summaryrefslogtreecommitdiff
path: root/gnu/javax/crypto/cipher/Square.java
blob: a73116eb422d0f8d2015e101e03d22958cdb8574 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/* Square.java -- 
   Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.

This file is a part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version.  */


package gnu.javax.crypto.cipher;

import gnu.java.security.Registry;
import gnu.java.security.util.Util;

import java.security.InvalidKeyException;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;

/**
 * <p>Square is a 128-bit key, 128-bit block cipher algorithm developed by Joan
 * Daemen, Lars Knudsen and Vincent Rijmen.</p>
 *
 * <p>References:</p>
 *
 * <ol>
 *    <li><a href="http://www.esat.kuleuven.ac.be/~rijmen/square/">The block
 *    cipher Square</a>.<br>
 *    <a href="mailto:daemen.j@protonworld.com">Joan Daemen</a>,
 *    <a href="mailto:lars.knudsen@esat.kuleuven.ac.be">Lars Knudsen</a> and
 *    <a href="mailto:vincent.rijmen@esat.kuleuven.ac.be">Vincent Rijmen</a>.</li>
 * </ol>
 */
public final class Square extends BaseCipher
{

  // Constants and variables
  // -------------------------------------------------------------------------

  private static final int DEFAULT_BLOCK_SIZE = 16; // in bytes

  private static final int DEFAULT_KEY_SIZE = 16; // in bytes

  private static final int ROUNDS = 8;

  private static final int ROOT = 0x1F5; // for generating GF(2**8)

  private static final int[] OFFSET = new int[ROUNDS];

  private static final String Sdata = "\uB1CE\uC395\u5AAD\uE702\u4D44\uFB91\u0C87\uA150"
                                      + "\uCB67\u54DD\u468F\uE14E\uF0FD\uFCEB\uF9C4\u1A6E"
                                      + "\u5EF5\uCC8D\u1C56\u43FE\u0761\uF875\u59FF\u0322"
                                      + "\u8AD1\u13EE\u8800\u0E34\u1580\u94E3\uEDB5\u5323"
                                      + "\u4B47\u17A7\u9035\uABD8\uB8DF\u4F57\u9A92\uDB1B"
                                      + "\u3CC8\u9904\u8EE0\uD77D\u85BB\u402C\u3A45\uF142"
                                      + "\u6520\u4118\u7225\u9370\u3605\uF20B\uA379\uEC08"
                                      + "\u2731\u32B6\u7CB0\u0A73\u5B7B\uB781\uD20D\u6A26"
                                      + "\u9E58\u9C83\u74B3\uAC30\u7A69\u770F\uAE21\uDED0"
                                      + "\u2E97\u10A4\u98A8\uD468\u2D62\u296D\u1649\u76C7"
                                      + "\uE8C1\u9637\uE5CA\uF4E9\u6312\uC2A6\u14BC\uD328"
                                      + "\uAF2F\uE624\u52C6\uA009\uBD8C\uCF5D\u115F\u01C5"
                                      + "\u9F3D\uA29B\uC93B\uBE51\u191F\u3F5C\uB2EF\u4ACD"
                                      + "\uBFBA\u6F64\uD9F3\u3EB4\uAADC\uD506\uC07E\uF666"
                                      + "\u6C84\u7138\uB91D\u7F9D\u488B\u2ADA\uA533\u8239"
                                      + "\uD678\u86FA\uE42B\uA91E\u8960\u6BEA\u554C\uF7E2";

  /** Substitution boxes for encryption and decryption. */
  private static final byte[] Se = new byte[256];

  private static final byte[] Sd = new byte[256];

  /** Transposition boxes for encryption and decryption. */
  private static final int[] Te = new int[256];

  private static final int[] Td = new int[256];

  /**
   * KAT vector (from ecb_vk):
   * I=87
   * KEY=00000000000000000000020000000000
   * CT=A9DF031B4E25E89F527EFFF89CB0BEBA
   */
  private static final byte[] KAT_KEY = Util.toBytesFromString("00000000000000000000020000000000");

  private static final byte[] KAT_CT = Util.toBytesFromString("A9DF031B4E25E89F527EFFF89CB0BEBA");

  /** caches the result of the correctness test, once executed. */
  private static Boolean valid;

  // Static code - to intialise lookup tables
  // -------------------------------------------------------------------------

  static
    {
      int i, j;
      /*
       // Generate exp and log tables used in multiplication over GF(2 ** m)
       byte[] exp = new byte[256];
       byte[] log = new byte[256];

       exp[0] = 1;
       for (i = 1; i < 256; i++) {
       j = exp[i - 1] << 1;
       if ((j & 0x100) != 0) {
       j ^= ROOT; // reduce j (mod ROOT)
       }

       exp[i] = (byte) j;
       log[j & 0xFF] = (byte) i;
       }

       // Compute the substitution box Se[] and its inverse Sd[] based on
       // F(x) = x**{-1} plus affine transform of the output.
       Se[0] = 0;
       Se[1] = 1;
       for (i = 2; i < 256; i++) {
       Se[i] = exp[(255 - log[i]) & 0xFF];
       }

