summaryrefslogtreecommitdiff
path: root/java/util/AbstractList.java
blob: 714f92a7bc4a296fd09f394c8ab7d51012b3a384 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
/* AbstractList.java -- Abstract implementation of most of List
   Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

As a special exception, if you link this library with other files to
produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License.
This exception does not however invalidate any other reasons why the
executable file might be covered by the GNU General Public License. */


package java.util;

/**
 * A basic implementation of most of the methods in the List interface to make
 * it easier to create a List based on a random-access data structure. If
 * the list is sequential (such as a linked list), use AbstractSequentialList.
 * To create an unmodifiable list, it is only necessary to override the
 * size() and get(int) methods (this contrasts with all other abstract
 * collection classes which require an iterator to be provided). To make the
 * list modifiable, the set(int, Object) method should also be overridden, and
 * to make the list resizable, the add(int, Object) and remove(int) methods
 * should be overridden too. Other methods should be overridden if the
 * backing data structure allows for a more efficient implementation.
 * The precise implementation used by AbstractList is documented, so that
 * subclasses can tell which methods could be implemented more efficiently.
 * <p>
 *
 * As recommended by Collection and List, the subclass should provide at
 * least a no-argument and a Collection constructor. This class is not
 * synchronized.
 *
 * @author Original author unknown
 * @author Bryce McKinlay
 * @author Eric Blake <ebb9@email.byu.edu>
 * @see Collection
 * @see List
 * @see AbstractSequentialList
 * @see AbstractCollection
 * @see ListIterator
 * @since 1.2
 * @status updated to 1.4
 */
public abstract class AbstractList extends AbstractCollection implements List
{
  /**
   * A count of the number of structural modifications that have been made to
   * the list (that is, insertions and removals). Structural modifications
   * are ones which change the list size or affect how iterations would
   * behave. This field is available for use by Iterator and ListIterator,
   * in order to throw a {@link ConcurrentModificationException} in response
   * to the next operation on the iterator. This <i>fail-fast</i> behavior
   * saves the user from many subtle bugs otherwise possible from concurrent
   * modification during iteration.
   * <p>
   *
   * To make lists fail-fast, increment this field by just 1 in the
   * <code>add(int, Object)</code> and <code>remove(int)</code> methods.
   * Otherwise, this field may be ignored.
   */
  protected int modCount;

  /**
   * The main constructor, for use by subclasses.
   */
  protected AbstractList()
  {
  }

  /**
   * Returns the elements at the specified position in the list.
   *
   * @param index the element to return
   * @return the element at that position
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
   */
  public abstract Object get(int index);

  /**
   * Insert an element into the list at a given position (optional operation).
   * This shifts all existing elements from that position to the end one
   * index to the right.  This version of add has no return, since it is
   * assumed to always succeed if there is no exception. This implementation
   * always throws UnsupportedOperationException, and must be overridden to
   * make a modifiable List.  If you want fail-fast iterators, be sure to
   * increment modCount when overriding this.
   *
   * @param index the location to insert the item
   * @param o the object to insert
   * @throws UnsupportedOperationException if this list does not support the
   *         add operation
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt; size()
   * @throws ClassCastException if o cannot be added to this list due to its
   *         type
   * @throws IllegalArgumentException if o cannot be added to this list for
   *         some other reason
   * @see #modCount
   */
  public void add(int index, Object o)
  {
    throw new UnsupportedOperationException();
  }

  /**
   * Add an element to the end of the list (optional operation). If the list
   * imposes restraints on what can be inserted, such as no null elements,
   * this should be documented. This implementation calls
   * <code>add(size(), o);</code>, and will fail if that version does.
   *
   * @param o the object to add
   * @return true, as defined by Collection for a modified list
   * @throws UnsupportedOperationException if this list does not support the
   *         add operation
   * @throws ClassCastException if o cannot be added to this list due to its
   *         type
   * @throws IllegalArgumentException if o cannot be added to this list for
   *         some other reason
   * @see #add(int, Object)
   */
  public boolean add(Object o)
  {
    add(size(), o);
    return true;
  }

