summaryrefslogtreecommitdiff
path: root/java/lang/Float.java
blob: 5e93557e626433167bf5d6a9f99fc19d7320ba18 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
/* java.lang.Float
   Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
 
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */


package java.lang;

import gnu.classpath.Configuration;

/* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3
 * "The Java Language Specification", ISBN 0-201-63451-1
 * plus online API docs for JDK 1.2 beta from http://www.javasoft.com.
 * Status:  Believed complete and correct.
 */

/**
 * Instances of class <code>Float</code> represent primitive
 * <code>float</code> values.
 *
 * Additionally, this class provides various helper functions and variables
 * related to floats.
 *
 * @author Paul Fisher
 * @author Andrew Haley <aph@cygnus.com>
 * @author Eric Blake <ebb9@email.byu.edu>
 * @since 1.0
 */
public final class Float extends Number implements Comparable
{
  /**
   * The maximum positive value a <code>double</code> may represent
   * is 3.4028235e+38f.
   */
  public static final float MAX_VALUE = 3.4028235e+38f;

  /**
   * The minimum positive value a <code>float</code> may represent
   * is 1.4e-45.
   */
  public static final float MIN_VALUE = 1.4e-45f;

  /**
   * The value of a float representation -1.0/0.0, negative infinity.
   */
  public static final float NEGATIVE_INFINITY = -1.0f/0.0f;

  /**
   * The value of a float representation 1.0/0.0, positive infinity.
   */
  public static final float POSITIVE_INFINITY = 1.0f/0.0f;

  /**
   * All IEEE 754 values of NaN have the same value in Java.
   */
  public static final float NaN = 0.0f/0.0f;

  /**
   * The primitive type <code>float</code> is represented by this 
   * <code>Class</code> object.
   */
  public static final Class TYPE = VMClassLoader.getPrimitiveClass('F');

  /**
   * The immutable value of this Float.
   */
  private final float value;

  private static final long serialVersionUID = -2671257302660747028L;

  static
  {
    if (Configuration.INIT_LOAD_LIBRARY)
      {
	System.loadLibrary ("javalang");
      }
  }

  /**
   * Create a <code>float</code> from the primitive <code>Float</code>
   * specified.
   *
   * @param value the <code>Float</code> argument
   */
  public Float (float value)
  {
    this.value = value;
  }

  /**
   * Create a <code>Float</code> from the primitive <code>double</code>
   * specified.
   *
   * @param value the <code>double</code> argument
   */
  public Float (double value)
  {
    this.value = (float)value;
  }

  /**
   * Create a <code>Float</code> from the specified <code>String</code>.
   *
   * This method calls <code>Float.parseFloat()</code>.
   *
   * @exception NumberFormatException when the <code>String</code> cannot
   *            be parsed into a <code>Float</code>.
   * @param s the <code>String</code> to convert
   * @see #parseFloat(java.lang.String)
   */
  public Float (String s) throws NumberFormatException
  {
    this.value = parseFloat (s);
  }

