summaryrefslogtreecommitdiff
path: root/gnu/javax/crypto/cipher/Khazad.java
blob: 55e42628bac0e189daf2b70430a622ef9eaa7431 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
/* Khazad.java --
   Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.

This file is a part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version.  */


package gnu.javax.crypto.cipher;

import gnu.java.security.Configuration;
import gnu.java.security.Registry;
import gnu.java.security.util.Util;

import java.security.InvalidKeyException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.logging.Logger;

/**
 * Khazad is a 64-bit (legacy-level) block cipher that accepts a 128-bit key.
 * The cipher is a uniform substitution-permutation network whose inverse only
 * differs from the forward operation in the key schedule. The overall cipher
 * design follows the Wide Trail strategy, favours component reuse, and permits
 * a wide variety of implementation trade-offs.
 * <p>
 * References:
 * <ol>
 * <li><a
 * href="http://planeta.terra.com.br/informatica/paulobarreto/KhazadPage.html">The
 * Khazad Block Cipher</a>.<br>
 * <a href="mailto:paulo.barreto@terra.com.br">Paulo S.L.M. Barreto</a> and <a
 * href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li>
 * </ol>
 */
public final class Khazad
    extends BaseCipher
{
  private static final Logger log = Logger.getLogger(Khazad.class.getName());
  private static final int DEFAULT_BLOCK_SIZE = 8; // in bytes
  private static final int DEFAULT_KEY_SIZE = 16; // in bytes
  private static final int R = 8; // standard number of rounds; para. 3.7
  private static final String Sd = // p. 20 [KHAZAD]
      "\uBA54\u2F74\u53D3\uD24D\u50AC\u8DBF\u7052\u9A4C"
    + "\uEAD5\u97D1\u3351\u5BA6\uDE48\uA899\uDB32\uB7FC"
    + "\uE39E\u919B\uE2BB\u416E\uA5CB\u6B95\uA1F3\uB102"
    + "\uCCC4\u1D14\uC363\uDA5D\u5FDC\u7DCD\u7F5A\u6C5C"
    + "\uF726\uFFED\uE89D\u6F8E\u19A0\uF089\u0F07\uAFFB"
    + "\u0815\u0D04\u0164\uDF76\u79DD\u3D16\u3F37\u6D38"
    + "\uB973\uE935\u5571\u7B8C\u7288\uF62A\u3E5E\u2746"
    + "\u0C65\u6861\u03C1\u57D6\uD958\uD866\uD73A\uC83C"
    + "\uFA96\uA798\uECB8\uC7AE\u694B\uABA9\u670A\u47F2"
    + "\uB522\uE5EE\uBE2B\u8112\u831B\u0E23\uF545\u21CE"
    + "\u492C\uF9E6\uB628\u1782\u1A8B\uFE8A\u09C9\u874E"
    + "\uE12E\uE4E0\uEB90\uA41E\u8560\u0025\uF4F1\u940B"
    + "\uE775\uEF34\u31D4\uD086\u7EAD\uFD29\u303B\u9FF8"
    + "\uC613\u0605\uC511\u777C\u7A78\u361C\u3959\u1856"
    + "\uB3B0\u2420\uB292\uA3C0\u4462\u10B4\u8443\u93C2"
    + "\u4ABD\u8F2D\uBC9C\u6A40\uCFA2\u804F\u1FCA\uAA42";
  private static final byte[] S = new byte[256];
  private static final int[] T0 = new int[256];
  private static final int[] T1 = new int[256];
  private static final int[] T2 = new int[256];
  private static final int[] T3 = new int[256];
  private static final int[] T4 = new int[256];
  private static final int[] T5 = new int[256];
  private static final int[] T6 = new int[256];
  private static final int[] T7 = new int[256];
  private static final int[][] rc = new int[R + 1][2]; // round constants
  /**
   * KAT vector (from ecb_vk): I=120 KEY=00000000000000000000000000000100
   * CT=A0C86A1BBE2CBF4C
   */
  private static final byte[] KAT_KEY =
      Util.toBytesFromString("00000000000000000000000000000100");
  private static final byte[] KAT_CT = Util.toBytesFromString("A0C86A1BBE2CBF4C");
  /** caches the result of the correctness test, once executed. */
  private static Boolean valid;

