summaryrefslogtreecommitdiff
path: root/java/util/Collections.java
blob: e25fbc36493189d0700319933f101c9333c30dfc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
/* Collections.java -- Utility class with methods to operate on collections
   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004, 2005
   Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.util;

import java.io.Serializable;

/**
 * Utility class consisting of static methods that operate on, or return
 * Collections. Contains methods to sort, search, reverse, fill and shuffle
 * Collections, methods to facilitate interoperability with legacy APIs that
 * are unaware of collections, a method to return a list which consists of
 * multiple copies of one element, and methods which "wrap" collections to give
 * them extra properties, such as thread-safety and unmodifiability.
 * <p>
 *
 * All methods which take a collection throw a {@link NullPointerException} if
 * that collection is null. Algorithms which can change a collection may, but
 * are not required, to throw the {@link UnsupportedOperationException} that
 * the underlying collection would throw during an attempt at modification.
 * For example,
 * <code>Collections.singleton("").addAll(Collections.EMPTY_SET)</code>
 * does not throw a exception, even though addAll is an unsupported operation
 * on a singleton; the reason for this is that addAll did not attempt to
 * modify the set.
 *
 * @author Original author unknown
 * @author Eric Blake (ebb9@email.byu.edu)
 * @see Collection
 * @see Set
 * @see List
 * @see Map
 * @see Arrays
 * @since 1.2
 * @status updated to 1.4
 */
public class Collections
{
  /**
   * Constant used to decide cutoff for when a non-RandomAccess list should
   * be treated as sequential-access. Basically, quadratic behavior is
   * acceptable for small lists when the overhead is so small in the first
   * place. I arbitrarily set it to 16, so it may need some tuning.
   */
  private static final int LARGE_LIST_SIZE = 16;

  /**
   * Determines if a list should be treated as a sequential-access one.
   * Rather than the old method of JDK 1.3 of assuming only instanceof
   * AbstractSequentialList should be sequential, this uses the new method
   * of JDK 1.4 of assuming anything that does NOT implement RandomAccess
   * and exceeds a large (unspecified) size should be sequential.
   *
   * @param l the list to check
   * @return <code>true</code> if it should be treated as sequential-access
   */
  private static boolean isSequential(List l)
  {
    return ! (l instanceof RandomAccess) && l.size() > LARGE_LIST_SIZE;
  }

  /**
   * This class is non-instantiable.
   */
  private Collections()
  {
  }

  /**
   * An immutable, serializable, empty Set.
   * @see Serializable
   */
  public static final Set EMPTY_SET = new EmptySet();

  /**
   * The implementation of {@link #EMPTY_SET}. This class name is required
   * for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class EmptySet extends AbstractSet
    implements Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 1582296315990362920L;

    /**
     * A private constructor adds overhead.
     */
    EmptySet()
    {
    }

    /**
     * The size: always 0!
     * @return 0.
     */
    public int size()
    {
      return 0;
    }

    /**
     * Returns an iterator that does not iterate.
     * @return A non-iterating iterator.
     */
    // This is really cheating! I think it's perfectly valid, though.
    public Iterator iterator()
    {
      return EMPTY_LIST.iterator();
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractSet.
    /**
     * The empty set never contains anything.
     * @param o The object to search for.
     * @return <code>false</code>.
     */
    public boolean contains(Object o)
    {
      return false;
    }

    /**
     * This is true only if the given collection is also empty.
     * @param c The collection of objects which are to be compared
     *          against the members of this set.
     * @return <code>true</code> if c is empty.
     */
    public boolean containsAll(Collection c)
    {
      return c.isEmpty();
    }

    /**
     * Equal only if the other set is empty.
     * @param o The object to compare with this set.
     * @return <code>true</code> if o is an empty instance of <code>Set</code>.
     */
    public boolean equals(Object o)
    {
      return o instanceof Set && ((Set) o).isEmpty();
    }

    /**
     * The hashcode is always 0.
     * @return 0.
     */
    public int hashCode()
    {
      return 0;
    }

    /**
     * Always succeeds with a <code>false</code> result.
     * @param o The object to remove.
     * @return <code>false</code>.
     */
    public boolean remove(Object o)
    {
      return false;
    }

    /**
     * Always succeeds with a <code>false</code> result.
     * @param c The collection of objects which should
     *          all be removed from this set.
     * @return <code>false</code>.
     */
    public boolean removeAll(Collection c)
    {
      return false;
    }

    /**
     * Always succeeds with a <code>false</code> result.
     * @param c The collection of objects which should
     *          all be retained within this set.
     * @return <code>false</code>.
     */
    public boolean retainAll(Collection c)
    {
      return false;
    }

    /**
     * The array is always empty.
     * @return A new array with a size of 0.
     */
    public Object[] toArray()
    {
      return new Object[0];
    }

    /**
     * We don't even need to use reflection!
     * @param a An existing array, which can be empty.
     * @return The original array with any existing
     *         initial element set to null.
     */
    public Object[] toArray(Object[] a)
    {
      if (a.length > 0)
        a[0] = null;
      return a;
    }

    /**
     * The string never changes.
     *
     * @return the string "[]".
     */
    public String toString()
    {
      return "[]";
    }
  } // class EmptySet

  /**
   * An immutable, serializable, empty List, which implements RandomAccess.
   * @see Serializable
   * @see RandomAccess
   */
  public static final List EMPTY_LIST = new EmptyList();

  /**
   * The implementation of {@link #EMPTY_LIST}. This class name is required
   * for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class EmptyList extends AbstractList
    implements Serializable, RandomAccess
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 8842843931221139166L;

    /**
     * A private constructor adds overhead.
     */
    EmptyList()
    {
    }

    /**
     * The size is always 0.
     * @return 0.
     */
    public int size()
    {
      return 0;
    }

    /**
     * No matter the index, it is out of bounds.  This
     * method never returns, throwing an exception instead.
     *
     * @param index The index of the element to retrieve.
     * @return the object at the specified index.
     * @throws IndexOutofBoundsException as any given index
     *         is outside the bounds of an empty array.
     */
    public Object get(int index)
    {
      throw new IndexOutOfBoundsException();
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractList.
    /**
     * Never contains anything.
     * @param o The object to search for.
     * @return <code>false</code>.
     */
    public boolean contains(Object o)
    {
      return false;
    }

    /**
     * This is true only if the given collection is also empty.
     * @param c The collection of objects, which should be compared
     *          against the members of this list.
     * @return <code>true</code> if c is also empty. 
     */
    public boolean containsAll(Collection c)
    {
      return c.isEmpty();
    }

    /**
     * Equal only if the other list is empty.
     * @param o The object to compare against this list.
     * @return <code>true</code> if o is also an empty instance of
     *         <code>List</code>.
     */
    public boolean equals(Object o)
    {
      return o instanceof List && ((List) o).isEmpty();
    }

    /**
     * The hashcode is always 1.
     * @return 1.
     */
    public int hashCode()
    {
      return 1;
    }

    /**
     * Returns -1.
     * @param o The object to search for.
     * @return -1.
     */
    public int indexOf(Object o)
    {
      return -1;
    }

    /**
     * Returns -1.
     * @param o The object to search for.
     * @return -1.
     */
    public int lastIndexOf(Object o)
    {
      return -1;
    }

    /**
     * Always succeeds with <code>false</code> result.
     * @param o The object to remove.
     * @return -1.
     */
    public boolean remove(Object o)
    {
      return false;
    }

    /**
     * Always succeeds with <code>false</code> result.
     * @param c The collection of objects which should
     *          all be removed from this list.
     * @return <code>false</code>.
     */
    public boolean removeAll(Collection c)
    {
      return false;
    }

    /**
     * Always succeeds with <code>false</code> result.
     * @param c The collection of objects which should
     *          all be retained within this list.
     * @return <code>false</code>.
     */
    public boolean retainAll(Collection c)
    {
      return false;
    }

    /**
     * The array is always empty.
     * @return A new array with a size of 0.
     */
    public Object[] toArray()
    {
      return new Object[0];
    }

    /**
     * We don't even need to use reflection!
     * @param a An existing array, which can be empty.
     * @return The original array with any existing
     *         initial element set to null.
     */
    public Object[] toArray(Object[] a)
    {
      if (a.length > 0)
        a[0] = null;
      return a;
    }

    /**
     * The string never changes.
     *
     * @return the string "[]".
     */
    public String toString()
    {
      return "[]";
    }
  } // class EmptyList

  /**
   * An immutable, serializable, empty Map.
   * @see Serializable
   */
  public static final Map EMPTY_MAP = new EmptyMap();

  /**
   * The implementation of {@link #EMPTY_MAP}. This class name is required
   * for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class EmptyMap extends AbstractMap
    implements Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 6428348081105594320L;

    /**
     * A private constructor adds overhead.
     */
    EmptyMap()
    {
    }

    /**
     * There are no entries.
     * @return The empty set.
     */
    public Set entrySet()
    {
      return EMPTY_SET;
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractMap.
    /**
     * No entries!
     * @param key The key to search for.
     * @return <code>false</code>.
     */
    public boolean containsKey(Object key)
    {
      return false;
    }

    /**
     * No entries!
     * @param value The value to search for.
     * @return <code>false</code>.
     */
    public boolean containsValue(Object value)
    {
      return false;
    }

    /**
     * Equal to all empty maps.
     * @param o The object o to compare against this map.
     * @return <code>true</code> if o is also an empty instance of
     *         <code>Map</code>.
     */
    public boolean equals(Object o)
    {
      return o instanceof Map && ((Map) o).isEmpty();
    }

    /**
     * No mappings, so this returns null.
     * @param o The key of the object to retrieve.
     * @return null. 
     */
    public Object get(Object o)
    {
      return null;
    }

    /**
     * The hashcode is always 0.
     * @return 0.
     */
    public int hashCode()
    {
      return 0;
    }

    /**
     * No entries.
     * @return The empty set.
     */
    public Set keySet()
    {
      return EMPTY_SET;
    }

    /**
     * Remove always succeeds, with null result.
     * @param o The key of the mapping to remove.
     * @return null, as there is never a mapping for o.
     */
    public Object remove(Object o)
    {
      return null;
    }

    /**
     * Size is always 0.
     * @return 0.
     */
    public int size()
    {
      return 0;
    }

    /**
     * No entries. Technically, EMPTY_SET, while more specific than a general
     * Collection, will work. Besides, that's what the JDK uses!
     * @return The empty set.
     */
    public Collection values()
    {
      return EMPTY_SET;
    }

    /**
     * The string never changes.
     *
     * @return the string "[]".
     */
    public String toString()
    {
      return "[]";
    }
  } // class EmptyMap


  /**
   * Compare two objects with or without a Comparator. If c is null, uses the
   * natural ordering. Slightly slower than doing it inline if the JVM isn't
   * clever, but worth it for removing a duplicate of the search code.
   * Note: This code is also used in Arrays (for sort as well as search).
   */
  static final int compare(Object o1, Object o2, Comparator c)
  {
    return c == null ? ((Comparable) o1).compareTo(o2) : c.compare(o1, o2);
  }

  /**
   * Perform a binary search of a List for a key, using the natural ordering of
   * the elements. The list must be sorted (as by the sort() method) - if it is
   * not, the behavior of this method is undefined, and may be an infinite
   * loop. Further, the key must be comparable with every item in the list. If
   * the list contains the key more than once, any one of them may be found.
   * <p>
   *
   * This algorithm behaves in log(n) time for {@link RandomAccess} lists,
   * and uses a linear search with O(n) link traversals and log(n) comparisons
   * with {@link AbstractSequentialList} lists. Note: although the
   * specification allows for an infinite loop if the list is unsorted, it will
   * not happen in this (Classpath) implementation.
   *
   * @param l the list to search (must be sorted)
   * @param key the value to search for
   * @return the index at which the key was found, or -n-1 if it was not
   *         found, where n is the index of the first value higher than key or
   *         a.length if there is no such value
   * @throws ClassCastException if key could not be compared with one of the
   *         elements of l
   * @throws NullPointerException if a null element has compareTo called
   * @see #sort(List)
   */
  public static int binarySearch(List l, Object key)
  {
    return binarySearch(l, key, null);
  }

  /**
   * Perform a binary search of a List for a key, using a supplied Comparator.
   * The list must be sorted (as by the sort() method with the same Comparator)
   * - if it is not, the behavior of this method is undefined, and may be an
   * infinite loop. Further, the key must be comparable with every item in the
   * list. If the list contains the key more than once, any one of them may be
   * found. If the comparator is null, the elements' natural ordering is used.
   * <p>
   *
   * This algorithm behaves in log(n) time for {@link RandomAccess} lists,
   * and uses a linear search with O(n) link traversals and log(n) comparisons
   * with {@link AbstractSequentialList} lists. Note: although the
   * specification allows for an infinite loop if the list is unsorted, it will
   * not happen in this (Classpath) implementation.
   *
   * @param l the list to search (must be sorted)
   * @param key the value to search for
   * @param c the comparator by which the list is sorted
   * @return the index at which the key was found, or -n-1 if it was not
   *         found, where n is the index of the first value higher than key or
   *         a.length if there is no such value
   * @throws ClassCastException if key could not be compared with one of the
   *         elements of l
   * @throws NullPointerException if a null element is compared with natural
   *         ordering (only possible when c is null)
   * @see #sort(List, Comparator)
   */
  public static int binarySearch(List l, Object key, Comparator c)
  {
    int pos = 0;
    int low = 0;
    int hi = l.size() - 1;

    // We use a linear search with log(n) comparisons using an iterator
    // if the list is sequential-access.
    if (isSequential(l))
      {
	ListIterator itr = l.listIterator();
        int i = 0;
	Object o = itr.next(); // Assumes list is not empty (see isSequential)
	boolean forward = true;
        while (low <= hi)
          {
            pos = (low + hi) >> 1;
            if (i < pos)
	      {
		if (!forward)
		  itr.next(); // Changing direction first.
		for ( ; i != pos; i++, o = itr.next());
		forward = true;
	      }
            else
	      {
		if (forward)
		  itr.previous(); // Changing direction first.
		for ( ; i != pos; i--, o = itr.previous());
		forward = false;
	      }
	    final int d = compare(key, o, c);
	    if (d == 0)
              return pos;
	    else if (d < 0)
              hi = pos - 1;
	    else
              // This gets the insertion point right on the last loop
              low = ++pos;
          }
      }
    else
      {
	while (low <= hi)
	  {
	    pos = (low + hi) >> 1;
	    final int d = compare(key, l.get(pos), c);
	    if (d == 0)
              return pos;
	    else if (d < 0)
              hi = pos - 1;
	    else
              // This gets the insertion point right on the last loop
              low = ++pos;
	  }
      }

    // If we failed to find it, we do the same whichever search we did.
    return -pos - 1;
  }

  /**
   * Copy one list to another. If the destination list is longer than the
   * source list, the remaining elements are unaffected. This method runs in
   * linear time.
   *
   * @param dest the destination list
   * @param source the source list
   * @throws IndexOutOfBoundsException if the destination list is shorter
   *         than the source list (the destination will be unmodified)
   * @throws UnsupportedOperationException if dest.listIterator() does not
   *         support the set operation
   */
  public static void copy(List dest, List source)
  {
    int pos = source.size();
    if (dest.size() < pos)
      throw new IndexOutOfBoundsException("Source does not fit in dest");

    Iterator i1 = source.iterator();
    ListIterator i2 = dest.listIterator();

    while (--pos >= 0)
      {
        i2.next();
        i2.set(i1.next());
      }
  }

  /**
   * Returns an Enumeration over a collection. This allows interoperability
   * with legacy APIs that require an Enumeration as input.
   *
   * @param c the Collection to iterate over
   * @return an Enumeration backed by an Iterator over c
   */
  public static Enumeration enumeration(Collection c)
  {
    final Iterator i = c.iterator();
    return new Enumeration()
    {
      /**
       * Returns <code>true</code> if there are more elements to
       * be enumerated.
       *
       * @return The result of <code>hasNext()</code>
       *         called on the underlying iterator.
       */
      public final boolean hasMoreElements()
      {
	return i.hasNext();
      }

      /**
       * Returns the next element to be enumerated.
       *
       * @return The result of <code>next()</code>
       *         called on the underlying iterator.
       */
      public final Object nextElement()
      {
	return i.next();
      }
    };
  }

  /**
   * Replace every element of a list with a given value. This method runs in
   * linear time.
   *
   * @param l the list to fill.
   * @param val the object to vill the list with.
   * @throws UnsupportedOperationException if l.listIterator() does not
   *         support the set operation.
   */
  public static void fill(List l, Object val)
  {
    ListIterator itr = l.listIterator();
    for (int i = l.size() - 1; i >= 0; --i)
      {
	itr.next();
	itr.set(val);
      }
  }

  /**
   * Returns the starting index where the specified sublist first occurs
   * in a larger list, or -1 if there is no matching position. If
   * <code>target.size() &gt; source.size()</code>, this returns -1,
   * otherwise this implementation uses brute force, checking for
   * <code>source.sublist(i, i + target.size()).equals(target)</code>
   * for all possible i.
   *
   * @param source the list to search
   * @param target the sublist to search for
   * @return the index where found, or -1
   * @since 1.4
   */
  public static int indexOfSubList(List source, List target)
  {
    int ssize = source.size();
    for (int i = 0, j = target.size(); j <= ssize; i++, j++)
      if (source.subList(i, j).equals(target))
        return i;
    return -1;
  }