       // Let Se[i] be represented as an 8-row vector V over GF(2); the affine
       // transformation is A * V + T, where the rows of the 8 x 8 matrix A are
       // contained in trans[0]...trans[7] and the 8-row vector T is contained
       // in 0xB1.
       int[] trans = new int[] {0x01, 0x03, 0x05, 0x0F, 0x1F, 0x3D, 0x7B, 0xD6};
       int u, v;
       for (i = 0; i < 256; i++) {
       v = 0xB1;                        // affine part of the transform
       for (j = 0; j < 8; j++) {
       u = Se[i] & trans[j] & 0xFF; // column-wise mult. over GF(2)
       u ^= u >>> 4;                // sum of all bits of u over GF(2)
       u ^= u >>> 2;
       u ^= u >>> 1;
       u &= 1;
       v ^= u << j;                 // row alignment of the result
       }
       Se[i] = (byte) v;
       Sd[v] = (byte) i;                // inverse substitution box
       }

       System.out.println("Se="+Util.toUnicodeString(Se));
       System.out.println("Sd="+Util.toUnicodeString(Sd));
       */
      /**/
      // re-construct Se box values
      int limit = Sdata.length();
      char c1;
      for (i = 0, j = 0; i < limit; i++)
        {
          c1 = Sdata.charAt(i);
          Se[j++] = (byte) (c1 >>> 8);
          Se[j++] = (byte) c1;
        }

      // compute Sd box values
      for (i = 0; i < 256; i++)
        {
          Sd[Se[i] & 0xFF] = (byte) i;
        }

      // generate OFFSET values
      OFFSET[0] = 1;
      for (i = 1; i < ROUNDS; i++)
        {
          OFFSET[i] = mul(OFFSET[i - 1], 2);
          OFFSET[i - 1] <<= 24;
        }

      OFFSET[ROUNDS - 1] <<= 24;

      // generate Te and Td boxes if we're not reading their values
      // Notes:
      // (1) The function mul() computes the product of two elements of GF(2**8)
      // with ROOT as reduction polynomial.
      // (2) the values used in computing the Te and Td are the GF(2**8)
      // coefficients of the diffusion polynomial c(x) and its inverse
      // (modulo x**4 + 1) d(x), defined in sections 2.1 and 4 of the Square
      // paper.
      for (i = 0; i < 256; i++)
        {
          j = Se[i] & 0xFF;
          Te[i] = (Se[i & 3] == 0) ? 0 : mul(j, 2) << 24 | j << 16 | j << 8
                                         | mul(j, 3);

          j = Sd[i] & 0xFF;
          Td[i] = (Sd[i & 3] == 0) ? 0 : mul(j, 14) << 24 | mul(j, 9) << 16
                                         | mul(j, 13) << 8 | mul(j, 11);
        }
      /**/
    }

  // Constructor(s)
  // -------------------------------------------------------------------------

  /** Trivial 0-arguments constructor. */
  public Square()
  {
    super(Registry.SQUARE_CIPHER, DEFAULT_BLOCK_SIZE, DEFAULT_KEY_SIZE);
  }

  // Class methods
  // -------------------------------------------------------------------------

  private static void square(byte[] in, int i, byte[] out, int j, int[][] K,
                             int[] T, byte[] S)
  {
    int a = ((in[i++]) << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF))
            ^ K[0][0];
    int b = ((in[i++]) << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF))
            ^ K[0][1];
    int c = ((in[i++]) << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i++] & 0xFF))
            ^ K[0][2];
    int d = ((in[i++]) << 24 | (in[i++] & 0xFF) << 16 | (in[i++] & 0xFF) << 8 | (in[i] & 0xFF))
            ^ K[0][3];

    int r, aa, bb, cc, dd;
    for (r = 1; r < ROUNDS; r++)
      { // R - 1 full rounds
        aa = T[(a >>> 24)] ^ rot32R(T[(b >>> 24)], 8)
             ^ rot32R(T[(c >>> 24)], 16) ^ rot32R(T[(d >>> 24)], 24) ^ K[r][0];
        bb = T[(a >>> 16) & 0xFF] ^ rot32R(T[(b >>> 16) & 0xFF], 8)
             ^ rot32R(T[(c >>> 16) & 0xFF], 16)
             ^ rot32R(T[(d >>> 16) & 0xFF], 24) ^ K[r][1];
        cc = T[(a >>> 8) & 0xFF] ^ rot32R(T[(b >>> 8) & 0xFF], 8)
             ^ rot32R(T[(c >>> 8) & 0xFF], 16)
             ^ rot32R(T[(d >>> 8) & 0xFF], 24) ^ K[r][2];
        dd = T[a & 0xFF] ^ rot32R(T[b & 0xFF], 8) ^ rot32R(T[c & 0xFF], 16)
             ^ rot32R(T[d & 0xFF], 24) ^ K[r][3];

