summaryrefslogtreecommitdiff
path: root/java/text/Bidi.java
diff options
context:
space:
mode:
authorTom Tromey <tromey@redhat.com>2006-03-21 20:06:03 +0000
committerTom Tromey <tromey@redhat.com>2006-03-21 20:06:03 +0000
commit13d3400ca6cea2e148883209a4b18ce8a5b5997f (patch)
tree7e5c007f98b98196a4a458df36ac41893d34d682 /java/text/Bidi.java
parentb7b7c72e122cf9731e987b3fd95e9e1b716b6271 (diff)
downloadclasspath-13d3400ca6cea2e148883209a4b18ce8a5b5997f.tar.gz
* java/text/Bidi.java: Completed.
Diffstat (limited to 'java/text/Bidi.java')
-rw-r--r--java/text/Bidi.java933
1 files changed, 927 insertions, 6 deletions
diff --git a/java/text/Bidi.java b/java/text/Bidi.java
index 0a4d471c7..437436045 100644
--- a/java/text/Bidi.java
+++ b/java/text/Bidi.java
@@ -1,5 +1,5 @@
/* Bidi.java -- Bidirectional Algorithm implementation
- Copyright (C) 2005 Free Software Foundation, Inc.
+ Copyright (C) 2005, 2006 Free Software Foundation, Inc.
This file is part of GNU Classpath.
@@ -38,18 +38,939 @@ exception statement from your version. */
package java.text;
+import java.awt.font.NumericShaper;
+import java.awt.font.TextAttribute;
+import java.util.ArrayList;
+
+
/**
* Bidirectional Algorithm implementation.
*
- * TODO/FIXME Only one method <code>requiresBidi</code> is implemented
- * for now by using <code>Character</code>. The full algorithm is <a
- * href="http://www.unicode.org/unicode/reports/tr9/">Unicode Standard
- * Annex #9: The Bidirectional Algorithm</a>. A full implementation is
- * <a href="http://fribidi.org/">GNU FriBidi</a>.
+ * The full algorithm is
+ * <a href="http://www.unicode.org/unicode/reports/tr9/">Unicode Standard
+ * Annex #9: The Bidirectional Algorithm</a>.
+ *
+ * @since 1.4
*/
public final class Bidi
{
/**
+ * This indicates that a strongly directional character in the text should
+ * set the initial direction, but if no such character is found, then the
+ * initial direction will be left-to-right.
+ */
+ public static final int DIRECTION_DEFAULT_LEFT_TO_RIGHT = -2;
+
+ /**
+ * This indicates that a strongly directional character in the text should
+ * set the initial direction, but if no such character is found, then the
+ * initial direction will be right-to-left.
+ */
+ public static final int DIRECTION_DEFAULT_RIGHT_TO_LEFT = -1;
+
+ /**
+ * This indicates that the initial direction should be left-to-right.
+ */
+ public static final int DIRECTION_LEFT_TO_RIGHT = 0;
+
+ /**
+ * This indicates that the initial direction should be right-to-left.
+ */
+ public static final int DIRECTION_RIGHT_TO_LEFT = 1;
+
+ // Flags used when computing the result.
+ private static final int LTOR = 1 << DIRECTION_LEFT_TO_RIGHT;
+ private static final int RTOL = 1 << DIRECTION_RIGHT_TO_LEFT;
+
+ // The text we are examining, and the starting offset.
+ // If we had a better way to handle createLineBidi, we wouldn't
+ // need this at all -- which for the String case would be an
+ // efficiency win.
+ private char[] text;
+ private int textOffset;
+ // The embeddings corresponding to the text, and the starting offset.
+ private byte[] embeddings;
+ private int embeddingOffset;
+ // The length of the text (and embeddings) to use.
+ private int length;
+ // The flags.
+ private int flags;
+
+ // All instance fields following this point are initialized
+ // during analysis. Fields before this must be set by the constructor.
+
+ // The initial embedding level.
+ private int baseEmbedding;
+ // The type of each character in the text.
+ private byte[] types;
+ // The levels we compute.
+ private byte[] levels;
+
+ // A list of indices where a formatting code was found. These
+ // are indicies into the original text -- not into the text after
+ // the codes have been removed.
+ private ArrayList formatterIndices;
+
+ // Indices of the starts of runs in the text.
