summaryrefslogtreecommitdiff
path: root/java/util/TreeMap.java
blob: 88abce10d8dee900d554fa44d27d03dcb44cf4d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
/* TreeMap.java -- a class providing a basic Red-Black Tree data structure,
   mapping Object --> Object
   Copyright (C) 1998, 1999, 2000, 2001, 2002, 2004, 2005  Free Software Foundation, Inc.

This file is part of GNU Classpath.

GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.

GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING.  If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.

Linking this library statically or dynamically with other modules is
making a combined work based on this library.  Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.

As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module.  An independent module is a module which is not derived from
or based on this library.  If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so.  If you do not wish to do so, delete this
exception statement from your version. */


package java.util;

import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;

/**
 * This class provides a red-black tree implementation of the SortedMap
 * interface.  Elements in the Map will be sorted by either a user-provided
 * Comparator object, or by the natural ordering of the keys.
 *
 * The algorithms are adopted from Corman, Leiserson, and Rivest's
 * <i>Introduction to Algorithms.</i>  TreeMap guarantees O(log n)
 * insertion and deletion of elements.  That being said, there is a large
 * enough constant coefficient in front of that "log n" (overhead involved
 * in keeping the tree balanced), that TreeMap may not be the best choice
 * for small collections. If something is already sorted, you may want to
 * just use a LinkedHashMap to maintain the order while providing O(1) access.
 *
 * TreeMap is a part of the JDK1.2 Collections API.  Null keys are allowed
 * only if a Comparator is used which can deal with them; natural ordering
 * cannot cope with null.  Null values are always allowed. Note that the
 * ordering must be <i>consistent with equals</i> to correctly implement
 * the Map interface. If this condition is violated, the map is still
 * well-behaved, but you may have suprising results when comparing it to
 * other maps.<p>
 *
 * This implementation is not synchronized. If you need to share this between
 * multiple threads, do something like:<br>
 * <code>SortedMap m
 *       = Collections.synchronizedSortedMap(new TreeMap(...));</code><p>
 *
 * The iterators are <i>fail-fast</i>, meaning that any structural
 * modification, except for <code>remove()</code> called on the iterator
 * itself, cause the iterator to throw a
 * <code>ConcurrentModificationException</code> rather than exhibit
 * non-deterministic behavior.
 *
 * @author Jon Zeppieri
 * @author Bryce McKinlay
 * @author Eric Blake (ebb9@email.byu.edu)
 * @see Map
 * @see HashMap
 * @see Hashtable
 * @see LinkedHashMap
 * @see Comparable
 * @see Comparator
 * @see Collection
 * @see Collections#synchronizedSortedMap(SortedMap)
 * @since 1.2
 * @status updated to 1.4
 */
public class TreeMap<K, V> extends AbstractMap<K, V>
  implements SortedMap<K, V>, Cloneable, Serializable
{
  // Implementation note:
  // A red-black tree is a binary search tree with the additional properties
  // that all paths to a leaf node visit the same number of black nodes,
  // and no red node has red children. To avoid some null-pointer checks,
  // we use the special node nil which is always black, has no relatives,
  // and has key and value of null (but is not equal to a mapping of null).

  /**
   * Compatible with JDK 1.2.
   */
  private static final long serialVersionUID = 919286545866124006L;

  /**
   * Color status of a node. Package visible for use by nested classes.
   */
  static final int RED = -1,
                   BLACK = 1;

  /**
   * Sentinal node, used to avoid null checks for corner cases and make the
   * delete rebalance code simpler. The rebalance code must never assign
   * the parent, left, or right of nil, but may safely reassign the color
   * to be black. This object must never be used as a key in a TreeMap, or
   * it will break bounds checking of a SubMap.
   */
  static final Node nil = new Node(null, null, BLACK);
  static
    {
      // Nil is self-referential, so we must initialize it after creation.
      nil.parent = nil;
      nil.left = nil;
      nil.right = nil;
    }

  /**
   * The root node of this TreeMap.
   */
  private transient Node root;

  /**
   * The size of this TreeMap. Package visible for use by nested classes.
   */
  transient int size;

  /**
   * The cache for {@link #entrySet()}.
   */
  private transient Set<Map.Entry<K,V>> entries;

  /**
   * Counts the number of modifications this TreeMap has undergone, used
   * by Iterators to know when to throw ConcurrentModificationExceptions.
   * Package visible for use by nested classes.
   */
  transient int modCount;

  /**
   * This TreeMap's comparator, or null for natural ordering.
   * Package visible for use by nested classes.
   * @serial the comparator ordering this tree, or null
   */
  final Comparator<? super K> comparator;

  /**
   * Class to represent an entry in the tree. Holds a single key-value pair,
   * plus pointers to parent and child nodes.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private static final class Node<K, V> extends AbstractMap.SimpleEntry<K, V>
  {
    // All fields package visible for use by nested classes.
    /** The color of this node. */
    int color;

