summaryrefslogtreecommitdiff
path: root/external/jsr166/java/util/concurrent/ConcurrentHashMap.java
diff options
context:
space:
mode:
Diffstat (limited to 'external/jsr166/java/util/concurrent/ConcurrentHashMap.java')
-rw-r--r--external/jsr166/java/util/concurrent/ConcurrentHashMap.java1277
1 files changed, 1277 insertions, 0 deletions
diff --git a/external/jsr166/java/util/concurrent/ConcurrentHashMap.java b/external/jsr166/java/util/concurrent/ConcurrentHashMap.java
new file mode 100644
index 000000000..7f6d4493c
--- /dev/null
+++ b/external/jsr166/java/util/concurrent/ConcurrentHashMap.java
@@ -0,0 +1,1277 @@
+/*
+ * Written by Doug Lea with assistance from members of JCP JSR-166
+ * Expert Group and released to the public domain, as explained at
+ * http://creativecommons.org/licenses/publicdomain
+ */
+
+package java.util.concurrent;
+import java.util.concurrent.locks.*;
+import java.util.*;
+import java.io.Serializable;
+import java.io.IOException;
+import java.io.ObjectInputStream;
+import java.io.ObjectOutputStream;
+
+/**
+ * A hash table supporting full concurrency of retrievals and
+ * adjustable expected concurrency for updates. This class obeys the
+ * same functional specification as {@link java.util.Hashtable}, and
+ * includes versions of methods corresponding to each method of
+ * <tt>Hashtable</tt>. However, even though all operations are
+ * thread-safe, retrieval operations do <em>not</em> entail locking,
+ * and there is <em>not</em> any support for locking the entire table
+ * in a way that prevents all access. This class is fully
+ * interoperable with <tt>Hashtable</tt> in programs that rely on its
+ * thread safety but not on its synchronization details.
+ *
+ * <p> Retrieval operations (including <tt>get</tt>) generally do not
+ * block, so may overlap with update operations (including
+ * <tt>put</tt> and <tt>remove</tt>). Retrievals reflect the results
+ * of the most recently <em>completed</em> update operations holding
+ * upon their onset. For aggregate operations such as <tt>putAll</tt>
+ * and <tt>clear</tt>, concurrent retrievals may reflect insertion or
+ * removal of only some entries. Similarly, Iterators and
+ * Enumerations return elements reflecting the state of the hash table
+ * at some point at or since the creation of the iterator/enumeration.
+ * They do <em>not</em> throw {@link ConcurrentModificationException}.
+ * However, iterators are designed to be used by only one thread at a time.
+ *
+ * <p> The allowed concurrency among update operations is guided by
+ * the optional <tt>concurrencyLevel</tt> constructor argument
+ * (default <tt>16</tt>), which is used as a hint for internal sizing. The
+ * table is internally partitioned to try to permit the indicated
+ * number of concurrent updates without contention. Because placement
+ * in hash tables is essentially random, the actual concurrency will
+ * vary. Ideally, you should choose a value to accommodate as many
+ * threads as will ever concurrently modify the table. Using a
+ * significantly higher value than you need can waste space and time,
+ * and a significantly lower value can lead to thread contention. But
+ * overestimates and underestimates within an order of magnitude do
+ * not usually have much noticeable impact. A value of one is
+ * appropriate when it is known that only one thread will modify and
+ * all others will only read. Also, resizing this or any other kind of
+ * hash table is a relatively slow operation, so, when possible, it is
+ * a good idea to provide estimates of expected table sizes in
+ * constructors.
+ *
+ * <p>This class and its views and iterators implement all of the
+ * <em>optional</em> methods of the {@link Map} and {@link Iterator}
+ * interfaces.
+ *
+ * <p> Like {@link Hashtable} but unlike {@link HashMap}, this class
+ * does <em>not</em> allow <tt>null</tt> to be used as a key or value.
+ *
+ * <p>This class is a member of the
+ * <a href="{@docRoot}/../technotes/guides/collections/index.html">
+ * Java Collections Framework</a>.
+ *
+ * @since 1.5
+ * @author Doug Lea
+ * @param <K> the type of keys maintained by this map
+ * @param <V> the type of mapped values
+ */
+public class ConcurrentHashMap<K, V> extends AbstractMap<K, V>
+ implements ConcurrentMap<K, V>, Serializable {
+ private static final long serialVersionUID = 7249069246763182397L;
+
+ /*
+ * The basic strategy is to subdivide the table among Segments,
+ * each of which itself is a concurrently readable hash table.
+ */
+
+ /* ---------------- Constants -------------- */
+
+ /**
+ * The default initial capacity for this table,
+ * used when not otherwise specified in a constructor.
+ */
+ static final int DEFAULT_INITIAL_CAPACITY = 16;
+
+ /**
+ * The default load factor for this table, used when not
+ * otherwise specified in a constructor.
+ */
+ static final float DEFAULT_LOAD_FACTOR = 0.75f;
+
+ /**
+ * The default concurrency level for this table, used when not
+ * otherwise specified in a constructor.
+ */
+ static final int DEFAULT_CONCURRENCY_LEVEL = 16;
+
+ /**
+ * The maximum capacity, used if a higher value is implicitly
+ * specified by either of the constructors with arguments. MUST
+ * be a power of two <= 1<<30 to ensure that entries are indexable
+ * using ints.