  /**
   * Returns the starting index where the specified sublist last occurs
   * in a larger list, or -1 if there is no matching position. If
   * <code>target.size() &gt; source.size()</code>, this returns -1,
   * otherwise this implementation uses brute force, checking for
   * <code>source.sublist(i, i + target.size()).equals(target)</code>
   * for all possible i.
   *
   * @param source the list to search
   * @param target the sublist to search for
   * @return the index where found, or -1
   * @since 1.4
   */
  public static int lastIndexOfSubList(List source, List target)
  {
    int ssize = source.size();
    for (int i = ssize - target.size(), j = ssize; i >= 0; i--, j--)
      if (source.subList(i, j).equals(target))
        return i;
    return -1;
  }

  /**
   * Returns an ArrayList holding the elements visited by a given
   * Enumeration. This method exists for interoperability between legacy
   * APIs and the new Collection API.
   *
   * @param e the enumeration to put in a list
   * @return a list containing the enumeration elements
   * @see ArrayList
   * @since 1.4
   */
  public static ArrayList list(Enumeration e)
  {
    ArrayList l = new ArrayList();
    while (e.hasMoreElements())
      l.add(e.nextElement());
    return l;
  }

  /**
   * Find the maximum element in a Collection, according to the natural
   * ordering of the elements. This implementation iterates over the
   * Collection, so it works in linear time.
   *
   * @param c the Collection to find the maximum element of
   * @return the maximum element of c
   * @exception NoSuchElementException if c is empty
   * @exception ClassCastException if elements in c are not mutually comparable
   * @exception NullPointerException if null.compareTo is called
   */
  public static Object max(Collection c)
  {
    return max(c, null);
  }

  /**
   * Find the maximum element in a Collection, according to a specified
   * Comparator. This implementation iterates over the Collection, so it
   * works in linear time.
   *
   * @param c the Collection to find the maximum element of
   * @param order the Comparator to order the elements by, or null for natural
   *        ordering
   * @return the maximum element of c
   * @throws NoSuchElementException if c is empty
   * @throws ClassCastException if elements in c are not mutually comparable
   * @throws NullPointerException if null is compared by natural ordering
   *        (only possible when order is null)
   */
  public static Object max(Collection c, Comparator order)
  {
    Iterator itr = c.iterator();
    Object max = itr.next(); // throws NoSuchElementException
    int csize = c.size();
    for (int i = 1; i < csize; i++)
      {
	Object o = itr.next();
	if (compare(max, o, order) < 0)
	  max = o;
      }
    return max;
  }

  /**
   * Find the minimum element in a Collection, according to the natural
   * ordering of the elements. This implementation iterates over the
   * Collection, so it works in linear time.
   *
   * @param c the Collection to find the minimum element of
   * @return the minimum element of c
   * @throws NoSuchElementException if c is empty
   * @throws ClassCastException if elements in c are not mutually comparable
   * @throws NullPointerException if null.compareTo is called
   */
  public static Object min(Collection c)
  {
    return min(c, null);
  }

  /**
   * Find the minimum element in a Collection, according to a specified
   * Comparator. This implementation iterates over the Collection, so it
   * works in linear time.
   *
   * @param c the Collection to find the minimum element of
   * @param order the Comparator to order the elements by, or null for natural
   *        ordering
   * @return the minimum element of c
   * @throws NoSuchElementException if c is empty
   * @throws ClassCastException if elements in c are not mutually comparable
   * @throws NullPointerException if null is compared by natural ordering
   *        (only possible when order is null)
   */
  public static Object min(Collection c, Comparator order)
  {
    Iterator itr = c.iterator();
    Object min = itr.next();	// throws NoSuchElementExcception
    int csize = c.size();
    for (int i = 1; i < csize; i++)
      {
	Object o = itr.next();
	if (compare(min, o, order) > 0)
	  min = o;
      }
    return min;
  }

  /**
   * Creates an immutable list consisting of the same object repeated n times.
   * The returned object is tiny, consisting of only a single reference to the
   * object and a count of the number of elements. It is Serializable, and
   * implements RandomAccess. You can use it in tandem with List.addAll for
   * fast list construction.
   *
   * @param n the number of times to repeat the object
   * @param o the object to repeat
   * @return a List consisting of n copies of o
   * @throws IllegalArgumentException if n &lt; 0
   * @see List#addAll(Collection)
   * @see Serializable
   * @see RandomAccess
   */
  public static List nCopies(final int n, final Object o)
  {
    return new CopiesList(n, o);
  }

  /**
   * The implementation of {@link #nCopies(int, Object)}. This class name
   * is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class CopiesList extends AbstractList
    implements Serializable, RandomAccess
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 2739099268398711800L;

    /**
     * The count of elements in this list.
     * @serial the list size
     */
    private final int n;

    /**
     * The repeated list element.
     * @serial the list contents
     */
    private final Object element;

    /**
     * Constructs the list.
     *
     * @param n the count
     * @param o the object
     * @throws IllegalArgumentException if n &lt; 0
     */
    CopiesList(int n, Object o)
    {
      if (n < 0)
	throw new IllegalArgumentException();
      this.n = n;
      element = o;
    }

    /**
     * The size is fixed.
     * @return The size of the list.
     */
    public int size()
    {
      return n;
    }

    /**
     * The same element is returned.
     * @param index The index of the element to be returned (irrelevant
     *        as the list contains only copies of <code>element</code>).
     * @return The element used by this list.
     */
    public Object get(int index)
    {
      if (index < 0 || index >= n)
        throw new IndexOutOfBoundsException();
      return element;
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractList.
    /**
     * This list only contains one element.
     * @param o The object to search for.
     * @return <code>true</code> if o is the element used by this list.
     */
    public boolean contains(Object o)
    {
      return n > 0 && equals(o, element);
    }

    /**
     * The index is either 0 or -1.
     * @param o The object to find the index of.
     * @return 0 if <code>o == element</code>, -1 if not.
     */
    public int indexOf(Object o)
    {
      return (n > 0 && equals(o, element)) ? 0 : -1;
    }

    /**
     * The index is either n-1 or -1.
     * @param o The object to find the last index of.
     * @return The last index in the list if <code>o == element</code>,
     *         -1 if not.
     */
    public int lastIndexOf(Object o)
    {
      return equals(o, element) ? n - 1 : -1;
    }

    /**
     * A subList is just another CopiesList.
     * @param from The starting bound of the sublist.
     * @param to The ending bound of the sublist.
     * @return A list of copies containing <code>from - to</code>
     *         elements, all of which are equal to the element
     *         used by this list.
     */
    public List subList(int from, int to)
    {
      if (from < 0 || to > n)
        throw new IndexOutOfBoundsException();
      return new CopiesList(to - from, element);
    }

    /**
     * The array is easy.
     * @return An array of size n filled with copies of
     *         the element used by this list.
     */
    public Object[] toArray()
    {
      Object[] a = new Object[n];
      Arrays.fill(a, element);
      return a;
    }

    /**
     * The string is easy to generate.
     * @return A string representation of the list.
     */
    public String toString()
    {
      StringBuffer r = new StringBuffer("{");
      for (int i = n - 1; --i > 0; )
        r.append(element).append(", ");
      r.append(element).append("}");
      return r.toString();
    }
  } // class CopiesList

  /**
   * Replace all instances of one object with another in the specified list.
   * The list does not change size. An element e is replaced if
   * <code>oldval == null ? e == null : oldval.equals(e)</code>.
   *
   * @param list the list to iterate over
   * @param oldval the element to replace
   * @param newval the new value for the element
   * @return <code>true</code> if a replacement occurred.
   * @throws UnsupportedOperationException if the list iterator does not allow
   *         for the set operation
   * @throws ClassCastException if newval is of a type which cannot be added
   *         to the list
   * @throws IllegalArgumentException if some other aspect of newval stops
   *         it being added to the list
   * @since 1.4
   */
  public static boolean replaceAll(List list, Object oldval, Object newval)
  {
    ListIterator itr = list.listIterator();
    boolean replace_occured = false;
    for (int i = list.size(); --i >= 0; )
      if (AbstractCollection.equals(oldval, itr.next()))
        {
          itr.set(newval);
          replace_occured = true;
        }
    return replace_occured;
  }

  /**
   * Reverse a given list. This method works in linear time.
   *
   * @param l the list to reverse
   * @throws UnsupportedOperationException if l.listIterator() does not
   *         support the set operation
   */
  public static void reverse(List l)
  {
    ListIterator i1 = l.listIterator();
    int pos1 = 1;
    int pos2 = l.size();
    ListIterator i2 = l.listIterator(pos2);
    while (pos1 < pos2)
      {
	Object o = i1.next();
	i1.set(i2.previous());
	i2.set(o);
	++pos1;
	--pos2;
      }
  }

  /**
   * Get a comparator that implements the reverse of natural ordering. In
   * other words, this sorts Comparable objects opposite of how their
   * compareTo method would sort. This makes it easy to sort into reverse
   * order, by simply passing Collections.reverseOrder() to the sort method.
   * The return value of this method is Serializable.
   *
   * @return a comparator that imposes reverse natural ordering
   * @see Comparable
   * @see Serializable
   */
  public static Comparator reverseOrder()
  {
    return rcInstance;
  }

  /**
   * The object for {@link #reverseOrder()}.
   */
  private static final ReverseComparator rcInstance = new ReverseComparator();

  /**
   * The implementation of {@link #reverseOrder()}. This class name
   * is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class ReverseComparator
    implements Comparator, Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 7207038068494060240L;

    /**
     * A private constructor adds overhead.
     */
    ReverseComparator()
    {
    }

    /**
     * Compare two objects in reverse natural order.
     *
     * @param a the first object
     * @param b the second object
     * @return &lt;, ==, or &gt; 0 according to b.compareTo(a)
     */
    public int compare(Object a, Object b)
    {
      return ((Comparable) b).compareTo(a);
    }
  }

  /**
   * Rotate the elements in a list by a specified distance. After calling this
   * method, the element now at index <code>i</code> was formerly at index
   * <code>(i - distance) mod list.size()</code>. The list size is unchanged.
   * <p>
   *
   * For example, suppose a list contains <code>[t, a, n, k, s]</code>. After
   * either <code>Collections.rotate(l, 4)</code> or
   * <code>Collections.rotate(l, -1)</code>, the new contents are
   * <code>[s, t, a, n, k]</code>. This can be applied to sublists to rotate
   * just a portion of the list. For example, to move element <code>a</code>
   * forward two positions in the original example, use
   * <code>Collections.rotate(l.subList(1, 3+1), -1)</code>, which will
   * result in <code>[t, n, k, a, s]</code>.
   * <p>
   *
   * If the list is small or implements {@link RandomAccess}, the
   * implementation exchanges the first element to its destination, then the
   * displaced element, and so on until a circuit has been completed. The
   * process is repeated if needed on the second element, and so forth, until
   * all elements have been swapped.  For large non-random lists, the
   * implementation breaks the list into two sublists at index
   * <code>-distance mod size</code>, calls {@link #reverse(List)} on the
   * pieces, then reverses the overall list.
   *
   * @param list the list to rotate
   * @param distance the distance to rotate by; unrestricted in value
   * @throws UnsupportedOperationException if the list does not support set
   * @since 1.4
   */
  public static void rotate(List list, int distance)
  {
    int size = list.size();
    if (size == 0)
      return;
    distance %= size;
    if (distance == 0)
      return;
    if (distance < 0)
      distance += size;

    if (isSequential(list))
      {
        reverse(list);
        reverse(list.subList(0, distance));
        reverse(list.subList(distance, size));
      }
    else
      {
        // Determine the least common multiple of distance and size, as there
        // are (distance / LCM) loops to cycle through.
        int a = size;
        int lcm = distance;
        int b = a % lcm;
        while (b != 0)
          {
            a = lcm;
            lcm = b;
            b = a % lcm;
          }

        // Now, make the swaps. We must take the remainder every time through
        // the inner loop so that we don't overflow i to negative values.
        while (--lcm >= 0)
          {
            Object o = list.get(lcm);
            for (int i = lcm + distance; i != lcm; i = (i + distance) % size)
              o = list.set(i, o);
            list.set(lcm, o);
          }
      }
  }

  /**
   * Shuffle a list according to a default source of randomness. The algorithm
   * used iterates backwards over the list, swapping each element with an
   * element randomly selected from the elements in positions less than or
   * equal to it (using r.nextInt(int)).
   * <p>
   *
   * This algorithm would result in a perfectly fair shuffle (that is, each
   * element would have an equal chance of ending up in any position) if r were
   * a perfect source of randomness. In practice the results are merely very
   * close to perfect.
   * <p>
   *
   * This method operates in linear time. To do this on large lists which do
   * not implement {@link RandomAccess}, a temporary array is used to acheive
   * this speed, since it would be quadratic access otherwise.
   *
   * @param l the list to shuffle
   * @throws UnsupportedOperationException if l.listIterator() does not
   *         support the set operation
   */
  public static void shuffle(List l)
  {
    if (defaultRandom == null)
      {
        synchronized (Collections.class)
	{
	  if (defaultRandom == null)
            defaultRandom = new Random();
	}
      }
    shuffle(l, defaultRandom);
  }

  /**
   * Cache a single Random object for use by shuffle(List). This improves
   * performance as well as ensuring that sequential calls to shuffle() will
   * not result in the same shuffle order occurring: the resolution of
   * System.currentTimeMillis() is not sufficient to guarantee a unique seed.
   */
  private static Random defaultRandom = null;

  /**
   * Shuffle a list according to a given source of randomness. The algorithm
   * used iterates backwards over the list, swapping each element with an
   * element randomly selected from the elements in positions less than or
   * equal to it (using r.nextInt(int)).
   * <p>
   *
   * This algorithm would result in a perfectly fair shuffle (that is, each
   * element would have an equal chance of ending up in any position) if r were
   * a perfect source of randomness. In practise (eg if r = new Random()) the
   * results are merely very close to perfect.
   * <p>
   *
   * This method operates in linear time. To do this on large lists which do
   * not implement {@link RandomAccess}, a temporary array is used to acheive
   * this speed, since it would be quadratic access otherwise.
   *
   * @param l the list to shuffle
   * @param r the source of randomness to use for the shuffle
   * @throws UnsupportedOperationException if l.listIterator() does not
   *         support the set operation
   */
  public static void shuffle(List l, Random r)
  {
    int lsize = l.size();
    ListIterator i = l.listIterator(lsize);
    boolean sequential = isSequential(l);
    Object[] a = null; // stores a copy of the list for the sequential case

    if (sequential)
      a = l.toArray();

    for (int pos = lsize - 1; pos > 0; --pos)
      {
	// Obtain a random position to swap with. pos + 1 is used so that the
	// range of the random number includes the current position.
	int swap = r.nextInt(pos + 1);

	// Swap the desired element.
	Object o;
        if (sequential)
          {
            o = a[swap];
            a[swap] = i.previous();
          }
        else
          o = l.set(swap, i.previous());

	i.set(o);
      }
  }


  /**
   * Obtain an immutable Set consisting of a single element. The return value
   * of this method is Serializable.
   *
   * @param o the single element
   * @return an immutable Set containing only o
   * @see Serializable
   */
  public static Set singleton(Object o)
  {
    return new SingletonSet(o);
  }

  /**
   * The implementation of {@link #singleton(Object)}. This class name
   * is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class SingletonSet extends AbstractSet
    implements Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 3193687207550431679L;


    /**
     * The single element; package visible for use in nested class.
     * @serial the singleton
     */
    final Object element;

    /**
     * Construct a singleton.
     * @param o the element
     */
    SingletonSet(Object o)
    {
      element = o;
    }

    /**
     * The size: always 1!
     * @return 1.
     */
    public int size()
    {
      return 1;
    }

    /**
     * Returns an iterator over the lone element.
     */
    public Iterator iterator()
    {
      return new Iterator()
      {
	/**
	 * Flag to indicate whether or not the element has
	 * been retrieved.
	 */
        private boolean hasNext = true;

	/**
	 * Returns <code>true</code> if elements still remain to be
	 * iterated through.
	 *
	 * @return <code>true</code> if the element has not yet been returned.
	 */
        public boolean hasNext()
        {
          return hasNext;
        }

	/**
	 * Returns the element.
	 *
	 * @return The element used by this singleton.
	 * @throws NoSuchElementException if the object
	 *         has already been retrieved.
	 */ 
        public Object next()
        {
          if (hasNext)
          {
            hasNext = false;
            return element;
          }
          else
            throw new NoSuchElementException();
        }

	/**
	 * Removes the element from the singleton.
	 * As this set is immutable, this will always
	 * throw an exception.
	 *
	 * @throws UnsupportedOperationException as the
	 *         singleton set doesn't support
	 *         <code>remove()</code>.
	 */
        public void remove()
        {
          throw new UnsupportedOperationException();
        }
      };
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractSet.
    /**
     * The set only contains one element.
     *
     * @param o The object to search for.
     * @return <code>true</code> if o == the element of the singleton.
     */
    public boolean contains(Object o)
    {
      return equals(o, element);
    }