  /**
   * Parse the specified <code>String</code> as a <code>float</code>.
   *
   * The number is really read as <em>n * 10<sup>exponent</sup></em>.  The
   * first number is <em>n</em>, and if there is an "<code>E</code>"
   * ("<code>e</code>" is also acceptable), then the integer after that is
   * the exponent.
   * <P>
   * Here are the possible forms the number can take:
   * <BR>
   * <TABLE BORDER=1>
   *     <TR><TH>Form</TH><TH>Examples</TH></TR>
   *     <TR><TD><CODE>[+-]&lt;number&gt;[.]</CODE></TD><TD>345., -10, 12</TD></TR>
   *     <TR><TD><CODE>[+-]&lt;number&gt;.&lt;number&gt;</CODE></TD><TD>40.2, 80.00, -12.30</TD></TR>
   *     <TR><TD><CODE>[+-]&lt;number&gt;[.]E[+-]&lt;number&gt;</CODE></TD><TD>80E12, -12e+7, 4.E-123</TD></TR>
   *     <TR><TD><CODE>[+-]&lt;number&gt;.&lt;number&gt;E[+-]&lt;number&gt;</CODE></TD><TD>6.02e-22, -40.2E+6, 12.3e9</TD></TR>
   * </TABLE>
   *
   * "<code>[+-]</code>" means either a plus or minus sign may go there, or
   * neither, in which case + is assumed.
   * <BR>
   * "<code>[.]</code>" means a dot may be placed here, but is optional.
   * <BR>
   * "<code>&lt;number&gt;</code>" means a string of digits (0-9), basically
   * an integer.  "<code>&lt;number&gt;.&lt;number&gt;</code>" is basically
   * a real number, a floating-point value.
   * <P>
   * Remember that a <code>float</code> has a limited range.  If the
   * number you specify is greater than <code>Float.MAX_VALUE</code> or less
   * than <code>-Float.MAX_VALUE</code>, it will be set at
   * <code>Float.POSITIVE_INFINITY</code> or
   * <code>Float.NEGATIVE_INFINITY</code>, respectively.
   * <P>
   *
   * Note also that <code>float</code> does not have perfect precision.  Many
   * numbers cannot be precisely represented.  The number you specify
   * will be rounded to the nearest representable value.
   * <code>Float.MIN_VALUE</code> is the margin of error for <code>float</code>
   * values.
   * <P>
   * If an unexpected character is found in the <code>String</code>, a
   * <code>NumberFormatException</code> will be thrown.  Spaces are not
   * allowed and will cause this exception to be thrown.
   *
   * @XXX specify where/how we are not in accord with the spec.
   *
   * @param str the <code>String</code> to convert
   * @return the value of the <code>String</code> as a <code>float</code>.
   * @exception NumberFormatException when the string cannot be parsed to a
   *            <code>float</code>.
   * @since JDK 1.2
   * @see #MIN_VALUE
   * @see #MAX_VALUE
   * @see #POSITIVE_INFINITY
   * @see #NEGATIVE_INFINITY
   */
  public static float parseFloat (String s) throws NumberFormatException
  {
    // The spec says that parseFloat() should work like
    // Double.valueOf().  This is equivalent, in our implementation,
    // but more efficient.
    return (float) Double.parseDouble (s);
  }

  /**
   * Convert the <code>float</code> value of this <code>Float</code>
   * to a <code>String</code>.  This method calls
   * <code>Float.toString(float)</code> to do its dirty work.
   *
   * @return the <code>String</code> representation of this <code>Float</code>.
   * @see #toString(float)
   */
  public String toString ()
  {
    return toString (value);
  }

  /**
   * If the <code>Object</code> is not <code>null</code>, is an
   * <code>instanceof</code> <code>Float</code>, and represents
   * the same primitive <code>float</code> value return 
   * <code>true</code>.  Otherwise <code>false</code> is returned.
   * <p>
   * Note that there are two differences between <code>==</code> and
   * <code>equals()</code>. <code>0.0f == -0.0f</code> returns <code>true</code>
   * but <code>new Float(0.0f).equals(new Float(-0.0f))</code> returns
   * <code>false</code>. And <code>Float.NaN == Float.NaN</code> returns
   * <code>false</code>, but
   * <code>new Float(Float.NaN).equals(new Float(Float.NaN))</code> returns
   * <code>true</code>.
   *
   * @param obj the object to compare to
   * @return whether the objects are semantically equal.
   */
  public boolean equals (Object obj)
  {
    if (!(obj instanceof Float))
      return false;

    float f = ((Float) obj).value;

    // common case first, then check NaN and 0
    if (value == f)
      return (value != 0) || (1 / value == 1 / f);
    return isNaN(value) && isNaN(f);
  }

  /**
   * Return a hashcode representing this Object.
   * <code>Float</code>'s hash code is calculated by calling the
   * <code>floatToIntBits()</code> function.
   * @return this Object's hash code.
   * @see java.lang.Float.floatToIntBits(float)
   */
  public int hashCode ()
  {
    return floatToIntBits (value);
  }

  /**
   * Return the value of this <code>Double</code> when cast to an 
   * <code>int</code>.
   */
  public int intValue ()
  {
    return (int) value;
  }