+ */
+ static final int MAXIMUM_CAPACITY = 1 << 30;
+
+ /**
+ * The maximum number of segments to allow; used to bound
+ * constructor arguments.
+ */
+ static final int MAX_SEGMENTS = 1 << 16; // slightly conservative
+
+ /**
+ * Number of unsynchronized retries in size and containsValue
+ * methods before resorting to locking. This is used to avoid
+ * unbounded retries if tables undergo continuous modification
+ * which would make it impossible to obtain an accurate result.
+ */
+ static final int RETRIES_BEFORE_LOCK = 2;
+
+ /* ---------------- Fields -------------- */
+
+ /**
+ * Mask value for indexing into segments. The upper bits of a
+ * key's hash code are used to choose the segment.
+ */
+ final int segmentMask;
+
+ /**
+ * Shift value for indexing within segments.
+ */
+ final int segmentShift;
+
+ /**
+ * The segments, each of which is a specialized hash table
+ */
+ final Segment<K,V>[] segments;
+
+ transient Set<K> keySet;
+ transient Set<Map.Entry<K,V>> entrySet;
+ transient Collection<V> values;
+
+ /* ---------------- Small Utilities -------------- */
+
+ /**
+ * Applies a supplemental hash function to a given hashCode, which
+ * defends against poor quality hash functions. This is critical
+ * because ConcurrentHashMap uses power-of-two length hash tables,
+ * that otherwise encounter collisions for hashCodes that do not
+ * differ in lower bits.
+ */
+ private static int hash(int h) {
+ // This function ensures that hashCodes that differ only by
+ // constant multiples at each bit position have a bounded
+ // number of collisions (approximately 8 at default load factor).
+ h ^= (h >>> 20) ^ (h >>> 12);
+ return h ^ (h >>> 7) ^ (h >>> 4);
+ }
+
+ /**
+ * Returns the segment that should be used for key with given hash
+ * @param hash the hash code for the key
+ * @return the segment
+ */
+ final Segment<K,V> segmentFor(int hash) {
+ return segments[(hash >>> segmentShift) & segmentMask];
+ }
+
+ /* ---------------- Inner Classes -------------- */
+
+ /**
+ * ConcurrentHashMap list entry. Note that this is never exported
+ * out as a user-visible Map.Entry.
+ *
+ * Because the value field is volatile, not final, it is legal wrt
+ * the Java Memory Model for an unsynchronized reader to see null
+ * instead of initial value when read via a data race. Although a
+ * reordering leading to this is not likely to ever actually
+ * occur, the Segment.readValueUnderLock method is used as a
+ * backup in case a null (pre-initialized) value is ever seen in
+ * an unsynchronized access method.
+ */
+ static final class HashEntry<K,V> {
+ final K key;
+ final int hash;
+ volatile V value;
+ final HashEntry<K,V> next;
+
+ HashEntry(K key, int hash, HashEntry<K,V> next, V value) {
+ this.key = key;
+ this.hash = hash;
+ this.next = next;
+ this.value = value;
+ }
+
+ @SuppressWarnings("unchecked")
+ static final <K,V> HashEntry<K,V>[] newArray(int i) {
+ return new HashEntry[i];
+ }
+ }
+
+ /**
+ * Segments are specialized versions of hash tables. This
+ * subclasses from ReentrantLock opportunistically, just to
+ * simplify some locking and avoid separate construction.
+ */
+ static final class Segment<K,V> extends ReentrantLock implements Serializable {
+ /*
+ * Segments maintain a table of entry lists that are ALWAYS
+ * kept in a consistent state, so can be read without locking.
+ * Next fields of nodes are immutable (final). All list
+ * additions are performed at the front of each bin. This
+ * makes it easy to check changes, and also fast to traverse.
+ * When nodes would otherwise be changed, new nodes are
+ * created to replace them. This works well for hash tables
+ * since the bin lists tend to be short. (The average length
+ * is less than two for the default load factor threshold.)
+ *
+ * Read operations can thus proceed without locking, but rely
+ * on selected uses of volatiles to ensure that completed
+ * write operations performed by other threads are
+ * noticed. For most purposes, the "count" field, tracking the
+ * number of elements, serves as that volatile variable
+ * ensuring visibility. This is convenient because this field
+ * needs to be read in many read operations anyway:
+ *
+ * - All (unsynchronized) read operations must first read the
+ * "count" field, and should not look at table entries if
+ * it is 0.
+ *
+ * - All (synchronized) write operations should write to
+ * the "count" field after structurally changing any bin.
+ * The operations must not take any action that could even
+ * momentarily cause a concurrent read operation to see
+ * inconsistent data. This is made easier by the nature of
+ * the read operations in Map. For example, no operation
+ * can reveal that the table has grown but the threshold
+ * has not yet been updated, so there are no atomicity
+ * requirements for this with respect to reads.
+ *
+ * As a guide, all critical volatile reads and writes to the
+ * count field are marked in code comments.
+ */
+
+ private static final long serialVersionUID = 2249069246763182397L;
+
+ /**
+ * The number of elements in this segment's region.
+ */
+ transient volatile int count;
+
+ /**
+ * Number of updates that alter the size of the table. This is
+ * used during bulk-read methods to make sure they see a
+ * consistent snapshot: If modCounts change during a traversal
+ * of segments computing size or checking containsValue, then
+ * we might have an inconsistent view of state so (usually)
+ * must retry.
