr.hi");
    llvm::Value *HighVal = Builder.CreateLoad(HighPtr,
                                              Dst.isVolatileQualified(),
                                              "bf.prev.hi");

    // Compute the mask for zero-ing the high part of this bitfield.
    llvm::Constant *InvMask =
      llvm::ConstantInt::get(VMContext, ~llvm::APInt::getLowBitsSet(EltTySize,
                               HighBits));

    // Compute the new high part as
    //   HighVal = (HighVal & InvMask) | (NewVal lshr LowBits),
    // where the high bits of NewVal have already been cleared and the
    // shift stripping the low bits.
    llvm::Value *NewHighVal =
      Builder.CreateLShr(NewVal, llvm::ConstantInt::get(EltTy, LowBits),
                        "bf.value.high");
    HighVal = Builder.CreateAnd(HighVal, InvMask, "bf.prev.hi.cleared");
    HighVal = Builder.CreateOr(HighVal, NewHighVal, "bf.new.hi");

    // Write back.
    Builder.CreateStore(HighVal, HighPtr, Dst.isVolatileQualified());
  }
}

void CodeGenFunction::EmitStoreThroughPropertyRefLValue(RValue Src,
                                                        LValue Dst,
                                                        QualType Ty) {
  EmitObjCPropertySet(Dst.getPropertyRefExpr(), Src);
}

void CodeGenFunction::EmitStoreThroughKVCRefLValue(RValue Src,
                                                   LValue Dst,
                                                   QualType Ty) {
  EmitObjCPropertySet(Dst.getKVCRefExpr(), Src);
}

void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
                                                               LValue Dst,
                                                               QualType Ty) {
  // This access turns into a read/modify/write of the vector.  Load the input
  // value now.
  llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddr(),
                                        Dst.isVolatileQualified(), "tmp");
  const llvm::Constant *Elts = Dst.getExtVectorElts();

  llvm::Value *SrcVal = Src.getScalarVal();

  if (const VectorType *VTy = Ty->getAsVectorType()) {
    unsigned NumSrcElts = VTy->getNumElements();
    unsigned NumDstElts =
       cast<llvm::VectorType>(Vec->getType())->getNumElements();
    if (NumDstElts == NumSrcElts) {
      // Use shuffle vector is the src and destination are the same number of
      // elements and restore the vector mask since it is on the side it will be
      // stored.
      llvm::SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
      for (unsigned i = 0; i != NumSrcElts; ++i) {
        unsigned InIdx = getAccessedFieldNo(i, Elts);
        Mask[InIdx] = llvm::ConstantInt::get(
                                          llvm::Type::getInt32Ty(VMContext), i);
      }

      llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
      Vec = Builder.CreateShuffleVector(SrcVal,
                                        llvm::UndefValue::get(Vec->getType()),
                                        MaskV, "tmp");
    } else if (NumDstElts > NumSrcElts) {
      // Extended the source vector to the same length and then shuffle it
      // into the destination.
      // FIXME: since we're shuffling with undef, can we just use the indices
      //        into that?  This could be simpler.
      llvm::SmallVector<llvm::Constant*, 4> ExtMask;
      unsigned i;
      for (i = 0; i != NumSrcElts; ++i)
        ExtMask.push_back(llvm::ConstantInt::get(
                                         llvm::Type::getInt32Ty(VMContext), i));
      for (; i != NumDstElts; ++i)
        ExtMask.push_back(llvm::UndefValue::get(
                                            llvm::Type::getInt32Ty(VMContext)));
      llvm::Value *ExtMaskV = llvm::ConstantVector::get(&ExtMask[0],
                                                        ExtMask.size());
      llvm::Value *ExtSrcVal =
        Builder.CreateShuffleVector(SrcVal,
                                    llvm::UndefValue::get(SrcVal->getType()),
                                    ExtMaskV, "tmp");
      // build identity
      llvm::SmallVector<llvm::Constant*, 4> Mask;
      for (unsigned i = 0; i != NumDstElts; ++i) {
        Mask.push_back(llvm::ConstantInt::get(
                                        llvm::Type::getInt32Ty(VMContext), i));
      }
      // modify when what gets shuffled in
      for (unsigned i = 0; i != NumSrcElts; ++i) {
        unsigned Idx = getAccessedFieldNo(i, Elts);
        Mask[Idx] = llvm::ConstantInt::get(
                               llvm::Type::getInt32Ty(VMContext), i+NumDstElts);
      }
      llvm::Value *MaskV = llvm::ConstantVector::get(&Mask[0], Mask.size());
      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV, "tmp");
    } else {
      // We should never shorten the vector
      assert(0 && "unexpected shorten vector length");
    }
  } else {
    // If the Src is a scalar (not a vector) it must be updating one element.
    unsigned InIdx = getAccessedFieldNo(0, Elts);
    llvm::Value *Elt = llvm::ConstantInt::get(
                                      llvm::Type::getInt32Ty(VMContext), InIdx);
    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt, "tmp");
  }