+ private int[] runs;
+
+ // A convenience field where we keep track of what kinds of runs
+ // we've seen.
+ private int resultFlags;
+
+ /**
+ * Create a new Bidi object given an attributed character iterator.
+ * This constructor will examine various attributes of the text:
+ * <ul>
+ * <li> {@link TextAttribute#RUN_DIRECTION} is used to determine the
+ * paragraph's base embedding level. This constructor will recognize
+ * either {@link TextAttribute#RUN_DIRECTION_LTR} or
+ * {@link TextAttribute#RUN_DIRECTION_RTL}. If neither is given,
+ * {@link #DIRECTION_DEFAULT_LEFT_TO_RIGHT} is assumed.
+ * </li>
+ *
+ * <li> If {@link TextAttribute#NUMERIC_SHAPING} is seen, then numeric
+ * shaping will be done before the Bidi algorithm is run.
+ * </li>
+ *
+ * <li> If {@link TextAttribute#BIDI_EMBEDDING} is seen on a given
+ * character, then the value of this attribute will be used as an
+ * embedding level override.
+ * </li>
+ * </ul>
+ * @param iter the attributed character iterator to use
+ */
+ public Bidi(AttributedCharacterIterator iter)
+ {
+ // If set, this attribute should be set on all characters.
+ // We don't check this (should we?) but we do assume that we
+ // can simply examine the first character.
+ Object val = iter.getAttribute(TextAttribute.RUN_DIRECTION);
+ if (val == TextAttribute.RUN_DIRECTION_LTR)
+ this.flags = DIRECTION_LEFT_TO_RIGHT;
+ else if (val == TextAttribute.RUN_DIRECTION_RTL)
+ this.flags = DIRECTION_RIGHT_TO_LEFT;
+ else
+ this.flags = DIRECTION_DEFAULT_LEFT_TO_RIGHT;
+
+ // Likewise this attribute should be specified on the whole text.
+ // We read it here and then, if it is set, we apply the numeric shaper
+ // to the text before processing it.
+ NumericShaper shaper = null;
+ val = iter.getAttribute(TextAttribute.NUMERIC_SHAPING);
+ if (val instanceof NumericShaper)
+ shaper = (NumericShaper) val;
+
+ char[] text = new char[iter.getEndIndex() - iter.getBeginIndex()];
+ this.embeddings = new byte[this.text.length];
+ this.embeddingOffset = 0;
+ this.length = text.length;
+ for (int i = 0; i < this.text.length; ++i)
+ {
+ this.text[i] = iter.current();
+
+ val = iter.getAttribute(TextAttribute.BIDI_EMBEDDING);
+ if (val instanceof Integer)
+ {
+ int ival = ((Integer) val).intValue();
+ byte bval;
+ if (ival < -62 || ival > 62)
+ bval = 0;
+ else
+ bval = (byte) ival;
+ this.embeddings[i] = bval;
+ }
+ }
+
+ // Invoke the numeric shaper, if specified.
+ if (shaper != null)
+ shaper.shape(this.text, 0, this.length);
+
+ runBidi();
+ }
+
+ /**
+ * Create a new Bidi object with the indicated text and, possibly, explicit
+ * embedding settings.
+ *
+ * If the embeddings array is null, it is ignored. Otherwise it is taken to
+ * be explicit embedding settings corresponding to the text. Positive values
+ * from 1 to 61 are embedding levels, and negative values from -1 to -61 are
+ * embedding overrides. (FIXME: not at all clear what this really means.)
+ *
+ * @param text the text to use
+ * @param offset the offset of the first character of the text
+ * @param embeddings the explicit embeddings, or null if there are none
+ * @param embedOffset the offset of the first embedding value to use
+ * @param length the length of both the text and the embeddings
+ * @param flags a flag indicating the base embedding direction
+ */
+ public Bidi(char[] text, int offset, byte[] embeddings, int embedOffset,
+ int length, int flags)
+ {
+ if (flags != DIRECTION_DEFAULT_LEFT_TO_RIGHT
+ && flags != DIRECTION_DEFAULT_RIGHT_TO_LEFT
+ && flags != DIRECTION_LEFT_TO_RIGHT
+ && flags != DIRECTION_RIGHT_TO_LEFT)
+ throw new IllegalArgumentException("unrecognized 'flags' argument: "
+ + flags);
+ this.text = text;
+ this.textOffset = offset;
+ this.embeddings = embeddings;
+ this.embeddingOffset = embedOffset;
+ this.length = length;
+ this.flags = flags;
+
+ runBidi();
+ }
+
+ /**
+ * Create a new Bidi object using the contents of the given String
+ * as the text.