+ */
+ transient int modCount;
+
+ /**
+ * The table is rehashed when its size exceeds this threshold.
+ * (The value of this field is always <tt>(int)(capacity *
+ * loadFactor)</tt>.)
+ */
+ transient int threshold;
+
+ /**
+ * The per-segment table.
+ */
+ transient volatile HashEntry<K,V>[] table;
+
+ /**
+ * The load factor for the hash table. Even though this value
+ * is same for all segments, it is replicated to avoid needing
+ * links to outer object.
+ * @serial
+ */
+ final float loadFactor;
+
+ Segment(int initialCapacity, float lf) {
+ loadFactor = lf;
+ setTable(HashEntry.<K,V>newArray(initialCapacity));
+ }
+
+ @SuppressWarnings("unchecked")
+ static final <K,V> Segment<K,V>[] newArray(int i) {
+ return new Segment[i];
+ }
+
+ /**
+ * Sets table to new HashEntry array.
+ * Call only while holding lock or in constructor.
+ */
+ void setTable(HashEntry<K,V>[] newTable) {
+ threshold = (int)(newTable.length * loadFactor);
+ table = newTable;
+ }
+
+ /**
+ * Returns properly casted first entry of bin for given hash.
+ */
+ HashEntry<K,V> getFirst(int hash) {
+ HashEntry<K,V>[] tab = table;
+ return tab[hash & (tab.length - 1)];
+ }
+
+ /**
+ * Reads value field of an entry under lock. Called if value
+ * field ever appears to be null. This is possible only if a
+ * compiler happens to reorder a HashEntry initialization with
+ * its table assignment, which is legal under memory model
+ * but is not known to ever occur.
+ */
+ V readValueUnderLock(HashEntry<K,V> e) {
+ lock();
+ try {
+ return e.value;
+ } finally {
+ unlock();
+ }
+ }
+
+ /* Specialized implementations of map methods */
+
+ V get(Object key, int hash) {
+ if (count != 0) { // read-volatile
+ HashEntry<K,V> e = getFirst(hash);
+ while (e != null) {
+ if (e.hash == hash && key.equals(e.key)) {
+ V v = e.value;
+ if (v != null)
+ return v;
+ return readValueUnderLock(e); // recheck
+ }
+ e = e.next;
+ }
+ }
+ return null;
+ }
+
+ boolean containsKey(Object key, int hash) {
+ if (count != 0) { // read-volatile
+ HashEntry<K,V> e = getFirst(hash);
+ while (e != null) {
+ if (e.hash == hash && key.equals(e.key))
+ return true;
+ e = e.next;
+ }
+ }
+ return false;
+ }
+
+ boolean containsValue(Object value) {
+ if (count != 0) { // read-volatile
+ HashEntry<K,V>[] tab = table;
+ int len = tab.length;
+ for (int i = 0 ; i < len; i++) {
+ for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
+ V v = e.value;
+ if (v == null) // recheck
+ v = readValueUnderLock(e);
+ if (value.equals(v))
+ return true;
+ }
+ }
+ }
+ return false;
+ }
+
+ boolean replace(K key, int hash, V oldValue, V newValue) {
+ lock();
+ try {
+ HashEntry<K,V> e = getFirst(hash);
+ while (e != null && (e.hash != hash || !key.equals(e.key)))
+ e = e.next;
+
+ boolean replaced = false;
+ if (e != null && oldValue.equals(e.value)) {
+ replaced = true;
+ e.value = newValue;
+ }
+ return replaced;
+ } finally {
+ unlock();
+ }
+ }
+
+ V replace(K key, int hash, V newValue) {
+ lock();
+ try {
+ HashEntry<K,V> e = getFirst(hash);
+ while (e != null && (e.hash != hash || !key.equals(e.key)))
+ e = e.next;
+
+ V oldValue = null;
+ if (e != null) {
+ oldValue = e.value;
+ e.value = newValue;
+ }
+ return oldValue;
+ } finally {
+ unlock();
+ }
+ }
+
+
+ V put(K key, int hash, V value, boolean onlyIfAbsent) {
+ lock();
+ try {
+ int c = count;
+ if (c++ > threshold) // ensure capacity
+ rehash();
+ HashEntry<K,V>[] tab = table;
+ int index = hash & (tab.length - 1);
+ HashEntry<K,V> first = tab[index];
+ HashEntry<K,V> e = first;
+ while (e != null && (e.hash != hash || !key.equals(e.key)))
+ e = e.next;
+
+ V oldValue;
+ if (e != null) {
+ oldValue = e.value;
+ if (!onlyIfAbsent)
+ e.value = value;
+ }
+ else {
+ oldValue = null;
+ ++modCount;
+ tab[index] = new HashEntry<K,V>(key, hash, first, value);
+ count = c; // write-volatile
+ }
+ return oldValue;
+ } finally {
+ unlock();
+ }
+ }
+
+ void rehash() {
+ HashEntry<K,V>[] oldTable = table;
+ int oldCapacity = oldTable.length;
+ if (oldCapacity >= MAXIMUM_CAPACITY)
+ return;
+
+ /*
+ * Reclassify nodes in each list to new Map. Because we are
+ * using power-of-two expansion, the elements from each bin
+ * must either stay at same index, or move with a power of two
+ * offset. We eliminate unnecessary node creation by catching
+ * cases where old nodes can be reused because their next
+ * fields won't change. Statistically, at the default
+ * threshold, only about one-sixth of them need cloning when
+ * a table doubles. The nodes they replace will be garbage
+ * collectable as soon as they are no longer referenced by any
+ * reader thread that may be in the midst of traversing table
+ * right now.