  Builder.CreateStore(Vec, Dst.getExtVectorAddr(), Dst.isVolatileQualified());
}

LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
  const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());

  if (VD && (VD->isBlockVarDecl() || isa<ParmVarDecl>(VD) ||
        isa<ImplicitParamDecl>(VD))) {
    LValue LV;
    bool NonGCable = VD->hasLocalStorage() &&
      !VD->hasAttr<BlocksAttr>();
    if (VD->hasExternalStorage()) {
      llvm::Value *V = CGM.GetAddrOfGlobalVar(VD);
      if (VD->getType()->isReferenceType())
        V = Builder.CreateLoad(V, "tmp");
      LV = LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
                            getContext().getObjCGCAttrKind(E->getType()),
                            E->getType().getAddressSpace());
    } else {
      llvm::Value *V = LocalDeclMap[VD];
      assert(V && "DeclRefExpr not entered in LocalDeclMap?");
      // local variables do not get their gc attribute set.
      QualType::GCAttrTypes attr = QualType::GCNone;
      // local static?
      if (!NonGCable)
        attr = getContext().getObjCGCAttrKind(E->getType());
      if (VD->hasAttr<BlocksAttr>()) {
        bool needsCopyDispose = BlockRequiresCopying(VD->getType());
        const llvm::Type *PtrStructTy = V->getType();
        const llvm::Type *Ty = PtrStructTy;
        Ty = llvm::PointerType::get(Ty, 0);
        V = Builder.CreateStructGEP(V, 1, "forwarding");
        V = Builder.CreateBitCast(V, Ty);
        V = Builder.CreateLoad(V, false);
        V = Builder.CreateBitCast(V, PtrStructTy);
        V = Builder.CreateStructGEP(V, needsCopyDispose*2 + 4, "x");
      }
      if (VD->getType()->isReferenceType())
        V = Builder.CreateLoad(V, "tmp");
      LV = LValue::MakeAddr(V, E->getType().getCVRQualifiers(), attr,
                            E->getType().getAddressSpace());
    }
    LValue::SetObjCNonGC(LV, NonGCable);
    return LV;
  } else if (VD && VD->isFileVarDecl()) {
    llvm::Value *V = CGM.GetAddrOfGlobalVar(VD);
    if (VD->getType()->isReferenceType())
      V = Builder.CreateLoad(V, "tmp");
    LValue LV = LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
                                 getContext().getObjCGCAttrKind(E->getType()),
                                 E->getType().getAddressSpace());
    if (LV.isObjCStrong())
      LV.SetGlobalObjCRef(LV, true);
    return LV;
  } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl())) {
    llvm::Value* V = CGM.GetAddrOfFunction(GlobalDecl(FD));
    if (!FD->hasPrototype()) {
      if (const FunctionProtoType *Proto =
              FD->getType()->getAsFunctionProtoType()) {
        // Ugly case: for a K&R-style definition, the type of the definition
        // isn't the same as the type of a use.  Correct for this with a
        // bitcast.
        QualType NoProtoType =
            getContext().getFunctionNoProtoType(Proto->getResultType());
        NoProtoType = getContext().getPointerType(NoProtoType);
        V = Builder.CreateBitCast(V, ConvertType(NoProtoType), "tmp");
      }
    }
    return LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
                            getContext().getObjCGCAttrKind(E->getType()),
                            E->getType().getAddressSpace());
  } else if (const ImplicitParamDecl *IPD =
      dyn_cast<ImplicitParamDecl>(E->getDecl())) {
    llvm::Value *V = LocalDeclMap[IPD];
    assert(V && "BlockVarDecl not entered in LocalDeclMap?");
    return LValue::MakeAddr(V, E->getType().getCVRQualifiers(),
                            getContext().getObjCGCAttrKind(E->getType()),
                            E->getType().getAddressSpace());
  }
  assert(0 && "Unimp declref");
  //an invalid LValue, but the assert will
  //ensure that this point is never reached.
  return LValue();
}