    /** The left child node. */
    Node<K, V> left = nil;
    /** The right child node. */
    Node<K, V> right = nil;
    /** The parent node. */
    Node<K, V> parent = nil;

    /**
     * Simple constructor.
     * @param key the key
     * @param value the value
     */
    Node(K key, V value, int color)
    {
      super(key, value);
      this.color = color;
    }
  }

  /**
   * Instantiate a new TreeMap with no elements, using the keys' natural
   * ordering to sort. All entries in the map must have a key which implements
   * Comparable, and which are <i>mutually comparable</i>, otherwise map
   * operations may throw a {@link ClassCastException}. Attempts to use
   * a null key will throw a {@link NullPointerException}.
   *
   * @see Comparable
   */
  public TreeMap()
  {
    this((Comparator) null);
  }

  /**
   * Instantiate a new TreeMap with no elements, using the provided comparator
   * to sort. All entries in the map must have keys which are mutually
   * comparable by the Comparator, otherwise map operations may throw a
   * {@link ClassCastException}.
   *
   * @param c the sort order for the keys of this map, or null
   *        for the natural order
   */
  public TreeMap(Comparator<? super K> c)
  {
    comparator = c;
    fabricateTree(0);
  }

  /**
   * Instantiate a new TreeMap, initializing it with all of the elements in
   * the provided Map.  The elements will be sorted using the natural
   * ordering of the keys. This algorithm runs in n*log(n) time. All entries
   * in the map must have keys which implement Comparable and are mutually
   * comparable, otherwise map operations may throw a
   * {@link ClassCastException}.
   *
   * @param map a Map, whose entries will be put into this TreeMap
   * @throws ClassCastException if the keys in the provided Map are not
   *         comparable
   * @throws NullPointerException if map is null
   * @see Comparable
   */
  public TreeMap(Map<? extends K, ? extends V> map)
  {
    this((Comparator) null);
    putAll(map);
  }

  /**
   * Instantiate a new TreeMap, initializing it with all of the elements in
   * the provided SortedMap.  The elements will be sorted using the same
   * comparator as in the provided SortedMap. This runs in linear time.
   *
   * @param sm a SortedMap, whose entries will be put into this TreeMap
   * @throws NullPointerException if sm is null
   */
  public TreeMap(SortedMap<K, ? extends V> sm)
  {
    this(sm.comparator());
    int pos = sm.size();
    Iterator itr = sm.entrySet().iterator();

    fabricateTree(pos);
    Node node = firstNode();

    while (--pos >= 0)
      {
        Map.Entry me = (Map.Entry) itr.next();
        node.key = me.getKey();
        node.value = me.getValue();
        node = successor(node);
      }
  }

  /**
   * Clears the Map so it has no keys. This is O(1).
   */
  public void clear()
  {
    if (size > 0)
      {
        modCount++;
        root = nil;
        size = 0;
      }
  }

  /**
   * Returns a shallow clone of this TreeMap. The Map itself is cloned,
   * but its contents are not.
   *
   * @return the clone
   */
  public Object clone()
  {
    TreeMap copy = null;
    try
      {
        copy = (TreeMap) super.clone();
      }
    catch (CloneNotSupportedException x)
      {
      }
    copy.entries = null;
    copy.fabricateTree(size);

    Node node = firstNode();
    Node cnode = copy.firstNode();

    while (node != nil)
      {
        cnode.key = node.key;
        cnode.value = node.value;
        node = successor(node);
        cnode = copy.successor(cnode);
      }
    return copy;
  }

  /**
   * Return the comparator used to sort this map, or null if it is by
   * natural order.
   *
   * @return the map's comparator
   */
  public Comparator<? super K> comparator()
  {
    return comparator;
  }

  /**
   * Returns true if the map contains a mapping for the given key.
   *
   * @param key the key to look for
   * @return true if the key has a mapping
   * @throws ClassCastException if key is not comparable to map elements
   * @throws NullPointerException if key is null and the comparator is not
   *         tolerant of nulls
   */
  public boolean containsKey(Object key)
  {
    return getNode((K) key) != nil;
  }

  /**
   * Returns true if the map contains at least one mapping to the given value.
   * This requires linear time.
   *
   * @param value the value to look for
   * @return true if the value appears in a mapping
   */
  public boolean containsValue(Object value)
  {
    Node node = firstNode();
    while (node != nil)
      {
        if (equals(value, node.value))
          return true;
        node = successor(node);
      }
    return false;
  }