+ */
+
+ HashEntry<K,V>[] newTable = HashEntry.newArray(oldCapacity<<1);
+ threshold = (int)(newTable.length * loadFactor);
+ int sizeMask = newTable.length - 1;
+ for (int i = 0; i < oldCapacity ; i++) {
+ // We need to guarantee that any existing reads of old Map can
+ // proceed. So we cannot yet null out each bin.
+ HashEntry<K,V> e = oldTable[i];
+
+ if (e != null) {
+ HashEntry<K,V> next = e.next;
+ int idx = e.hash & sizeMask;
+
+ // Single node on list
+ if (next == null)
+ newTable[idx] = e;
+
+ else {
+ // Reuse trailing consecutive sequence at same slot
+ HashEntry<K,V> lastRun = e;
+ int lastIdx = idx;
+ for (HashEntry<K,V> last = next;
+ last != null;
+ last = last.next) {
+ int k = last.hash & sizeMask;
+ if (k != lastIdx) {
+ lastIdx = k;
+ lastRun = last;
+ }
+ }
+ newTable[lastIdx] = lastRun;
+
+ // Clone all remaining nodes
+ for (HashEntry<K,V> p = e; p != lastRun; p = p.next) {
+ int k = p.hash & sizeMask;
+ HashEntry<K,V> n = newTable[k];
+ newTable[k] = new HashEntry<K,V>(p.key, p.hash,
+ n, p.value);
+ }
+ }
+ }
+ }
+ table = newTable;
+ }
+
+ /**
+ * Remove; match on key only if value null, else match both.
+ */
+ V remove(Object key, int hash, Object value) {
+ lock();
+ try {
+ int c = count - 1;
+ HashEntry<K,V>[] tab = table;
+ int index = hash & (tab.length - 1);
+ HashEntry<K,V> first = tab[index];
+ HashEntry<K,V> e = first;
+ while (e != null && (e.hash != hash || !key.equals(e.key)))
+ e = e.next;
+
+ V oldValue = null;
+ if (e != null) {
+ V v = e.value;
+ if (value == null || value.equals(v)) {
+ oldValue = v;
+ // All entries following removed node can stay
+ // in list, but all preceding ones need to be
+ // cloned.
+ ++modCount;
+ HashEntry<K,V> newFirst = e.next;
+ for (HashEntry<K,V> p = first; p != e; p = p.next)
+ newFirst = new HashEntry<K,V>(p.key, p.hash,
+ newFirst, p.value);
+ tab[index] = newFirst;
+ count = c; // write-volatile
+ }
+ }
+ return oldValue;
+ } finally {
+ unlock();
+ }
+ }
+
+ void clear() {
+ if (count != 0) {
+ lock();
+ try {
+ HashEntry<K,V>[] tab = table;
+ for (int i = 0; i < tab.length ; i++)
+ tab[i] = null;
+ ++modCount;
+ count = 0; // write-volatile
+ } finally {
+ unlock();
+ }
+ }
+ }
+ }
+
+
+
+ /* ---------------- Public operations -------------- */
+
+ /**
+ * Creates a new, empty map with the specified initial
+ * capacity, load factor and concurrency level.
+ *
+ * @param initialCapacity the initial capacity. The implementation
+ * performs internal sizing to accommodate this many elements.
+ * @param loadFactor the load factor threshold, used to control resizing.
+ * Resizing may be performed when the average number of elements per
+ * bin exceeds this threshold.
+ * @param concurrencyLevel the estimated number of concurrently
+ * updating threads. The implementation performs internal sizing
+ * to try to accommodate this many threads.
+ * @throws IllegalArgumentException if the initial capacity is
+ * negative or the load factor or concurrencyLevel are
+ * nonpositive.
+ */
+ public ConcurrentHashMap(int initialCapacity,
+ float loadFactor, int concurrencyLevel) {
+ if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
+ throw new IllegalArgumentException();
+
+ if (concurrencyLevel > MAX_SEGMENTS)
+ concurrencyLevel = MAX_SEGMENTS;
+
+ // Find power-of-two sizes best matching arguments
+ int sshift = 0;
+ int ssize = 1;
+ while (ssize < concurrencyLevel) {
+ ++sshift;
+ ssize <<= 1;
+ }
+ segmentShift = 32 - sshift;
+ segmentMask = ssize - 1;
+ this.segments = Segment.newArray(ssize);
+
+ if (initialCapacity > MAXIMUM_CAPACITY)
+ initialCapacity = MAXIMUM_CAPACITY;
+ int c = initialCapacity / ssize;
+ if (c * ssize < initialCapacity)
+ ++c;
+ int cap = 1;
+ while (cap < c)
+ cap <<= 1;
+
+ for (int i = 0; i < this.segments.length; ++i)
+ this.segments[i] = new Segment<K,V>(cap, loadFactor);
+ }
+
+ /**
+ * Creates a new, empty map with the specified initial capacity
+ * and load factor and with the default concurrencyLevel (16).
+ *
+ * @param initialCapacity The implementation performs internal
+ * sizing to accommodate this many elements.
+ * @param loadFactor the load factor threshold, used to control resizing.