  static
    {
      long time = System.currentTimeMillis();
      long ROOT = 0x11d; // para. 2.1 [KHAZAD]
      int i, j;
      int s, s2, s3, s4, s5, s6, s7, s8, sb;
      char c;
      for (i = 0; i < 256; i++)
        {
          c = Sd.charAt(i >>> 1);
          s = ((i & 1) == 0 ? c >>> 8 : c) & 0xFF;
          S[i] = (byte) s;
          s2 = s << 1;
          if (s2 > 0xFF)
            s2 ^= ROOT;
          s3 = s2 ^ s;
          s4 = s2 << 1;
          if (s4 > 0xFF)
            s4 ^= ROOT;
          s5 = s4 ^ s;
          s6 = s4 ^ s2;
          s7 = s6 ^ s;
          s8 = s4 << 1;
          if (s8 > 0xFF)
            s8 ^= ROOT;
          sb = s8 ^ s2 ^ s;
          T0[i] = s  << 24 | s3 << 16 | s4 << 8 | s5;
          T1[i] = s3 << 24 | s  << 16 | s5 << 8 | s4;
          T2[i] = s4 << 24 | s5 << 16 | s  << 8 | s3;
          T3[i] = s5 << 24 | s4 << 16 | s3 << 8 | s;
          T4[i] = s6 << 24 | s8 << 16 | sb << 8 | s7;
          T5[i] = s8 << 24 | s6 << 16 | s7 << 8 | sb;
          T6[i] = sb << 24 | s7 << 16 | s6 << 8 | s8;
          T7[i] = s7 << 24 | sb << 16 | s8 << 8 | s6;
        }
      for (i = 0, j = 0; i < R + 1; i++) // compute round constant
        {
          rc[i][0] =  S[j++]         << 24
                   | (S[j++] & 0xFF) << 16
                   | (S[j++] & 0xFF) << 8
                   | (S[j++] & 0xFF);
          rc[i][1] =  S[j++]         << 24
                   | (S[j++] & 0xFF) << 16
                   | (S[j++] & 0xFF) << 8
                   | (S[j++] & 0xFF);
        }
      time = System.currentTimeMillis() - time;
      if (Configuration.DEBUG)
        {
          log.fine("Static data");
          log.fine("T0[]:");
          StringBuilder b;
          for (i = 0; i < 64; i++)
            {
              b = new StringBuilder();
              for (j = 0; j < 4; j++)
                b.append("0x").append(Util.toString(T0[i * 4 + j])).append(", ");
              log.fine(b.toString());
            }
          log.fine("T1[]:");
          for (i = 0; i < 64; i++)
            {
              b = new StringBuilder();
              for (j = 0; j < 4; j++)
                b.append("0x").append(Util.toString(T1[i * 4 + j])).append(", ");
              log.fine(b.toString());
            }
          log.fine("T2[]:");
          for (i = 0; i < 64; i++)
            {
              b = new StringBuilder();
              for (j = 0; j < 4; j++)
                b.append("0x").append(Util.toString(T2[i * 4 + j])).append(", ");
              log.fine(b.toString());
            }
          log.fine("T3[]:");
          for (i = 0; i < 64; i++)
            {
              b = new StringBuilder();
              for (j = 0; j < 4; j++)
                b.append("0x").append(Util.toString(T3[i * 4 + j])).append(", ");
              log.fine(b.toString());
            }
          log.fine("T4[]:");
          for (i = 0; i < 64; i++)
            {
              b = new StringBuilder();
              for (j = 0; j < 4; j++)
                b.append("0x").append(Util.toString(T4[i * 4 + j])).append(", ");
              log.fine(b.toString());
            }
          log.fine("T5[]:");
          for (i = 0; i < 64; i++)
            {
              b = new StringBuilder();
              for (j = 0; j < 4; j++)
                b.append("0x").append(Util.toString(T5[i * 4 + j])).append(", ");
              log.fine(b.toString());
            }
          log.fine("T6[]:");
          for (i = 0; i < 64; i++)
            {
              b = new StringBuilder();
              for (j = 0; j < 4; j++)
                b.append("0x").append(Util.toString(T6[i * 4 + j])).append(", ");
              log.fine(b.toString());
            }
          log.fine("T7[]:");
          for (i = 0; i < 64; i++)
            {
              b = new StringBuilder();
              for (j = 0; j < 4; j++)
                b.append("0x").append(Util.toString(T7[i * 4 + j])).append(", ");
              log.fine(b.toString());
            }
          log.fine("rc[]:");
          for (i = 0; i < R + 1; i++)
            log.fine("0x" + Util.toString(rc[i][0]) + Util.toString(rc[i][1]));
          log.fine("Total initialization time: " + time + " ms.");
        }
    }