+ * @param text the text to use
+ * @param flags a flag indicating the base embedding direction
+ */
+ public Bidi(String text, int flags)
+ {
+ if (flags != DIRECTION_DEFAULT_LEFT_TO_RIGHT
+ && flags != DIRECTION_DEFAULT_RIGHT_TO_LEFT
+ && flags != DIRECTION_LEFT_TO_RIGHT
+ && flags != DIRECTION_RIGHT_TO_LEFT)
+ throw new IllegalArgumentException("unrecognized 'flags' argument: "
+ + flags);
+
+ // This is inefficient, but it isn't clear whether it matters.
+ // If it does we can change our implementation a bit to allow either
+ // a String or a char[].
+ this.text = text.toCharArray();
+ this.textOffset = 0;
+ this.embeddings = null;
+ this.embeddingOffset = 0;
+ this.length = text.length();
+ this.flags = flags;
+
+ runBidi();
+ }
+
+ /**
+ * Implementation function which computes the initial type of
+ * each character in the input.
+ */
+ private void computeTypes()
+ {
+ types = new byte[length];
+ for (int i = 0; i < length; ++i)
+ types[i] = Character.getDirectionality(text[textOffset + i]);
+ }
+
+ /**
+ * An internal function which implements rules P2 and P3.
+ * This computes the base embedding level.
+ * @return the paragraph's base embedding level
+ */
+ private int computeParagraphEmbeddingLevel()
+ {
+ // First check to see if the user supplied a directionality override.
+ if (flags == DIRECTION_LEFT_TO_RIGHT
+ || flags == DIRECTION_RIGHT_TO_LEFT)
+ return flags;
+
+ // This implements rules P2 and P3.
+ // (Note that we don't need P1, as the user supplies
+ // a paragraph.)
+ for (int i = 0; i < length; ++i)
+ {
+ int dir = types[i];
+ if (dir == Character.DIRECTIONALITY_LEFT_TO_RIGHT)
+ return DIRECTION_LEFT_TO_RIGHT;
+ if (dir == Character.DIRECTIONALITY_RIGHT_TO_LEFT
+ || dir == Character.DIRECTIONALITY_RIGHT_TO_LEFT)
+ return DIRECTION_RIGHT_TO_LEFT;
+ }
+ return (flags == DIRECTION_DEFAULT_LEFT_TO_RIGHT
+ ? DIRECTION_LEFT_TO_RIGHT
+ : DIRECTION_RIGHT_TO_LEFT);
+ }
+
+ /**
+ * An internal function which implements rules X1 through X9.
+ * This computes the initial levels for the text, handling
+ * explicit overrides and embeddings.
+ */
+ private void computeExplicitLevels()
+ {
+ levels = new byte[length];
+ byte currentEmbedding = (byte) baseEmbedding;
+ // The directional override is a Character directionality
+ // constant. -1 means there is no override.
+ byte directionalOverride = -1;
+ // The stack of pushed embeddings, and the stack pointer.
+ // Note that because the direction is inherent in the depth,
+ // and because we have a bit left over in a byte, we can encode
+ // the override, if any, directly in this value on the stack.
+ final int MAX_DEPTH = 62;
+ byte[] embeddingStack = new byte[MAX_DEPTH];
+ int sp = 0;
+
+ for (int i = 0; i < length; ++i)
+ {
+ // If we see an explicit embedding, we use that, even if
+ // the current character is itself a directional override.
+ if (embeddings != null && embeddings[embeddingOffset + i] != 0)
+ {
+ // It isn't at all clear what we're supposed to do here.
+ // What does a negative value really mean?
+ // Should we push on the embedding stack here?