  /**
   * Return the value of this <code>Double</code> when cast to a
   * <code>long</code>.
   */
  public long longValue ()
  {
    return (long) value;
  }

  /**
   * Return the value of this <code>Double</code> when cast to a
   * <code>float</code>.
   */
  public float floatValue ()
  {
    return (float) value;
  }

  /**
   * Return the primitive <code>double</code> value represented by this
   * <code>Double</code>.
   */
  public double doubleValue ()
  {
    return (double) value;
  }

  /**
   * Convert the <code>float</code> to a <code>String</code>.
   * <P>
   *
   * Floating-point string representation is fairly complex: here is a
   * rundown of the possible values.  "<CODE>[-]</CODE>" indicates that a
   * negative sign will be printed if the value (or exponent) is negative.
   * "<CODE>&lt;number&gt;</CODE>" means a string of digits (0-9).
   * "<CODE>&lt;digit&gt;</CODE>" means a single digit (0-9).
   * <P>
   *
   * <TABLE BORDER=1>
   * <TR><TH>Value of Float</TH><TH>String Representation</TH></TR>
   * <TR>
   *     <TD>[+-] 0</TD>
   *     <TD>[<CODE>-</CODE>]<CODE>0.0</CODE></TD>
   * </TR>
   * <TR>
   *     <TD>Between [+-] 10<SUP>-3</SUP> and 10<SUP>7</SUP></TD>
   *     <TD><CODE>[-]number.number</CODE></TD>
   * </TR>
   * <TR>
   *     <TD>Other numeric value</TD>
   *     <TD><CODE>[-]&lt;digit&gt;.&lt;number&gt;E[-]&lt;number&gt;</CODE></TD>
   * </TR>
   * <TR>
   *     <TD>[+-] infinity</TD>
   *     <TD><CODE>[-]Infinity</CODE></TD>
   * </TR>
   * <TR>
   *     <TD>NaN</TD>
   *     <TD><CODE>NaN</CODE></TD>
   * </TR>
   * </TABLE>
   *
   * Yes, negative zero <EM>is</EM> a possible value.  Note that there is
   * <EM>always</EM> a <CODE>.</CODE> and at least one digit printed after
   * it: even if the number is 3, it will be printed as <CODE>3.0</CODE>.
   * After the ".", all digits will be printed except trailing zeros.  No
   * truncation or rounding is done by this function.
   *
   * @XXX specify where we are not in accord with the spec.
   *
   * @param f the <code>float</code> to convert
   * @return the <code>String</code> representing the <code>float</code>.
   */
  public static String toString (float f)
  {
    return Double.toString ((double) f, true);
  }

  /**
   * Return the result of calling <code>new Float(java.lang.String)</code>.
   *
   * @param s the <code>String</code> to convert to a <code>Float</code>.
   * @return a new <code>Float</code> representing the <code>String</code>'s
   *         numeric value.
   *
   * @exception NumberFormatException thrown if <code>String</code> cannot
   * be parsed as a <code>double</code>.
   * @see #Float(java.lang.String)
   * @see #parseFloat(java.lang.String)
   */
  public static Float valueOf (String s) throws NumberFormatException
  {
    return new Float (s);
  }

  /**
   * Return <code>true</code> if the value of this <code>Float</code>
   * is the same as <code>NaN</code>, otherwise return <code>false</code>.
   * @return whether this <code>Float</code> is <code>NaN</code>.
   */
  public boolean isNaN ()
  {
    return isNaN (value);
  }

  /**
   * Return <code>true</code> if the <code>float</code> has the same
   * value as <code>NaN</code>, otherwise return <code>false</code>.
   *
   * @param v the <code>float</code> to compare
   * @return whether the argument is <code>NaN</code>.
   */
  public static boolean isNaN (float v)
  {
    // This works since NaN != NaN is the only reflexive inequality
    // comparison which returns true.
    return v != v;
  }

  /**
   * Return <code>true</code> if the value of this <code>Float</code>
   * is the same as <code>NEGATIVE_INFINITY</code> or 
   * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
   *
   * @return whether this <code>Float</code> is (-/+) infinity.
   */
  public boolean isInfinite ()
  {
    return isInfinite (value);
  }