LValue CodeGenFunction::EmitBlockDeclRefLValue(const BlockDeclRefExpr *E) {
  return LValue::MakeAddr(GetAddrOfBlockDecl(E),
                          E->getType().getCVRQualifiers(),
                          getContext().getObjCGCAttrKind(E->getType()),
                          E->getType().getAddressSpace());
}

LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
  // __extension__ doesn't affect lvalue-ness.
  if (E->getOpcode() == UnaryOperator::Extension)
    return EmitLValue(E->getSubExpr());

  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
  switch (E->getOpcode()) {
  default: assert(0 && "Unknown unary operator lvalue!");
  case UnaryOperator::Deref:
    {
      QualType T = E->getSubExpr()->getType()->getPointeeType();
      assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");

      LValue LV = LValue::MakeAddr(EmitScalarExpr(E->getSubExpr()),
                                   T.getCVRQualifiers(),
                                   getContext().getObjCGCAttrKind(T),
                                   ExprTy.getAddressSpace());
     // We should not generate __weak write barrier on indirect reference
     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
     // But, we continue to generate __strong write barrier on indirect write
     // into a pointer to object.
     if (getContext().getLangOptions().ObjC1 &&
         getContext().getLangOptions().getGCMode() != LangOptions::NonGC &&
         LV.isObjCWeak())
       LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
     return LV;
    }
  case UnaryOperator::Real:
  case UnaryOperator::Imag:
    LValue LV = EmitLValue(E->getSubExpr());
    unsigned Idx = E->getOpcode() == UnaryOperator::Imag;
    return LValue::MakeAddr(Builder.CreateStructGEP(LV.getAddress(),
                                                    Idx, "idx"),
                            ExprTy.getCVRQualifiers(),
                            QualType::GCNone,
                            ExprTy.getAddressSpace());
  }
}

LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
  return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromLiteral(E), 0);
}

LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
  return LValue::MakeAddr(CGM.GetAddrOfConstantStringFromObjCEncode(E), 0);
}


LValue CodeGenFunction::EmitPredefinedFunctionName(unsigned Type) {
  std::string GlobalVarName;

  switch (Type) {
  default:
    assert(0 && "Invalid type");
  case PredefinedExpr::Func:
    GlobalVarName = "__func__.";
    break;
  case PredefinedExpr::Function:
    GlobalVarName = "__FUNCTION__.";
    break;
  case PredefinedExpr::PrettyFunction:
    GlobalVarName = "__PRETTY_FUNCTION__.";
    break;
  }

  std::string FunctionName =
    PredefinedExpr::ComputeName(getContext(), (PredefinedExpr::IdentType)Type, 
                                CurCodeDecl);

  GlobalVarName += FunctionName;
  llvm::Constant *C =
    CGM.GetAddrOfConstantCString(FunctionName, GlobalVarName.c_str());
  return LValue::MakeAddr(C, 0);
}

LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
  switch (E->getIdentType()) {
  default:
    return EmitUnsupportedLValue(E, "predefined expression");
  case PredefinedExpr::Func:
  case PredefinedExpr::Function:
  case PredefinedExpr::PrettyFunction:
    return EmitPredefinedFunctionName(E->getIdentType());
  }
}

LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E) {
  // The index must always be an integer, which is not an aggregate.  Emit it.
  llvm::Value *Idx = EmitScalarExpr(E->getIdx());
  QualType IdxTy  = E->getIdx()->getType();
  bool IdxSigned = IdxTy->isSignedIntegerType();