  /**
   * Returns a "set view" of this TreeMap's entries. The set is backed by
   * the TreeMap, so changes in one show up in the other.  The set supports
   * element removal, but not element addition.<p>
   *
   * Note that the iterators for all three views, from keySet(), entrySet(),
   * and values(), traverse the TreeMap in sorted sequence.
   *
   * @return a set view of the entries
   * @see #keySet()
   * @see #values()
   * @see Map.Entry
   */
  public Set<Map.Entry<K,V>> entrySet()
  {
    if (entries == null)
      // Create an AbstractSet with custom implementations of those methods
      // that can be overriden easily and efficiently.
      entries = new AbstractSet<Map.Entry<K,V>>()
      {
        public int size()
        {
          return size;
        }

        public Iterator<Map.Entry<K,V>> iterator()
        {
          return new TreeIterator(ENTRIES);
        }

        public void clear()
        {
          TreeMap.this.clear();
        }

        public boolean contains(Object o)
        {
          if (! (o instanceof Map.Entry))
            return false;
          Map.Entry<K,V> me = (Map.Entry<K,V>) o;
          Node<K,V> n = getNode(me.getKey());
          return n != nil && AbstractSet.equals(me.getValue(), n.value);
      }

        public boolean remove(Object o)
        {
          if (! (o instanceof Map.Entry))
            return false;
          Map.Entry<K,V> me = (Map.Entry<K,V>) o;
          Node<K,V> n = getNode(me.getKey());
          if (n != nil && AbstractSet.equals(me.getValue(), n.value))
            {
              removeNode(n);
              return true;
            }
          return false;
        }
      };
    return entries;
  }

  /**
   * Returns the first (lowest) key in the map.
   *
   * @return the first key
   * @throws NoSuchElementException if the map is empty
   */
  public K firstKey()
  {
    if (root == nil)
      throw new NoSuchElementException();
    return firstNode().key;
  }

  /**
   * Return the value in this TreeMap associated with the supplied key,
   * or <code>null</code> if the key maps to nothing.  NOTE: Since the value
   * could also be null, you must use containsKey to see if this key
   * actually maps to something.
   *
   * @param key the key for which to fetch an associated value
   * @return what the key maps to, if present
   * @throws ClassCastException if key is not comparable to elements in the map
   * @throws NullPointerException if key is null but the comparator does not
   *         tolerate nulls
   * @see #put(Object, Object)
   * @see #containsKey(Object)
   */
  public V get(Object key)
  {
    // Exploit fact that nil.value == null.
    return getNode((K) key).value;
  }

  /**
   * Returns a view of this Map including all entries with keys less than
   * <code>toKey</code>. The returned map is backed by the original, so changes
   * in one appear in the other. The submap will throw an
   * {@link IllegalArgumentException} for any attempt to access or add an
   * element beyond the specified cutoff. The returned map does not include
   * the endpoint; if you want inclusion, pass the successor element.
   *
   * @param toKey the (exclusive) cutoff point
   * @return a view of the map less than the cutoff
   * @throws ClassCastException if <code>toKey</code> is not compatible with
   *         the comparator (or is not Comparable, for natural ordering)
   * @throws NullPointerException if toKey is null, but the comparator does not
   *         tolerate null elements
   */
  public SortedMap<K, V> headMap(K toKey)
  {
    return new SubMap((K)(Object)nil, toKey);
  }

  /**
   * Returns a "set view" of this TreeMap's keys. The set is backed by the
   * TreeMap, so changes in one show up in the other.  The set supports
   * element removal, but not element addition.
   *
   * @return a set view of the keys
   * @see #values()
   * @see #entrySet()
   */
  public Set<K> keySet()
  {
    if (keys == null)
      // Create an AbstractSet with custom implementations of those methods
      // that can be overriden easily and efficiently.
      keys = new AbstractSet<K>()
      {
        public int size()
        {
          return size;
        }

        public Iterator<K> iterator()
        {
          return new TreeIterator(KEYS);
        }

        public void clear()
        {
          TreeMap.this.clear();
        }

        public boolean contains(Object o)
        {
          return containsKey(o);
        }

        public boolean remove(Object key)
        {
          Node<K,V> n = getNode((K) key);
          if (n == nil)
            return false;
          removeNode(n);
          return true;
        }
      };
    return keys;
  }

  /**
   * Returns the last (highest) key in the map.
   *
   * @return the last key
   * @throws NoSuchElementException if the map is empty
   */
  public K lastKey()
  {
    if (root == nil)
      throw new NoSuchElementException("empty");
    return lastNode().key;
  }