        a = aa;
        b = bb;
        c = cc;
        d = dd;
      }

    // last round (diffusion becomes only transposition)
    aa = ((S[(a >>> 24)]) << 24 | (S[(b >>> 24)] & 0xFF) << 16
          | (S[(c >>> 24)] & 0xFF) << 8 | (S[(d >>> 24)] & 0xFF))
         ^ K[r][0];
    bb = ((S[(a >>> 16) & 0xFF]) << 24 | (S[(b >>> 16) & 0xFF] & 0xFF) << 16
          | (S[(c >>> 16) & 0xFF] & 0xFF) << 8 | (S[(d >>> 16) & 0xFF] & 0xFF))
         ^ K[r][1];
    cc = ((S[(a >>> 8) & 0xFF]) << 24 | (S[(b >>> 8) & 0xFF] & 0xFF) << 16
          | (S[(c >>> 8) & 0xFF] & 0xFF) << 8 | (S[(d >>> 8) & 0xFF] & 0xFF))
         ^ K[r][2];
    dd = ((S[a & 0xFF]) << 24 | (S[b & 0xFF] & 0xFF) << 16
          | (S[c & 0xFF] & 0xFF) << 8 | (S[d & 0xFF] & 0xFF))
         ^ K[r][3];

    out[j++] = (byte) (aa >>> 24);
    out[j++] = (byte) (aa >>> 16);
    out[j++] = (byte) (aa >>> 8);
    out[j++] = (byte) aa;
    out[j++] = (byte) (bb >>> 24);
    out[j++] = (byte) (bb >>> 16);
    out[j++] = (byte) (bb >>> 8);
    out[j++] = (byte) bb;
    out[j++] = (byte) (cc >>> 24);
    out[j++] = (byte) (cc >>> 16);
    out[j++] = (byte) (cc >>> 8);
    out[j++] = (byte) cc;
    out[j++] = (byte) (dd >>> 24);
    out[j++] = (byte) (dd >>> 16);
    out[j++] = (byte) (dd >>> 8);
    out[j] = (byte) dd;
  }

  /**
   * <p>Applies the Theta function to an input <i>in</i> in order to produce in
   * <i>out</i> an internal session sub-key.</p>
   *
   * <p>Both <i>in</i> and <i>out</i> are arrays of four ints.</p>
   *
   * <p>Pseudo-code is:</p>
   *
   * <pre>
   *    for (i = 0; i < 4; i++) {
   *       out[i] = 0;
   *       for (j = 0, n = 24; j < 4; j++, n -= 8) {
   *          k = mul(in[i] >>> 24, G[0][j]) ^
   *              mul(in[i] >>> 16, G[1][j]) ^
   *              mul(in[i] >>>  8, G[2][j]) ^
   *              mul(in[i]       , G[3][j]);
   *          out[i] ^= k << n;
   *       }
   *    }
   * </pre>
   */
  private static void transform(int[] in, int[] out)
  {
    int l3, l2, l1, l0, m;
    for (int i = 0; i < 4; i++)
      {
        l3 = in[i];
        l2 = l3 >>> 8;
        l1 = l3 >>> 16;
        l0 = l3 >>> 24;
        m = ((mul(l0, 2) ^ mul(l1, 3) ^ l2 ^ l3) & 0xFF) << 24;
        m ^= ((l0 ^ mul(l1, 2) ^ mul(l2, 3) ^ l3) & 0xFF) << 16;
        m ^= ((l0 ^ l1 ^ mul(l2, 2) ^ mul(l3, 3)) & 0xFF) << 8;
        m ^= ((mul(l0, 3) ^ l1 ^ l2 ^ mul(l3, 2)) & 0xFF);
        out[i] = m;
      }
  }

  /**
   * <p>Left rotate a 32-bit chunk.</p>
   *
   * @param x the 32-bit data to rotate
   * @param s number of places to left-rotate by
   * @return the newly permutated value.
   */
  private static int rot32L(int x, int s)
  {
    return x << s | x >>> (32 - s);
  }

  /**
   * <p>Right rotate a 32-bit chunk.</p>
   *
   * @param x the 32-bit data to rotate
   * @param s number of places to right-rotate by
   * @return the newly permutated value.
   */
  private static int rot32R(int x, int s)
  {
    return x >>> s | x << (32 - s);
  }