  // If the base is a vector type, then we are forming a vector element lvalue
  // with this subscript.
  if (E->getBase()->getType()->isVectorType()) {
    // Emit the vector as an lvalue to get its address.
    LValue LHS = EmitLValue(E->getBase());
    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
    Idx = Builder.CreateIntCast(Idx,
                          llvm::Type::getInt32Ty(VMContext), IdxSigned, "vidx");
    return LValue::MakeVectorElt(LHS.getAddress(), Idx,
      E->getBase()->getType().getCVRQualifiers());
  }

  // The base must be a pointer, which is not an aggregate.  Emit it.
  llvm::Value *Base = EmitScalarExpr(E->getBase());

  // Extend or truncate the index type to 32 or 64-bits.
  unsigned IdxBitwidth = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
  if (IdxBitwidth != LLVMPointerWidth)
    Idx = Builder.CreateIntCast(Idx,
                            llvm::IntegerType::get(VMContext, LLVMPointerWidth),
                                IdxSigned, "idxprom");

  // We know that the pointer points to a type of the correct size, unless the
  // size is a VLA or Objective-C interface.
  llvm::Value *Address = 0;
  if (const VariableArrayType *VAT =
        getContext().getAsVariableArrayType(E->getType())) {
    llvm::Value *VLASize = GetVLASize(VAT);

    Idx = Builder.CreateMul(Idx, VLASize);

    QualType BaseType = getContext().getBaseElementType(VAT);

    uint64_t BaseTypeSize = getContext().getTypeSize(BaseType) / 8;
    Idx = Builder.CreateUDiv(Idx,
                             llvm::ConstantInt::get(Idx->getType(),
                                                    BaseTypeSize));
    Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
  } else if (const ObjCInterfaceType *OIT =
             dyn_cast<ObjCInterfaceType>(E->getType())) {
    llvm::Value *InterfaceSize =
      llvm::ConstantInt::get(Idx->getType(),
                             getContext().getTypeSize(OIT) / 8);

    Idx = Builder.CreateMul(Idx, InterfaceSize);

    llvm::Type *i8PTy =
            llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
    Address = Builder.CreateGEP(Builder.CreateBitCast(Base, i8PTy),
                                Idx, "arrayidx");
    Address = Builder.CreateBitCast(Address, Base->getType());
  } else {
    Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
  }

  QualType T = E->getBase()->getType()->getPointeeType();
  assert(!T.isNull() &&
         "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");

  LValue LV = LValue::MakeAddr(Address,
                               T.getCVRQualifiers(),
                               getContext().getObjCGCAttrKind(T),
                               E->getBase()->getType().getAddressSpace());
  if (getContext().getLangOptions().ObjC1 &&
      getContext().getLangOptions().getGCMode() != LangOptions::NonGC)
    LValue::SetObjCNonGC(LV, !E->isOBJCGCCandidate(getContext()));
  return LV;
}

static
llvm::Constant *GenerateConstantVector(llvm::LLVMContext &VMContext,
                                       llvm::SmallVector<unsigned, 4> &Elts) {
  llvm::SmallVector<llvm::Constant *, 4> CElts;

  for (unsigned i = 0, e = Elts.size(); i != e; ++i)
    CElts.push_back(llvm::ConstantInt::get(
                                   llvm::Type::getInt32Ty(VMContext), Elts[i]));

  return llvm::ConstantVector::get(&CElts[0], CElts.size());
}

LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
  // Emit the base vector as an l-value.
  LValue Base;

  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
  if (!E->isArrow()) {
    assert(E->getBase()->getType()->isVectorType());
    Base = EmitLValue(E->getBase());
  } else {
    const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
    llvm::Value *Ptr = EmitScalarExpr(E->getBase());
    Base = LValue::MakeAddr(Ptr, PT->getPointeeType().getCVRQualifiers(),
                            QualType::GCNone,
                            PT->getPointeeType().getAddressSpace());
  }