+ currentEmbedding = embeddings[embeddingOffset + i];
+ if (currentEmbedding < 0)
+ {
+ currentEmbedding = (byte) -currentEmbedding;
+ directionalOverride
+ = (((currentEmbedding % 2) == 0)
+ ? Character.DIRECTIONALITY_LEFT_TO_RIGHT
+ : Character.DIRECTIONALITY_RIGHT_TO_LEFT);
+ }
+ else
+ directionalOverride = -1;
+ continue;
+ }
+ // No explicit embedding.
+ boolean isLtoR = false;
+ boolean isSpecial = true;
+ switch (types[i])
+ {
+ case Character.DIRECTIONALITY_LEFT_TO_RIGHT_EMBEDDING:
+ case Character.DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE:
+ isLtoR = true;
+ // Fall through.
+ case Character.DIRECTIONALITY_RIGHT_TO_LEFT_EMBEDDING:
+ case Character.DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE:
+ {
+ byte newEmbedding;
+ if (isLtoR)
+ {
+ // Least greater even.
+ newEmbedding = (byte) ((currentEmbedding & ~1) + 2);
+ }
+ else
+ {
+ // Least greater odd.
+ newEmbedding = (byte) ((currentEmbedding + 1) | 1);
+ }
+ // FIXME: we don't properly handle invalid pushes.
+ if (newEmbedding < MAX_DEPTH)
+ {
+ // The new level is valid. Push the old value.
+ // See above for a comment on the encoding here.
+ if (directionalOverride != -1)
+ currentEmbedding |= Byte.MIN_VALUE;
+ embeddingStack[sp++] = currentEmbedding;
+ currentEmbedding = newEmbedding;
+ if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE)
+ directionalOverride = Character.DIRECTIONALITY_LEFT_TO_RIGHT;
+ else if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE)
+ directionalOverride = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
+ else
+ directionalOverride = -1;
+ }
+ }
+ break;
+ case Character.DIRECTIONALITY_POP_DIRECTIONAL_FORMAT:
+ {
+ // FIXME: we don't properly handle a pop with a corresponding
+ // invalid push.
+ if (sp == 0)
+ {
+ // We saw a pop without a push. Just ignore it.
+ break;
+ }
+ byte newEmbedding = embeddingStack[--sp];
+ currentEmbedding = (byte) (newEmbedding & 0x7f);
+ if (newEmbedding < 0)
+ directionalOverride
+ = (((newEmbedding & 1) == 0)
+ ? Character.DIRECTIONALITY_LEFT_TO_RIGHT
+ : Character.DIRECTIONALITY_RIGHT_TO_LEFT);
+ else
+ directionalOverride = -1;
+ }
+ break;
+ default:
+ isSpecial = false;
+ break;
+ }
+ levels[i] = currentEmbedding;
+ if (isSpecial)
+ {
+ // Mark this character for removal.
+ if (formatterIndices == null)
+ formatterIndices = new ArrayList();
+ formatterIndices.add(Integer.valueOf(i));
+ }
+ else if (directionalOverride != -1)
+ types[i] = directionalOverride;
+ }
+
+ // Remove the formatting codes and update both the arrays
+ // and 'length'. It would be more efficient not to remove
+ // these codes, but it is also more complicated. Also, the
+ // Unicode algorithm reference does not properly describe
+ // how this is to be done -- from what I can tell, their suggestions
+ // in this area will not yield the correct results.
+ if (formatterIndices == null)
+ return;
+ int output = 0, input = 0;
+ final int size = formatterIndices.size();
+ for (int i = 0; i <= size; ++i)
+ {
+ int nextFmt;
+ if (i == size)
+ nextFmt = length;
+ else
+ nextFmt = ((Integer) formatterIndices.get(i)).intValue();
+ // Non-formatter codes are from 'input' to 'nextFmt'.
+ int len = nextFmt - input;
+ System.arraycopy(levels, input, levels, output, len);
+ System.arraycopy(types, input, types, output, len);
+ output += len;
+ input = nextFmt + 1;
+ }
+ length -= formatterIndices.size();
+ }
+
+ /**
+ * An internal function to compute the boundaries of runs
+ * in the text. It isn't strictly necessary to do this, but
+ * it lets us write some following passes in a less complicated
+ * way. Also it lets us efficiently implement some of the public
+ * methods. A run is simply a sequence of characters at the
+ * same level.