    /**
     * This is true if the other collection only contains the element.
     *
     * @param c A collection to compare against this singleton.
     * @return <code>true</code> if c only contains either no elements or
     *         elements equal to the element in this singleton.
     */
    public boolean containsAll(Collection c)
    {
      Iterator i = c.iterator();
      int pos = c.size();
      while (--pos >= 0)
        if (! equals(i.next(), element))
          return false;
      return true;
    }

    /**
     * The hash is just that of the element.
     * 
     * @return The hashcode of the element.
     */
    public int hashCode()
    {
      return hashCode(element);
    }

    /**
     * Returning an array is simple.
     *
     * @return An array containing the element.
     */
    public Object[] toArray()
    {
      return new Object[] {element};
    }

    /**
     * Obvious string.
     *
     * @return The string surrounded by enclosing
     *         square brackets.
     */
    public String toString()
    {
      return "[" + element + "]";
    }
  } // class SingletonSet

  /**
   * Obtain an immutable List consisting of a single element. The return value
   * of this method is Serializable, and implements RandomAccess.
   *
   * @param o the single element
   * @return an immutable List containing only o
   * @see Serializable
   * @see RandomAccess
   * @since 1.3
   */
  public static List singletonList(Object o)
  {
    return new SingletonList(o);
  }

  /**
   * The implementation of {@link #singletonList(Object)}. This class name
   * is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class SingletonList extends AbstractList
    implements Serializable, RandomAccess
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 3093736618740652951L;

    /**
     * The single element.
     * @serial the singleton
     */
    private final Object element;

    /**
     * Construct a singleton.
     * @param o the element
     */
    SingletonList(Object o)
    {
      element = o;
    }

    /**
     * The size: always 1!
     * @return 1.
     */
    public int size()
    {
      return 1;
    }

    /**
     * Only index 0 is valid.
     * @param index The index of the element
     *        to retrieve.
     * @return The singleton's element if the
     *         index is 0.
     * @throws IndexOutOfBoundsException if
     *         index is not 0.
     */
    public Object get(int index)
    {
      if (index == 0)
        return element;
      throw new IndexOutOfBoundsException();
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractList.
    /**
     * The set only contains one element.
     *
     * @param o The object to search for.
     * @return <code>true</code> if o == the singleton element.
     */
    public boolean contains(Object o)
    {
      return equals(o, element);
    }

    /**
     * This is true if the other collection only contains the element.
     *
     * @param c A collection to compare against this singleton.
     * @return <code>true</code> if c only contains either no elements or
     *         elements equal to the element in this singleton.
     */
    public boolean containsAll(Collection c)
    {
      Iterator i = c.iterator();
      int pos = c.size();
      while (--pos >= 0)
        if (! equals(i.next(), element))
          return false;
      return true;
    }

    /**
     * Speed up the hashcode computation.
     *
     * @return The hashcode of the list, based
     *         on the hashcode of the singleton element.
     */
    public int hashCode()
    {
      return 31 + hashCode(element);
    }

    /**
     * Either the list has it or not.
     *
     * @param o The object to find the first index of.
     * @return 0 if o is the singleton element, -1 if not.
     */
    public int indexOf(Object o)
    {
      return equals(o, element) ? 0 : -1;
    }

    /**
     * Either the list has it or not.
     *
     * @param o The object to find the last index of.
     * @return 0 if o is the singleton element, -1 if not.
     */
    public int lastIndexOf(Object o)
    {
      return equals(o, element) ? 0 : -1;
    }

    /**
     * Sublists are limited in scope.
     * 
     * @param from The starting bound for the sublist.
     * @param to The ending bound for the sublist.
     * @return Either an empty list if both bounds are
     *         0 or 1, or this list if the bounds are 0 and 1.
     * @throws IllegalArgumentException if <code>from > to</code>
     * @throws IndexOutOfBoundsException if either bound is greater
     *         than 1.
     */
    public List subList(int from, int to)
    {
      if (from == to && (to == 0 || to == 1))
        return EMPTY_LIST;
      if (from == 0 && to == 1)
        return this;
      if (from > to)
        throw new IllegalArgumentException();
      throw new IndexOutOfBoundsException();
    }

    /**
     * Returning an array is simple.
     *
     * @return An array containing the element.
     */
    public Object[] toArray()
    {
      return new Object[] {element};
    }

    /**
     * Obvious string.
     *
     * @return The string surrounded by enclosing
     *         square brackets. 
     */
    public String toString()
    {
      return "[" + element + "]";
    }
  } // class SingletonList

  /**
   * Obtain an immutable Map consisting of a single key-value pair.
   * The return value of this method is Serializable.
   *
   * @param key the single key
   * @param value the single value
   * @return an immutable Map containing only the single key-value pair
   * @see Serializable
   * @since 1.3
   */
  public static Map singletonMap(Object key, Object value)
  {
    return new SingletonMap(key, value);
  }

  /**
   * The implementation of {@link #singletonMap(Object)}. This class name
   * is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class SingletonMap extends AbstractMap
    implements Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -6979724477215052911L;

    /**
     * The single key.
     * @serial the singleton key
     */
    private final Object k;

    /**
     * The corresponding value.
     * @serial the singleton value
     */
    private final Object v;

    /**
     * Cache the entry set.
     */
    private transient Set entries;

    /**
     * Construct a singleton.
     * @param key the key
     * @param value the value
     */
    SingletonMap(Object key, Object value)
    {
      k = key;
      v = value;
    }

    /**
     * There is a single immutable entry.
     *
     * @return A singleton containing the map entry.
     */
    public Set entrySet()
    {
      if (entries == null)
        entries = singleton(new AbstractMap.BasicMapEntry(k, v)
        {
	  /**
	   * Sets the value of the map entry to the supplied value.
	   * An exception is always thrown, as the map is immutable.
	   *
	   * @param o The new value.
	   * @return The old value.
	   * @throws UnsupportedOperationException as setting the value
	   *         is not supported.
	   */
          public Object setValue(Object o)
          {
            throw new UnsupportedOperationException();
          }
        });
      return entries;
    }

    // The remaining methods are optional, but provide a performance
    // advantage by not allocating unnecessary iterators in AbstractMap.
    /**
     * Single entry.
     *
     * @param key The key to look for.
     * @return <code>true</code> if the key is the same as the one used by
     *         this map.
     */
    public boolean containsKey(Object key)
    {
      return equals(key, k);
    }

    /**
     * Single entry.
     *
     * @param value The value to look for.
     * @return <code>true</code> if the value is the same as the one used by
     *         this map.
     */
    public boolean containsValue(Object value)
    {
      return equals(value, v);
    }

    /**
     * Single entry.
     *
     * @param key The key of the value to be retrieved.
     * @return The singleton value if the key is the same as the
     *         singleton key, null otherwise.
     */
    public Object get(Object key)
    {
      return equals(key, k) ? v : null;
    }

    /**
     * Calculate the hashcode directly.
     *
     * @return The hashcode computed from the singleton key
     *         and the singleton value.
     */
    public int hashCode()
    {
      return hashCode(k) ^ hashCode(v);
    }

    /**
     * Return the keyset.
     *
     * @return A singleton containing the key.
     */
    public Set keySet()
    {
      if (keys == null)
        keys = singleton(k);
      return keys;
    }

    /**
     * The size: always 1!
     *
     * @return 1.
     */
    public int size()
    {
      return 1;
    }

    /**
     * Return the values. Technically, a singleton, while more specific than
     * a general Collection, will work. Besides, that's what the JDK uses!
     *
     * @return A singleton containing the value.
     */
    public Collection values()
    {
      if (values == null)
        values = singleton(v);
      return values;
    }

    /**
     * Obvious string.
     *
     * @return A string containing the string representations of the key
     *         and its associated value.
     */
    public String toString()
    {
      return "{" + k + "=" + v + "}";
    }
  } // class SingletonMap

  /**
   * Sort a list according to the natural ordering of its elements. The list
   * must be modifiable, but can be of fixed size. The sort algorithm is
   * precisely that used by Arrays.sort(Object[]), which offers guaranteed
   * nlog(n) performance. This implementation dumps the list into an array,
   * sorts the array, and then iterates over the list setting each element from
   * the array.
   *
   * @param l the List to sort
   * @throws ClassCastException if some items are not mutually comparable
   * @throws UnsupportedOperationException if the List is not modifiable
   * @throws NullPointerException if some element is null
   * @see Arrays#sort(Object[])
   */
  public static void sort(List l)
  {
    sort(l, null);
  }

  /**
   * Sort a list according to a specified Comparator. The list must be
   * modifiable, but can be of fixed size. The sort algorithm is precisely that
   * used by Arrays.sort(Object[], Comparator), which offers guaranteed
   * nlog(n) performance. This implementation dumps the list into an array,
   * sorts the array, and then iterates over the list setting each element from
   * the array.
   *
   * @param l the List to sort
   * @param c the Comparator specifying the ordering for the elements, or
   *        null for natural ordering
   * @throws ClassCastException if c will not compare some pair of items
   * @throws UnsupportedOperationException if the List is not modifiable
   * @throws NullPointerException if null is compared by natural ordering
   *        (only possible when c is null)
   * @see Arrays#sort(Object[], Comparator)
   */
  public static void sort(List l, Comparator c)
  {
    Object[] a = l.toArray();
    Arrays.sort(a, c);
    ListIterator i = l.listIterator();
    for (int pos = 0, alen = a.length;  pos < alen;  pos++)
      {
        i.next();
        i.set(a[pos]);
      }
  }

  /**
   * Swaps the elements at the specified positions within the list. Equal
   * positions have no effect.
   *
   * @param l the list to work on
   * @param i the first index to swap
   * @param j the second index
   * @throws UnsupportedOperationException if list.set is not supported
   * @throws IndexOutOfBoundsException if either i or j is &lt; 0 or &gt;=
   *         list.size()
   * @since 1.4
   */
  public static void swap(List l, int i, int j)
  {
    l.set(i, l.set(j, l.get(i)));
  }


  /**
   * Returns a synchronized (thread-safe) collection wrapper backed by the
   * given collection. Notice that element access through the iterators
   * is thread-safe, but if the collection can be structurally modified
   * (adding or removing elements) then you should synchronize around the
   * iteration to avoid non-deterministic behavior:<br>
   * <pre>
   * Collection c = Collections.synchronizedCollection(new Collection(...));
   * ...
   * synchronized (c)
   *   {
   *     Iterator i = c.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *   }
   * </pre><p>
   *
   * Since the collection might be a List or a Set, and those have incompatible
   * equals and hashCode requirements, this relies on Object's implementation
   * rather than passing those calls on to the wrapped collection. The returned
   * Collection implements Serializable, but can only be serialized if
   * the collection it wraps is likewise Serializable.
   *
   * @param c the collection to wrap
   * @return a synchronized view of the collection
   * @see Serializable
   */
  public static Collection synchronizedCollection(Collection c)
  {
    return new SynchronizedCollection(c);
  }

  /**
   * The implementation of {@link #synchronizedCollection(Collection)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   * Package visible, so that collections such as the one for
   * Hashtable.values() can specify which object to synchronize on.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  static class SynchronizedCollection
    implements Collection, Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 3053995032091335093L;

    /**
     * The wrapped collection. Package visible for use by subclasses.
     * @serial the real collection
     */
    final Collection c;

    /**
     * The object to synchronize on.  When an instance is created via public
     * methods, it will be this; but other uses like SynchronizedMap.values()
     * must specify another mutex. Package visible for use by subclasses.
     * @serial the lock
     */
    final Object mutex;

    /**
     * Wrap a given collection.
     * @param c the collection to wrap
     * @throws NullPointerException if c is null
     */
    SynchronizedCollection(Collection c)
    {
      this.c = c;
      mutex = this;
      if (c == null)
        throw new NullPointerException();
    }

    /**
     * Called only by trusted code to specify the mutex as well as the
     * collection.
     * @param sync the mutex
     * @param c the collection
     */
    SynchronizedCollection(Object sync, Collection c)
    {
      this.c = c;
      mutex = sync;
    }

    /**
     * Adds the object to the underlying collection, first
     * obtaining a lock on the mutex.
     *
     * @param o The object to add.
     * @return <code>true</code> if the collection was modified as a result
     *         of this action.
     * @throws UnsupportedOperationException if this collection does not
     *         support the add operation.
     * @throws ClassCastException if o cannot be added to this collection due
     *         to its type.
     * @throws NullPointerException if o is null and this collection doesn't
     *         support the addition of null values.
     * @throws IllegalArgumentException if o cannot be added to this
     *         collection for some other reason.
     */
    public boolean add(Object o)
    {
      synchronized (mutex)
        {
          return c.add(o);
        }
    }

    /**
     * Adds the objects in col to the underlying collection, first
     * obtaining a lock on the mutex.
     *
     * @param col The collection to take the new objects from.
     * @return <code>true</code> if the collection was modified as a result
     *          of this action.
     * @throws UnsupportedOperationException if this collection does not
     *         support the addAll operation.
     * @throws ClassCastException if some element of col cannot be added to this
     *         collection due to its type.
     * @throws NullPointerException if some element of col is null and this
     *         collection does not support the addition of null values.
     * @throws NullPointerException if col itself is null.
     * @throws IllegalArgumentException if some element of col cannot be added
     *         to this collection for some other reason.
     */
    public boolean addAll(Collection col)
    {
      synchronized (mutex)
        {
          return c.addAll(col);
        }
    }

    /**
     * Removes all objects from the underlying collection,
     * first obtaining a lock on the mutex.
     *
     * @throws UnsupportedOperationException if this collection does not
     *         support the clear operation.
     */
    public void clear()
    {
      synchronized (mutex)
        {
          c.clear();
        }
    }

    /**
     * Checks for the existence of o within the underlying
     * collection, first obtaining a lock on the mutex.
     *
     * @param o the element to look for.
     * @return <code>true</code> if this collection contains at least one
     *         element e such that <code>o == null ? e == null : o.equals(e)</code>.
     * @throws ClassCastException if the type of o is not a valid type for this
     *         collection.
     * @throws NullPointerException if o is null and this collection doesn't
     *         support null values.
     */
    public boolean contains(Object o)
    {
      synchronized (mutex)
        {
          return c.contains(o);
        }
    }

    /**
     * Checks for the existence of each object in cl
     * within the underlying collection, first obtaining
     * a lock on the mutex.
     *
     * @param cl the collection to test for.
     * @return <code>true</code> if for every element o in c, contains(o)
     *         would return <code>true</code>.
     * @throws ClassCastException if the type of any element in cl is not a valid
     *         type for this collection.
     * @throws NullPointerException if some element of cl is null and this
     *         collection does not support null values.
     * @throws NullPointerException if cl itself is null.
     */
    public boolean containsAll(Collection c1)
    {
      synchronized (mutex)
        {
          return c.containsAll(c1);
        }
    }

    /**
     * Returns <code>true</code> if there are no objects in the underlying
     * collection.  A lock on the mutex is obtained before the
     * check is performed.
     *
     * @return <code>true</code> if this collection contains no elements.
     */
    public boolean isEmpty()
    {
      synchronized (mutex)
        {
          return c.isEmpty();
        }
    }

    /**
     * Returns a synchronized iterator wrapper around the underlying
     * collection's iterator.  A lock on the mutex is obtained before
     * retrieving the collection's iterator.
     *
     * @return An iterator over the elements in the underlying collection,
     *         which returns each element in any order.
     */
    public Iterator iterator()
    {
      synchronized (mutex)
        {
          return new SynchronizedIterator(mutex, c.iterator());
        }
    }

    /**
     * Removes the specified object from the underlying collection,
     * first obtaining a lock on the mutex.
     *
     * @param o The object to remove.
     * @return <code>true</code> if the collection changed as a result of this call, that is,
     *         if the collection contained at least one occurrence of o.
     * @throws UnsupportedOperationException if this collection does not
     *         support the remove operation.
     * @throws ClassCastException if the type of o is not a valid type
     *         for this collection.
     * @throws NullPointerException if o is null and the collection doesn't
     *         support null values.
     */
    public boolean remove(Object o)
    {
      synchronized (mutex)
        {
          return c.remove(o);
        }
    }

    /**
     * Removes all elements, e, of the underlying
     * collection for which <code>col.contains(e)</code>
     * returns <code>true</code>.  A lock on the mutex is obtained
     * before the operation proceeds.
     *
     * @param col The collection of objects to be removed.
     * @return <code>true</code> if this collection was modified as a result of this call.
     * @throws UnsupportedOperationException if this collection does not
     *   support the removeAll operation.
     * @throws ClassCastException if the type of any element in c is not a valid
     *   type for this collection.
     * @throws NullPointerException if some element of c is null and this
     *   collection does not support removing null values.
     * @throws NullPointerException if c itself is null.
     */
    public boolean removeAll(Collection col)
    {
      synchronized (mutex)
        {
          return c.removeAll(col);
        }
    }