  // Encode the element access list into a vector of unsigned indices.
  llvm::SmallVector<unsigned, 4> Indices;
  E->getEncodedElementAccess(Indices);

  if (Base.isSimple()) {
    llvm::Constant *CV = GenerateConstantVector(VMContext, Indices);
    return LValue::MakeExtVectorElt(Base.getAddress(), CV,
                                    Base.getQualifiers());
  }
  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");

  llvm::Constant *BaseElts = Base.getExtVectorElts();
  llvm::SmallVector<llvm::Constant *, 4> CElts;

  for (unsigned i = 0, e = Indices.size(); i != e; ++i) {
    if (isa<llvm::ConstantAggregateZero>(BaseElts))
      CElts.push_back(llvm::ConstantInt::get(
                                         llvm::Type::getInt32Ty(VMContext), 0));
    else
      CElts.push_back(BaseElts->getOperand(Indices[i]));
  }
  llvm::Constant *CV = llvm::ConstantVector::get(&CElts[0], CElts.size());
  return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV,
                                  Base.getQualifiers());
}

LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
  bool isUnion = false;
  bool isIvar = false;
  bool isNonGC = false;
  Expr *BaseExpr = E->getBase();
  llvm::Value *BaseValue = NULL;
  unsigned CVRQualifiers=0;

  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
  if (E->isArrow()) {
    BaseValue = EmitScalarExpr(BaseExpr);
    const PointerType *PTy =
      BaseExpr->getType()->getAs<PointerType>();
    if (PTy->getPointeeType()->isUnionType())
      isUnion = true;
    CVRQualifiers = PTy->getPointeeType().getCVRQualifiers();
  } else if (isa<ObjCPropertyRefExpr>(BaseExpr->IgnoreParens()) ||
             isa<ObjCImplicitSetterGetterRefExpr>(
               BaseExpr->IgnoreParens())) {
    RValue RV = EmitObjCPropertyGet(BaseExpr);
    BaseValue = RV.getAggregateAddr();
    if (BaseExpr->getType()->isUnionType())
      isUnion = true;
    CVRQualifiers = BaseExpr->getType().getCVRQualifiers();
  } else {
    LValue BaseLV = EmitLValue(BaseExpr);
    if (BaseLV.isObjCIvar())
      isIvar = true;
    if (BaseLV.isNonGC())
      isNonGC = true;
    // FIXME: this isn't right for bitfields.
    BaseValue = BaseLV.getAddress();
    QualType BaseTy = BaseExpr->getType();
    if (BaseTy->isUnionType())
      isUnion = true;
    CVRQualifiers = BaseTy.getCVRQualifiers();
  }

  FieldDecl *Field = dyn_cast<FieldDecl>(E->getMemberDecl());
  // FIXME: Handle non-field member expressions
  assert(Field && "No code generation for non-field member references");
  LValue MemExpLV = EmitLValueForField(BaseValue, Field, isUnion,
                                       CVRQualifiers);
  LValue::SetObjCIvar(MemExpLV, isIvar);
  LValue::SetObjCNonGC(MemExpLV, isNonGC);
  return MemExpLV;
}

LValue CodeGenFunction::EmitLValueForBitfield(llvm::Value* BaseValue,
                                              FieldDecl* Field,
                                              unsigned CVRQualifiers) {
  CodeGenTypes::BitFieldInfo Info = CGM.getTypes().getBitFieldInfo(Field);

  // FIXME: CodeGenTypes should expose a method to get the appropriate type for
  // FieldTy (the appropriate type is ABI-dependent).
  const llvm::Type *FieldTy =
    CGM.getTypes().ConvertTypeForMem(Field->getType());
  const llvm::PointerType *BaseTy =
  cast<llvm::PointerType>(BaseValue->getType());
  unsigned AS = BaseTy->getAddressSpace();
  BaseValue = Builder.CreateBitCast(BaseValue,
                                    llvm::PointerType::get(FieldTy, AS),
                                    "tmp");

  llvm::Value *Idx =
    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), Info.FieldNo);
  llvm::Value *V = Builder.CreateGEP(BaseValue, Idx, "tmp");

  return LValue::MakeBitfield(V, Info.Start, Info.Size,
                              Field->getType()->isSignedIntegerType(),
                            Field->getType().getCVRQualifiers()|CVRQualifiers);
}