  /**
   * Puts the supplied value into the Map, mapped by the supplied key.
   * The value may be retrieved by any object which <code>equals()</code>
   * this key. NOTE: Since the prior value could also be null, you must
   * first use containsKey if you want to see if you are replacing the
   * key's mapping.
   *
   * @param key the key used to locate the value
   * @param value the value to be stored in the Map
   * @return the prior mapping of the key, or null if there was none
   * @throws ClassCastException if key is not comparable to current map keys
   * @throws NullPointerException if key is null, but the comparator does
   *         not tolerate nulls
   * @see #get(Object)
   * @see Object#equals(Object)
   */
  public V put(K key, V value)
  {
    Node<K,V> current = root;
    Node<K,V> parent = nil;
    int comparison = 0;

    // Find new node's parent.
    while (current != nil)
      {
        parent = current;
        comparison = compare(key, current.key);
        if (comparison > 0)
          current = current.right;
        else if (comparison < 0)
          current = current.left;
        else // Key already in tree.
          return current.setValue(value);
      }

    // Set up new node.
    Node n = new Node(key, value, RED);
    n.parent = parent;

    // Insert node in tree.
    modCount++;
    size++;
    if (parent == nil)
      {
        // Special case inserting into an empty tree.
        root = n;
        return null;
      }
    if (comparison > 0)
      parent.right = n;
    else
      parent.left = n;

    // Rebalance after insert.
    insertFixup(n);
    return null;
  }

  /**
   * Copies all elements of the given map into this TreeMap.  If this map
   * already has a mapping for a key, the new mapping replaces the current
   * one.
   *
   * @param m the map to be added
   * @throws ClassCastException if a key in m is not comparable with keys
   *         in the map
   * @throws NullPointerException if a key in m is null, and the comparator
   *         does not tolerate nulls
   */
  public void putAll(Map<? extends K, ? extends V> m)
  {
    Iterator itr = m.entrySet().iterator();
    int pos = m.size();
    while (--pos >= 0)
      {
        Map.Entry<K,V> e = (Map.Entry<K,V>) itr.next();
        put(e.getKey(), e.getValue());
      }
  }

  /**
   * Removes from the TreeMap and returns the value which is mapped by the
   * supplied key. If the key maps to nothing, then the TreeMap remains
   * unchanged, and <code>null</code> is returned. NOTE: Since the value
   * could also be null, you must use containsKey to see if you are
   * actually removing a mapping.
   *
   * @param key the key used to locate the value to remove
   * @return whatever the key mapped to, if present
   * @throws ClassCastException if key is not comparable to current map keys
   * @throws NullPointerException if key is null, but the comparator does
   *         not tolerate nulls
   */
  public V remove(Object key)
  {
    Node<K, V> n = getNode((K)key);
    if (n == nil)
      return null;
    // Note: removeNode can alter the contents of n, so save value now.
    V result = n.value;
    removeNode(n);
    return result;
  }

  /**
   * Returns the number of key-value mappings currently in this Map.
   *
   * @return the size
   */
  public int size()
  {
    return size;
  }

  /**
   * Returns a view of this Map including all entries with keys greater or
   * equal to <code>fromKey</code> and less than <code>toKey</code> (a
   * half-open interval). The returned map is backed by the original, so
   * changes in one appear in the other. The submap will throw an
   * {@link IllegalArgumentException} for any attempt to access or add an
   * element beyond the specified cutoffs. The returned map includes the low
   * endpoint but not the high; if you want to reverse this behavior on
   * either end, pass in the successor element.
   *
   * @param fromKey the (inclusive) low cutoff point
   * @param toKey the (exclusive) high cutoff point
   * @return a view of the map between the cutoffs
   * @throws ClassCastException if either cutoff is not compatible with
   *         the comparator (or is not Comparable, for natural ordering)
   * @throws NullPointerException if fromKey or toKey is null, but the
   *         comparator does not tolerate null elements
   * @throws IllegalArgumentException if fromKey is greater than toKey
   */
  public SortedMap<K, V> subMap(K fromKey, K toKey)
  {
    return new SubMap(fromKey, toKey);
  }

  /**
   * Returns a view of this Map including all entries with keys greater or
   * equal to <code>fromKey</code>. The returned map is backed by the
   * original, so changes in one appear in the other. The submap will throw an
   * {@link IllegalArgumentException} for any attempt to access or add an
   * element beyond the specified cutoff. The returned map includes the
   * endpoint; if you want to exclude it, pass in the successor element.
   *
   * @param fromKey the (inclusive) low cutoff point
   * @return a view of the map above the cutoff
   * @throws ClassCastException if <code>fromKey</code> is not compatible with
   *         the comparator (or is not Comparable, for natural ordering)
   * @throws NullPointerException if fromKey is null, but the comparator
   *         does not tolerate null elements
   */
  public SortedMap<K, V> tailMap(K fromKey)
  {
    return new SubMap(fromKey, (K)(Object)nil);
  }