  /**
   * <p>Returns the product of two binary numbers a and b, using the generator
   * ROOT as the modulus: p = (a * b) mod ROOT. ROOT Generates a suitable
   * Galois Field in GF(2**8).</p>
   *
   * <p>For best performance call it with abs(b) &lt; abs(a).</p>
   *
   * @param a operand for multiply.
   * @param b operand for multiply.
   * @return the result of (a * b) % ROOT.
   */
  private static final int mul(int a, int b)
  {
    if (a == 0)
      {
        return 0;
      }

    a &= 0xFF;
    b &= 0xFF;
    int result = 0;
    while (b != 0)
      {
        if ((b & 0x01) != 0)
          {
            result ^= a;
          }

        b >>>= 1;
        a <<= 1;
        if (a > 0xFF)
          {
            a ^= ROOT;
          }
      }
    return result & 0xFF;
  }

  // Instance methods
  // -------------------------------------------------------------------------

  // java.lang.Cloneable interface implementation ----------------------------

  public Object clone()
  {
    Square result = new Square();
    result.currentBlockSize = this.currentBlockSize;

    return result;
  }

  // IBlockCipherSpi interface implementation --------------------------------

  public Iterator blockSizes()
  {
    ArrayList al = new ArrayList();
    al.add(new Integer(DEFAULT_BLOCK_SIZE));

    return Collections.unmodifiableList(al).iterator();
  }

  public Iterator keySizes()
  {
    ArrayList al = new ArrayList();
    al.add(new Integer(DEFAULT_KEY_SIZE));

    return Collections.unmodifiableList(al).iterator();
  }

  public Object makeKey(byte[] uk, int bs) throws InvalidKeyException
  {
    if (bs != DEFAULT_BLOCK_SIZE)
      {
        throw new IllegalArgumentException();
      }
    if (uk == null)
      {
        throw new InvalidKeyException("Empty key");
      }
    if (uk.length != DEFAULT_KEY_SIZE)
      {
        throw new InvalidKeyException("Key is not 128-bit.");
      }

    int[][] Ke = new int[ROUNDS + 1][4];
    int[][] Kd = new int[ROUNDS + 1][4];
    int[][] tK = new int[ROUNDS + 1][4];
    int i = 0;

    Ke[0][0] = (uk[i++] & 0xFF) << 24 | (uk[i++] & 0xFF) << 16
               | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF);
    tK[0][0] = Ke[0][0];
    Ke[0][1] = (uk[i++] & 0xFF) << 24 | (uk[i++] & 0xFF) << 16
               | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF);
    tK[0][1] = Ke[0][1];
    Ke[0][2] = (uk[i++] & 0xFF) << 24 | (uk[i++] & 0xFF) << 16
               | (uk[i++] & 0xFF) << 8 | (uk[i++] & 0xFF);
    tK[0][2] = Ke[0][2];
    Ke[0][3] = (uk[i++] & 0xFF) << 24 | (uk[i++] & 0xFF) << 16
               | (uk[i++] & 0xFF) << 8 | (uk[i] & 0xFF);
    tK[0][3] = Ke[0][3];

    int j;
    for (i = 1, j = 0; i < ROUNDS + 1; i++, j++)
      {
        tK[i][0] = tK[j][0] ^ rot32L(tK[j][3], 8) ^ OFFSET[j];
        tK[i][1] = tK[j][1] ^ tK[i][0];
        tK[i][2] = tK[j][2] ^ tK[i][1];
        tK[i][3] = tK[j][3] ^ tK[i][2];

        System.arraycopy(tK[i], 0, Ke[i], 0, 4);

        transform(Ke[j], Ke[j]);
      }

    for (i = 0; i < ROUNDS; i++)
      {
        System.arraycopy(tK[ROUNDS - i], 0, Kd[i], 0, 4);
      }

    transform(tK[0], Kd[ROUNDS]);

    return new Object[] { Ke, Kd };
  }

  public void encrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
  {
    if (bs != DEFAULT_BLOCK_SIZE)
      {
        throw new IllegalArgumentException();
      }

    int[][] K = (int[][]) ((Object[]) k)[0];
    square(in, i, out, j, K, Te, Se);
  }

  public void decrypt(byte[] in, int i, byte[] out, int j, Object k, int bs)
  {
    if (bs != DEFAULT_BLOCK_SIZE)
      {
        throw new IllegalArgumentException();
      }

    int[][] K = (int[][]) ((Object[]) k)[1];
    square(in, i, out, j, K, Td, Sd);
  }

  public boolean selfTest()
  {
    if (valid == null)
      {
        boolean result = super.selfTest(); // do symmetry tests
        if (result)
          {
            result = testKat(KAT_KEY, KAT_CT);
          }
        valid = Boolean.valueOf(result);
      }
    return valid.booleanValue();
  }
}