LValue CodeGenFunction::EmitLValueForField(llvm::Value* BaseValue,
                                           FieldDecl* Field,
                                           bool isUnion,
                                           unsigned CVRQualifiers)
{
  if (Field->isBitField())
    return EmitLValueForBitfield(BaseValue, Field, CVRQualifiers);

  unsigned idx = CGM.getTypes().getLLVMFieldNo(Field);
  llvm::Value *V = Builder.CreateStructGEP(BaseValue, idx, "tmp");

  // Match union field type.
  if (isUnion) {
    const llvm::Type *FieldTy =
      CGM.getTypes().ConvertTypeForMem(Field->getType());
    const llvm::PointerType * BaseTy =
      cast<llvm::PointerType>(BaseValue->getType());
    unsigned AS = BaseTy->getAddressSpace();
    V = Builder.CreateBitCast(V,
                              llvm::PointerType::get(FieldTy, AS),
                              "tmp");
  }
  if (Field->getType()->isReferenceType())
    V = Builder.CreateLoad(V, "tmp");

  QualType::GCAttrTypes attr = QualType::GCNone;
  if (CGM.getLangOptions().ObjC1 &&
      CGM.getLangOptions().getGCMode() != LangOptions::NonGC) {
    QualType Ty = Field->getType();
    attr = Ty.getObjCGCAttr();
    if (attr != QualType::GCNone) {
      // __weak attribute on a field is ignored.
      if (attr == QualType::Weak)
        attr = QualType::GCNone;
    } else if (Ty->isObjCObjectPointerType())
      attr = QualType::Strong;
  }
  LValue LV =
    LValue::MakeAddr(V,
                     Field->getType().getCVRQualifiers()|CVRQualifiers,
                     attr,
                     Field->getType().getAddressSpace());
  return LV;
}

LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr* E){
  const llvm::Type *LTy = ConvertType(E->getType());
  llvm::Value *DeclPtr = CreateTempAlloca(LTy, ".compoundliteral");

  const Expr* InitExpr = E->getInitializer();
  LValue Result = LValue::MakeAddr(DeclPtr, E->getType().getCVRQualifiers(),
                                   QualType::GCNone,
                                   E->getType().getAddressSpace());

  if (E->getType()->isComplexType()) {
    EmitComplexExprIntoAddr(InitExpr, DeclPtr, false);
  } else if (hasAggregateLLVMType(E->getType())) {
    EmitAnyExpr(InitExpr, DeclPtr, false);
  } else {
    EmitStoreThroughLValue(EmitAnyExpr(InitExpr), Result, E->getType());
  }

  return Result;
}

LValue CodeGenFunction::EmitConditionalOperator(const ConditionalOperator* E) {
  if (E->isLvalue(getContext()) == Expr::LV_Valid)
    return EmitUnsupportedLValue(E, "conditional operator");

  // ?: here should be an aggregate.
  assert((hasAggregateLLVMType(E->getType()) &&
          !E->getType()->isAnyComplexType()) &&
         "Unexpected conditional operator!");

  llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
  EmitAggExpr(E, Temp, false);

  return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
                          getContext().getObjCGCAttrKind(E->getType()),
                          E->getType().getAddressSpace());

}

/// EmitCastLValue - Casts are never lvalues.  If a cast is needed by the code
/// generator in an lvalue context, then it must mean that we need the address
/// of an aggregate in order to access one of its fields.  This can happen for
/// all the reasons that casts are permitted with aggregate result, including
/// noop aggregate casts, and cast from scalar to union.
LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
  if (E->getCastKind() == CastExpr::CK_UserDefinedConversion) {
    if (const CXXFunctionalCastExpr *CXXFExpr =
          dyn_cast<CXXFunctionalCastExpr>(E))
      return  LValue::MakeAddr(
                EmitCXXFunctionalCastExpr(CXXFExpr).getScalarVal(), 0);
    assert(isa<CStyleCastExpr>(E) &&
           "EmitCastLValue - Expected CStyleCastExpr");
    return EmitLValue(E->getSubExpr());
  }