  /** Trivial 0-arguments constructor. */
  public Khazad()
  {
    super(Registry.KHAZAD_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
  }

  private static void khazad(byte[] in, int i, byte[] out, int j, int[][] K)
  {
    // sigma(K[0])
    int k0 = K[0][0];
    int k1 = K[0][1];
    int a0 = (in[i++]         << 24
           | (in[i++] & 0xFF) << 16
           | (in[i++] & 0xFF) <<  8
           | (in[i++] & 0xFF)      ) ^ k0;
    int a1 = (in[i++]         << 24
           | (in[i++] & 0xFF) << 16
           | (in[i++] & 0xFF) <<  8
           | (in[i  ] & 0xFF)      ) ^ k1;
    int b0, b1;
    // round function
    for (int r = 1; r < R; r++)
      {
        k0 = K[r][0];
        k1 = K[r][1];
        b0 = T0[ a0 >>> 24        ]
           ^ T1[(a0 >>> 16) & 0xFF]
           ^ T2[(a0 >>>  8) & 0xFF]
           ^ T3[ a0         & 0xFF]
           ^ T4[ a1 >>> 24        ]
           ^ T5[(a1 >>> 16) & 0xFF]
           ^ T6[(a1 >>>  8) & 0xFF]
           ^ T7[ a1         & 0xFF] ^ k0;
        b1 = T0[ a1 >>> 24        ]
           ^ T1[(a1 >>> 16) & 0xFF]
           ^ T2[(a1 >>>  8) & 0xFF]
           ^ T3[ a1         & 0xFF]
           ^ T4[ a0 >>> 24        ]
           ^ T5[(a0 >>> 16) & 0xFF]
           ^ T6[(a0 >>>  8) & 0xFF]
           ^ T7[ a0         & 0xFF] ^ k1;
        a0 = b0;
        a1 = b1;
        if (Configuration.DEBUG)
          log.fine("T" + r + "=" + Util.toString(a0) + Util.toString(a1));
      }
    // sigma(K[R]) o gamma applied to previous output
    k0 = K[R][0];
    k1 = K[R][1];
    out[j++] = (byte)(S[ a0 >>> 24        ] ^ (k0 >>> 24));
    out[j++] = (byte)(S[(a0 >>> 16) & 0xFF] ^ (k0 >>> 16));
    out[j++] = (byte)(S[(a0 >>>  8) & 0xFF] ^ (k0 >>>  8));
    out[j++] = (byte)(S[ a0         & 0xFF] ^  k0        );
    out[j++] = (byte)(S[ a1 >>> 24        ] ^ (k1 >>> 24));
    out[j++] = (byte)(S[(a1 >>> 16) & 0xFF] ^ (k1 >>> 16));
    out[j++] = (byte)(S[(a1 >>>  8) & 0xFF] ^ (k1 >>>  8));
    out[j  ] = (byte)(S[ a1         & 0xFF] ^  k1        );
    if (Configuration.DEBUG)
      log.fine("T=" + Util.toString(out, j - 7, 8) + "\n");
  }

  public Object clone()
  {
    Khazad result = new Khazad();
    result.currentBlockSize = this.currentBlockSize;

    return result;
  }

  public Iterator blockSizes()
  {
    ArrayList al = new ArrayList();
    al.add(Integer.valueOf(DEFAULT_BLOCK_SIZE));

    return Collections.unmodifiableList(al).iterator();
  }

  public Iterator keySizes()
  {
    ArrayList al = new ArrayList();
    al.add(Integer.valueOf(DEFAULT_KEY_SIZE));
    return Collections.unmodifiableList(al).iterator();
  }