    /**
     * Retains all elements, e, of the underlying
     * collection for which <code>col.contains(e)</code>
     * returns <code>true</code>.  That is, every element that doesn't
     * exist in col is removed.  A lock on the mutex is obtained
     * before the operation proceeds.
     *
     * @param col The collection of objects to be removed.
     * @return <code>true</code> if this collection was modified as a result of this call.
     * @throws UnsupportedOperationException if this collection does not
     *   support the removeAll operation.
     * @throws ClassCastException if the type of any element in c is not a valid
     *   type for this collection.
     * @throws NullPointerException if some element of c is null and this
     *   collection does not support removing null values.
     * @throws NullPointerException if c itself is null.
     */
    public boolean retainAll(Collection col)
    {
      synchronized (mutex)
        {
          return c.retainAll(col);
        }
    }

    /**
     * Retrieves the size of the underlying collection.
     * A lock on the mutex is obtained before the collection
     * is accessed.
     *
     * @return The size of the collection.
     */
    public int size()
    {
      synchronized (mutex)
        {
          return c.size();
        }
    }

    /**
     * Returns an array containing each object within the underlying
     * collection.  A lock is obtained on the mutex before the collection
     * is accessed.
     *
     * @return An array of objects, matching the collection in size.  The
     *         elements occur in any order.
     */
    public Object[] toArray()
    {
      synchronized (mutex)
        {
          return c.toArray();
        }
    }

    /**
     * Copies the elements in the underlying collection to the supplied
     * array.  If <code>a.length < size()</code>, a new array of the
     * same run-time type is created, with a size equal to that of
     * the collection.  If <code>a.length > size()</code>, then the
     * elements from 0 to <code>size() - 1</code> contain the elements
     * from this collection.  The following element is set to null
     * to indicate the end of the collection objects.  However, this
     * only makes a difference if null is not a permitted value within
     * the collection.
     * Before the copying takes place, a lock is obtained on the mutex.
     *
     * @param a An array to copy elements to.
     * @return An array containing the elements of the underlying collection.
     * @throws ArrayStoreException if the type of any element of the
     *         collection is not a subtype of the element type of a.
     */
    public Object[] toArray(Object[] a)
    {
      synchronized (mutex)
        {
          return c.toArray(a);
        }
    }

    /**
     * Returns a string representation of the underlying collection.
     * A lock is obtained on the mutex before the string is created.
     *
     * @return A string representation of the collection.
     */
    public String toString()
    {
      synchronized (mutex)
        {
          return c.toString();
        }
    }
  } // class SynchronizedCollection

  /**
   * The implementation of the various iterator methods in the
   * synchronized classes. These iterators must "sync" on the same object
   * as the collection they iterate over.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static class SynchronizedIterator implements Iterator
  {
    /**
     * The object to synchronize on. Package visible for use by subclass.
     */
    final Object mutex;

    /**
     * The wrapped iterator.
     */
    private final Iterator i;

    /**
     * Only trusted code creates a wrapper, with the specified sync.
     * @param sync the mutex
     * @param i the wrapped iterator
     */
    SynchronizedIterator(Object sync, Iterator i)
    {
      this.i = i;
      mutex = sync;
    }

    /**
     * Retrieves the next object in the underlying collection.
     * A lock is obtained on the mutex before the collection is accessed.
     * 
     * @return The next object in the collection.
     * @throws NoSuchElementException if there are no more elements
     */
    public Object next()
    {
      synchronized (mutex)
        {
          return i.next();
        }
    }

    /**
     * Returns <code>true</code> if objects can still be retrieved from the iterator
     * using <code>next()</code>.  A lock is obtained on the mutex before
     * the collection is accessed.
     *
     * @return <code>true</code> if at least one element is still to be returned by
     *         <code>next()</code>.
     */
    public boolean hasNext()
    {
      synchronized (mutex)
        {
          return i.hasNext();
        }
    }

    /**
     * Removes the object that was last returned by <code>next()</code>
     * from the underlying collection.  Only one call to this method is
     * allowed per call to the <code>next()</code> method, and it does
     * not affect the value that will be returned by <code>next()</code>.
     * Thus, if element n was retrieved from the collection by
     * <code>next()</code>, it is this element that gets removed.
     * Regardless of whether this takes place or not, element n+1 is
     * still returned on the subsequent <code>next()</code> call.
     *
     * @throws IllegalStateException if next has not yet been called or remove
     *         has already been called since the last call to next.
     * @throws UnsupportedOperationException if this Iterator does not support
     *         the remove operation.
     */
    public void remove()
    {
      synchronized (mutex)
        {
          i.remove();
        }
    }
  } // class SynchronizedIterator

  /**
   * Returns a synchronized (thread-safe) list wrapper backed by the
   * given list. Notice that element access through the iterators
   * is thread-safe, but if the list can be structurally modified
   * (adding or removing elements) then you should synchronize around the
   * iteration to avoid non-deterministic behavior:<br>
   * <pre>
   * List l = Collections.synchronizedList(new List(...));
   * ...
   * synchronized (l)
   *   {
   *     Iterator i = l.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *   }
   * </pre><p>
   *
   * The returned List implements Serializable, but can only be serialized if
   * the list it wraps is likewise Serializable. In addition, if the wrapped
   * list implements RandomAccess, this does too.
   *
   * @param l the list to wrap
   * @return a synchronized view of the list
   * @see Serializable
   * @see RandomAccess
   */
  public static List synchronizedList(List l)
  {
    if (l instanceof RandomAccess)
      return new SynchronizedRandomAccessList(l);
    return new SynchronizedList(l);
  }

  /**
   * The implementation of {@link #synchronizedList(List)} for sequential
   * lists. This class name is required for compatibility with Sun's JDK
   * serializability. Package visible, so that lists such as Vector.subList()
   * can specify which object to synchronize on.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  static class SynchronizedList extends SynchronizedCollection
    implements List
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -7754090372962971524L;

    /**
     * The wrapped list; stored both here and in the superclass to avoid
     * excessive casting. Package visible for use by subclass.
     * @serial the wrapped list
     */
    final List list;

    /**
     * Wrap a given list.
     * @param l the list to wrap
     * @throws NullPointerException if l is null
     */
    SynchronizedList(List l)
    {
      super(l);
      list = l;
    }

    /**
     * Called only by trusted code to specify the mutex as well as the list.
     * @param sync the mutex
     * @param l the list
     */
    SynchronizedList(Object sync, List l)
    {
      super(sync, l);
      list = l;
    }

  /**
   * Insert an element into the underlying list at a given position (optional
   * operation).  This shifts all existing elements from that position to the
   * end one index to the right. This version of add has no return, since it is
   * assumed to always succeed if there is no exception.  Before the
   * addition takes place, a lock is obtained on the mutex.
   *
   * @param index the location to insert the item
   * @param o the object to insert
   * @throws UnsupportedOperationException if this list does not support the
   *         add operation
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt; size()
   * @throws ClassCastException if o cannot be added to this list due to its
   *         type
   * @throws IllegalArgumentException if o cannot be added to this list for
   *         some other reason
   * @throws NullPointerException if o is null and this list doesn't support
   *         the addition of null values.
   */
    public void add(int index, Object o)
    {
      synchronized (mutex)
        {
          list.add(index, o);
        }
    }

  /**
   * Add an element to the end of the underlying list (optional operation).
   * If the list imposes restraints on what can be inserted, such as no null
   * elements, this should be documented.  A lock is obtained on the mutex before
   * any of the elements are added.
   *
   * @param o the object to add
   * @return <code>true</code>, as defined by Collection for a modified list
   * @throws UnsupportedOperationException if this list does not support the
   *         add operation
   * @throws ClassCastException if o cannot be added to this list due to its
   *         type
   * @throws IllegalArgumentException if o cannot be added to this list for
   *         some other reason
   * @throws NullPointerException if o is null and this list doesn't support
   *         the addition of null values.
   */
    public boolean addAll(int index, Collection c)
    {
      synchronized (mutex)
        {
          return list.addAll(index, c);
        }
    }

   /**
    * Tests whether the underlying list is equal to the supplied object.
    * The object is deemed to be equal if it is also a <code>List</code>
    * of equal size and with the same elements (i.e. each element, e1,
    * in list, l1, and each element, e2, in l2, must return <code>true</code> for
    * <code>e1 == null ? e2 == null : e1.equals(e2)</code>.  Before the
    * comparison is made, a lock is obtained on the mutex.
    *
    * @param o The object to test for equality with the underlying list.
    * @return <code>true</code> if o is equal to the underlying list under the above
    *         definition.
    */
    public boolean equals(Object o)
    {
      synchronized (mutex)
        {
          return list.equals(o);
        }
    }

    /**
     * Retrieves the object at the specified index.  A lock
     * is obtained on the mutex before the list is accessed.
     *
     * @param index the index of the element to be returned
     * @return the element at index index in this list
     * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
     */
    public Object get(int index)
    {
      synchronized (mutex)
        {
          return list.get(index);
        }
    }

    /**
     * Obtains a hashcode for the underlying list, first obtaining
     * a lock on the mutex.  The calculation of the hashcode is
     * detailed in the documentation for the <code>List</code>
     * interface.
     *
     * @return The hashcode of the underlying list.
     * @see List#hashCode()
     */
    public int hashCode()
    {
      synchronized (mutex)
        {
          return list.hashCode();
        }
    }

    /**
     * Obtain the first index at which a given object is to be found in the
     * underlying list.  A lock is obtained on the mutex before the list is
     * accessed.
     *
     * @param o the object to search for
     * @return the least integer n such that <code>o == null ? get(n) == null :
     *         o.equals(get(n))</code>, or -1 if there is no such index.
     * @throws ClassCastException if the type of o is not a valid
     *         type for this list.
     * @throws NullPointerException if o is null and this
     *         list does not support null values.
     */

    public int indexOf(Object o)
    {
      synchronized (mutex)
        {
          return list.indexOf(o);
        }
    }

    /**
     * Obtain the last index at which a given object is to be found in this
     * underlying list.  A lock is obtained on the mutex before the list
     * is accessed.
     *
     * @return the greatest integer n such that <code>o == null ? get(n) == null
     *         : o.equals(get(n))</code>, or -1 if there is no such index.
     * @throws ClassCastException if the type of o is not a valid
     *         type for this list.
     * @throws NullPointerException if o is null and this
     *         list does not support null values.
     */
    public int lastIndexOf(Object o)
    {
      synchronized (mutex)
        {
          return list.lastIndexOf(o);
        }
    }

    /**
     * Retrieves a synchronized wrapper around the underlying list's
     * list iterator.  A lock is obtained on the mutex before the
     * list iterator is retrieved.
     *
     * @return A list iterator over the elements in the underlying list.
     *         The list iterator allows additional list-specific operations
     *         to be performed, in addition to those supplied by the
     *         standard iterator.
     */
    public ListIterator listIterator()
    {
      synchronized (mutex)
        {
          return new SynchronizedListIterator(mutex, list.listIterator());
        }
    }

    /**
     * Retrieves a synchronized wrapper around the underlying list's
     * list iterator.  A lock is obtained on the mutex before the
     * list iterator is retrieved.  The iterator starts at the
     * index supplied, leading to the element at that index being
     * the first one returned by <code>next()</code>.  Calling
     * <code>previous()</code> from this initial position returns
     * index - 1.
     *
     * @param index the position, between 0 and size() inclusive, to begin the
     *        iteration from
     * @return A list iterator over the elements in the underlying list.
     *         The list iterator allows additional list-specific operations
     *         to be performed, in addition to those supplied by the
     *         standard iterator.
     * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt; size()
     */
    public ListIterator listIterator(int index)
    {
      synchronized (mutex)
        {
          return new SynchronizedListIterator(mutex, list.listIterator(index));
        }
    }

    /**
     * Remove the element at a given position in the underlying list (optional
     * operation).  All remaining elements are shifted to the left to fill the gap.
     * A lock on the mutex is obtained before the element is removed.
     *
     * @param index the position within the list of the object to remove
     * @return the object that was removed
     * @throws UnsupportedOperationException if this list does not support the
     *         remove operation
     * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
     */
    public Object remove(int index)
    {
      synchronized (mutex)
        {
          return list.remove(index);
        }
    }

  /**
   * Replace an element of the underlying list with another object (optional
   * operation).  A lock is obtained on the mutex before the element is
   * replaced.
   *
   * @param index the position within this list of the element to be replaced
   * @param o the object to replace it with
   * @return the object that was replaced
   * @throws UnsupportedOperationException if this list does not support the
   *         set operation.
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
   * @throws ClassCastException if o cannot be added to this list due to its
   *         type
   * @throws IllegalArgumentException if o cannot be added to this list for
   *         some other reason
   * @throws NullPointerException if o is null and this
   *         list does not support null values.
   */
    public Object set(int index, Object o)
    {
      synchronized (mutex)
        {
          return list.set(index, o);
        }
    }

    /**
     * Obtain a List view of a subsection of the underlying list, from fromIndex
     * (inclusive) to toIndex (exclusive). If the two indices are equal, the
     * sublist is empty. The returned list should be modifiable if and only
     * if this list is modifiable. Changes to the returned list should be
     * reflected in this list. If this list is structurally modified in
     * any way other than through the returned list, the result of any subsequent
     * operations on the returned list is undefined.  A lock is obtained
     * on the mutex before the creation of the sublist.  The returned list
     * is also synchronized, using the same mutex.
     *
     * @param fromIndex the index that the returned list should start from
     *        (inclusive)
     * @param toIndex the index that the returned list should go to (exclusive)
     * @return a List backed by a subsection of this list
     * @throws IndexOutOfBoundsException if fromIndex &lt; 0
     *         || toIndex &gt; size() || fromIndex &gt; toIndex
     */
    public List subList(int fromIndex, int toIndex)
    {
      synchronized (mutex)
        {
          return new SynchronizedList(mutex, list.subList(fromIndex, toIndex));
        }
    }
  } // class SynchronizedList

  /**
   * The implementation of {@link #synchronizedList(List)} for random-access
   * lists. This class name is required for compatibility with Sun's JDK
   * serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class SynchronizedRandomAccessList
    extends SynchronizedList implements RandomAccess
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 1530674583602358482L;

    /**
     * Wrap a given list.
     * @param l the list to wrap
     * @throws NullPointerException if l is null
     */
    SynchronizedRandomAccessList(List l)
    {
      super(l);
    }

    /**
     * Called only by trusted code to specify the mutex as well as the
     * collection.
     * @param sync the mutex
     * @param l the list
     */
    SynchronizedRandomAccessList(Object sync, List l)
    {
      super(sync, l);
    }

    /**
     * Obtain a List view of a subsection of the underlying list, from fromIndex
     * (inclusive) to toIndex (exclusive). If the two indices are equal, the
     * sublist is empty. The returned list should be modifiable if and only
     * if this list is modifiable. Changes to the returned list should be
     * reflected in this list. If this list is structurally modified in
     * any way other than through the returned list, the result of any subsequent
     * operations on the returned list is undefined.    A lock is obtained
     * on the mutex before the creation of the sublist.  The returned list
     * is also synchronized, using the same mutex.  Random accessibility
     * is also extended to the new list.
     *
     * @param fromIndex the index that the returned list should start from
     *        (inclusive)
     * @param toIndex the index that the returned list should go to (exclusive)
     * @return a List backed by a subsection of this list
     * @throws IndexOutOfBoundsException if fromIndex &lt; 0
     *         || toIndex &gt; size() || fromIndex &gt; toIndex
     */
    public List subList(int fromIndex, int toIndex)
    {
      synchronized (mutex)
        {
          return new SynchronizedRandomAccessList(mutex,
                                                  list.subList(fromIndex,
                                                               toIndex));
        }
    }
  } // class SynchronizedRandomAccessList

  /**
   * The implementation of {@link SynchronizedList#listIterator()}. This
   * iterator must "sync" on the same object as the list it iterates over.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class SynchronizedListIterator
    extends SynchronizedIterator implements ListIterator
  {
    /**
     * The wrapped iterator, stored both here and in the superclass to
     * avoid excessive casting.
     */
    private final ListIterator li;

    /**
     * Only trusted code creates a wrapper, with the specified sync.
     * @param sync the mutex
     * @param li the wrapped iterator
     */
    SynchronizedListIterator(Object sync, ListIterator li)
    {
      super(sync, li);
      this.li = li;
    }

    /**
     * Insert an element into the underlying list at the current position of
     * the iterator (optional operation). The element is inserted in between
     * the element that would be returned by <code>previous()</code> and the
     * element that would be returned by <code>next()</code>. After the
     * insertion, a subsequent call to next is unaffected, but
     * a call to previous returns the item that was added. The values returned
     * by nextIndex() and previousIndex() are incremented.  A lock is obtained
     * on the mutex before the addition takes place.
     *
     * @param o the object to insert into the list
     * @throws ClassCastException if the object is of a type which cannot be added
     *         to this list.
     * @throws IllegalArgumentException if some other aspect of the object stops
     *         it being added to this list.
     * @throws UnsupportedOperationException if this ListIterator does not
     *         support the add operation.
     */
    public void add(Object o)
    {
      synchronized (mutex)
        {
          li.add(o);
        }
    }

    /**
     * Tests whether there are elements remaining in the underlying list
     * in the reverse direction. In other words, <code>previous()</code>
     * will not fail with a NoSuchElementException.  A lock is obtained
     * on the mutex before the check takes place.
     *
     * @return <code>true</code> if the list continues in the reverse direction
     */
    public boolean hasPrevious()
    {
      synchronized (mutex)
        {
          return li.hasPrevious();
        }
    }