  /**
   * Returns a "collection view" (or "bag view") of this TreeMap's values.
   * The collection is backed by the TreeMap, so changes in one show up
   * in the other.  The collection supports element removal, but not element
   * addition.
   *
   * @return a bag view of the values
   * @see #keySet()
   * @see #entrySet()
   */
  public Collection<V> values()
  {
    if (values == null)
      // We don't bother overriding many of the optional methods, as doing so
      // wouldn't provide any significant performance advantage.
      values = new AbstractCollection<V>()
      {
        public int size()
        {
          return size;
        }

        public Iterator<V> iterator()
        {
          return new TreeIterator(VALUES);
        }

        public void clear()
        {
          TreeMap.this.clear();
        }
      };
    return values;
  }

  /**
   * Compares two elements by the set comparator, or by natural ordering.
   * Package visible for use by nested classes.
   *
   * @param o1 the first object
   * @param o2 the second object
   * @throws ClassCastException if o1 and o2 are not mutually comparable,
   *         or are not Comparable with natural ordering
   * @throws NullPointerException if o1 or o2 is null with natural ordering
   */
  final int compare(K o1, K o2)
  {
    return (comparator == null
            ? ((Comparable) o1).compareTo(o2)
            : comparator.compare(o1, o2));
  }

  /**
   * Maintain red-black balance after deleting a node.
   *
   * @param node the child of the node just deleted, possibly nil
   * @param parent the parent of the node just deleted, never nil
   */
  private void deleteFixup(Node<K,V> node, Node<K,V> parent)
  {
    // if (parent == nil)
    //   throw new InternalError();
    // If a black node has been removed, we need to rebalance to avoid
    // violating the "same number of black nodes on any path" rule. If
    // node is red, we can simply recolor it black and all is well.
    while (node != root && node.color == BLACK)
      {
        if (node == parent.left)
          {
            // Rebalance left side.
            Node<K,V> sibling = parent.right;
            // if (sibling == nil)
            //   throw new InternalError();
            if (sibling.color == RED)
              {
                // Case 1: Sibling is red.
                // Recolor sibling and parent, and rotate parent left.
                sibling.color = BLACK;
                parent.color = RED;
                rotateLeft(parent);
                sibling = parent.right;
              }

            if (sibling.left.color == BLACK && sibling.right.color == BLACK)
              {
                // Case 2: Sibling has no red children.
                // Recolor sibling, and move to parent.
                sibling.color = RED;
                node = parent;
                parent = parent.parent;
              }
            else
              {
                if (sibling.right.color == BLACK)
                  {
                    // Case 3: Sibling has red left child.
                    // Recolor sibling and left child, rotate sibling right.
                    sibling.left.color = BLACK;
                    sibling.color = RED;
                    rotateRight(sibling);
                    sibling = parent.right;
                  }
                // Case 4: Sibling has red right child. Recolor sibling,
                // right child, and parent, and rotate parent left.
                sibling.color = parent.color;
                parent.color = BLACK;
                sibling.right.color = BLACK;
                rotateLeft(parent);
                node = root; // Finished.
              }
          }
        else
          {
            // Symmetric "mirror" of left-side case.
            Node<K,V> sibling = parent.left;
            // if (sibling == nil)
            //   throw new InternalError();
            if (sibling.color == RED)
              {
                // Case 1: Sibling is red.
                // Recolor sibling and parent, and rotate parent right.
                sibling.color = BLACK;
                parent.color = RED;
                rotateRight(parent);
                sibling = parent.left;
              }

            if (sibling.right.color == BLACK && sibling.left.color == BLACK)
              {
                // Case 2: Sibling has no red children.
                // Recolor sibling, and move to parent.
                sibling.color = RED;
                node = parent;
                parent = parent.parent;
              }
            else
              {
                if (sibling.left.color == BLACK)
                  {
                    // Case 3: Sibling has red right child.
                    // Recolor sibling and right child, rotate sibling left.
                    sibling.right.color = BLACK;
                    sibling.color = RED;
                    rotateLeft(sibling);
                    sibling = parent.left;
                  }
                // Case 4: Sibling has red left child. Recolor sibling,
                // left child, and parent, and rotate parent right.
                sibling.color = parent.color;
                parent.color = BLACK;
                sibling.left.color = BLACK;
                rotateRight(parent);
                node = root; // Finished.
              }
          }
      }
    node.color = BLACK;
  }

  /**
   * Construct a perfectly balanced tree consisting of n "blank" nodes. This
   * permits a tree to be generated from pre-sorted input in linear time.
   *
   * @param count the number of blank nodes, non-negative
   */
  private void fabricateTree(final int count)
  {
    if (count == 0)
      {
	root = nil;
	size = 0;
	return;
      }

    // We color every row of nodes black, except for the overflow nodes.
    // I believe that this is the optimal arrangement. We construct the tree
    // in place by temporarily linking each node to the next node in the row,
    // then updating those links to the children when working on the next row.