  /**
   * Expands a user-supplied key material into a session key for a designated
   * <i>block size</i>.
   *
   * @param uk the 128-bit user-supplied key material.
   * @param bs the desired block size in bytes.
   * @return an Object encapsulating the session key.
   * @exception IllegalArgumentException if the block size is not 16 (128-bit).
   * @exception InvalidKeyException if the key data is invalid.
   */
  public Object makeKey(byte[] uk, int bs) throws InvalidKeyException
  {
    if (bs != DEFAULT_BLOCK_SIZE)
      throw new IllegalArgumentException();
    if (uk == null)
      throw new InvalidKeyException("Empty key");
    if (uk.length != 16)
      throw new InvalidKeyException("Key is not 128-bit.");
    int[][] Ke = new int[R + 1][2]; // encryption round keys
    int[][] Kd = new int[R + 1][2]; // decryption round keys
    int r, i;
    int k20, k21, k10, k11, rc0, rc1, kr0, kr1;
    i = 0;
    k20 =  uk[i++]         << 24
        | (uk[i++] & 0xFF) << 16
        | (uk[i++] & 0xFF) << 8
        | (uk[i++] & 0xFF);
    k21 =  uk[i++]         << 24
        | (uk[i++] & 0xFF) << 16
        | (uk[i++] & 0xFF) << 8
        | (uk[i++] & 0xFF);
    k10 =  uk[i++]         << 24
        | (uk[i++] & 0xFF) << 16
        | (uk[i++] & 0xFF) << 8
        | (uk[i++] & 0xFF);
    k11 =  uk[i++]         << 24
        | (uk[i++] & 0xFF) << 16
        | (uk[i++] & 0xFF) << 8
        | (uk[i++] & 0xFF);
    for (r = 0, i = 0; r <= R; r++)
      {
        rc0 = rc[r][0];
        rc1 = rc[r][1];
        kr0 = T0[ k10 >>> 24        ]
            ^ T1[(k10 >>> 16) & 0xFF]
            ^ T2[(k10 >>>  8) & 0xFF]
            ^ T3[ k10         & 0xFF]
            ^ T4[(k11 >>> 24) & 0xFF]
            ^ T5[(k11 >>> 16) & 0xFF]
            ^ T6[(k11 >>>  8) & 0xFF]
            ^ T7[ k11         & 0xFF] ^ rc0 ^ k20;
        kr1 = T0[ k11 >>> 24        ]
            ^ T1[(k11 >>> 16) & 0xFF]
            ^ T2[(k11 >>>  8) & 0xFF]
            ^ T3[ k11         & 0xFF]
            ^ T4[(k10 >>> 24) & 0xFF]
            ^ T5[(k10 >>> 16) & 0xFF]
            ^ T6[(k10 >>>  8) & 0xFF]
            ^ T7[ k10         & 0xFF] ^ rc1 ^ k21;
        Ke[r][0] = kr0;
        Ke[r][1] = kr1;
        k20 = k10;
        k21 = k11;
        k10 = kr0;
        k11 = kr1;
        if (r == 0 || r == R)
          {
            Kd[R - r][0] = kr0;
            Kd[R - r][1] = kr1;
          }
        else
          {
            Kd[R - r][0] = T0[S[ kr0 >>> 24        ] & 0xFF]
                         ^ T1[S[(kr0 >>> 16) & 0xFF] & 0xFF]
                         ^ T2[S[(kr0 >>>  8) & 0xFF] & 0xFF]
                         ^ T3[S[ kr0         & 0xFF] & 0xFF]
                         ^ T4[S[ kr1 >>> 24        ] & 0xFF]
                         ^ T5[S[(kr1 >>> 16) & 0xFF] & 0xFF]
                         ^ T6[S[(kr1 >>>  8) & 0xFF] & 0xFF]
                         ^ T7[S[ kr1         & 0xFF] & 0xFF];
            Kd[R - r][1] = T0[S[ kr1 >>> 24        ] & 0xFF]
                         ^ T1[S[(kr1 >>> 16) & 0xFF] & 0xFF]
                         ^ T2[S[(kr1 >>>  8) & 0xFF] & 0xFF]
                         ^ T3[S[ kr1         & 0xFF] & 0xFF]
                         ^ T4[S[ kr0 >>> 24        ] & 0xFF]
                         ^ T5[S[(kr0 >>> 16) & 0xFF] & 0xFF]
                         ^ T6[S[(kr0 >>>  8) & 0xFF] & 0xFF]
                         ^ T7[S[ kr0         & 0xFF] & 0xFF];
          }
      }
    if (Configuration.DEBUG)
      {
        log.fine("Key schedule");
        log.fine("Ke[]:");
        for (r = 0; r < R + 1; r++)
          log.fine("#" + r + ": 0x" + Util.toString(Ke[r][0])
                   + Util.toString(Ke[r][1]));
        log.fine("Kd[]:");
        for (r = 0; r < R + 1; r++)
          log.fine("#" + r + ": 0x" + Util.toString(Kd[r][0])
                   + Util.toString(Kd[r][1]));
      }
    return new Object[] { Ke, Kd };
  }

  public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
  {
    if (bs != DEFAULT_BLOCK_SIZE)
      throw new IllegalArgumentException();
    int[][] K = (int[][])((Object[]) k)[0];
    khazad(in, i, out, j, K);
  }

  public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
  {
    if (bs != DEFAULT_BLOCK_SIZE)
      throw new IllegalArgumentException();
    int[][] K = (int[][])((Object[]) k)[1];
    khazad(in, i, out, j, K);
  }

  public boolean selfTest()
  {
    if (valid == null)
      {
        boolean result = super.selfTest(); // do symmetry tests
        if (result)
          result = testKat(KAT_KEY, KAT_CT);
        valid = Boolean.valueOf(result);
      }
    return valid.booleanValue();
  }
}