    /**
      * Find the index of the element that would be returned by a call to
      * <code>next()</code>.  If hasNext() returns <code>false</code>, this
      * returns the list size.  A lock is obtained on the mutex before the
      * query takes place.
      *
      * @return the index of the element that would be returned by next()
      */
    public int nextIndex()
    {
      synchronized (mutex)
        {
          return li.nextIndex();
        }
    }

    /**
     * Obtain the previous element from the underlying list. Repeated
     * calls to previous may be used to iterate backwards over the entire list,
     * or calls to next and previous may be used together to go forwards and
     * backwards. Alternating calls to next and previous will return the same
     * element.  A lock is obtained on the mutex before the object is retrieved.
     *
     * @return the next element in the list in the reverse direction
     * @throws NoSuchElementException if there are no more elements
     */
    public Object previous()
    {
      synchronized (mutex)
        {
          return li.previous();
        }
    }

    /**
     * Find the index of the element that would be returned by a call to
     * previous. If hasPrevious() returns <code>false</code>, this returns -1.
     * A lock is obtained on the mutex before the query takes place.
     *
     * @return the index of the element that would be returned by previous()
     */
    public int previousIndex()
    {
      synchronized (mutex)
        {
          return li.previousIndex();
        }
    }

    /**
     * Replace the element last returned by a call to <code>next()</code> or
     * <code>previous()</code> with a given object (optional operation).  This
     * method may only be called if neither <code>add()</code> nor
     * <code>remove()</code> have been called since the last call to
     * <code>next()</code> or <code>previous</code>.  A lock is obtained
     * on the mutex before the list is modified.
     *
     * @param o the object to replace the element with
     * @throws ClassCastException the object is of a type which cannot be added
     *         to this list
     * @throws IllegalArgumentException some other aspect of the object stops
     *         it being added to this list
     * @throws IllegalStateException if neither next or previous have been
     *         called, or if add or remove has been called since the last call
     *         to next or previous
     * @throws UnsupportedOperationException if this ListIterator does not
     *         support the set operation
     */
    public void set(Object o)
    {
      synchronized (mutex)
        {
          li.set(o);
        }
    }
  } // class SynchronizedListIterator

  /**
   * Returns a synchronized (thread-safe) map wrapper backed by the given
   * map. Notice that element access through the collection views and their
   * iterators are thread-safe, but if the map can be structurally modified
   * (adding or removing elements) then you should synchronize around the
   * iteration to avoid non-deterministic behavior:<br>
   * <pre>
   * Map m = Collections.synchronizedMap(new Map(...));
   * ...
   * Set s = m.keySet(); // safe outside a synchronized block
   * synchronized (m) // synch on m, not s
   *   {
   *     Iterator i = s.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *   }
   * </pre><p>
   *
   * The returned Map implements Serializable, but can only be serialized if
   * the map it wraps is likewise Serializable.
   *
   * @param m the map to wrap
   * @return a synchronized view of the map
   * @see Serializable
   */
  public static Map synchronizedMap(Map m)
  {
    return new SynchronizedMap(m);
  }

  /**
   * The implementation of {@link #synchronizedMap(Map)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static class SynchronizedMap implements Map, Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 1978198479659022715L;

    /**
     * The wrapped map.
     * @serial the real map
     */
    private final Map m;

    /**
     * The object to synchronize on.  When an instance is created via public
     * methods, it will be this; but other uses like
     * SynchronizedSortedMap.subMap() must specify another mutex. Package
     * visible for use by subclass.
     * @serial the lock
     */
    final Object mutex;

    /**
     * Cache the entry set.
     */
    private transient Set entries;

    /**
     * Cache the key set.
     */
    private transient Set keys;

    /**
     * Cache the value collection.
     */
    private transient Collection values;

    /**
     * Wrap a given map.
     * @param m the map to wrap
     * @throws NullPointerException if m is null
     */
    SynchronizedMap(Map m)
    {
      this.m = m;
      mutex = this;
      if (m == null)
        throw new NullPointerException();
    }

    /**
     * Called only by trusted code to specify the mutex as well as the map.
     * @param sync the mutex
     * @param m the map
     */
    SynchronizedMap(Object sync, Map m)
    {
      this.m = m;
      mutex = sync;
    }

    /**
     * Clears all the entries from the underlying map.  A lock is obtained
     * on the mutex before the map is cleared.
     *
     * @throws UnsupportedOperationException if clear is not supported
     */
    public void clear()
    {
      synchronized (mutex)
        {
          m.clear();
        }
    }

    /**
     * Returns <code>true</code> if the underlying map contains a entry for the given key.
     * A lock is obtained on the mutex before the map is queried.
     *
     * @param key the key to search for.
     * @return <code>true</code> if the underlying map contains the key.
     * @throws ClassCastException if the key is of an inappropriate type.
     * @throws NullPointerException if key is <code>null</code> but the map
     *         does not permit null keys.
     */
    public boolean containsKey(Object key)
    {
      synchronized (mutex)
        {
          return m.containsKey(key);
        }
    }

  /**
   * Returns <code>true</code> if the underlying map contains at least one entry with the
   * given value.  In other words, returns <code>true</code> if a value v exists where
   * <code>(value == null ? v == null : value.equals(v))</code>. This usually
   * requires linear time.  A lock is obtained on the mutex before the map
   * is queried.
   *
   * @param value the value to search for
   * @return <code>true</code> if the map contains the value
   * @throws ClassCastException if the type of the value is not a valid type
   *         for this map.
   * @throws NullPointerException if the value is null and the map doesn't
   *         support null values.
   */
    public boolean containsValue(Object value)
    {
      synchronized (mutex)
        {
          return m.containsValue(value);
        }
    }

    // This is one of the ickiest cases of nesting I've ever seen. It just
    // means "return a SynchronizedSet, except that the iterator() method
    // returns an SynchronizedIterator whose next() method returns a
    // synchronized wrapper around its normal return value".
    public Set entrySet()
    {
      // Define this here to spare some nesting.
      class SynchronizedMapEntry implements Map.Entry
      {
        final Map.Entry e;
        SynchronizedMapEntry(Object o)
        {
          e = (Map.Entry) o;
        }

	/**
	 * Returns <code>true</code> if the object, o, implements <code>Map.Entry</code>
	 * with the same key and value as the underlying entry.  A lock is
	 * obtained on the mutex before the comparison takes place.
	 *
	 * @param o The object to compare with this entry.
	 * @return <code>true</code> if o is equivalent to the underlying map entry.
	 */
        public boolean equals(Object o)
        {
          synchronized (mutex)
            {
              return e.equals(o);
            }
        }

	/**
	 * Returns the key used in the underlying map entry.  A lock is obtained
	 * on the mutex before the key is retrieved.
	 *
	 * @return The key of the underlying map entry.
	 */
        public Object getKey()
        {
          synchronized (mutex)
            {
              return e.getKey();
            }
        }

	/**
	 * Returns the value used in the underlying map entry.  A lock is obtained
	 * on the mutex before the value is retrieved.
	 *
	 * @return The value of the underlying map entry.
	 */
        public Object getValue()
        {
          synchronized (mutex)
            {
              return e.getValue();
            }
        }

	/**
	 * Computes the hash code for the underlying map entry.
	 * This computation is described in the documentation for the
	 * <code>Map</code> interface.  A lock is obtained on the mutex
	 * before the underlying map is accessed.
	 *
	 * @return The hash code of the underlying map entry.
	 * @see Map#hashCode()
	 */
        public int hashCode()
        {
          synchronized (mutex)
            {
              return e.hashCode();
            }
        }

	/**
	 * Replaces the value in the underlying map entry with the specified
	 * object (optional operation).  A lock is obtained on the mutex
	 * before the map is altered.  The map entry, in turn, will alter
	 * the underlying map object.  The operation is undefined if the
	 * <code>remove()</code> method of the iterator has been called
	 * beforehand.
	 *
	 * @param value the new value to store
	 * @return the old value
	 * @throws UnsupportedOperationException if the operation is not supported.
	 * @throws ClassCastException if the value is of the wrong type.
	 * @throws IllegalArgumentException if something about the value
	 *         prevents it from existing in this map.
	 * @throws NullPointerException if the map forbids null values.
	 */
        public Object setValue(Object value)
        {
          synchronized (mutex)
            {
              return e.setValue(value);
            }
        }

	/**
	 * Returns a textual representation of the underlying map entry.
	 * A lock is obtained on the mutex before the entry is accessed.
	 *
	 * @return The contents of the map entry in <code>String</code> form.
	 */
        public String toString()
        {
          synchronized (mutex)
            {
              return e.toString();
            }
        }
      } // class SynchronizedMapEntry

      // Now the actual code.
      if (entries == null)
        synchronized (mutex)
          {
            entries = new SynchronizedSet(mutex, m.entrySet())
            {
	      /**
	       * Returns an iterator over the set.  The iterator has no specific order,
	       * unless further specified.  A lock is obtained on the set's mutex
	       * before the iterator is created.  The created iterator is also
	       * thread-safe.
	       *
	       * @return A synchronized set iterator.
	       */
	      public Iterator iterator()
              {
                synchronized (super.mutex)
                  {
                    return new SynchronizedIterator(super.mutex, c.iterator())
                    {
		      /**
		       * Retrieves the next map entry from the iterator.
		       * A lock is obtained on the iterator's mutex before
		       * the entry is created.  The new map entry is enclosed in
		       * a thread-safe wrapper.
		       *
		       * @return A synchronized map entry.
		       */
                      public Object next()
                      {
                        synchronized (super.mutex)
                          {
                            return new SynchronizedMapEntry(super.next());
                          }
                      }
                    };
                  }
              }
            };
          }
      return entries;
    }

    /**
     * Returns <code>true</code> if the object, o, is also an instance
     * of <code>Map</code> and contains an equivalent
     * entry set to that of the underlying map.  A lock
     * is obtained on the mutex before the objects are
     * compared.
     *
     * @param o The object to compare.
     * @return <code>true</code> if o and the underlying map are equivalent.
     */
    public boolean equals(Object o)
    {
      synchronized (mutex)
        {
          return m.equals(o);
        }
    }

    /**
     * Returns the value associated with the given key, or null
     * if no such mapping exists.  An ambiguity exists with maps
     * that accept null values as a return value of null could
     * be due to a non-existent mapping or simply a null value
     * for that key.  To resolve this, <code>containsKey</code>
     * should be used.  A lock is obtained on the mutex before
     * the value is retrieved from the underlying map.
     *
     * @param key The key of the required mapping.
     * @return The value associated with the given key, or
     *         null if no such mapping exists.
     * @throws ClassCastException if the key is an inappropriate type.
     * @throws NullPointerException if this map does not accept null keys.
     */
    public Object get(Object key)
    {
      synchronized (mutex)
        {
          return m.get(key);
        }
    }

    /**
     * Calculates the hash code of the underlying map as the
     * sum of the hash codes of all entries.  A lock is obtained
     * on the mutex before the hash code is computed.
     *
     * @return The hash code of the underlying map.
     */
    public int hashCode()
    {
      synchronized (mutex)
        {
          return m.hashCode();
        }
    }

    /**
     * Returns <code>true</code> if the underlying map contains no entries.
     * A lock is obtained on the mutex before the map is examined.
     *
     * @return <code>true</code> if the map is empty.
     */
    public boolean isEmpty()
    {
      synchronized (mutex)
        {
          return m.isEmpty();
        }
    }

    /**
     * Returns a thread-safe set view of the keys in the underlying map.  The
     * set is backed by the map, so that changes in one show up in the other.
     * Modifications made while an iterator is in progress cause undefined
     * behavior.  If the set supports removal, these methods remove the
     * underlying mapping from the map: <code>Iterator.remove</code>,
     * <code>Set.remove</code>, <code>removeAll</code>, <code>retainAll</code>,
     * and <code>clear</code>.  Element addition, via <code>add</code> or
     * <code>addAll</code>, is not supported via this set.  A lock is obtained
     * on the mutex before the set is created.
     *
     * @return A synchronized set containing the keys of the underlying map.
     */
    public Set keySet()
    {
      if (keys == null)
        synchronized (mutex)
          {
            keys = new SynchronizedSet(mutex, m.keySet());
          }
      return keys;
    }

    /**
     * Associates the given key to the given value (optional operation). If the
     * underlying map already contains the key, its value is replaced. Be aware
     * that in a map that permits <code>null</code> values, a null return does not
     * always imply that the mapping was created.  A lock is obtained on the mutex
     * before the modification is made.
     *
     * @param key the key to map.
     * @param value the value to be mapped.
     * @return the previous value of the key, or null if there was no mapping
     * @throws UnsupportedOperationException if the operation is not supported
     * @throws ClassCastException if the key or value is of the wrong type
     * @throws IllegalArgumentException if something about this key or value
     *         prevents it from existing in this map
     * @throws NullPointerException if either the key or the value is null,
     *         and the map forbids null keys or values
     * @see #containsKey(Object)
     */
    public Object put(Object key, Object value)
    {
      synchronized (mutex)
        {
          return m.put(key, value);
        }
    }

    /**
     * Copies all entries of the given map to the underlying one (optional
     * operation). If the map already contains a key, its value is replaced.
     * A lock is obtained on the mutex before the operation proceeds.
     *
     * @param m the mapping to load into this map
     * @throws UnsupportedOperationException if the operation is not supported
     * @throws ClassCastException if a key or value is of the wrong type
     * @throws IllegalArgumentException if something about a key or value
     *         prevents it from existing in this map
     * @throws NullPointerException if the map forbids null keys or values, or
     *         if <code>m</code> is null.
     * @see #put(Object, Object)
     */
    public void putAll(Map map)
    {
      synchronized (mutex)
        {
          m.putAll(map);
        }
    }

    /**
     * Removes the mapping for the key, o, if present (optional operation). If
     * the key is not present, this returns null. Note that maps which permit
     * null values may also return null if the key was removed.  A prior
     * <code>containsKey()</code> check is required to avoid this ambiguity.
     * Before the mapping is removed, a lock is obtained on the mutex.
     *
     * @param key the key to remove
     * @return the value the key mapped to, or null if not present
     * @throws UnsupportedOperationException if deletion is unsupported
     * @throws NullPointerException if the key is null and this map doesn't
     *         support null keys.
     * @throws ClassCastException if the type of the key is not a valid type
     *         for this map.
     */
    public Object remove(Object o)
    {
      synchronized (mutex)
        {
          return m.remove(o);
        }
    }

    /**
     * Retrieves the size of the underlying map.  A lock
     * is obtained on the mutex before access takes place.
     * Maps with a size greater than <code>Integer.MAX_VALUE</code>
     * return <code>Integer.MAX_VALUE</code> instead.
     *
     * @return The size of the underlying map.
     */
    public int size()
    {
      synchronized (mutex)
        {
          return m.size();
        }
    }

    /**
     * Returns a textual representation of the underlying
     * map.  A lock is obtained on the mutex before the map
     * is accessed.
     *
     * @return The map in <code>String</code> form.
     */
    public String toString()
    {
      synchronized (mutex)
        {
          return m.toString();
        }
    }

    /**
     * Returns a synchronized collection view of the values in the underlying
     * map.  The collection is backed by the map, so that changes in one show up in
     * the other.  Modifications made while an iterator is in progress cause
     * undefined behavior.  If the collection supports removal, these methods
     * remove the underlying mapping from the map: <code>Iterator.remove</code>,
     * <code>Collection.remove</code>, <code>removeAll</code>,
     * <code>retainAll</code>, and <code>clear</code>. Element addition, via
     * <code>add</code> or <code>addAll</code>, is not supported via this
     * collection.  A lock is obtained on the mutex before the collection
     * is created.
     * 
     * @return the collection of all values in the underlying map.
     */
    public Collection values()
    {
      if (values == null)
        synchronized (mutex)
          {
            values = new SynchronizedCollection(mutex, m.values());
          }
      return values;
    }
  } // class SynchronizedMap

  /**
   * Returns a synchronized (thread-safe) set wrapper backed by the given
   * set. Notice that element access through the iterator is thread-safe, but
   * if the set can be structurally modified (adding or removing elements)
   * then you should synchronize around the iteration to avoid
   * non-deterministic behavior:<br>
   * <pre>
   * Set s = Collections.synchronizedSet(new Set(...));
   * ...
   * synchronized (s)
   *   {
   *     Iterator i = s.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *   }
   * </pre><p>
   *
   * The returned Set implements Serializable, but can only be serialized if
   * the set it wraps is likewise Serializable.
   *
   * @param s the set to wrap
   * @return a synchronized view of the set
   * @see Serializable
   */
  public static Set synchronizedSet(Set s)
  {
    return new SynchronizedSet(s);
  }

  /**
   * The implementation of {@link #synchronizedSet(Set)}. This class
   * name is required for compatibility with Sun's JDK serializability.
   * Package visible, so that sets such as Hashtable.keySet()
   * can specify which object to synchronize on.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  static class SynchronizedSet extends SynchronizedCollection
    implements Set
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 487447009682186044L;