  /**
   * Insert the contents of a collection into the list at a given position
   * (optional operation). Shift all elements at that position to the right
   * by the number of elements inserted. This operation is undefined if
   * this list is modified during the operation (for example, if you try
   * to insert a list into itself). This implementation uses the iterator of
   * the collection, repeatedly calling add(int, Object); this will fail
   * if add does. This can often be made more efficient.
   *
   * @param index the location to insert the collection
   * @param c the collection to insert
   * @return true if the list was modified by this action, that is, if c is
   *         non-empty
   * @throws UnsupportedOperationException if this list does not support the
   *         addAll operation
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt; size()
   * @throws ClassCastException if some element of c cannot be added to this
   *         list due to its type
   * @throws IllegalArgumentException if some element of c cannot be added
   *         to this list for some other reason
   * @throws NullPointerException if the specified collection is null
   * @see #add(int, Object)
   */
  public boolean addAll(int index, Collection c)
  {
    Iterator itr = c.iterator();
    int size = c.size();
    for (int pos = size; pos > 0; pos--)
      add(index++, itr.next());
    return size > 0;
  }

  /**
   * Clear the list, such that a subsequent call to isEmpty() would return
   * true (optional operation). This implementation calls
   * <code>removeRange(0, size())</code>, so it will fail unless remove
   * or removeRange is overridden.
   *
   * @throws UnsupportedOperationException if this list does not support the
   *         clear operation
   * @see #remove(int)
   * @see #removeRange(int, int)
   */
  public void clear()
  {
    removeRange(0, size());
  }

  /**
   * Test whether this list is equal to another object. A List is defined to be
   * equal to an object if and only if that object is also a List, and the two
   * lists have the same sequence. Two lists l1 and l2 are equal if and only
   * if <code>l1.size() == l2.size()</code>, and for every integer n between 0
   * and <code>l1.size() - 1</code> inclusive, <code>l1.get(n) == null ?
   * l2.get(n) == null : l1.get(n).equals(l2.get(n))</code>.
   * <p>
   *
   * This implementation returns true if the object is this, or false if the
   * object is not a List.  Otherwise, it iterates over both lists (with
   * iterator()), returning false if two elements compare false or one list
   * is shorter, and true if the iteration completes successfully.
   *
   * @param o the object to test for equality with this list
   * @return true if o is equal to this list
   * @see Object#equals(Object)
   * @see #hashCode()
   */
  public boolean equals(Object o)
  {
    if (o == this)
      return true;
    if (! (o instanceof List))
      return false;
    int size = size();
    if (size != ((List) o).size())
      return false;

    Iterator itr1 = iterator();
    Iterator itr2 = ((List) o).iterator();

    while (--size >= 0)
      if (! equals(itr1.next(), itr2.next()))
        return false;
    return true;
  }

  /**
   * Obtain a hash code for this list. In order to obey the general contract of
   * the hashCode method of class Object, this value is calculated as follows:
   * <pre>
   *   hashCode = 1;
   *   Iterator i = list.iterator();
   *   while (i.hasNext())
   *     {
   *       Object obj = i.next();
   *       hashCode = 31 * hashCode + (obj == null ? 0 : obj.hashCode());
   *     }
   * </pre>
   * This ensures that the general contract of Object.hashCode() is adhered to.
   *
   * @return the hash code of this list
   * @see Object#hashCode()
   * @see #equals(Object)
   */
  public int hashCode()
  {
    int hashCode = 1;
    Iterator itr = iterator();
    int pos = size();
    while (--pos >= 0)
      hashCode = 31 * hashCode + hashCode(itr.next());
    return hashCode;
  }

  /**
   * Obtain the first index at which a given object is to be found in this
   * list. This implementation follows a listIterator() until a match is found,
   * or returns -1 if the list end is reached.
   *
   * @param o the object to search for
   * @return the least integer n such that <code>o == null ? get(n) == null :
   *         o.equals(get(n))</code>, or -1 if there is no such index
   */
  public int indexOf(Object o)
  {
    ListIterator itr = listIterator();
    int size = size();
    for (int pos = 0; pos < size; pos++)
      if (equals(o, itr.next()))
        return pos;
    return -1;
  }