    // Make the root node.
    root = new Node(null, null, BLACK);
    size = count;
    Node row = root;
    int rowsize;

    // Fill each row that is completely full of nodes.
    for (rowsize = 2; rowsize + rowsize <= count; rowsize <<= 1)
      {
        Node parent = row;
        Node last = null;
        for (int i = 0; i < rowsize; i += 2)
          {
            Node left = new Node(null, null, BLACK);
            Node right = new Node(null, null, BLACK);
            left.parent = parent;
            left.right = right;
            right.parent = parent;
            parent.left = left;
            Node next = parent.right;
            parent.right = right;
            parent = next;
            if (last != null)
              last.right = left;
            last = right;
          }
        row = row.left;
      }

    // Now do the partial final row in red.
    int overflow = count - rowsize;
    Node parent = row;
    int i;
    for (i = 0; i < overflow; i += 2)
      {
        Node left = new Node(null, null, RED);
        Node right = new Node(null, null, RED);
        left.parent = parent;
        right.parent = parent;
        parent.left = left;
        Node next = parent.right;
        parent.right = right;
        parent = next;
      }
    // Add a lone left node if necessary.
    if (i - overflow == 0)
      {
        Node left = new Node(null, null, RED);
        left.parent = parent;
        parent.left = left;
        parent = parent.right;
        left.parent.right = nil;
      }
    // Unlink the remaining nodes of the previous row.
    while (parent != nil)
      {
        Node next = parent.right;
        parent.right = nil;
        parent = next;
      }
  }

  /**
   * Returns the first sorted node in the map, or nil if empty. Package
   * visible for use by nested classes.
   *
   * @return the first node
   */
  final Node<K, V> firstNode()
  {
    // Exploit fact that nil.left == nil.
    Node node = root;
    while (node.left != nil)
      node = node.left;
    return node;
  }

  /**
   * Return the TreeMap.Node associated with key, or the nil node if no such
   * node exists in the tree. Package visible for use by nested classes.
   *
   * @param key the key to search for
   * @return the node where the key is found, or nil
   */
  final Node<K, V> getNode(K key)
  {
    Node<K,V> current = root;
    while (current != nil)
      {
        int comparison = compare(key, current.key);
        if (comparison > 0)
          current = current.right;
        else if (comparison < 0)
          current = current.left;
        else
          return current;
      }
    return current;
  }

  /**
   * Find the "highest" node which is &lt; key. If key is nil, return last
   * node. Package visible for use by nested classes.
   *
   * @param key the upper bound, exclusive
   * @return the previous node
   */
  final Node<K,V> highestLessThan(K key)
  {
    if (key == nil)
      return lastNode();

    Node<K,V> last = nil;
    Node<K,V> current = root;
    int comparison = 0;

    while (current != nil)
      {
        last = current;
        comparison = compare(key, current.key);
        if (comparison > 0)
          current = current.right;
        else if (comparison < 0)
          current = current.left;
        else // Exact match.
          return predecessor(last);
      }
    return comparison <= 0 ? predecessor(last) : last;
  }

  /**
   * Maintain red-black balance after inserting a new node.
   *
   * @param n the newly inserted node
   */
  private void insertFixup(Node<K,V> n)
  {
    // Only need to rebalance when parent is a RED node, and while at least
    // 2 levels deep into the tree (ie: node has a grandparent). Remember
    // that nil.color == BLACK.
    while (n.parent.color == RED && n.parent.parent != nil)
      {
        if (n.parent == n.parent.parent.left)
          {
            Node uncle = n.parent.parent.right;
            // Uncle may be nil, in which case it is BLACK.
            if (uncle.color == RED)
              {
                // Case 1. Uncle is RED: Change colors of parent, uncle,
                // and grandparent, and move n to grandparent.
                n.parent.color = BLACK;
                uncle.color = BLACK;
                uncle.parent.color = RED;
                n = uncle.parent;
              }
            else
              {
                if (n == n.parent.right)
                  {
                    // Case 2. Uncle is BLACK and x is right child.
                    // Move n to parent, and rotate n left.
                    n = n.parent;
                    rotateLeft(n);
                  }
                // Case 3. Uncle is BLACK and x is left child.
                // Recolor parent, grandparent, and rotate grandparent right.
                n.parent.color = BLACK;
                n.parent.parent.color = RED;
                rotateRight(n.parent.parent);
              }
          }
        else
          {
            // Mirror image of above code.
            Node uncle = n.parent.parent.left;
            // Uncle may be nil, in which case it is BLACK.
            if (uncle.color == RED)
              {
                // Case 1. Uncle is RED: Change colors of parent, uncle,
                // and grandparent, and move n to grandparent.
                n.parent.color = BLACK;
                uncle.color = BLACK;
                uncle.parent.color = RED;
                n = uncle.parent;
              }
            else
              {
                if (n == n.parent.left)
                {
                    // Case 2. Uncle is BLACK and x is left child.
                    // Move n to parent, and rotate n right.
                    n = n.parent;
                    rotateRight(n);
                  }
                // Case 3. Uncle is BLACK and x is right child.
                // Recolor parent, grandparent, and rotate grandparent left.
                n.parent.color = BLACK;
                n.parent.parent.color = RED;
                rotateLeft(n.parent.parent);
              }
          }
      }
    root.color = BLACK;
  }