    /**
     * Wrap a given set.
     * @param s the set to wrap
     * @throws NullPointerException if s is null
     */
    SynchronizedSet(Set s)
    {
      super(s);
    }

    /**
     * Called only by trusted code to specify the mutex as well as the set.
     * @param sync the mutex
     * @param s the set
     */
    SynchronizedSet(Object sync, Set s)
    {
      super(sync, s);
    }

    /**
     * Returns <code>true</code> if the object, o, is a <code>Set</code>
     * of the same size as the underlying set, and contains
     * each element, e, which occurs in the underlying set.
     * A lock is obtained on the mutex before the comparison
     * takes place.
     *
     * @param o The object to compare against.
     * @return <code>true</code> if o is an equivalent set.
     */
    public boolean equals(Object o)
    {
      synchronized (mutex)
        {
          return c.equals(o);
        }
    }

    /**
     * Computes the hash code for the underlying set as the
     * sum of the hash code of all elements within the set.
     * A lock is obtained on the mutex before the computation
     * occurs.
     *
     * @return The hash code for the underlying set.
     */
    public int hashCode()
    {
      synchronized (mutex)
        {
          return c.hashCode();
        }
    }
  } // class SynchronizedSet

  /**
   * Returns a synchronized (thread-safe) sorted map wrapper backed by the
   * given map. Notice that element access through the collection views,
   * subviews, and their iterators are thread-safe, but if the map can be
   * structurally modified (adding or removing elements) then you should
   * synchronize around the iteration to avoid non-deterministic behavior:<br>
   * <pre>
   * SortedMap m = Collections.synchronizedSortedMap(new SortedMap(...));
   * ...
   * Set s = m.keySet(); // safe outside a synchronized block
   * SortedMap m2 = m.headMap(foo); // safe outside a synchronized block
   * Set s2 = m2.keySet(); // safe outside a synchronized block
   * synchronized (m) // synch on m, not m2, s or s2
   *   {
   *     Iterator i = s.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *     i = s2.iterator();
   *     while (i.hasNext())
   *       bar(i.next());
   *   }
   * </pre><p>
   *
   * The returned SortedMap implements Serializable, but can only be
   * serialized if the map it wraps is likewise Serializable.
   *
   * @param m the sorted map to wrap
   * @return a synchronized view of the sorted map
   * @see Serializable
   */
  public static SortedMap synchronizedSortedMap(SortedMap m)
  {
    return new SynchronizedSortedMap(m);
  }

  /**
   * The implementation of {@link #synchronizedSortedMap(SortedMap)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class SynchronizedSortedMap extends SynchronizedMap
    implements SortedMap
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -8798146769416483793L;

    /**
     * The wrapped map; stored both here and in the superclass to avoid
     * excessive casting.
     * @serial the wrapped map
     */
    private final SortedMap sm;

    /**
     * Wrap a given map.
     * @param sm the map to wrap
     * @throws NullPointerException if sm is null
     */
    SynchronizedSortedMap(SortedMap sm)
    {
      super(sm);
      this.sm = sm;
    }

    /**
     * Called only by trusted code to specify the mutex as well as the map.
     * @param sync the mutex
     * @param sm the map
     */
    SynchronizedSortedMap(Object sync, SortedMap sm)
    {
      super(sync, sm);
      this.sm = sm;
    }

    /**
     * Returns the comparator used in sorting the underlying map, or null if
     * it is the keys' natural ordering.  A lock is obtained on the mutex
     * before the comparator is retrieved.
     *
     * @return the sorting comparator.
     */
    public Comparator comparator()
    {
      synchronized (mutex)
        {
          return sm.comparator();
        }
    }

    /**
     * Returns the first, lowest sorted, key from the underlying map.
     * A lock is obtained on the mutex before the map is accessed.
     *
     * @return the first key.
     * @throws NoSuchElementException if this map is empty.
     */
    public Object firstKey()
    {
      synchronized (mutex)
        {
          return sm.firstKey();
        }
    }

    /**
     * Returns a submap containing the keys from the first
     * key (as returned by <code>firstKey()</code>) to
     * the key before that specified.  The submap supports all
     * operations supported by the underlying map and all actions
     * taking place on the submap are also reflected in the underlying
     * map.  A lock is obtained on the mutex prior to submap creation.
     * This operation is equivalent to <code>subMap(firstKey(), toKey)</code>.
     * The submap retains the thread-safe status of this map.
     *
     * @param toKey the exclusive upper range of the submap.
     * @return a submap from <code>firstKey()</code> to the
     *         the key preceding toKey.
     * @throws ClassCastException if toKey is not comparable to the underlying
     *         map's contents.
     * @throws IllegalArgumentException if toKey is outside the map's range.
     * @throws NullPointerException if toKey is null. but the map does not allow
     *         null keys.
     */
    public SortedMap headMap(Object toKey)
    {
      synchronized (mutex)
        {
          return new SynchronizedSortedMap(mutex, sm.headMap(toKey));
        }
    }

    /**
     * Returns the last, highest sorted, key from the underlying map.
     * A lock is obtained on the mutex before the map is accessed.
     *
     * @return the last key.
     * @throws NoSuchElementException if this map is empty.
     */
    public Object lastKey()
    {
      synchronized (mutex)
        {
          return sm.lastKey();
        }
    }

    /**
     * Returns a submap containing the keys from fromKey to
     * the key before toKey.  The submap supports all
     * operations supported by the underlying map and all actions
     * taking place on the submap are also reflected in the underlying
     * map.  A lock is obtained on the mutex prior to submap creation.
     * The submap retains the thread-safe status of this map.
     *
     * @param fromKey the inclusive lower range of the submap.
     * @param toKey the exclusive upper range of the submap.
     * @return a submap from fromKey to the key preceding toKey.
     * @throws ClassCastException if fromKey or toKey is not comparable
     *         to the underlying map's contents.
     * @throws IllegalArgumentException if fromKey or toKey is outside the map's
     *         range.
     * @throws NullPointerException if fromKey or toKey is null. but the map does
     *         not allow  null keys.
     */
    public SortedMap subMap(Object fromKey, Object toKey)
    {
      synchronized (mutex)
        {
          return new SynchronizedSortedMap(mutex, sm.subMap(fromKey, toKey));
        }
    }

    /**
     * Returns a submap containing all the keys from fromKey onwards.
     * The submap supports all operations supported by the underlying
     * map and all actions taking place on the submap are also reflected
     * in the underlying map.  A lock is obtained on the mutex prior to
     * submap creation.  The submap retains the thread-safe status of
     * this map.
     *
     * @param fromKey the inclusive lower range of the submap.
     * @return a submap from fromKey to <code>lastKey()</code>.
     * @throws ClassCastException if fromKey is not comparable to the underlying
     *         map's contents.
     * @throws IllegalArgumentException if fromKey is outside the map's range.
     * @throws NullPointerException if fromKey is null. but the map does not allow
     *         null keys.
     */
    public SortedMap tailMap(Object fromKey)
    {
      synchronized (mutex)
        {
          return new SynchronizedSortedMap(mutex, sm.tailMap(fromKey));
        }
    }
  } // class SynchronizedSortedMap

  /**
   * Returns a synchronized (thread-safe) sorted set wrapper backed by the
   * given set. Notice that element access through the iterator and through
   * subviews are thread-safe, but if the set can be structurally modified
   * (adding or removing elements) then you should synchronize around the
   * iteration to avoid non-deterministic behavior:<br>
   * <pre>
   * SortedSet s = Collections.synchronizedSortedSet(new SortedSet(...));
   * ...
   * SortedSet s2 = s.headSet(foo); // safe outside a synchronized block
   * synchronized (s) // synch on s, not s2
   *   {
   *     Iterator i = s2.iterator();
   *     while (i.hasNext())
   *       foo(i.next());
   *   }
   * </pre><p>
   *
   * The returned SortedSet implements Serializable, but can only be
   * serialized if the set it wraps is likewise Serializable.
   *
   * @param s the sorted set to wrap
   * @return a synchronized view of the sorted set
   * @see Serializable
   */
  public static SortedSet synchronizedSortedSet(SortedSet s)
  {
    return new SynchronizedSortedSet(s);
  }

  /**
   * The implementation of {@link #synchronizedSortedSet(SortedSet)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class SynchronizedSortedSet extends SynchronizedSet
    implements SortedSet
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 8695801310862127406L;

    /**
     * The wrapped set; stored both here and in the superclass to avoid
     * excessive casting.
     * @serial the wrapped set
     */
    private final SortedSet ss;

    /**
     * Wrap a given set.
     * @param ss the set to wrap
     * @throws NullPointerException if ss is null
     */
    SynchronizedSortedSet(SortedSet ss)
    {
      super(ss);
      this.ss = ss;
    }

    /**
     * Called only by trusted code to specify the mutex as well as the set.
     * @param sync the mutex
     * @param l the list
     */
    SynchronizedSortedSet(Object sync, SortedSet ss)
    {
      super(sync, ss);
      this.ss = ss;
    }

    /**
     * Returns the comparator used in sorting the underlying set, or null if
     * it is the elements' natural ordering.  A lock is obtained on the mutex
     * before the comparator is retrieved.
     *
     * @return the sorting comparator.
     */
    public Comparator comparator()
    {
      synchronized (mutex)
        {
          return ss.comparator();
        }
    }

    /**
     * Returns the first, lowest sorted, element from the underlying set.
     * A lock is obtained on the mutex before the set is accessed.
     *
     * @return the first element.
     * @throws NoSuchElementException if this set is empty.
     */
    public Object first()
    {
      synchronized (mutex)
        {
          return ss.first();
        }
    }

    /**
     * Returns a subset containing the element from the first
     * element (as returned by <code>first()</code>) to
     * the element before that specified.  The subset supports all
     * operations supported by the underlying set and all actions
     * taking place on the subset are also reflected in the underlying
     * set.  A lock is obtained on the mutex prior to subset creation.
     * This operation is equivalent to <code>subSet(first(), toElement)</code>.
     * The subset retains the thread-safe status of this set.
     *
     * @param toElement the exclusive upper range of the subset.
     * @return a subset from <code>first()</code> to the
     *         the element preceding toElement.
     * @throws ClassCastException if toElement is not comparable to the underlying
     *         set's contents.
     * @throws IllegalArgumentException if toElement is outside the set's range.
     * @throws NullPointerException if toElement is null. but the set does not allow
     *         null elements.
     */
    public SortedSet headSet(Object toElement)
    {
      synchronized (mutex)
        {
          return new SynchronizedSortedSet(mutex, ss.headSet(toElement));
        }
    }

    /**
     * Returns the last, highest sorted, element from the underlying set.
     * A lock is obtained on the mutex before the set is accessed.
     *
     * @return the last element.
     * @throws NoSuchElementException if this set is empty.
     */
    public Object last()
    {
      synchronized (mutex)
        {
          return ss.last();
        }
    }

    /**
     * Returns a subset containing the elements from fromElement to
     * the element before toElement.  The subset supports all
     * operations supported by the underlying set and all actions
     * taking place on the subset are also reflected in the underlying
     * set.  A lock is obtained on the mutex prior to subset creation.
     * The subset retains the thread-safe status of this set.
     *
     * @param fromElement the inclusive lower range of the subset.
     * @param toElement the exclusive upper range of the subset.
     * @return a subset from fromElement to the element preceding toElement.
     * @throws ClassCastException if fromElement or toElement is not comparable
     *         to the underlying set's contents.
     * @throws IllegalArgumentException if fromElement or toElement is outside the set's
     *         range.
     * @throws NullPointerException if fromElement or toElement is null. but the set does
     *         not allow null elements.
     */
    public SortedSet subSet(Object fromElement, Object toElement)
    {
      synchronized (mutex)
        {
          return new SynchronizedSortedSet(mutex,
                                           ss.subSet(fromElement, toElement));
        }
    }

    /**
     * Returns a subset containing all the elements from fromElement onwards.
     * The subset supports all operations supported by the underlying
     * set and all actions taking place on the subset are also reflected
     * in the underlying set.  A lock is obtained on the mutex prior to
     * subset creation.  The subset retains the thread-safe status of
     * this set.
     *
     * @param fromElement the inclusive lower range of the subset.
     * @return a subset from fromElement to <code>last()</code>.
     * @throws ClassCastException if fromElement is not comparable to the underlying
     *         set's contents.
     * @throws IllegalArgumentException if fromElement is outside the set's range.
     * @throws NullPointerException if fromElement is null. but the set does not allow
     *         null elements.
     */
    public SortedSet tailSet(Object fromElement)
    {
      synchronized (mutex)
        {
          return new SynchronizedSortedSet(mutex, ss.tailSet(fromElement));
        }
    }
  } // class SynchronizedSortedSet


  /**
   * Returns an unmodifiable view of the given collection. This allows
   * "read-only" access, although changes in the backing collection show up
   * in this view. Attempts to modify the collection directly or via iterators
   * will fail with {@link UnsupportedOperationException}.  Although this view
   * prevents changes to the structure of the collection and its elements, the values
   * referenced by the objects in the collection can still be modified.
   * <p>
   *
   * Since the collection might be a List or a Set, and those have incompatible
   * equals and hashCode requirements, this relies on Object's implementation
   * rather than passing those calls on to the wrapped collection. The returned
   * Collection implements Serializable, but can only be serialized if
   * the collection it wraps is likewise Serializable.
   *
   * @param c the collection to wrap
   * @return a read-only view of the collection
   * @see Serializable
   */
  public static Collection unmodifiableCollection(Collection c)
  {
    return new UnmodifiableCollection(c);
  }

  /**
   * The implementation of {@link #unmodifiableCollection(Collection)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static class UnmodifiableCollection
    implements Collection, Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = 1820017752578914078L;

    /**
     * The wrapped collection. Package visible for use by subclasses.
     * @serial the real collection
     */
    final Collection c;

    /**
     * Wrap a given collection.
     * @param c the collection to wrap
     * @throws NullPointerException if c is null
     */
    UnmodifiableCollection(Collection c)
    {
      this.c = c;
      if (c == null)
        throw new NullPointerException();
    }

    /**
     * Blocks the addition of elements to the underlying collection.
     * This method never returns, throwing an exception instead.
     *
     * @param o the object to add.
     * @return <code>true</code> if the collection was modified as a result of this action.
     * @throws UnsupportedOperationException as an unmodifiable collection does not
     *         support the add operation.
     */
    public boolean add(Object o)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the addition of a collection of elements to the underlying
     * collection.  This method never returns, throwing an exception instead.
     *
     * @param c the collection to add.
     * @return <code>true</code> if the collection was modified as a result of this action.
     * @throws UnsupportedOperationException as an unmodifiable collection does not
     *         support the <code>addAll</code> operation.
     */
    public boolean addAll(Collection c)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the clearing of the underlying collection.  This method never
     * returns, throwing an exception instead.
     *
     * @throws UnsupportedOperationException as an unmodifiable collection does
     *         not support the <code>clear()</code> operation.
     */
    public void clear()
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Test whether the underlying collection contains a given object as one of its
     * elements.
     *
     * @param o the element to look for.
     * @return <code>true</code> if the underlying collection contains at least
     *         one element e such that
     *         <code>o == null ? e == null : o.equals(e)</code>.
     * @throws ClassCastException if the type of o is not a valid type for the
     *         underlying collection.
     * @throws NullPointerException if o is null and the underlying collection
     *         doesn't support null values.
     */
    public boolean contains(Object o)
    {
      return c.contains(o);
    }

    /**
     * Test whether the underlying collection contains every element in a given
     * collection.
     *
     * @param c the collection to test for.
     * @return <code>true</code> if for every element o in c, contains(o) would
     *         return <code>true</code>.
     * @throws ClassCastException if the type of any element in c is not a valid
     *   type for the underlying collection.
     * @throws NullPointerException if some element of c is null and the underlying
     *   collection does not support null values.
     * @throws NullPointerException if c itself is null.
     */
    public boolean containsAll(Collection c1)
    {
      return c.containsAll(c1);
    }

    /**
     * Tests whether the underlying collection is empty, that is,
     * if size() == 0.
     *
     * @return <code>true</code> if this collection contains no elements.
     */
    public boolean isEmpty()
    {
      return c.isEmpty();
    }

    /**
     * Obtain an Iterator over the underlying collection, which maintains
     * its unmodifiable nature.
     *
     * @return an UnmodifiableIterator over the elements of the underlying
     *         collection, in any order.
     */
    public Iterator iterator()
    {
      return new UnmodifiableIterator(c.iterator());
    }

    /**
     * Blocks the removal of an object from the underlying collection.
     * This method never returns, throwing an exception instead.
     *
     * @param o The object to remove.
     * @return <code>true</code> if the object was removed (i.e. the underlying
     *         collection returned 1 or more instances of o).
     * @throws UnsupportedOperationException as an unmodifiable collection
     *         does not support the <code>remove()</code> operation.
     */
    public boolean remove(Object o)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the removal of a collection of objects from the underlying
     * collection.  This method never returns, throwing an exception
     * instead.
     *
     * @param c The collection of objects to remove.
     * @return <code>true</code> if the collection was modified.
     * @throws UnsupportedOperationException as an unmodifiable collection
     *         does not support the <code>removeAll()</code> operation.
     */
    public boolean removeAll(Collection c)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the removal of all elements from the underlying collection,
     * except those in the supplied collection.  This method never returns,
     * throwing an exception instead.
     *
     * @param c The collection of objects to retain.
     * @return <code>true</code> if the collection was modified.
     * @throws UnsupportedOperationException as an unmodifiable collection
     *         does not support the <code>retainAll()</code> operation.
     */
    public boolean retainAll(Collection c)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Retrieves the number of elements in the underlying collection.
     *
     * @return the number of elements in the collection.
     */
    public int size()
    {
      return c.size();
    }