  /**
   * Return <code>true</code> if the <code>float</code> has a value 
   * equal to either <code>NEGATIVE_INFINITY</code> or 
   * <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
   *
   * @param v the <code>float</code> to compare
   * @return whether the argument is (-/+) infinity.
   */
  public static boolean isInfinite (float v)
  {
    return (v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY);
  }

  /**
   * Return the int bits of the specified <code>float</code>.
   * The result of this function can be used as the argument to
   * <code>Float.intBitsToFloat(long)</code> to obtain the
   * original <code>float</code> value.
   *
   * @param value the <code>float</code> to convert
   * @return the bits of the <code>float</code>.
   */
  public static native int floatToIntBits (float value);

  /**
   * Return the int bits of the specified <code>float</code>.
   * The result of this function can be used as the argument to
   * <code>Float.intBitsToFloat(long)</code> to obtain the
   * original <code>float</code> value.  The difference between
   * this function and <code>floatToIntBits</code> is that this
   * function does not collapse NaN values.
   *
   * @param value the <code>float</code> to convert
   * @return the bits of the <code>float</code>.
   */
  public static native int floatToRawIntBits (float value);

  /**
   * Return the <code>float</code> represented by the long
   * bits specified.
   *
   * @param bits the long bits representing a <code>double</code>
   * @return the <code>float</code> represented by the bits.
   */
  public static native float intBitsToFloat (int bits);

  /**
   * Returns 0 if the <code>float</code> value of the argument is 
   * equal to the value of this <code>Float</code>.  Returns a number
   * less than zero if the value of this <code>Float</code> is less 
   * than the <code>Float</code> value of the argument, and returns a 
   * number greater than zero if the value of this <code>Float</code> 
   * is greater than the <code>float</code> value of the argument.
   * <br>
   * <code>Float.NaN</code> is greater than any number other than itself, 
   * even <code>Float.POSITIVE_INFINITY</code>.
   * <br>
   * <code>0.0</code> is greater than <code>-0.0</code>.
   *
   * @param f the Float to compare to.
   * @return  0 if the <code>Float</code>s are the same, &lt; 0 if this
   *          <code>Float</code> is less than the <code>Float</code> in
   *          in question, or &gt; 0 if it is greater.
   *
   * @since 1.2
   */
  public int compareTo (Float f)
  {
    return compare (value, f.value);
  }

  /**
   * Returns 0 if the first argument is equal to the second argument.
   * Returns a number less than zero if the first argument is less than the
   * second argument, and returns a number greater than zero if the first
   * argument is greater than the second argument.
   * <br>
   * <code>Float.NaN</code> is greater than any number other than itself, 
   * even <code>Float.POSITIVE_INFINITY</code>.
   * <br>
   * <code>0.0</code> is greater than <code>-0.0</code>.
   *
   * @param x the first float to compare.
   * @param y the second float to compare.
   * @return  0 if the arguments are the same, &lt; 0 if the
   *          first argument is less than the second argument in
   *          in question, or &gt; 0 if it is greater.
   * @since 1.4
   */
  public static int compare (float x, float y)
  {
    if (isNaN (x))
      return isNaN (y) ? 0 : 1;
    if (isNaN (y))
      return -1;
    // recall that 0.0 == -0.0, so we convert to infinities and try again
    if (x == 0 && y == 0)
      return (int) (1 / x - 1 / y);
    if (x == y)
      return 0;

    return x > y ? 1 : -1;
  }

  /**
   * Compares the specified <code>Object</code> to this <code>Float</code>
   * if and only if the <code>Object</code> is an instanceof 
   * <code>Float</code>.
   * Otherwise it throws a <code>ClassCastException</code>
   *
   * @param o the Object to compare to.
   * @return  0 if the <code>Float</code>s are the same, &lt; 0 if this
   *          <code>Float</code> is less than the <code>Float</code> in
   *          in question, or &gt; 0 if it is greater.
   * @throws ClassCastException if the argument is not a <code>Float</code>
   *
   * @since 1.2
   */
  public int compareTo (Object o)
  {
    return compareTo ((Float) o);
  }
}