+ */
+ private void computeRuns()
+ {
+ int runCount = 0;
+ int currentEmbedding = baseEmbedding;
+ for (int i = 0; i < length; ++i)
+ {
+ if (levels[i] != currentEmbedding)
+ {
+ currentEmbedding = levels[i];
+ ++runCount;
+ }
+ }
+
+ // This may be called multiple times. If so, and if
+ // the number of runs has not changed, then don't bother
+ // allocating a new array.
+ if (runs == null || runs.length != runCount + 1)
+ runs = new int[runCount + 1];
+ int where = 0;
+ int lastRunStart = 0;
+ currentEmbedding = baseEmbedding;
+ for (int i = 0; i < length; ++i)
+ {
+ if (levels[i] != currentEmbedding)
+ {
+ runs[where++] = lastRunStart;
+ lastRunStart = i;
+ currentEmbedding = levels[i];
+ }
+ }
+ runs[where++] = lastRunStart;
+ }
+
+ /**
+ * An internal method to resolve weak types. This implements
+ * rules W1 through W7.
+ */
+ private void resolveWeakTypes()
+ {
+ final int runCount = getRunCount();
+
+ int previousLevel = baseEmbedding;
+ for (int run = 0; run < runCount; ++run)
+ {
+ int start = getRunStart(run);
+ int end = getRunLimit(run);
+ int level = getRunLevel(run);
+
+ // These are the names used in the Bidi algorithm.
+ byte sor = (((Math.max(previousLevel, level) % 2) == 0)
+ ? Character.DIRECTIONALITY_LEFT_TO_RIGHT
+ : Character.DIRECTIONALITY_RIGHT_TO_LEFT);
+ int nextLevel;
+ if (run == runCount - 1)
+ nextLevel = baseEmbedding;
+ else
+ nextLevel = getRunLevel(run + 1);
+ byte eor = (((Math.max(level, nextLevel) % 2) == 0)
+ ? Character.DIRECTIONALITY_LEFT_TO_RIGHT
+ : Character.DIRECTIONALITY_RIGHT_TO_LEFT);
+
+ byte prevType = sor;
+ byte prevStrongType = sor;
+ for (int i = start; i < end; ++i)
+ {
+ final byte nextType = (i == end - 1) ? eor : types[i + 1];
+
+ // Rule W1: change NSM to the prevailing direction.
+ if (types[i] == Character.DIRECTIONALITY_NONSPACING_MARK)
+ types[i] = prevType;
+ else
+ prevType = types[i];
+
+ // Rule W2: change EN to AN in some cases.
+ if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
+ {
+ if (prevStrongType == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
+ types[i] = Character.DIRECTIONALITY_ARABIC_NUMBER;
+ }
+ else if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT
+ || types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT
+ || types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
+ prevStrongType = types[i];
+
+ // Rule W3: change AL to R.
+ if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC)
+ types[i] = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
+
+ // Rule W4: handle separators between two numbers.
+ if (prevType == Character.DIRECTIONALITY_EUROPEAN_NUMBER
+ && nextType == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
+ {
+ if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR
+ || types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR)
+ types[i] = nextType;
+ }
+ else if (prevType == Character.DIRECTIONALITY_ARABIC_NUMBER
+ && nextType == Character.DIRECTIONALITY_ARABIC_NUMBER
+ && types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR)
+ types[i] = nextType;
+
+ // Rule W5: change a sequence of european terminators to
+ // european numbers, if they are adjacent to european numbers.
+ // We also include BN characters in this.
+ if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
+ || types[i] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL)
+ {
+ if (prevType == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
+ types[i] = prevType;
+ else
+ {
+ // Look ahead to see if there is an EN terminating this
+ // sequence of ETs.
+ int j = i + 1;
+ while (j < end
+ && (types[j] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
+ || types[j] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL))
+ ++j;
+ if (j < end
+ && types[j] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
+ {
+ // Change them all to EN now.
+ for (int k = i; k < j; ++k)
+ types[k] = Character.DIRECTIONALITY_EUROPEAN_NUMBER;
+ }
+ }
+ }
+
+ // Rule W6: separators and terminators change to ON.
+ // Again we include BN.
+ if (types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
+ || types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR
+ || types[i] == Character.DIRECTIONALITY_COMMON_NUMBER_SEPARATOR
+ || types[i] == Character.DIRECTIONALITY_BOUNDARY_NEUTRAL)
+ types[i] = Character.DIRECTIONALITY_OTHER_NEUTRALS;
+
+ // Rule W7: change european number types.