+ * Resizing may be performed when the average number of elements per
+ * bin exceeds this threshold.
+ * @throws IllegalArgumentException if the initial capacity of
+ * elements is negative or the load factor is nonpositive
+ *
+ * @since 1.6
+ */
+ public ConcurrentHashMap(int initialCapacity, float loadFactor) {
+ this(initialCapacity, loadFactor, DEFAULT_CONCURRENCY_LEVEL);
+ }
+
+ /**
+ * Creates a new, empty map with the specified initial capacity,
+ * and with default load factor (0.75) and concurrencyLevel (16).
+ *
+ * @param initialCapacity the initial capacity. The implementation
+ * performs internal sizing to accommodate this many elements.
+ * @throws IllegalArgumentException if the initial capacity of
+ * elements is negative.
+ */
+ public ConcurrentHashMap(int initialCapacity) {
+ this(initialCapacity, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
+ }
+
+ /**
+ * Creates a new, empty map with a default initial capacity (16),
+ * load factor (0.75) and concurrencyLevel (16).
+ */
+ public ConcurrentHashMap() {
+ this(DEFAULT_INITIAL_CAPACITY, DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
+ }
+
+ /**
+ * Creates a new map with the same mappings as the given map.
+ * The map is created with a capacity of 1.5 times the number
+ * of mappings in the given map or 16 (whichever is greater),
+ * and a default load factor (0.75) and concurrencyLevel (16).
+ *
+ * @param m the map
+ */
+ public ConcurrentHashMap(Map<? extends K, ? extends V> m) {
+ this(Math.max((int) (m.size() / DEFAULT_LOAD_FACTOR) + 1,
+ DEFAULT_INITIAL_CAPACITY),
+ DEFAULT_LOAD_FACTOR, DEFAULT_CONCURRENCY_LEVEL);
+ putAll(m);
+ }
+
+ /**
+ * Returns <tt>true</tt> if this map contains no key-value mappings.
+ *
+ * @return <tt>true</tt> if this map contains no key-value mappings
+ */
+ public boolean isEmpty() {
+ final Segment<K,V>[] segments = this.segments;
+ /*
+ * We keep track of per-segment modCounts to avoid ABA
+ * problems in which an element in one segment was added and
+ * in another removed during traversal, in which case the
+ * table was never actually empty at any point. Note the
+ * similar use of modCounts in the size() and containsValue()
+ * methods, which are the only other methods also susceptible
+ * to ABA problems.
+ */
+ int[] mc = new int[segments.length];
+ int mcsum = 0;
+ for (int i = 0; i < segments.length; ++i) {
+ if (segments[i].count != 0)
+ return false;
+ else
+ mcsum += mc[i] = segments[i].modCount;
+ }
+ // If mcsum happens to be zero, then we know we got a snapshot
+ // before any modifications at all were made. This is
+ // probably common enough to bother tracking.
+ if (mcsum != 0) {
+ for (int i = 0; i < segments.length; ++i) {
+ if (segments[i].count != 0 ||
+ mc[i] != segments[i].modCount)
+ return false;
+ }
+ }
+ return true;
+ }
+
+ /**
+ * Returns the number of key-value mappings in this map. If the
+ * map contains more than <tt>Integer.MAX_VALUE</tt> elements, returns
+ * <tt>Integer.MAX_VALUE</tt>.
+ *
+ * @return the number of key-value mappings in this map
+ */
+ public int size() {
+ final Segment<K,V>[] segments = this.segments;
+ long sum = 0;
+ long check = 0;
+ int[] mc = new int[segments.length];
+ // Try a few times to get accurate count. On failure due to
+ // continuous async changes in table, resort to locking.
+ for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
+ check = 0;
+ sum = 0;
+ int mcsum = 0;
+ for (int i = 0; i < segments.length; ++i) {
+ sum += segments[i].count;
+ mcsum += mc[i] = segments[i].modCount;
+ }
+ if (mcsum != 0) {
+ for (int i = 0; i < segments.length; ++i) {
+ check += segments[i].count;
+ if (mc[i] != segments[i].modCount) {
+ check = -1; // force retry
+ break;
+ }
+ }
+ }
+ if (check == sum)
+ break;
+ }
+ if (check != sum) { // Resort to locking all segments
+ sum = 0;
+ for (int i = 0; i < segments.length; ++i)
+ segments[i].lock();
+ for (int i = 0; i < segments.length; ++i)
+ sum += segments[i].count;
+ for (int i = 0; i < segments.length; ++i)
+ segments[i].unlock();
+ }
+ if (sum > Integer.MAX_VALUE)
+ return Integer.MAX_VALUE;
+ else
+ return (int)sum;
+ }
+
+ /**
+ * Returns the value to which the specified key is mapped,
+ * or {@code null} if this map contains no mapping for the key.
+ *
+ * <p>More formally, if this map contains a mapping from a key
+ * {@code k} to a value {@code v} such that {@code key.equals(k)},
+ * then this method returns {@code v}; otherwise it returns
+ * {@code null}. (There can be at most one such mapping.)
+ *
+ * @throws NullPointerException if the specified key is null
+ */
+ public V get(Object key) {
+ int hash = hash(key.hashCode());
+ return segmentFor(hash).get(key, hash);
+ }
+
+ /**
+ * Tests if the specified object is a key in this table.