  /**
   * Obtain an Iterator over this list, whose sequence is the list order.
   * This implementation uses size(), get(int), and remove(int) of the
   * backing list, and does not support remove unless the list does. This
   * implementation is fail-fast if you correctly maintain modCount.
   * Also, this implementation is specified by Sun to be distinct from
   * listIterator, although you could easily implement it as
   * <code>return listIterator(0)</code>.
   *
   * @return an Iterator over the elements of this list, in order
   * @see #modCount
   */
  public Iterator iterator()
  {
    // Bah, Sun's implementation forbids using listIterator(0).
    return new Iterator()
    {
      private int pos = 0;
      private int size = size();
      private int last = -1;
      private int knownMod = modCount;

      // This will get inlined, since it is private.
      private void checkMod()
      {
        if (knownMod != modCount)
          throw new ConcurrentModificationException();
      }

      public boolean hasNext()
      {
        checkMod();
        return pos < size;
      }

      public Object next()
      {
        checkMod();
        if (pos == size)
          throw new NoSuchElementException();
        last = pos;
        return get(pos++);
      }

      public void remove()
      {
        checkMod();
        if (last < 0)
          throw new IllegalStateException();
        AbstractList.this.remove(last);
        pos--;
        size--;
        last = -1;
        knownMod = modCount;
      }
    };
  }

  /**
   * Obtain the last index at which a given object is to be found in this
   * list. This implementation grabs listIterator(size()), then searches
   * backwards for a match or returns -1.
   *
   * @return the greatest integer n such that <code>o == null ? get(n) == null
   *         : o.equals(get(n))</code>, or -1 if there is no such index
   */
  public int lastIndexOf(Object o)
  {
    int pos = size();
    ListIterator itr = listIterator(pos);
    while (--pos >= 0)
      if (equals(o, itr.previous()))
        return pos;
    return -1;
  }

  /**
   * Obtain a ListIterator over this list, starting at the beginning. This
   * implementation returns listIterator(0).
   *
   * @return a ListIterator over the elements of this list, in order, starting
   *         at the beginning
   */
  public ListIterator listIterator()
  {
    return listIterator(0);
  }

  /**
   * Obtain a ListIterator over this list, starting at a given position.
   * A first call to next() would return the same as get(index), and a
   * first call to previous() would return the same as get(index - 1).
   * <p>
   *
   * This implementation uses size(), get(int), set(int, Object),
   * add(int, Object), and remove(int) of the backing list, and does not
   * support remove, set, or add unless the list does. This implementation
   * is fail-fast if you correctly maintain modCount.
   *
   * @param index the position, between 0 and size() inclusive, to begin the
   *        iteration from
   * @return a ListIterator over the elements of this list, in order, starting
   *         at index
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt; size()
   * @see #modCount
   */
  public ListIterator listIterator(final int index)
  {
    if (index < 0 || index > size())
      throw new IndexOutOfBoundsException("Index: " + index + ", Size:"
                                          + size());

    return new ListIterator()
    {
      private int knownMod = modCount;
      private int position = index;
      private int lastReturned = -1;
      private int size = size();

      // This will get inlined, since it is private.
      private void checkMod()
      {
        if (knownMod != modCount)
          throw new ConcurrentModificationException();
      }

      public boolean hasNext()
      {
        checkMod();
        return position < size;
      }

      public boolean hasPrevious()
      {
        checkMod();
        return position > 0;
      }

      public Object next()
      {
        checkMod();
        if (position == size)
          throw new NoSuchElementException();
        lastReturned = position;
        return get(position++);
      }

      public Object previous()
      {
        checkMod();
        if (position == 0)
          throw new NoSuchElementException();
        lastReturned = --position;
        return get(lastReturned);
      }

      public int nextIndex()
      {
        checkMod();
        return position;
      }

      public int previousIndex()
      {
        checkMod();
        return position - 1;
      }

      public void remove()
      {
        checkMod();
        if (lastReturned < 0)
          throw new IllegalStateException();
        AbstractList.this.remove(lastReturned);
        size--;
        position = lastReturned;
        lastReturned = -1;
        knownMod = modCount;
      }

      public void set(Object o)
      {
        checkMod();
        if (lastReturned < 0)
          throw new IllegalStateException();
        AbstractList.this.set(lastReturned, o);
      }

      public void add(Object o)
      {
        checkMod();
        AbstractList.this.add(position++, o);
        size++;
        lastReturned = -1;
        knownMod = modCount;
      }
    };
  }

