summaryrefslogtreecommitdiff
path: root/external/jsr166/java/util/concurrent/CopyOnWriteArraySet.java
diff options
context:
space:
mode:
Diffstat (limited to 'external/jsr166/java/util/concurrent/CopyOnWriteArraySet.java')
-rw-r--r--external/jsr166/java/util/concurrent/CopyOnWriteArraySet.java364
1 files changed, 364 insertions, 0 deletions
diff --git a/external/jsr166/java/util/concurrent/CopyOnWriteArraySet.java b/external/jsr166/java/util/concurrent/CopyOnWriteArraySet.java
new file mode 100644
index 000000000..39c0e5868
--- /dev/null
+++ b/external/jsr166/java/util/concurrent/CopyOnWriteArraySet.java
@@ -0,0 +1,364 @@
+/*
+ * Written by Doug Lea with assistance from members of JCP JSR-166
+ * Expert Group and released to the public domain. Use, modify, and
+ * redistribute this code in any way without acknowledgement.
+ */
+
+package java.util.concurrent;
+import java.util.*;
+
+/**
+ * A {@link java.util.Set} that uses an internal {@link CopyOnWriteArrayList}
+ * for all of its operations. Thus, it shares the same basic properties:
+ * <ul>
+ * <li>It is best suited for applications in which set sizes generally
+ * stay small, read-only operations
+ * vastly outnumber mutative operations, and you need
+ * to prevent interference among threads during traversal.
+ * <li>It is thread-safe.
+ * <li>Mutative operations (<tt>add</tt>, <tt>set</tt>, <tt>remove</tt>, etc.)
+ * are expensive since they usually entail copying the entire underlying
+ * array.
+ * <li>Iterators do not support the mutative <tt>remove</tt> operation.
+ * <li>Traversal via iterators is fast and cannot encounter
+ * interference from other threads. Iterators rely on
+ * unchanging snapshots of the array at the time the iterators were
+ * constructed.
+ * </ul>
+ *
+ * <p> <b>Sample Usage.</b> The following code sketch uses a
+ * copy-on-write set to maintain a set of Handler objects that
+ * perform some action upon state updates.
+ *
+ * <pre>
+ * class Handler { void handle(); ... }
+ *
+ * class X {
+ * private final CopyOnWriteArraySet&lt;Handler&gt; handlers
+ * = new CopyOnWriteArraySet&lt;Handler&gt;();
+ * public void addHandler(Handler h) { handlers.add(h); }
+ *
+ * private long internalState;
+ * private synchronized void changeState() { internalState = ...; }
+ *
+ * public void update() {
+ * changeState();
+ * for (Handler handler : handlers)
+ * handler.handle();
+ * }
+ * }
+ * </pre>
+ *
+ * <p>This class is a member of the
+ * <a href="{@docRoot}/../technotes/guides/collections/index.html">
+ * Java Collections Framework</a>.
+ *
+ * @see CopyOnWriteArrayList
+ * @since 1.5
+ * @author Doug Lea
+ * @param <E> the type of elements held in this collection
+ */
+public class CopyOnWriteArraySet<E> extends AbstractSet<E>
+ implements java.io.Serializable {
+ private static final long serialVersionUID = 5457747651344034263L;
+
+ private final CopyOnWriteArrayList<E> al;
+
+ /**
+ * Creates an empty set.
+ */
+ public CopyOnWriteArraySet() {
+ al = new CopyOnWriteArrayList<E>();
+ }
+
+ /**
+ * Creates a set containing all of the elements of the specified
+ * collection.
+ *
+ * @param c the collection of elements to initially contain
+ * @throws NullPointerException if the specified collection is null
+ */
+ public CopyOnWriteArraySet(Collection<? extends E> c) {
+ al = new CopyOnWriteArrayList<E>();
+ al.addAllAbsent(c);
+ }
+
+ /**
+ * Returns the number of elements in this set.
+ *
+ * @return the number of elements in this set
+ */
+ public int size() {
+ return al.size();
+ }
+
+ /**
+ * Returns <tt>true</tt> if this set contains no elements.
+ *
+ * @return <tt>true</tt> if this set contains no elements
+ */
+ public boolean isEmpty() {
+ return al.isEmpty();
+ }
+
+ /**
+ * Returns <tt>true</tt> if this set contains the specified element.
+ * More formally, returns <tt>true</tt> if and only if this set
+ * contains an element <tt>e</tt> such that
+ * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>.
+ *
+ * @param o element whose presence in this set is to be tested
+ * @return <tt>true</tt> if this set contains the specified element
+ */
+ public boolean contains(Object o) {
+ return al.contains(o);
+ }
+
+ /**
+ * Returns an array containing all of the elements in this set.