+ *
+ * @param key possible key
+ * @return <tt>true</tt> if and only if the specified object
+ * is a key in this table, as determined by the
+ * <tt>equals</tt> method; <tt>false</tt> otherwise.
+ * @throws NullPointerException if the specified key is null
+ */
+ public boolean containsKey(Object key) {
+ int hash = hash(key.hashCode());
+ return segmentFor(hash).containsKey(key, hash);
+ }
+
+ /**
+ * Returns <tt>true</tt> if this map maps one or more keys to the
+ * specified value. Note: This method requires a full internal
+ * traversal of the hash table, and so is much slower than
+ * method <tt>containsKey</tt>.
+ *
+ * @param value value whose presence in this map is to be tested
+ * @return <tt>true</tt> if this map maps one or more keys to the
+ * specified value
+ * @throws NullPointerException if the specified value is null
+ */
+ public boolean containsValue(Object value) {
+ if (value == null)
+ throw new NullPointerException();
+
+ // See explanation of modCount use above
+
+ final Segment<K,V>[] segments = this.segments;
+ int[] mc = new int[segments.length];
+
+ // Try a few times without locking
+ for (int k = 0; k < RETRIES_BEFORE_LOCK; ++k) {
+ int sum = 0;
+ int mcsum = 0;
+ for (int i = 0; i < segments.length; ++i) {
+ int c = segments[i].count;
+ mcsum += mc[i] = segments[i].modCount;
+ if (segments[i].containsValue(value))
+ return true;
+ }
+ boolean cleanSweep = true;
+ if (mcsum != 0) {
+ for (int i = 0; i < segments.length; ++i) {
+ int c = segments[i].count;
+ if (mc[i] != segments[i].modCount) {
+ cleanSweep = false;
+ break;
+ }
+ }
+ }
+ if (cleanSweep)
+ return false;
+ }
+ // Resort to locking all segments
+ for (int i = 0; i < segments.length; ++i)
+ segments[i].lock();
+ boolean found = false;
+ try {
+ for (int i = 0; i < segments.length; ++i) {
+ if (segments[i].containsValue(value)) {
+ found = true;
+ break;
+ }
+ }
+ } finally {
+ for (int i = 0; i < segments.length; ++i)
+ segments[i].unlock();
+ }
+ return found;
+ }
+
+ /**
+ * Legacy method testing if some key maps into the specified value
+ * in this table. This method is identical in functionality to
+ * {@link #containsValue}, and exists solely to ensure
+ * full compatibility with class {@link java.util.Hashtable},
+ * which supported this method prior to introduction of the
+ * Java Collections framework.
+
+ * @param value a value to search for
+ * @return <tt>true</tt> if and only if some key maps to the
+ * <tt>value</tt> argument in this table as
+ * determined by the <tt>equals</tt> method;
+ * <tt>false</tt> otherwise
+ * @throws NullPointerException if the specified value is null
+ */
+ public boolean contains(Object value) {
+ return containsValue(value);
+ }
+
+ /**
+ * Maps the specified key to the specified value in this table.
+ * Neither the key nor the value can be null.
+ *
+ * <p> The value can be retrieved by calling the <tt>get</tt> method
+ * with a key that is equal to the original key.
+ *
+ * @param key key with which the specified value is to be associated
+ * @param value value to be associated with the specified key
+ * @return the previous value associated with <tt>key</tt>, or
+ * <tt>null</tt> if there was no mapping for <tt>key</tt>
+ * @throws NullPointerException if the specified key or value is null
+ */
+ public V put(K key, V value) {
+ if (value == null)
+ throw new NullPointerException();
+ int hash = hash(key.hashCode());
+ return segmentFor(hash).put(key, hash, value, false);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @return the previous value associated with the specified key,
+ * or <tt>null</tt> if there was no mapping for the key
+ * @throws NullPointerException if the specified key or value is null
+ */
+ public V putIfAbsent(K key, V value) {
+ if (value == null)
+ throw new NullPointerException();
+ int hash = hash(key.hashCode());
+ return segmentFor(hash).put(key, hash, value, true);
+ }
+
+ /**
+ * Copies all of the mappings from the specified map to this one.
+ * These mappings replace any mappings that this map had for any of the
+ * keys currently in the specified map.
+ *
+ * @param m mappings to be stored in this map
+ */
+ public void putAll(Map<? extends K, ? extends V> m) {
+ for (Map.Entry<? extends K, ? extends V> e : m.entrySet())
+ put(e.getKey(), e.getValue());
+ }
+
+ /**
+ * Removes the key (and its corresponding value) from this map.
+ * This method does nothing if the key is not in the map.
+ *
+ * @param key the key that needs to be removed
+ * @return the previous value associated with <tt>key</tt>, or
+ * <tt>null</tt> if there was no mapping for <tt>key</tt>
+ * @throws NullPointerException if the specified key is null
+ */
+ public V remove(Object key) {
+ int hash = hash(key.hashCode());
+ return segmentFor(hash).remove(key, hash, null);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @throws NullPointerException if the specified key is null
+ */
+ public boolean remove(Object key, Object value) {
+ int hash = hash(key.hashCode());
+ if (value == null)
+ return false;
+ return segmentFor(hash).remove(key, hash, value) != null;
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @throws NullPointerException if any of the arguments are null
+ */
+ public boolean replace(K key, V oldValue, V newValue) {
+ if (oldValue == null || newValue == null)
+ throw new NullPointerException();
+ int hash = hash(key.hashCode());
+ return segmentFor(hash).replace(key, hash, oldValue, newValue);
+ }
+
+ /**
+ * {@inheritDoc}
+ *
+ * @return the previous value associated with the specified key,
+ * or <tt>null</tt> if there was no mapping for the key
+ * @throws NullPointerException if the specified key or value is null
+ */
+ public V replace(K key, V value) {
+ if (value == null)
+ throw new NullPointerException();
+ int hash = hash(key.hashCode());
+ return segmentFor(hash).replace(key, hash, value);
+ }
+
+ /**
+ * Removes all of the mappings from this map.