  /**
   * Remove the element at a given position in this list (optional operation).
   * Shifts all remaining elements to the left to fill the gap. This
   * implementation always throws an UnsupportedOperationException.
   * If you want fail-fast iterators, be sure to increment modCount when
   * overriding this.
   *
   * @param index the position within the list of the object to remove
   * @return the object that was removed
   * @throws UnsupportedOperationException if this list does not support the
   *         remove operation
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
   * @see #modCount
   */
  public Object remove(int index)
  {
    throw new UnsupportedOperationException();
  }

  /**
   * Remove a subsection of the list. This is called by the clear and
   * removeRange methods of the class which implements subList, which are
   * difficult for subclasses to override directly. Therefore, this method
   * should be overridden instead by the more efficient implementation, if one
   * exists. Overriding this can reduce quadratic efforts to constant time
   * in some cases!
   * <p>
   *
   * This implementation first checks for illegal or out of range arguments. It
   * then obtains a ListIterator over the list using listIterator(fromIndex).
   * It then calls next() and remove() on this iterator repeatedly, toIndex -
   * fromIndex times.
   *
   * @param fromIndex the index, inclusive, to remove from.
   * @param toIndex the index, exclusive, to remove to.
   */
  protected void removeRange(int fromIndex, int toIndex)
  {
    ListIterator itr = listIterator(fromIndex);
    for (int index = fromIndex; index < toIndex; index++)
      {
        itr.next();
        itr.remove();
      }
  }

  /**
   * Replace an element of this list with another object (optional operation).
   * This implementation always throws an UnsupportedOperationException.
   *
   * @param index the position within this list of the element to be replaced
   * @param o the object to replace it with
   * @return the object that was replaced
   * @throws UnsupportedOperationException if this list does not support the
   *         set operation
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
   * @throws ClassCastException if o cannot be added to this list due to its
   *         type
   * @throws IllegalArgumentException if o cannot be added to this list for
   *         some other reason
   */
  public Object set(int index, Object o)
  {
    throw new UnsupportedOperationException();
  }

  /**
   * Obtain a List view of a subsection of this list, from fromIndex
   * (inclusive) to toIndex (exclusive). If the two indices are equal, the
   * sublist is empty. The returned list should be modifiable if and only
   * if this list is modifiable. Changes to the returned list should be
   * reflected in this list. If this list is structurally modified in
   * any way other than through the returned list, the result of any subsequent
   * operations on the returned list is undefined.
   * <p>
   *
   * This implementation returns a subclass of AbstractList. It stores, in
   * private fields, the offset and size of the sublist, and the expected
   * modCount of the backing list. If the backing list implements RandomAccess,
   * the sublist will also.
   * <p>
   *
   * The subclass's <code>set(int, Object)</code>, <code>get(int)</code>,
   * <code>add(int, Object)</code>, <code>remove(int)</code>,
   * <code>addAll(int, Collection)</code> and
   * <code>removeRange(int, int)</code> methods all delegate to the
   * corresponding methods on the backing abstract list, after
   * bounds-checking the index and adjusting for the offset. The
   * <code>addAll(Collection c)</code> method merely returns addAll(size, c).
   * The <code>listIterator(int)</code> method returns a "wrapper object"
   * over a list iterator on the backing list, which is created with the
   * corresponding method on the backing list. The <code>iterator()</code>
   * method merely returns listIterator(), and the <code>size()</code> method
   * merely returns the subclass's size field.
   * <p>
   *
   * All methods first check to see if the actual modCount of the backing
   * list is equal to its expected value, and throw a
   * ConcurrentModificationException if it is not. 
   *
   * @param fromIndex the index that the returned list should start from
   *        (inclusive)
   * @param toIndex the index that the returned list should go to (exclusive)
   * @return a List backed by a subsection of this list
   * @throws IndexOutOfBoundsException if fromIndex &lt; 0
   *         || toIndex &gt; size()
   * @throws IllegalArgumentException if fromIndex &gt; toIndex
   * @see ConcurrentModificationException
   * @see RandomAccess
   */
  public List subList(int fromIndex, int toIndex)
  {
    // This follows the specification of AbstractList, but is inconsistent
    // with the one in List. Don't you love Sun's inconsistencies?
    if (fromIndex > toIndex)
      throw new IllegalArgumentException(fromIndex + " > " + toIndex);
    if (fromIndex < 0 || toIndex > size())
      throw new IndexOutOfBoundsException();

    if (this instanceof RandomAccess)
      return new RandomAccessSubList(this, fromIndex, toIndex);
    return new SubList(this, fromIndex, toIndex);
  }