  // If this is an aggregate-to-aggregate cast, just use the input's address as
  // the lvalue.
  if (E->getCastKind() == CastExpr::CK_NoOp)
    return EmitLValue(E->getSubExpr());

  // If this is an lvalue cast, treat it as a no-op.
  // FIXME: We shouldn't need to check for this explicitly!
  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
    if (ICE->isLvalueCast())
      return EmitLValue(E->getSubExpr());

  // Otherwise, we must have a cast from scalar to union.
  assert(E->getCastKind() == CastExpr::CK_ToUnion &&
         "Expected scalar-to-union cast");

  // Casts are only lvalues when the source and destination types are the same.
  llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
  EmitAnyExpr(E->getSubExpr(), Temp, false);

  return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
                          getContext().getObjCGCAttrKind(E->getType()),
                          E->getType().getAddressSpace());
}

//===--------------------------------------------------------------------===//
//                             Expression Emission
//===--------------------------------------------------------------------===//


RValue CodeGenFunction::EmitCallExpr(const CallExpr *E) {
  // Builtins never have block type.
  if (E->getCallee()->getType()->isBlockPointerType())
    return EmitBlockCallExpr(E);

  if (const CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(E))
    return EmitCXXMemberCallExpr(CE);

  const Decl *TargetDecl = 0;
  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E->getCallee())) {
    if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
      TargetDecl = DRE->getDecl();
      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(TargetDecl))
        if (unsigned builtinID = FD->getBuiltinID(getContext()))
          return EmitBuiltinExpr(FD, builtinID, E);
    }
  }

  if (const CXXOperatorCallExpr *CE = dyn_cast<CXXOperatorCallExpr>(E))
    if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
      return EmitCXXOperatorMemberCallExpr(CE, MD);

  if (isa<CXXPseudoDestructorExpr>(E->getCallee())) {
    // C++ [expr.pseudo]p1:
    //   The result shall only be used as the operand for the function call
    //   operator (), and the result of such a call has type void. The only
    //   effect is the evaluation of the postfix-expression before the dot or
    //   arrow.
    EmitScalarExpr(E->getCallee());
    return RValue::get(0);
  }

  llvm::Value *Callee = EmitScalarExpr(E->getCallee());
  return EmitCall(Callee, E->getCallee()->getType(),
                  E->arg_begin(), E->arg_end(), TargetDecl);
}

LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
  // Comma expressions just emit their LHS then their RHS as an l-value.
  if (E->getOpcode() == BinaryOperator::Comma) {
    EmitAnyExpr(E->getLHS());
    return EmitLValue(E->getRHS());
  }

  // Can only get l-value for binary operator expressions which are a
  // simple assignment of aggregate type.
  if (E->getOpcode() != BinaryOperator::Assign)
    return EmitUnsupportedLValue(E, "binary l-value expression");

  llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
  EmitAggExpr(E, Temp, false);
  // FIXME: Are these qualifiers correct?
  return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
                          getContext().getObjCGCAttrKind(E->getType()),
                          E->getType().getAddressSpace());
}

LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
  RValue RV = EmitCallExpr(E);

  if (RV.isScalar()) {
    assert(E->getCallReturnType()->isReferenceType() &&
           "Can't have a scalar return unless the return type is a "
           "reference type!");

    return LValue::MakeAddr(RV.getScalarVal(), E->getType().getCVRQualifiers(),
                            getContext().getObjCGCAttrKind(E->getType()),
                            E->getType().getAddressSpace());
  }

  return LValue::MakeAddr(RV.getAggregateAddr(),
                          E->getType().getCVRQualifiers(),
                          getContext().getObjCGCAttrKind(E->getType()),
                          E->getType().getAddressSpace());
}

LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
  // FIXME: This shouldn't require another copy.
  llvm::Value *Temp = CreateTempAlloca(ConvertType(E->getType()));
  EmitAggExpr(E, Temp, false);
  return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
                          QualType::GCNone, E->getType().getAddressSpace());
}