+ if (prevStrongType == Character.DIRECTIONALITY_LEFT_TO_RIGHT
+ && types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
+ types[i] = prevStrongType;
+ }
+
+ previousLevel = level;
+ }
+ }
+
+ /**
+ * An internal method to resolve neutral types. This implements
+ * rules N1 and N2.
+ */
+ private void resolveNeutralTypes()
+ {
+ // This implements rules N1 and N2.
+ final int runCount = getRunCount();
+
+ int previousLevel = baseEmbedding;
+ for (int run = 0; run < runCount; ++run)
+ {
+ int start = getRunStart(run);
+ int end = getRunLimit(run);
+ int level = getRunLevel(run);
+
+ byte embeddingDirection
+ = (((level % 2) == 0) ? Character.DIRECTIONALITY_LEFT_TO_RIGHT
+ : Character.DIRECTIONALITY_RIGHT_TO_LEFT);
+ // These are the names used in the Bidi algorithm.
+ byte sor = (((Math.max(previousLevel, level) % 2) == 0)
+ ? Character.DIRECTIONALITY_LEFT_TO_RIGHT
+ : Character.DIRECTIONALITY_RIGHT_TO_LEFT);
+ int nextLevel;
+ if (run == runCount - 1)
+ nextLevel = baseEmbedding;
+ else
+ nextLevel = getRunLevel(run + 1);
+ byte eor = (((Math.max(level, nextLevel) % 2) == 0)
+ ? Character.DIRECTIONALITY_LEFT_TO_RIGHT
+ : Character.DIRECTIONALITY_RIGHT_TO_LEFT);
+
+ byte prevStrong = sor;
+ int neutralStart = -1;
+ for (int i = start; i <= end; ++i)
+ {
+ byte newStrong = -1;
+ byte thisType = i == end ? eor : types[i];
+ switch (thisType)
+ {
+ case Character.DIRECTIONALITY_LEFT_TO_RIGHT:
+ newStrong = Character.DIRECTIONALITY_LEFT_TO_RIGHT;
+ break;
+ case Character.DIRECTIONALITY_RIGHT_TO_LEFT:
+ case Character.DIRECTIONALITY_ARABIC_NUMBER:
+ case Character.DIRECTIONALITY_EUROPEAN_NUMBER:
+ newStrong = Character.DIRECTIONALITY_RIGHT_TO_LEFT;
+ break;
+ case Character.DIRECTIONALITY_BOUNDARY_NEUTRAL:
+ case Character.DIRECTIONALITY_OTHER_NEUTRALS:
+ case Character.DIRECTIONALITY_SEGMENT_SEPARATOR:
+ case Character.DIRECTIONALITY_PARAGRAPH_SEPARATOR:
+ if (neutralStart == -1)
+ neutralStart = i;
+ break;
+ }
+ // If we see a strong character, update all the neutrals.
+ if (newStrong != -1)
+ {
+ if (neutralStart != -1)
+ {
+ byte override = (prevStrong == newStrong
+ ? prevStrong
+ : embeddingDirection);
+ for (int j = neutralStart; j < i; ++j)
+ types[i] = override;
+ }
+ prevStrong = newStrong;
+ neutralStart = -1;
+ }
+ }
+
+ previousLevel = level;
+ }
+ }
+
+ /**
+ * An internal method to resolve implicit levels.
+ * This implements rules I1 and I2.
+ */
+ private void resolveImplicitLevels()
+ {
+ // This implements rules I1 and I2.
+ for (int i = 0; i < length; ++i)
+ {
+ if ((levels[i] & 1) == 0)
+ {
+ if (types[i] == Character.DIRECTIONALITY_RIGHT_TO_LEFT)
+ ++levels[i];
+ else if (types[i] == Character.DIRECTIONALITY_ARABIC_NUMBER
+ || types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
+ levels[i] += 2;
+ }
+ else
+ {
+ if (types[i] == Character.DIRECTIONALITY_LEFT_TO_RIGHT
+ || types[i] == Character.DIRECTIONALITY_ARABIC_NUMBER
+ || types[i] == Character.DIRECTIONALITY_EUROPEAN_NUMBER)
+ ++levels[i];
+ }
+
+ // Update the result flags.