+ * If this set makes any guarantees as to what order its elements
+ * are returned by its iterator, this method must return the
+ * elements in the same order.
+ *
+ * <p>The returned array will be "safe" in that no references to it
+ * are maintained by this set. (In other words, this method must
+ * allocate a new array even if this set is backed by an array).
+ * The caller is thus free to modify the returned array.
+ *
+ * <p>This method acts as bridge between array-based and collection-based
+ * APIs.
+ *
+ * @return an array containing all the elements in this set
+ */
+ public Object[] toArray() {
+ return al.toArray();
+ }
+
+ /**
+ * Returns an array containing all of the elements in this set; the
+ * runtime type of the returned array is that of the specified array.
+ * If the set fits in the specified array, it is returned therein.
+ * Otherwise, a new array is allocated with the runtime type of the
+ * specified array and the size of this set.
+ *
+ * <p>If this set fits in the specified array with room to spare
+ * (i.e., the array has more elements than this set), the element in
+ * the array immediately following the end of the set is set to
+ * <tt>null</tt>. (This is useful in determining the length of this
+ * set <i>only</i> if the caller knows that this set does not contain
+ * any null elements.)
+ *
+ * <p>If this set makes any guarantees as to what order its elements
+ * are returned by its iterator, this method must return the elements
+ * in the same order.
+ *
+ * <p>Like the {@link #toArray()} method, this method acts as bridge between
+ * array-based and collection-based APIs. Further, this method allows
+ * precise control over the runtime type of the output array, and may,
+ * under certain circumstances, be used to save allocation costs.
+ *
+ * <p>Suppose <tt>x</tt> is a set known to contain only strings.
+ * The following code can be used to dump the set into a newly allocated
+ * array of <tt>String</tt>:
+ *
+ * <pre>
+ * String[] y = x.toArray(new String[0]);</pre>
+ *
+ * Note that <tt>toArray(new Object[0])</tt> is identical in function to
+ * <tt>toArray()</tt>.
+ *
+ * @param a the array into which the elements of this set are to be
+ * stored, if it is big enough; otherwise, a new array of the same
+ * runtime type is allocated for this purpose.
+ * @return an array containing all the elements in this set
+ * @throws ArrayStoreException if the runtime type of the specified array
+ * is not a supertype of the runtime type of every element in this
+ * set
+ * @throws NullPointerException if the specified array is null
+ */
+ public <T> T[] toArray(T[] a) {
+ return al.toArray(a);
+ }
+
+ /**
+ * Removes all of the elements from this set.
+ * The set will be empty after this call returns.
+ */
+ public void clear() {
+ al.clear();
+ }
+
+ /**
+ * Removes the specified element from this set if it is present.
+ * More formally, removes an element <tt>e</tt> such that
+ * <tt>(o==null&nbsp;?&nbsp;e==null&nbsp;:&nbsp;o.equals(e))</tt>,
+ * if this set contains such an element. Returns <tt>true</tt> if
+ * this set contained the element (or equivalently, if this set
+ * changed as a result of the call). (This set will not contain the
+ * element once the call returns.)
+ *
+ * @param o object to be removed from this set, if present
+ * @return <tt>true</tt> if this set contained the specified element
+ */
+ public boolean remove(Object o) {
+ return al.remove(o);
+ }
+
+ /**
+ * Adds the specified element to this set if it is not already present.
+ * More formally, adds the specified element <tt>e</tt> to this set if
+ * the set contains no element <tt>e2</tt> such that
+ * <tt>(e==null&nbsp;?&nbsp;e2==null&nbsp;:&nbsp;e.equals(e2))</tt>.
+ * If this set already contains the element, the call leaves the set
+ * unchanged and returns <tt>false</tt>.
+ *
+ * @param e element to be added to this set
+ * @return <tt>true</tt> if this set did not already contain the specified
+ * element
+ */
+ public boolean add(E e) {
+ return al.addIfAbsent(e);
+ }
+
+ /**
+ * Returns <tt>true</tt> if this set contains all of the elements of the
+ * specified collection. If the specified collection is also a set, this
+ * method returns <tt>true</tt> if it is a <i>subset</i> of this set.