  /**
   * Returns the last sorted node in the map, or nil if empty.
   *
   * @return the last node
   */
  private Node<K,V> lastNode()
  {
    // Exploit fact that nil.right == nil.
    Node node = root;
    while (node.right != nil)
      node = node.right;
    return node;
  }

  /**
   * Find the "lowest" node which is &gt;= key. If key is nil, return either
   * nil or the first node, depending on the parameter first.
   * Package visible for use by nested classes.
   *
   * @param key the lower bound, inclusive
   * @param first true to return the first element instead of nil for nil key
   * @return the next node
   */
  final Node<K,V> lowestGreaterThan(K key, boolean first)
  {
    if (key == nil)
      return first ? firstNode() : nil;

    Node<K,V> last = nil;
    Node<K,V> current = root;
    int comparison = 0;

    while (current != nil)
      {
        last = current;
        comparison = compare(key, current.key);
        if (comparison > 0)
          current = current.right;
        else if (comparison < 0)
          current = current.left;
        else
          return current;
      }
    return comparison > 0 ? successor(last) : last;
  }

  /**
   * Return the node preceding the given one, or nil if there isn't one.
   *
   * @param node the current node, not nil
   * @return the prior node in sorted order
   */
  private Node<K,V> predecessor(Node<K,V> node)
  {
    if (node.left != nil)
      {
        node = node.left;
        while (node.right != nil)
          node = node.right;
        return node;
      }

    Node parent = node.parent;
    // Exploit fact that nil.left == nil and node is non-nil.
    while (node == parent.left)
      {
        node = parent;
        parent = node.parent;
      }
    return parent;
  }

  /**
   * Construct a tree from sorted keys in linear time. Package visible for
   * use by TreeSet.
   *
   * @param s the stream to read from
   * @param count the number of keys to read
   * @param readValues true to read values, false to insert "" as the value
   * @throws ClassNotFoundException if the underlying stream fails
   * @throws IOException if the underlying stream fails
   * @see #readObject(ObjectInputStream)
   * @see TreeSet#readObject(ObjectInputStream)
   */
  final void putFromObjStream(ObjectInputStream s, int count,
                              boolean readValues)
    throws IOException, ClassNotFoundException
  {
    fabricateTree(count);
    Node node = firstNode();

    while (--count >= 0)
      {
        node.key = s.readObject();
        node.value = readValues ? s.readObject() : "";
        node = successor(node);
      }
  }

  /**
   * Construct a tree from sorted keys in linear time, with values of "".
   * Package visible for use by TreeSet, which uses a value type of String.
   *
   * @param keys the iterator over the sorted keys
   * @param count the number of nodes to insert
   * @see TreeSet#TreeSet(SortedSet)
   */
  final void putKeysLinear(Iterator<K> keys, int count)
  {
    fabricateTree(count);
    Node<K,V> node = firstNode();

    while (--count >= 0)
      {
        node.key = keys.next();
        node.value = (V) "";
        node = successor(node);
      }
  }

  /**
   * Deserializes this object from the given stream.
   *
   * @param s the stream to read from
   * @throws ClassNotFoundException if the underlying stream fails
   * @throws IOException if the underlying stream fails
   * @serialData the <i>size</i> (int), followed by key (Object) and value
   *             (Object) pairs in sorted order
   */
  private void readObject(ObjectInputStream s)
    throws IOException, ClassNotFoundException
  {
    s.defaultReadObject();
    int size = s.readInt();
    putFromObjStream(s, size, true);
  }

  /**
   * Remove node from tree. This will increment modCount and decrement size.
   * Node must exist in the tree. Package visible for use by nested classes.
   *
   * @param node the node to remove
   */
  final void removeNode(Node<K,V> node)
  {
    Node<K,V> splice;
    Node<K,V> child;

    modCount++;
    size--;

    // Find splice, the node at the position to actually remove from the tree.
    if (node.left == nil)
      {
        // Node to be deleted has 0 or 1 children.
        splice = node;
        child = node.right;
      }
    else if (node.right == nil)
      {
        // Node to be deleted has 1 child.
        splice = node;
        child = node.left;
      }
    else
      {
        // Node has 2 children. Splice is node's predecessor, and we swap
        // its contents into node.
        splice = node.left;
        while (splice.right != nil)
          splice = splice.right;
        child = splice.left;
        node.key = splice.key;
        node.value = splice.value;
      }