    /**
     * Copy the current contents of the underlying collection into an array.
     *
     * @return an array of type Object[] with a length equal to the size of the
     *         underlying collection and containing the elements currently in
     *         the underlying collection, in any order.
     */
    public Object[] toArray()
    {
      return c.toArray();
    }

    /**
     * Copy the current contents of the underlying collection into an array.  If
     * the array passed as an argument has length less than the size of the
     * underlying collection, an array of the same run-time type as a, with a length
     * equal to the size of the underlying collection, is allocated using reflection.
     * Otherwise, a itself is used.  The elements of the underlying collection are
     * copied into it, and if there is space in the array, the following element is
     * set to null. The resultant array is returned.
     * Note: The fact that the following element is set to null is only useful
     * if it is known that this collection does not contain any null elements.
     *
     * @param a the array to copy this collection into.
     * @return an array containing the elements currently in the underlying
     *         collection, in any order.
     * @throws ArrayStoreException if the type of any element of the
     *         collection is not a subtype of the element type of a.
     */
    public Object[] toArray(Object[] a)
    {
      return c.toArray(a);
    }

    /**
     * A textual representation of the unmodifiable collection.
     *
     * @return The unmodifiable collection in the form of a <code>String</code>.
     */
    public String toString()
    {
      return c.toString();
    }
  } // class UnmodifiableCollection

  /**
   * The implementation of the various iterator methods in the
   * unmodifiable classes.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static class UnmodifiableIterator implements Iterator
  {
    /**
     * The wrapped iterator.
     */
    private final Iterator i;

    /**
     * Only trusted code creates a wrapper.
     * @param i the wrapped iterator
     */
    UnmodifiableIterator(Iterator i)
    {
      this.i = i;
    }

    /**
     * Obtains the next element in the underlying collection.
     *
     * @return the next element in the collection.
     * @throws NoSuchElementException if there are no more elements.
     */
    public Object next()
    {
      return i.next();
    }
    /**
     * Tests whether there are still elements to be retrieved from the
     * underlying collection by <code>next()</code>.  When this method
     * returns <code>true</code>, an exception will not be thrown on calling
     * <code>next()</code>.
     *
     * @return <code>true</code> if there is at least one more element in the underlying
     *         collection.
     */
    public boolean hasNext()
    {
      return i.hasNext();
    }

    /**
     * Blocks the removal of elements from the underlying collection by the
     * iterator.
     *
     * @throws UnsupportedOperationException as an unmodifiable collection
     *         does not support the removal of elements by its iterator.
     */
    public void remove()
    {
      throw new UnsupportedOperationException();
    }
  } // class UnmodifiableIterator

  /**
   * Returns an unmodifiable view of the given list. This allows
   * "read-only" access, although changes in the backing list show up
   * in this view. Attempts to modify the list directly, via iterators, or
   * via sublists, will fail with {@link UnsupportedOperationException}.
   * Although this view prevents changes to the structure of the list and
   * its elements, the values referenced by the objects in the list can
   * still be modified.   
   * <p>
   *
   * The returned List implements Serializable, but can only be serialized if
   * the list it wraps is likewise Serializable. In addition, if the wrapped
   * list implements RandomAccess, this does too.
   *
   * @param l the list to wrap
   * @return a read-only view of the list
   * @see Serializable
   * @see RandomAccess
   */
  public static List unmodifiableList(List l)
  {
    if (l instanceof RandomAccess)
      return new UnmodifiableRandomAccessList(l);
    return new UnmodifiableList(l);
  }

  /**
   * The implementation of {@link #unmodifiableList(List)} for sequential
   * lists. This class name is required for compatibility with Sun's JDK
   * serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static class UnmodifiableList extends UnmodifiableCollection
    implements List
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -283967356065247728L;


    /**
     * The wrapped list; stored both here and in the superclass to avoid
     * excessive casting. Package visible for use by subclass.
     * @serial the wrapped list
     */
    final List list;

    /**
     * Wrap a given list.
     * @param l the list to wrap
     * @throws NullPointerException if l is null
     */
    UnmodifiableList(List l)
    {
      super(l);
      list = l;
    }

    /**
     * Blocks the addition of an element to the underlying
     * list at a specific index.  This method never returns,
     * throwing an exception instead.
     *
     * @param index The index at which to place the new element.
     * @param o the object to add.
     * @throws UnsupportedOperationException as an unmodifiable
     *         list doesn't support the <code>add()</code> operation.
     */
    public void add(int index, Object o)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the addition of a collection of elements to the
     * underlying list at a specific index.  This method never
     * returns, throwing an exception instead.
     *
     * @param index The index at which to place the new element.
     * @param c the collections of objects to add.
     * @throws UnsupportedOperationException as an unmodifiable
     *         list doesn't support the <code>addAll()</code> operation.
     */
    public boolean addAll(int index, Collection c)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Returns <code>true</code> if the object, o, is an instance of
     * <code>List</code> with the same size and elements
     * as the underlying list.
     *
     * @param o The object to compare.
     * @return <code>true</code> if o is equivalent to the underlying list.
     */
    public boolean equals(Object o)
    {
      return list.equals(o);
    }

    /**
     * Retrieves the element at a given index in the underlying list.
     *
     * @param index the index of the element to be returned
     * @return the element at index index in this list
     * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt;= size()
     */
    public Object get(int index)
    {
      return list.get(index);
    }

    /**
     * Computes the hash code for the underlying list.
     * The exact computation is described in the documentation
     * of the <code>List</code> interface.
     *
     * @return The hash code of the underlying list.
     * @see List#hashCode()
     */
    public int hashCode()
    {
      return list.hashCode();
    }

    /**
     * Obtain the first index at which a given object is to be found in the
     * underlying list.
     *
     * @param o the object to search for
     * @return the least integer n such that <code>o == null ? get(n) == null :
     *         o.equals(get(n))</code>, or -1 if there is no such index.
     * @throws ClassCastException if the type of o is not a valid
     *         type for the underlying list.
     * @throws NullPointerException if o is null and the underlying
     *         list does not support null values.
     */
    public int indexOf(Object o)
    {
      return list.indexOf(o);
    }

    /**
     * Obtain the last index at which a given object is to be found in the
     * underlying list.
     *
     * @return the greatest integer n such that <code>o == null ? get(n) == null
     *         : o.equals(get(n))</code>, or -1 if there is no such index.
     * @throws ClassCastException if the type of o is not a valid
     *         type for the underlying list.
     * @throws NullPointerException if o is null and the underlying
     *         list does not support null values.
     */
    public int lastIndexOf(Object o)
    {
      return list.lastIndexOf(o);
    }

  /**
   * Obtains a list iterator over the underlying list, starting at the beginning
   * and maintaining the unmodifiable nature of this list.
   *
   * @return a <code>UnmodifiableListIterator</code> over the elements of the
   *         underlying list, in order, starting at the beginning.
   */
    public ListIterator listIterator()
    {
      return new UnmodifiableListIterator(list.listIterator());
    }

  /**
   * Obtains a list iterator over the underlying list, starting at the specified
   * index and maintaining the unmodifiable nature of this list.  An initial call
   * to <code>next()</code> will retrieve the element at the specified index,
   * and an initial call to <code>previous()</code> will retrieve the element
   * at index - 1.
   *
   *
   * @param index the position, between 0 and size() inclusive, to begin the
   *        iteration from.
   * @return a <code>UnmodifiableListIterator</code> over the elements of the
   *         underlying list, in order, starting at the specified index.
   * @throws IndexOutOfBoundsException if index &lt; 0 || index &gt; size()
   */
    public ListIterator listIterator(int index)
    {
      return new UnmodifiableListIterator(list.listIterator(index));
    }

    /**
     * Blocks the removal of the element at the specified index.
     * This method never returns, throwing an exception instead.
     *
     * @param index The index of the element to remove.
     * @return the removed element.
     * @throws UnsupportedOperationException as an unmodifiable
     *         list does not support the <code>remove()</code>
     *         operation.
     */
    public Object remove(int index)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the replacement of the element at the specified index.
     * This method never returns, throwing an exception instead.
     *
     * @param index The index of the element to replace.
     * @param o The new object to place at the specified index.
     * @return the replaced element.
     * @throws UnsupportedOperationException as an unmodifiable
     *         list does not support the <code>set()</code>
     *         operation.
     */
    public Object set(int index, Object o)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Obtain a List view of a subsection of the underlying list, from
     * fromIndex (inclusive) to toIndex (exclusive). If the two indices
     * are equal, the sublist is empty. The returned list will be
     * unmodifiable, like this list.  Changes to the elements of the
     * returned list will be reflected in the underlying list. No structural
     * modifications can take place in either list.
     *
     * @param fromIndex the index that the returned list should start from
     *        (inclusive).
     * @param toIndex the index that the returned list should go to (exclusive).
     * @return a List backed by a subsection of the underlying list.
     * @throws IndexOutOfBoundsException if fromIndex &lt; 0
     *         || toIndex &gt; size() || fromIndex &gt; toIndex.
     */
    public List subList(int fromIndex, int toIndex)
    {
      return unmodifiableList(list.subList(fromIndex, toIndex));
    }
  } // class UnmodifiableList

  /**
   * The implementation of {@link #unmodifiableList(List)} for random-access
   * lists. This class name is required for compatibility with Sun's JDK
   * serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class UnmodifiableRandomAccessList
    extends UnmodifiableList implements RandomAccess
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -2542308836966382001L;

    /**
     * Wrap a given list.
     * @param l the list to wrap
     * @throws NullPointerException if l is null
     */
    UnmodifiableRandomAccessList(List l)
    {
      super(l);
    }
  } // class UnmodifiableRandomAccessList

  /**
   * The implementation of {@link UnmodifiableList#listIterator()}.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class UnmodifiableListIterator
    extends UnmodifiableIterator implements ListIterator
  {
    /**
     * The wrapped iterator, stored both here and in the superclass to
     * avoid excessive casting.
     */
    private final ListIterator li;

    /**
     * Only trusted code creates a wrapper.
     * @param li the wrapped iterator
     */
    UnmodifiableListIterator(ListIterator li)
    {
      super(li);
      this.li = li;
    }

    /**
     * Blocks the addition of an object to the list underlying this iterator.
     * This method never returns, throwing an exception instead.
     *
     * @param o The object to add.
     * @throws UnsupportedOperationException as the iterator of an unmodifiable
     *         list does not support the <code>add()</code> operation.
     */
    public void add(Object o)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Tests whether there are still elements to be retrieved from the
     * underlying collection by <code>previous()</code>.  When this method
     * returns <code>true</code>, an exception will not be thrown on calling
     * <code>previous()</code>.
     *
     * @return <code>true</code> if there is at least one more element prior to the
     *         current position in the underlying list.
     */
    public boolean hasPrevious()
    {
      return li.hasPrevious();
    }

    /**
     * Find the index of the element that would be returned by a call to next.
     * If <code>hasNext()</code> returns <code>false</code>, this returns the list size.
     *
     * @return the index of the element that would be returned by
     *         <code>next()</code>.
     */
    public int nextIndex()
    {
      return li.nextIndex();
    }

    /**
     * Obtains the previous element in the underlying list.
     *
     * @return the previous element in the list.
     * @throws NoSuchElementException if there are no more prior elements.
     */
    public Object previous()
    {
      return li.previous();
    }

    /**
     * Find the index of the element that would be returned by a call to
     * previous. If <code>hasPrevious()</code> returns <code>false</code>,
     * this returns -1.
     *
     * @return the index of the element that would be returned by
     *         <code>previous()</code>.
     */
    public int previousIndex()
    {
      return li.previousIndex();
    }

    /**
     * Blocks the replacement of an element in the list underlying this
     * iterator.  This method never returns, throwing an exception instead.
     *
     * @param o The new object to replace the existing one.
     * @throws UnsupportedOperationException as the iterator of an unmodifiable
     *         list does not support the <code>set()</code> operation.
     */
    public void set(Object o)
    {
      throw new UnsupportedOperationException();
    }
  } // class UnmodifiableListIterator

  /**
   * Returns an unmodifiable view of the given map. This allows "read-only"
   * access, although changes in the backing map show up in this view.
   * Attempts to modify the map directly, or via collection views or their
   * iterators will fail with {@link UnsupportedOperationException}.
   * Although this view prevents changes to the structure of the map and its
   * entries, the values referenced by the objects in the map can still be
   * modified.   
   * <p>
   *
   * The returned Map implements Serializable, but can only be serialized if
   * the map it wraps is likewise Serializable.
   *
   * @param m the map to wrap
   * @return a read-only view of the map
   * @see Serializable
   */
  public static Map unmodifiableMap(Map m)
  {
    return new UnmodifiableMap(m);
  }

  /**
   * The implementation of {@link #unmodifiableMap(Map)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static class UnmodifiableMap implements Map, Serializable
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -1034234728574286014L;

    /**
     * The wrapped map.
     * @serial the real map
     */
    private final Map m;

    /**
     * Cache the entry set.
     */
    private transient Set entries;

    /**
     * Cache the key set.
     */
    private transient Set keys;

    /**
     * Cache the value collection.
     */
    private transient Collection values;

    /**
     * Wrap a given map.
     * @param m the map to wrap
     * @throws NullPointerException if m is null
     */
    UnmodifiableMap(Map m)
    {
      this.m = m;
      if (m == null)
        throw new NullPointerException();
    }

    /**
     * Blocks the clearing of entries from the underlying map.
     * This method never returns, throwing an exception instead.
     *
     * @throws UnsupportedOperationException as an unmodifiable
     *         map does not support the <code>clear()</code> operation.
     */
    public void clear()
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Returns <code>true</code> if the underlying map contains a mapping for
     * the given key.
     *
     * @param key the key to search for
     * @return <code>true</code> if the map contains the key
     * @throws ClassCastException if the key is of an inappropriate type
     * @throws NullPointerException if key is <code>null</code> but the map
     *         does not permit null keys
     */
    public boolean containsKey(Object key)
    {
      return m.containsKey(key);
    }

    /**
     * Returns <code>true</code> if the underlying map contains at least one mapping with
     * the given value.  In other words, it returns <code>true</code> if a value v exists where
     * <code>(value == null ? v == null : value.equals(v))</code>. This usually
     * requires linear time.
     *
     * @param value the value to search for
     * @return <code>true</code> if the map contains the value
     * @throws ClassCastException if the type of the value is not a valid type
     *         for this map.
     * @throws NullPointerException if the value is null and the map doesn't
     *         support null values.
     */
    public boolean containsValue(Object value)
    {
      return m.containsValue(value);
    }

    /**
     * Returns a unmodifiable set view of the entries in the underlying map.
     * Each element in the set is a unmodifiable variant of <code>Map.Entry</code>.
     * The set is backed by the map, so that changes in one show up in the other.
     * Modifications made while an iterator is in progress cause undefined
     * behavior.  These modifications are again limited to the values of
     * the objects.
     *
     * @return the unmodifiable set view of all mapping entries.
     * @see Map.Entry
     */
    public Set entrySet()
    {
      if (entries == null)
        entries = new UnmodifiableEntrySet(m.entrySet());
      return entries;
    }

    /**
     * The implementation of {@link UnmodifiableMap#entrySet()}. This class
     * name is required for compatibility with Sun's JDK serializability.
     *
     * @author Eric Blake (ebb9@email.byu.edu)
     */
    private static final class UnmodifiableEntrySet extends UnmodifiableSet
      implements Serializable
    {
      /**
       * Compatible with JDK 1.4.
       */
      private static final long serialVersionUID = 7854390611657943733L;

      /**
       * Wrap a given set.
       * @param s the set to wrap
       */
      UnmodifiableEntrySet(Set s)
      {
        super(s);
      }

      // The iterator must return unmodifiable map entries.
      public Iterator iterator()
      {
        return new UnmodifiableIterator(c.iterator())
	{
	  /**
	   * Obtains the next element from the underlying set of
	   * map entries.
	   *
	   * @return the next element in the collection.
	   * @throws NoSuchElementException if there are no more elements.
	   */
          public Object next()
          {
            final Map.Entry e = (Map.Entry) super.next();
            return new Map.Entry()
	    {
	      /**
	       * Returns <code>true</code> if the object, o, is also a map entry with an
	       * identical key and value.
	       *
	       * @param o the object to compare.
	       * @return <code>true</code> if o is an equivalent map entry.
	       */
              public boolean equals(Object o)
              {
                return e.equals(o);
              }
	      
	      /**
	       * Returns the key of this map entry.
	       *
	       * @return the key.
	       */
              public Object getKey()
              {
                return e.getKey();
              }

	      /**
	       * Returns the value of this map entry.
	       *
	       * @return the value.
	       */
              public Object getValue()
              {
                return e.getValue();
              }