} // class AbstractList


/**
 * This class follows the implementation requirements set forth in
 * {@link AbstractList#subList(int, int)}. Some compilers have problems
 * with AbstractList.this.modCount if this class is nested in AbstractList,
 * even though the JLS defines that to be legal, so we make it a top-level
 * class.
 *
 * @author Original author unknown
 * @author Eric Blake <ebb9@email.byu.edu>
 */
class SubList extends AbstractList
{
  private final AbstractList backingList;
  private final int offset;
  private int size;

  /**
   * Construct the sublist.
   *
   * @param backing the list this comes from
   * @param fromIndex the lower bound, inclusive
   * @param toIndex the upper bound, exclusive
   */
  SubList(AbstractList backing, int fromIndex, int toIndex)
  {
    backingList = backing;
    modCount = backing.modCount;
    offset = fromIndex;
    size = toIndex - fromIndex;
  }

  /**
   * This method checks the two modCount fields to ensure that there has
   * not been a concurrent modification, returning if all is okay.
   *
   * @throws ConcurrentModificationException if the backing list has been
   *         modified externally to this sublist
   */
  // This will get inlined, since it is private.
  private void checkMod()
  {
    if (modCount != backingList.modCount)
      throw new ConcurrentModificationException();
  }

  /**
   * This method checks that a value is between 0 and size (inclusive). If
   * it is not, an exception is thrown.
   *
   * @param index the value to check
   * @throws IndexOutOfBoundsException if the value is out of range
   */
  // This will get inlined, since it is private.
  private void checkBoundsInclusive(int index)
  {
    if (index < 0 || index > size)
      throw new IndexOutOfBoundsException("Index: " + index + ", Size:"
                                          + size);
  }

  /**
   * This method checks that a value is between 0 (inclusive) and size
   * (exclusive). If it is not, an exception is thrown.
   *
   * @param index the value to check
   * @throws IndexOutOfBoundsException if the value is out of range
   */
  // This will get inlined, since it is private.
  private void checkBoundsExclusive(int index)
  {
    if (index < 0 || index >= size)
      throw new IndexOutOfBoundsException("Index: " + index + ", Size:"
                                          + size);
  }

  /**
   * Specified by AbstractList.subList to return the private field size.
   *
   * @return the sublist size
   */
  public int size()
  {
    checkMod();
    return size;
  }

  /**
   * Specified by AbstractList.subList to delegate to the backing list.
   *
   * @param index the location to modify
   * @param o the new value
   * @return the old value
   */
  public Object set(int index, Object o)
  {
    checkMod();
    checkBoundsExclusive(index);
    return backingList.set(index + offset, o);
  }

  /**
   * Specified by AbstractList.subList to delegate to the backing list.
   *
   * @param index the location to get from
   * @return the object at that location
   */
  public Object get(int index)
  {
    checkMod();
    checkBoundsExclusive(index);
    return backingList.get(index + offset);
  }

  /**
   * Specified by AbstractList.subList to delegate to the backing list.
   *
   * @param index the index to insert at
   * @param o the object to add
   */
  public void add(int index, Object o)
  {
    checkMod();
    checkBoundsInclusive(index);
    backingList.add(index + offset, o);
    size++;
    modCount = backingList.modCount;
  }

  /**
   * Specified by AbstractList.subList to delegate to the backing list.
   *
   * @param index the index to remove
   * @return the removed object
   */
  public Object remove(int index)
  {
    checkMod();
    checkBoundsExclusive(index);
    Object o = backingList.remove(index + offset);
    size--;
    modCount = backingList.modCount;
    return o;
  }