+ */
+ public void clear() {
+ for (int i = 0; i < segments.length; ++i)
+ segments[i].clear();
+ }
+
+ /**
+ * Returns a {@link Set} view of the keys contained in this map.
+ * The set is backed by the map, so changes to the map are
+ * reflected in the set, and vice-versa. The set supports element
+ * removal, which removes the corresponding mapping from this map,
+ * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
+ * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
+ * operations. It does not support the <tt>add</tt> or
+ * <tt>addAll</tt> operations.
+ *
+ * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+ * that will never throw {@link ConcurrentModificationException},
+ * and guarantees to traverse elements as they existed upon
+ * construction of the iterator, and may (but is not guaranteed to)
+ * reflect any modifications subsequent to construction.
+ */
+ public Set<K> keySet() {
+ Set<K> ks = keySet;
+ return (ks != null) ? ks : (keySet = new KeySet());
+ }
+
+ /**
+ * Returns a {@link Collection} view of the values contained in this map.
+ * The collection is backed by the map, so changes to the map are
+ * reflected in the collection, and vice-versa. The collection
+ * supports element removal, which removes the corresponding
+ * mapping from this map, via the <tt>Iterator.remove</tt>,
+ * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
+ * <tt>retainAll</tt>, and <tt>clear</tt> operations. It does not
+ * support the <tt>add</tt> or <tt>addAll</tt> operations.
+ *
+ * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+ * that will never throw {@link ConcurrentModificationException},
+ * and guarantees to traverse elements as they existed upon
+ * construction of the iterator, and may (but is not guaranteed to)
+ * reflect any modifications subsequent to construction.
+ */
+ public Collection<V> values() {
+ Collection<V> vs = values;
+ return (vs != null) ? vs : (values = new Values());
+ }
+
+ /**
+ * Returns a {@link Set} view of the mappings contained in this map.
+ * The set is backed by the map, so changes to the map are
+ * reflected in the set, and vice-versa. The set supports element
+ * removal, which removes the corresponding mapping from the map,
+ * via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
+ * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
+ * operations. It does not support the <tt>add</tt> or
+ * <tt>addAll</tt> operations.
+ *
+ * <p>The view's <tt>iterator</tt> is a "weakly consistent" iterator
+ * that will never throw {@link ConcurrentModificationException},
+ * and guarantees to traverse elements as they existed upon
+ * construction of the iterator, and may (but is not guaranteed to)
+ * reflect any modifications subsequent to construction.
+ */
+ public Set<Map.Entry<K,V>> entrySet() {
+ Set<Map.Entry<K,V>> es = entrySet;
+ return (es != null) ? es : (entrySet = new EntrySet());
+ }
+
+ /**
+ * Returns an enumeration of the keys in this table.
+ *
+ * @return an enumeration of the keys in this table
+ * @see #keySet
+ */
+ public Enumeration<K> keys() {
+ return new KeyIterator();
+ }
+
+ /**
+ * Returns an enumeration of the values in this table.
+ *
+ * @return an enumeration of the values in this table
+ * @see #values
+ */
+ public Enumeration<V> elements() {
+ return new ValueIterator();
+ }
+
+ /* ---------------- Iterator Support -------------- */
+
+ abstract class HashIterator {
+ int nextSegmentIndex;
+ int nextTableIndex;
+ HashEntry<K,V>[] currentTable;
+ HashEntry<K, V> nextEntry;
+ HashEntry<K, V> lastReturned;
+
+ HashIterator() {
+ nextSegmentIndex = segments.length - 1;
+ nextTableIndex = -1;
+ advance();
+ }
+
+ public boolean hasMoreElements() { return hasNext(); }
+
+ final void advance() {
+ if (nextEntry != null && (nextEntry = nextEntry.next) != null)
+ return;
+
+ while (nextTableIndex >= 0) {
+ if ( (nextEntry = currentTable[nextTableIndex--]) != null)
+ return;
+ }
+
+ while (nextSegmentIndex >= 0) {
+ Segment<K,V> seg = segments[nextSegmentIndex--];
+ if (seg.count != 0) {
+ currentTable = seg.table;
+ for (int j = currentTable.length - 1; j >= 0; --j) {
+ if ( (nextEntry = currentTable[j]) != null) {
+ nextTableIndex = j - 1;
+ return;
+ }
+ }
+ }
+ }
+ }
+
+ public boolean hasNext() { return nextEntry != null; }
+
+ HashEntry<K,V> nextEntry() {
+ if (nextEntry == null)
+ throw new NoSuchElementException();
+ lastReturned = nextEntry;
+ advance();
+ return lastReturned;
+ }
+
+ public void remove() {
+ if (lastReturned == null)
+ throw new IllegalStateException();
+ ConcurrentHashMap.this.remove(lastReturned.key);
+ lastReturned = null;
+ }
+ }
+
+ final class KeyIterator
+ extends HashIterator
+ implements Iterator<K>, Enumeration<K>
+ {
+ public K next() { return super.nextEntry().key; }
+ public K nextElement() { return super.nextEntry().key; }
+ }
+
+ final class ValueIterator
+ extends HashIterator
+ implements Iterator<V>, Enumeration<V>
+ {
+ public V next() { return super.nextEntry().value; }
+ public V nextElement() { return super.nextEntry().value; }
+ }
+
+ /**
+ * Custom Entry class used by EntryIterator.next(), that relays
+ * setValue changes to the underlying map.