+ *
+ * @param c collection to be checked for containment in this set
+ * @return <tt>true</tt> if this set contains all of the elements of the
+ * specified collection
+ * @throws NullPointerException if the specified collection is null
+ * @see #contains(Object)
+ */
+ public boolean containsAll(Collection<?> c) {
+ return al.containsAll(c);
+ }
+
+ /**
+ * Adds all of the elements in the specified collection to this set if
+ * they're not already present. If the specified collection is also a
+ * set, the <tt>addAll</tt> operation effectively modifies this set so
+ * that its value is the <i>union</i> of the two sets. The behavior of
+ * this operation is undefined if the specified collection is modified
+ * while the operation is in progress.
+ *
+ * @param c collection containing elements to be added to this set
+ * @return <tt>true</tt> if this set changed as a result of the call
+ * @throws NullPointerException if the specified collection is null
+ * @see #add(Object)
+ */
+ public boolean addAll(Collection<? extends E> c) {
+ return al.addAllAbsent(c) > 0;
+ }
+
+ /**
+ * Removes from this set all of its elements that are contained in the
+ * specified collection. If the specified collection is also a set,
+ * this operation effectively modifies this set so that its value is the
+ * <i>asymmetric set difference</i> of the two sets.
+ *
+ * @param c collection containing elements to be removed from this set
+ * @return <tt>true</tt> if this set changed as a result of the call
+ * @throws ClassCastException if the class of an element of this set
+ * is incompatible with the specified collection (optional)
+ * @throws NullPointerException if this set contains a null element and the
+ * specified collection does not permit null elements (optional),
+ * or if the specified collection is null
+ * @see #remove(Object)
+ */
+ public boolean removeAll(Collection<?> c) {
+ return al.removeAll(c);
+ }
+
+ /**
+ * Retains only the elements in this set that are contained in the
+ * specified collection. In other words, removes from this set all of
+ * its elements that are not contained in the specified collection. If
+ * the specified collection is also a set, this operation effectively
+ * modifies this set so that its value is the <i>intersection</i> of the
+ * two sets.
+ *
+ * @param c collection containing elements to be retained in this set
+ * @return <tt>true</tt> if this set changed as a result of the call
+ * @throws ClassCastException if the class of an element of this set
+ * is incompatible with the specified collection (optional)
+ * @throws NullPointerException if this set contains a null element and the
+ * specified collection does not permit null elements (optional),
+ * or if the specified collection is null
+ * @see #remove(Object)
+ */
+ public boolean retainAll(Collection<?> c) {
+ return al.retainAll(c);
+ }
+
+ /**
+ * Returns an iterator over the elements contained in this set
+ * in the order in which these elements were added.
+ *
+ * <p>The returned iterator provides a snapshot of the state of the set
+ * when the iterator was constructed. No synchronization is needed while
+ * traversing the iterator. The iterator does <em>NOT</em> support the
+ * <tt>remove</tt> method.
+ *
+ * @return an iterator over the elements in this set
+ */
+ public Iterator<E> iterator() {
+ return al.iterator();
+ }
+
+ /**
+ * Compares the specified object with this set for equality.
+ * Returns {@code true} if the specified object is the same object
+ * as this object, or if it is also a {@link Set} and the elements
+ * returned by an {@linkplain List#iterator() iterator} over the
+ * specified set are the same as the elements returned by an
+ * iterator over this set. More formally, the two iterators are
+ * considered to return the same elements if they return the same
+ * number of elements and for every element {@code e1} returned by
+ * the iterator over the specified set, there is an element
+ * {@code e2} returned by the iterator over this set such that
+ * {@code (e1==null ? e2==null : e1.equals(e2))}.
+ *
+ * @param o object to be compared for equality with this set
+ * @return {@code true} if the specified object is equal to this set
+ */
+ public boolean equals(Object o) {
+ if (o == this)
+ return true;
+ if (!(o instanceof Set))
+ return false;
+ Set<?> set = (Set<?>)(o);
+ Iterator<?> it = set.iterator();
+
+ // Uses O(n^2) algorithm that is only appropriate
+ // for small sets, which CopyOnWriteArraySets should be.
+
+ // Use a single snapshot of underlying array
+ Object[] elements = al.getArray();
+ int len = elements.length;
+ // Mark matched elements to avoid re-checking
+ boolean[] matched = new boolean[len];
+ int k = 0;
+ outer: while (it.hasNext()) {
+ if (++k > len)
+ return false;
+ Object x = it.next();
+ for (int i = 0; i < len; ++i) {
+ if (!matched[i] && eq(x, elements[i])) {
+ matched[i] = true;
+ continue outer;
+ }
+ }
+ return false;
+ }
+ return k == len;
+ }
+
+ /**
+ * Test for equality, coping with nulls.
+ */
+ private static boolean eq(Object o1, Object o2) {
+ return (o1 == null ? o2 == null : o1.equals(o2));
+ }
+}