  /**
   * Specified by AbstractList.subList to delegate to the backing list.
   * This does no bounds checking, as it assumes it will only be called
   * by trusted code like clear() which has already checked the bounds.
   *
   * @param fromIndex the lower bound, inclusive
   * @param toIndex the upper bound, exclusive
   */
  protected void removeRange(int fromIndex, int toIndex)
  {
    checkMod();

    backingList.removeRange(offset + fromIndex, offset + toIndex);
    size -= toIndex - fromIndex;
    modCount = backingList.modCount;
  }

  /**
   * Specified by AbstractList.subList to delegate to the backing list.
   *
   * @param index the location to insert at
   * @param c the collection to insert
   * @return true if this list was modified, in other words, c is non-empty
   */
  public boolean addAll(int index, Collection c)
  {
    checkMod();
    checkBoundsInclusive(index);
    int csize = c.size();
    boolean result = backingList.addAll(offset + index, c);
    size += csize;
    modCount = backingList.modCount;
    return result;
  }

  /**
   * Specified by AbstractList.subList to return addAll(size, c).
   *
   * @param c the collection to insert
   * @return true if this list was modified, in other words, c is non-empty
   */
  public boolean addAll(Collection c)
  {
    return addAll(size, c);
  }

  /**
   * Specified by AbstractList.subList to return listIterator().
   *
   * @return an iterator over the sublist
   */
  public Iterator iterator()
  {
    return listIterator();
  }

  /**
   * Specified by AbstractList.subList to return a wrapper around the
   * backing list's iterator.
   *
   * @param index the start location of the iterator
   * @return a list iterator over the sublist
   */
  public ListIterator listIterator(final int index)
  {
    checkMod();
    checkBoundsInclusive(index);

    return new ListIterator()
    {
      private final ListIterator i = backingList.listIterator(index + offset);
      private int position = index;

      public boolean hasNext()
      {
        checkMod();
        return position < size;
      }

      public boolean hasPrevious()
      {
        checkMod();
        return position > 0;
      }

      public Object next()
      {
        if (position == size)
          throw new NoSuchElementException();
        position++;
        return i.next();
      }

      public Object previous()
      {
        if (position == 0)
          throw new NoSuchElementException();
        position--;
        return i.previous();
      }

      public int nextIndex()
      {
        return i.nextIndex() - offset;
      }

      public int previousIndex()
      {
        return i.previousIndex() - offset;
      }

      public void remove()
      {
        i.remove();
        size--;
        position = nextIndex();
        modCount = backingList.modCount;
      }

      public void set(Object o)
      {
        i.set(o);
      }

      public void add(Object o)
      {
        i.add(o);
        size++;
        position++;
        modCount = backingList.modCount;
      }

      // Here is the reason why the various modCount fields are mostly
      // ignored in this wrapper listIterator.
      // If the backing listIterator is failfast, then the following holds:
      //   Using any other method on this list will call a corresponding
      //   method on the backing list *after* the backing listIterator
      //   is created, which will in turn cause a ConcurrentModException
      //   when this listIterator comes to use the backing one. So it is
      //   implicitly failfast.
      // If the backing listIterator is NOT failfast, then the whole of
      //   this list isn't failfast, because the modCount field of the
      //   backing list is not valid. It would still be *possible* to
      //   make the iterator failfast wrt modifications of the sublist
      //   only, but somewhat pointless when the list can be changed under
      //   us.
      // Either way, no explicit handling of modCount is needed.
      // However modCount = backingList.modCount must be executed in add
      // and remove, and size must also be updated in these two methods,
      // since they do not go through the corresponding methods of the subList.
    };
  }
} // class SubList

/**
 * This class is a RandomAccess version of SubList, as required by
 * {@link AbstractList#subList(int, int)}.
 *
 * @author Eric Blake <ebb9@email.byu.edu>
 */
final class RandomAccessSubList extends SubList
  implements RandomAccess
{
  /**
   * Construct the sublist.
   *
   * @param backing the list this comes from
   * @param fromIndex the lower bound, inclusive
   * @param toIndex the upper bound, exclusive
   */
  RandomAccessSubList(AbstractList backing, int fromIndex, int toIndex)
  {
    super(backing, fromIndex, toIndex);
  }
} // class RandomAccessSubList