+ resultFlags |= 1 << (levels[i] & 1);
+ }
+ // One final update of the result flags, using the base level.
+ resultFlags |= 1 << baseEmbedding;
+ }
+
+ /**
+ * This reinserts the formatting codes that we removed early on.
+ * Actually it does not insert formatting codes per se, but rather
+ * simply inserts new levels at the appropriate locations in the
+ * 'levels' array.
+ */
+ private void reinsertFormattingCodes()
+ {
+ if (formatterIndices == null)
+ return;
+ int input = length;
+ int output = levels.length;
+ // Process from the end as we are copying the array over itself here.
+ for (int index = formatterIndices.size() - 1; index >= 0; --index)
+ {
+ int nextFmt = ((Integer) formatterIndices.get(index)).intValue();
+
+ // nextFmt points to a location in the original array. So,
+ // nextFmt+1 is the target of our copying. output is the location
+ // to which we last copied, thus we can derive the length of the
+ // copy from it.
+ int len = output - nextFmt - 1;
+ output = nextFmt;
+ input -= len;
+ // Note that we no longer need 'types' at this point, so we
+ // only edit 'levels'.
+ if (nextFmt + 1 < levels.length)
+ System.arraycopy(levels, input, levels, nextFmt + 1, len);
+
+ // Now set the level at the reinsertion point.
+ int rightLevel;
+ if (output == levels.length - 1)
+ rightLevel = baseEmbedding;
+ else
+ rightLevel = levels[output + 1];
+ int leftLevel;
+ if (input == 0)
+ leftLevel = baseEmbedding;
+ else
+ leftLevel = levels[input];
+ levels[output] = (byte) Math.max(leftLevel, rightLevel);
+ }
+ length = levels.length;
+ }
+
+ /**
+ * This is the main internal entry point. After a constructor
+ * has initialized the appropriate local state, it will call
+ * this method to do all the work.
+ */
+ private void runBidi()
+ {
+ computeTypes();
+ baseEmbedding = computeParagraphEmbeddingLevel();
+ computeExplicitLevels();
+ computeRuns();
+ resolveWeakTypes();
+ resolveNeutralTypes();
+ resolveImplicitLevels();
+ // We're done with the types. Let the GC clean up.
+ types = null;
+ reinsertFormattingCodes();
+ // After resolving the implicit levels, the number
+ // of runs may have changed.
+ computeRuns();
+ }
+
+ /**
+ * Return true if the paragraph base embedding is left-to-right,
+ * false otherwise.
+ */
+ public boolean baseIsLeftToRight()
+ {
+ return baseEmbedding == DIRECTION_LEFT_TO_RIGHT;
+ }
+
+ /**
+ * Create a new Bidi object for a single line of text, taken
+ * from the text used when creating the current Bidi object.
+ * @param start the index of the first character of the line
+ * @param end the index of the final character of the line
+ * @return a new Bidi object for the indicated line of text
+ */
+ public Bidi createLineBidi(int start, int end)
+ {
+ // This isn't the most efficient implementation possible.
+ // This probably does not matter, so we choose simplicity instead.
+ int level = getLevelAt(start);
+ int flag = (((level % 2) == 0)
+ ? DIRECTION_LEFT_TO_RIGHT
+ : DIRECTION_RIGHT_TO_LEFT);
+ return new Bidi(text, textOffset + start,
+ embeddings, embeddingOffset + start,
+ end - start, flag);
+ }
+
+ /**
+ * Return the base embedding level of the paragraph.
+ */
+ public int getBaseLevel()
+ {
+ return baseEmbedding;
+ }
+
+ /**
+ * Return the length of the paragraph, in characters.
+ */
+ public int getLength()
+ {
+ return length;
+ }
+
+ /**
+ * Return the level at the indicated character. If the
+ * supplied index is less than zero or greater than the length
+ * of the text, then the paragraph's base embedding level will
+ * be returned.
+ * @param offset the character to examine
+ * @return the level of that character
+ */
+ public int getLevelAt(int offset)
+ {
+ if (offset < 0 || offset >= length)
+ return getBaseLevel();
+ return levels[offset];
+ }
+
+ /**
+ * Return the number of runs in the result. A run is
+ * a sequence of characters at the same embedding level.