	      /**
	       * Computes the hash code of this map entry.
	       * The computation is described in the <code>Map</code>
	       * interface documentation.
	       *
	       * @return the hash code of this entry.
	       * @see Map#hashCode()
	       */
              public int hashCode()
              {
                return e.hashCode();
              }

	      /**
	       * Blocks the alteration of the value of this map entry.
	       * This method never returns, throwing an exception instead.
	       *
	       * @param value The new value.
	       * @throws UnsupportedOperationException as an unmodifiable
	       *         map entry does not support the <code>setValue()</code>
	       *         operation.
	       */
              public Object setValue(Object value)
              {
                throw new UnsupportedOperationException();
              }

	      /**
	       * Returns a textual representation of the map entry.
	       *
	       * @return The map entry as a <code>String</code>.
	       */
              public String toString()
              {
                return e.toString();
              }
	    };
          }
	};
      }
    } // class UnmodifiableEntrySet

    /**
     * Returns <code>true</code> if the object, o, is also an instance
     * of <code>Map</code> with an equal set of map entries.
     *
     * @param o The object to compare.
     * @return <code>true</code> if o is an equivalent map.
     */
    public boolean equals(Object o)
    {
      return m.equals(o);
    }

    /**
     * Returns the value associated with the supplied key or
     * null if no such mapping exists.  An ambiguity can occur
     * if null values are accepted by the underlying map.
     * In this case, <code>containsKey()</code> can be used
     * to separate the two possible cases of a null result.
     *
     * @param key The key to look up.
     * @return the value associated with the key, or null if key not in map.
     * @throws ClassCastException if the key is an inappropriate type.
     * @throws NullPointerException if this map does not accept null keys.
     * @see #containsKey(Object)
     */
    public Object get(Object key)
    {
      return m.get(key);
    }

    /**
     * Blocks the addition of a new entry to the underlying map.
     * This method never returns, throwing an exception instead.
     *
     * @param key The new key.
     * @param value The new value.
     * @return the previous value of the key, or null if there was no mapping.
     * @throws UnsupportedOperationException as an unmodifiable
     *         map does not support the <code>put()</code> operation.
     */
    public Object put(Object key, Object value)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Computes the hash code for the underlying map, as the sum
     * of the hash codes of all entries.
     *
     * @return The hash code of the underlying map.
     * @see Map.Entry#hashCode()
     */
    public int hashCode()
    {
      return m.hashCode();
    }

    /**
     * Returns <code>true</code> if the underlying map contains no entries.
     *
     * @return <code>true</code> if the map is empty.
     */
    public boolean isEmpty()
    {
      return m.isEmpty();
    }

    /**
     * Returns a unmodifiable set view of the keys in the underlying map.
     * The set is backed by the map, so that changes in one show up in the other.
     * Modifications made while an iterator is in progress cause undefined
     * behavior.  These modifications are again limited to the values of
     * the keys.
     *
     * @return the set view of all keys.
     */
    public Set keySet()
    {
      if (keys == null)
        keys = new UnmodifiableSet(m.keySet());
      return keys;
    }

    /**
     * Blocks the addition of the entries in the supplied map.
     * This method never returns, throwing an exception instead.
     *
     * @param m The map, the entries of which should be added
     *          to the underlying map.
     * @throws UnsupportedOperationException as an unmodifiable
     *         map does not support the <code>putAll</code> operation.
     */
    public void putAll(Map m)
    {
      throw new UnsupportedOperationException();
    }

    /**
     * Blocks the removal of an entry from the map.
     * This method never returns, throwing an exception instead.
     *
     * @param o The key of the entry to remove.
     * @return The value the key was associated with, or null
     *         if no such mapping existed.  Null is also returned
     *         if the removed entry had a null key.
     * @throws UnsupportedOperationException as an unmodifiable
     *         map does not support the <code>remove</code> operation.
     */
    public Object remove(Object o)
    {
      throw new UnsupportedOperationException();
    }


    /**
     * Returns the number of key-value mappings in the underlying map.
     * If there are more than Integer.MAX_VALUE mappings, Integer.MAX_VALUE
     * is returned.
     *
     * @return the number of mappings.
     */
    public int size()
    {
      return m.size();
    }

    /**
     * Returns a textual representation of the map.
     *
     * @return The map in the form of a <code>String</code>.
     */
    public String toString()
    {
      return m.toString();
    }

    /**
     * Returns a unmodifiable collection view of the values in the underlying map.
     * The collection is backed by the map, so that changes in one show up in the other.
     * Modifications made while an iterator is in progress cause undefined
     * behavior.  These modifications are again limited to the values of
     * the keys.
     *
     * @return the collection view of all values.
     */
    public Collection values()
    {
      if (values == null)
        values = new UnmodifiableCollection(m.values());
      return values;
    }
  } // class UnmodifiableMap

  /**
   * Returns an unmodifiable view of the given set. This allows
   * "read-only" access, although changes in the backing set show up
   * in this view. Attempts to modify the set directly or via iterators
   * will fail with {@link UnsupportedOperationException}.
   * Although this view prevents changes to the structure of the set and its
   * entries, the values referenced by the objects in the set can still be
   * modified.   
   * <p>
   *
   * The returned Set implements Serializable, but can only be serialized if
   * the set it wraps is likewise Serializable.
   *
   * @param s the set to wrap
   * @return a read-only view of the set
   * @see Serializable
   */
  public static Set unmodifiableSet(Set s)
  {
    return new UnmodifiableSet(s);
  }

  /**
   * The implementation of {@link #unmodifiableSet(Set)}. This class
   * name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static class UnmodifiableSet extends UnmodifiableCollection
    implements Set
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -9215047833775013803L;

    /**
     * Wrap a given set.
     * @param s the set to wrap
     * @throws NullPointerException if s is null
     */
    UnmodifiableSet(Set s)
    {
      super(s);
    }

    /**
     * Returns <code>true</code> if the object, o, is also an instance of
     * <code>Set</code> of the same size and with the same entries.
     *
     * @return <code>true</code> if o is an equivalent set.
     */
    public boolean equals(Object o)
    {
      return c.equals(o);
    }

    /**
     * Computes the hash code of this set, as the sum of the
     * hash codes of all elements within the set.
     *
     * @return the hash code of the set.
     */ 
    public int hashCode()
    {
      return c.hashCode();
    }
  } // class UnmodifiableSet

  /**
   * Returns an unmodifiable view of the given sorted map. This allows
   * "read-only" access, although changes in the backing map show up in this
   * view. Attempts to modify the map directly, via subviews, via collection
   * views, or iterators, will fail with {@link UnsupportedOperationException}.
   * Although this view prevents changes to the structure of the map and its
   * entries, the values referenced by the objects in the map can still be
   * modified.   
   * <p>
   *
   * The returned SortedMap implements Serializable, but can only be
   * serialized if the map it wraps is likewise Serializable.
   *
   * @param m the map to wrap
   * @return a read-only view of the map
   * @see Serializable
   */
  public static SortedMap unmodifiableSortedMap(SortedMap m)
  {
    return new UnmodifiableSortedMap(m);
  }

  /**
   * The implementation of {@link #unmodifiableSortedMap(SortedMap)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static class UnmodifiableSortedMap extends UnmodifiableMap
    implements SortedMap
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -8806743815996713206L;

    /**
     * The wrapped map; stored both here and in the superclass to avoid
     * excessive casting.
     * @serial the wrapped map
     */
    private final SortedMap sm;

    /**
     * Wrap a given map.
     * @param sm the map to wrap
     * @throws NullPointerException if sm is null
     */
    UnmodifiableSortedMap(SortedMap sm)
    {
      super(sm);
      this.sm = sm;
    }

    /**
     * Returns the comparator used in sorting the underlying map,
     * or null if it is the keys' natural ordering.
     *
     * @return the sorting comparator.
     */
    public Comparator comparator()
    {
      return sm.comparator();
    }

    /**
     * Returns the first (lowest sorted) key in the map.
     *
     * @return the first key.
     * @throws NoSuchElementException if this map is empty.
     */
    public Object firstKey()
    {
      return sm.firstKey();
    }

    /**
     * Returns a unmodifiable view of the portion of the map strictly less
     * than toKey. The view is backed by the underlying map, so changes in
     * one show up in the other.  The submap supports all optional operations
     * of the original.  This operation is equivalent to
     * <code>subMap(firstKey(), toKey)</code>.
     * <p>
     *
     * The returned map throws an IllegalArgumentException any time a key is
     * used which is out of the range of toKey. Note that the endpoint, toKey,
     * is not included; if you want this value to be included, pass its successor
     * object in to toKey.  For example, for Integers, you could request
     * <code>headMap(new Integer(limit.intValue() + 1))</code>.
     *
     * @param toKey the exclusive upper range of the submap.
     * @return the submap.
     * @throws ClassCastException if toKey is not comparable to the map contents.
     * @throws IllegalArgumentException if this is a subMap, and toKey is out
     *         of range.
     * @throws NullPointerException if toKey is null but the map does not allow
     *         null keys.
     */
    public SortedMap headMap(Object toKey)
    {
      return new UnmodifiableSortedMap(sm.headMap(toKey));
    }

    /**
     * Returns the last (highest sorted) key in the map.
     *
     * @return the last key.
     * @throws NoSuchElementException if this map is empty.
     */
    public Object lastKey()
    {
      return sm.lastKey();
    }

    /**
     * Returns a unmodifiable view of the portion of the map greater than or
     * equal to fromKey, and strictly less than toKey. The view is backed by
     * the underlying map, so changes in one show up in the other. The submap
     * supports all optional operations of the original.
     * <p>
     *
     * The returned map throws an IllegalArgumentException any time a key is
     * used which is out of the range of fromKey and toKey. Note that the
     * lower endpoint is included, but the upper is not; if you want to
     * change the inclusion or exclusion of an endpoint, pass its successor
     * object in instead.  For example, for Integers, you could request
     * <code>subMap(new Integer(lowlimit.intValue() + 1),
     * new Integer(highlimit.intValue() + 1))</code> to reverse
     * the inclusiveness of both endpoints.
     *
     * @param fromKey the inclusive lower range of the submap.
     * @param toKey the exclusive upper range of the submap.
     * @return the submap.
     * @throws ClassCastException if fromKey or toKey is not comparable to
     *         the map contents.
     * @throws IllegalArgumentException if this is a subMap, and fromKey or
     *         toKey is out of range.
     * @throws NullPointerException if fromKey or toKey is null but the map
     *         does not allow null keys.
     */
    public SortedMap subMap(Object fromKey, Object toKey)
    {
      return new UnmodifiableSortedMap(sm.subMap(fromKey, toKey));
    }

    /**
     * Returns a unmodifiable view of the portion of the map greater than or
     * equal to fromKey. The view is backed by the underlying map, so changes
     * in one show up in the other. The submap supports all optional operations
     * of the original.
     * <p>
     *
     * The returned map throws an IllegalArgumentException any time a key is
     * used which is out of the range of fromKey. Note that the endpoint, fromKey, is
     * included; if you do not want this value to be included, pass its successor object in
     * to fromKey.  For example, for Integers, you could request
     * <code>tailMap(new Integer(limit.intValue() + 1))</code>.
     *
     * @param fromKey the inclusive lower range of the submap
     * @return the submap
     * @throws ClassCastException if fromKey is not comparable to the map
     *         contents
     * @throws IllegalArgumentException if this is a subMap, and fromKey is out
     *         of range
     * @throws NullPointerException if fromKey is null but the map does not allow
     *         null keys
     */
    public SortedMap tailMap(Object fromKey)
    {
      return new UnmodifiableSortedMap(sm.tailMap(fromKey));
    }
  } // class UnmodifiableSortedMap

  /**
   * Returns an unmodifiable view of the given sorted set. This allows
   * "read-only" access, although changes in the backing set show up
   * in this view. Attempts to modify the set directly, via subsets, or via
   * iterators, will fail with {@link UnsupportedOperationException}.
   * Although this view prevents changes to the structure of the set and its
   * entries, the values referenced by the objects in the set can still be
   * modified.   
   * <p>
   *
   * The returns SortedSet implements Serializable, but can only be
   * serialized if the set it wraps is likewise Serializable.
   *
   * @param s the set to wrap
   * @return a read-only view of the set
   * @see Serializable
   */
  public static SortedSet unmodifiableSortedSet(SortedSet s)
  {
    return new UnmodifiableSortedSet(s);
  }

  /**
   * The implementation of {@link #synchronizedSortedMap(SortedMap)}. This
   * class name is required for compatibility with Sun's JDK serializability.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static class UnmodifiableSortedSet extends UnmodifiableSet
    implements SortedSet
  {
    /**
     * Compatible with JDK 1.4.
     */
    private static final long serialVersionUID = -4929149591599911165L;

    /**
     * The wrapped set; stored both here and in the superclass to avoid
     * excessive casting.
     * @serial the wrapped set
     */
    private SortedSet ss;

    /**
     * Wrap a given set.
     * @param ss the set to wrap
     * @throws NullPointerException if ss is null
     */
    UnmodifiableSortedSet(SortedSet ss)
    {
      super(ss);
      this.ss = ss;
    }

    /**
     * Returns the comparator used in sorting the underlying set,
     * or null if it is the elements' natural ordering.
     *
     * @return the sorting comparator
     */
    public Comparator comparator()
    {
      return ss.comparator();
    }

    /**
     * Returns the first (lowest sorted) element in the underlying
     * set.
     *
     * @return the first element.
     * @throws NoSuchElementException if the set is empty.
     */
    public Object first()
    {
      return ss.first();
    }

    /**
     * Returns a unmodifiable view of the portion of the set strictly
     * less than toElement. The view is backed by the underlying set,
     * so changes in one show up in the other.  The subset supports
     * all optional operations of the original.  This operation
     * is equivalent to <code>subSet(first(), toElement)</code>.
     * <p>
     *
     * The returned set throws an IllegalArgumentException any time an element is
     * used which is out of the range of toElement. Note that the endpoint, toElement,
     * is not included; if you want this value included, pass its successor object in to
     * toElement.  For example, for Integers, you could request
     * <code>headSet(new Integer(limit.intValue() + 1))</code>.
     *
     * @param toElement the exclusive upper range of the subset
     * @return the subset.
     * @throws ClassCastException if toElement is not comparable to the set
     *         contents.
     * @throws IllegalArgumentException if this is a subSet, and toElement is out
     *         of range.
     * @throws NullPointerException if toElement is null but the set does not
     *         allow null elements.
     */
    public SortedSet headSet(Object toElement)
    {
      return new UnmodifiableSortedSet(ss.headSet(toElement));
    }

    /**
     * Returns the last (highest sorted) element in the underlying
     * set.
     *
     * @return the last element.
     * @throws NoSuchElementException if the set is empty.
     */
    public Object last()
    {
      return ss.last();
    }

    /**
     * Returns a unmodifiable view of the portion of the set greater than or
     * equal to fromElement, and strictly less than toElement. The view is backed by
     * the underlying set, so changes in one show up in the other. The subset
     * supports all optional operations of the original.
     * <p>
     *
     * The returned set throws an IllegalArgumentException any time an element is
     * used which is out of the range of fromElement and toElement. Note that the
     * lower endpoint is included, but the upper is not; if you want to
     * change the inclusion or exclusion of an endpoint, pass its successor
     * object in instead.  For example, for Integers, you can request
     * <code>subSet(new Integer(lowlimit.intValue() + 1),
     * new Integer(highlimit.intValue() + 1))</code> to reverse
     * the inclusiveness of both endpoints.
     *
     * @param fromElement the inclusive lower range of the subset.
     * @param toElement the exclusive upper range of the subset.
     * @return the subset.
     * @throws ClassCastException if fromElement or toElement is not comparable
     *         to the set contents.
     * @throws IllegalArgumentException if this is a subSet, and fromElement or
     *         toElement is out of range.
     * @throws NullPointerException if fromElement or toElement is null but the
     *         set does not allow null elements.
     */
    public SortedSet subSet(Object fromElement, Object toElement)
    {
      return new UnmodifiableSortedSet(ss.subSet(fromElement, toElement));
    }

    /**
     * Returns a unmodifiable view of the portion of the set greater than or equal to
     * fromElement. The view is backed by the underlying set, so changes in one show up
     * in the other. The subset supports all optional operations of the original.
     * <p>
     *
     * The returned set throws an IllegalArgumentException any time an element is
     * used which is out of the range of fromElement. Note that the endpoint,
     * fromElement, is included; if you do not want this value to be included, pass its
     * successor object in to fromElement.  For example, for Integers, you could request
     * <code>tailSet(new Integer(limit.intValue() + 1))</code>.
     *
     * @param fromElement the inclusive lower range of the subset
     * @return the subset.
     * @throws ClassCastException if fromElement is not comparable to the set
     *         contents.
     * @throws IllegalArgumentException if this is a subSet, and fromElement is
     *         out of range.
     * @throws NullPointerException if fromElement is null but the set does not
     *         allow null elements.
     */
    public SortedSet tailSet(Object fromElement)
    {
      return new UnmodifiableSortedSet(ss.tailSet(fromElement));
    }
  } // class UnmodifiableSortedSet
} // class Collections