+ */
+ final class WriteThroughEntry
+ extends AbstractMap.SimpleEntry<K,V>
+ {
+ WriteThroughEntry(K k, V v) {
+ super(k,v);
+ }
+
+ /**
+ * Set our entry's value and write through to the map. The
+ * value to return is somewhat arbitrary here. Since a
+ * WriteThroughEntry does not necessarily track asynchronous
+ * changes, the most recent "previous" value could be
+ * different from what we return (or could even have been
+ * removed in which case the put will re-establish). We do not
+ * and cannot guarantee more.
+ */
+ public V setValue(V value) {
+ if (value == null) throw new NullPointerException();
+ V v = super.setValue(value);
+ ConcurrentHashMap.this.put(getKey(), value);
+ return v;
+ }
+ }
+
+ final class EntryIterator
+ extends HashIterator
+ implements Iterator<Entry<K,V>>
+ {
+ public Map.Entry<K,V> next() {
+ HashEntry<K,V> e = super.nextEntry();
+ return new WriteThroughEntry(e.key, e.value);
+ }
+ }
+
+ final class KeySet extends AbstractSet<K> {
+ public Iterator<K> iterator() {
+ return new KeyIterator();
+ }
+ public int size() {
+ return ConcurrentHashMap.this.size();
+ }
+ public boolean contains(Object o) {
+ return ConcurrentHashMap.this.containsKey(o);
+ }
+ public boolean remove(Object o) {
+ return ConcurrentHashMap.this.remove(o) != null;
+ }
+ public void clear() {
+ ConcurrentHashMap.this.clear();
+ }
+ }
+
+ final class Values extends AbstractCollection<V> {
+ public Iterator<V> iterator() {
+ return new ValueIterator();
+ }
+ public int size() {
+ return ConcurrentHashMap.this.size();
+ }
+ public boolean contains(Object o) {
+ return ConcurrentHashMap.this.containsValue(o);
+ }
+ public void clear() {
+ ConcurrentHashMap.this.clear();
+ }
+ }
+
+ final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
+ public Iterator<Map.Entry<K,V>> iterator() {
+ return new EntryIterator();
+ }
+ public boolean contains(Object o) {
+ if (!(o instanceof Map.Entry))
+ return false;
+ Map.Entry<?,?> e = (Map.Entry<?,?>)o;
+ V v = ConcurrentHashMap.this.get(e.getKey());
+ return v != null && v.equals(e.getValue());
+ }
+ public boolean remove(Object o) {
+ if (!(o instanceof Map.Entry))
+ return false;
+ Map.Entry<?,?> e = (Map.Entry<?,?>)o;
+ return ConcurrentHashMap.this.remove(e.getKey(), e.getValue());
+ }
+ public int size() {
+ return ConcurrentHashMap.this.size();
+ }
+ public void clear() {
+ ConcurrentHashMap.this.clear();
+ }
+ }
+
+ /* ---------------- Serialization Support -------------- */
+
+ /**
+ * Save the state of the <tt>ConcurrentHashMap</tt> instance to a
+ * stream (i.e., serialize it).
+ * @param s the stream
+ * @serialData
+ * the key (Object) and value (Object)
+ * for each key-value mapping, followed by a null pair.
+ * The key-value mappings are emitted in no particular order.
+ */
+ private void writeObject(java.io.ObjectOutputStream s) throws IOException {
+ s.defaultWriteObject();
+
+ for (int k = 0; k < segments.length; ++k) {
+ Segment<K,V> seg = segments[k];
+ seg.lock();
+ try {
+ HashEntry<K,V>[] tab = seg.table;
+ for (int i = 0; i < tab.length; ++i) {
+ for (HashEntry<K,V> e = tab[i]; e != null; e = e.next) {
+ s.writeObject(e.key);
+ s.writeObject(e.value);
+ }
+ }
+ } finally {
+ seg.unlock();
+ }
+ }
+ s.writeObject(null);
+ s.writeObject(null);
+ }
+
+ /**
+ * Reconstitute the <tt>ConcurrentHashMap</tt> instance from a
+ * stream (i.e., deserialize it).
+ * @param s the stream
+ */
+ private void readObject(java.io.ObjectInputStream s)
+ throws IOException, ClassNotFoundException {
+ s.defaultReadObject();
+
+ // Initialize each segment to be minimally sized, and let grow.
+ for (int i = 0; i < segments.length; ++i) {
+ segments[i].setTable(new HashEntry[1]);
+ }
+
+ // Read the keys and values, and put the mappings in the table
+ for (;;) {
+ K key = (K) s.readObject();
+ V value = (V) s.readObject();
+ if (key == null)
+ break;
+ put(key, value);
+ }
+ }
+}