+ */
+ public int getRunCount()
+ {
+ return runs.length;
+ }
+
+ /**
+ * Return the level of the indicated run.
+ * @param which the run to examine
+ * @return the level of that run
+ */
+ public int getRunLevel(int which)
+ {
+ return levels[runs[which]];
+ }
+
+ /**
+ * Return the index of the character just following the end
+ * of the indicated run.
+ * @param which the run to examine
+ * @return the index of the character after the final character
+ * of the run
+ */
+ public int getRunLimit(int which)
+ {
+ if (which == runs.length - 1)
+ return length;
+ return runs[which + 1];
+ }
+
+ /**
+ * Return the index of the first character in the indicated run.
+ * @param which the run to examine
+ * @return the index of the first character of the run
+ */
+ public int getRunStart(int which)
+ {
+ return runs[which];
+ }
+
+ /**
+ * Return true if the text is entirely left-to-right, and the
+ * base embedding is also left-to-right.
+ */
+ public boolean isLeftToRight()
+ {
+ return resultFlags == LTOR;
+ }
+
+ /**
+ * Return true if the text consists of mixed left-to-right and
+ * right-to-left runs, or if the text consists of one kind of run
+ * which differs from the base embedding direction.
+ */
+ public boolean isMixed()
+ {
+ return resultFlags == (LTOR | RTOL);
+ }
+
+ /**
+ * Return true if the text is entirely right-to-left, and the
+ * base embedding is also right-to-left.
+ */
+ public boolean isRightToLeft()
+ {
+ return resultFlags == RTOL;
+ }
+
+ /**
+ * Return a String describing the internal state of this object.
+ * This is only useful for debugging.
+ */
+ public String toString()
+ {
+ return "Bidi Bidi Bidi I like you, Buck!";
+ }
+
+ /**
+ * Reorder objects according to the levels passed in. This implements
+ * reordering as defined by the Unicode bidirectional layout specification.
+ * The levels are integers from 0 to 62; even numbers represent left-to-right
+ * runs, and odd numbers represent right-to-left runs.
+ *
+ * @param levels the levels associated with each object
+ * @param levelOffset the index of the first level to use
+ * @param objs the objects to reorder according to the levels
+ * @param objOffset the index of the first object to use
+ * @param count the number of objects (and levels) to manipulate
+ */
+ public static void reorderVisually(byte[] levels, int levelOffset,
+ Object[] objs, int objOffset, int count)
+ {
+ // We need a copy of the 'levels' array, as we are going to modify it.
+ // This is unfortunate but difficult to avoid.
+ byte[] levelCopy = new byte[count];
+ // Do this explicitly so we can also find the maximum depth at the
+ // same time.
+ int max = 0;
+ int lowestOdd = 63;
+ for (int i = 0; i < count; ++i)
+ {
+ levelCopy[i] = levels[levelOffset + i];
+ max = Math.max(levelCopy[i], max);
+ if (levelCopy[i] % 2 != 0)
+ lowestOdd = Math.min(lowestOdd, levelCopy[i]);
+ }
+
+ // Reverse the runs starting with the deepest.
+ for (int depth = max; depth >= lowestOdd; --depth)
+ {
+ int start = 0;
+ while (start < count)
+ {
+ // Find the start of a run >= DEPTH.
+ while (start < count && levelCopy[start] < depth)
+ ++start;
+ if (start == count)
+ break;
+ // Find the end of the run.
+ int end = start + 1;
+ while (end < count && levelCopy[end] >= depth)
+ ++end;
+
+ // Reverse this run.
+ for (int i = 0; i < (end - start) / 2; ++i)
+ {
+ byte tmpb = levelCopy[end - i - 1];
+ levelCopy[end - i - 1] = levelCopy[start + i];
+ levelCopy[start + i] = tmpb;
+ Object tmpo = objs[objOffset + end - i - 1];
+ objs[objOffset + end - i - 1] = objs[objOffset + start + i];
+ objs[objOffset + start + i] = tmpo;
+ }
+
+ // Handle the next run.
+ start = end + 1;
+ }
+ }
+ }
+
+ /**
* Returns false if all characters in the text between start and end
* are all left-to-right text. This implementation is just calls
* <code>Character.getDirectionality(char)</code> on all characters