LValue
CodeGenFunction::EmitCXXConditionDeclLValue(const CXXConditionDeclExpr *E) {
  EmitLocalBlockVarDecl(*E->getVarDecl());
  return EmitDeclRefLValue(E);
}

LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
  llvm::Value *Temp = CreateTempAlloca(ConvertTypeForMem(E->getType()), "tmp");
  EmitCXXConstructExpr(Temp, E);
  return LValue::MakeAddr(Temp, E->getType().getCVRQualifiers(),
                          QualType::GCNone, E->getType().getAddressSpace());
}

LValue
CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
  LValue LV = EmitLValue(E->getSubExpr());

  PushCXXTemporary(E->getTemporary(), LV.getAddress());

  return LV;
}

LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
  // Can only get l-value for message expression returning aggregate type
  RValue RV = EmitObjCMessageExpr(E);
  // FIXME: can this be volatile?
  return LValue::MakeAddr(RV.getAggregateAddr(),
                          E->getType().getCVRQualifiers(),
                          getContext().getObjCGCAttrKind(E->getType()),
                          E->getType().getAddressSpace());
}

llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
                                             const ObjCIvarDecl *Ivar) {
  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
}

LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
                                          llvm::Value *BaseValue,
                                          const ObjCIvarDecl *Ivar,
                                          unsigned CVRQualifiers) {
  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
                                                   Ivar, CVRQualifiers);
}

LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
  llvm::Value *BaseValue = 0;
  const Expr *BaseExpr = E->getBase();
  unsigned CVRQualifiers = 0;
  QualType ObjectTy;
  if (E->isArrow()) {
    BaseValue = EmitScalarExpr(BaseExpr);
    ObjectTy = BaseExpr->getType()->getPointeeType();
    CVRQualifiers = ObjectTy.getCVRQualifiers();
  } else {
    LValue BaseLV = EmitLValue(BaseExpr);
    // FIXME: this isn't right for bitfields.
    BaseValue = BaseLV.getAddress();
    ObjectTy = BaseExpr->getType();
    CVRQualifiers = ObjectTy.getCVRQualifiers();
  }

  return EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(), CVRQualifiers);
}

LValue
CodeGenFunction::EmitObjCPropertyRefLValue(const ObjCPropertyRefExpr *E) {
  // This is a special l-value that just issues sends when we load or store
  // through it.
  return LValue::MakePropertyRef(E, E->getType().getCVRQualifiers());
}

LValue
CodeGenFunction::EmitObjCKVCRefLValue(
                                const ObjCImplicitSetterGetterRefExpr *E) {
  // This is a special l-value that just issues sends when we load or store
  // through it.
  return LValue::MakeKVCRef(E, E->getType().getCVRQualifiers());
}

LValue
CodeGenFunction::EmitObjCSuperExprLValue(const ObjCSuperExpr *E) {
  return EmitUnsupportedLValue(E, "use of super");
}

LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {

  // Can only get l-value for message expression returning aggregate type
  RValue RV = EmitAnyExprToTemp(E);
  // FIXME: can this be volatile?
  return LValue::MakeAddr(RV.getAggregateAddr(),
                          E->getType().getCVRQualifiers(),
                          getContext().getObjCGCAttrKind(E->getType()),
                          E->getType().getAddressSpace());
}


RValue CodeGenFunction::EmitCall(llvm::Value *Callee, QualType CalleeType,
                                 CallExpr::const_arg_iterator ArgBeg,
                                 CallExpr::const_arg_iterator ArgEnd,
                                 const Decl *TargetDecl) {
  // Get the actual function type. The callee type will always be a pointer to
  // function type or a block pointer type.
  assert(CalleeType->isFunctionPointerType() &&
         "Call must have function pointer type!");

  QualType FnType = CalleeType->getAs<PointerType>()->getPointeeType();
  QualType ResultType = FnType->getAsFunctionType()->getResultType();

  CallArgList Args;
  EmitCallArgs(Args, FnType->getAsFunctionProtoType(), ArgBeg, ArgEnd);

  return EmitCall(CGM.getTypes().getFunctionInfo(ResultType, Args),
                  Callee, Args, TargetDecl);
}