    // Unlink splice from the tree.
    Node parent = splice.parent;
    if (child != nil)
      child.parent = parent;
    if (parent == nil)
      {
        // Special case for 0 or 1 node remaining.
        root = child;
        return;
      }
    if (splice == parent.left)
      parent.left = child;
    else
      parent.right = child;

    if (splice.color == BLACK)
      deleteFixup(child, parent);
  }

  /**
   * Rotate node n to the left.
   *
   * @param node the node to rotate
   */
  private void rotateLeft(Node<K,V> node)
  {
    Node child = node.right;
    // if (node == nil || child == nil)
    //   throw new InternalError();

    // Establish node.right link.
    node.right = child.left;
    if (child.left != nil)
      child.left.parent = node;

    // Establish child->parent link.
    child.parent = node.parent;
    if (node.parent != nil)
      {
        if (node == node.parent.left)
          node.parent.left = child;
        else
          node.parent.right = child;
      }
    else
      root = child;

    // Link n and child.
    child.left = node;
    node.parent = child;
  }

  /**
   * Rotate node n to the right.
   *
   * @param node the node to rotate
   */
  private void rotateRight(Node<K,V> node)
  {
    Node child = node.left;
    // if (node == nil || child == nil)
    //   throw new InternalError();

    // Establish node.left link.
    node.left = child.right;
    if (child.right != nil)
      child.right.parent = node;

    // Establish child->parent link.
    child.parent = node.parent;
    if (node.parent != nil)
      {
        if (node == node.parent.right)
          node.parent.right = child;
        else
          node.parent.left = child;
      }
    else
      root = child;

    // Link n and child.
    child.right = node;
    node.parent = child;
  }

  /**
   * Return the node following the given one, or nil if there isn't one.
   * Package visible for use by nested classes.
   *
   * @param node the current node, not nil
   * @return the next node in sorted order
   */
  final Node<K,V> successor(Node<K,V> node)
  {
    if (node.right != nil)
      {
        node = node.right;
        while (node.left != nil)
          node = node.left;
        return node;
      }

    Node<K,V> parent = node.parent;
    // Exploit fact that nil.right == nil and node is non-nil.
    while (node == parent.right)
      {
        node = parent;
        parent = parent.parent;
      }
    return parent;
  }

  /**
   * Serializes this object to the given stream.
   *
   * @param s the stream to write to
   * @throws IOException if the underlying stream fails
   * @serialData the <i>size</i> (int), followed by key (Object) and value
   *             (Object) pairs in sorted order
   */
  private void writeObject(ObjectOutputStream s) throws IOException
  {
    s.defaultWriteObject();

    Node node = firstNode();
    s.writeInt(size);
    while (node != nil)
      {
        s.writeObject(node.key);
        s.writeObject(node.value);
        node = successor(node);
      }
  }

  /**
   * Iterate over TreeMap's entries. This implementation is parameterized
   * to give a sequential view of keys, values, or entries.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private final class TreeIterator implements Iterator
  {
    /**
     * The type of this Iterator: {@link #KEYS}, {@link #VALUES},
     * or {@link #ENTRIES}.
     */
    private final int type;
    /** The number of modifications to the backing Map that we know about. */
    private int knownMod = modCount;
    /** The last Entry returned by a next() call. */
    private Node last;
    /** The next entry that should be returned by next(). */
    private Node next;
    /**
     * The last node visible to this iterator. This is used when iterating
     * on a SubMap.
     */
    private final Node max;

    /**
     * Construct a new TreeIterator with the supplied type.
     * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
     */
    TreeIterator(int type)
    {
      // FIXME gcj cannot handle this. Bug java/4695
      // this(type, firstNode(), nil);
      this.type = type;
      this.next = firstNode();
      this.max = nil;
    }

    /**
     * Construct a new TreeIterator with the supplied type. Iteration will
     * be from "first" (inclusive) to "max" (exclusive).
     *
     * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
     * @param first where to start iteration, nil for empty iterator
     * @param max the cutoff for iteration, nil for all remaining nodes
     */
    TreeIterator(int type, Node first, Node max)
    {
      this.type = type;
      this.next = first;
      this.max = max;
    }

    /**
     * Returns true if the Iterator has more elements.
     * @return true if there are more elements
     */
    public boolean hasNext()
    {
      return next != max;
    }

    /**
     * Returns the next element in the Iterator's sequential view.
     * @return the next element
     * @throws ConcurrentModificationException if the TreeMap was modified
     * @throws NoSuchElementException if there is none
     */
    public Object next()
    {
      if (knownMod != modCount)
        throw new ConcurrentModificationException();
      if (next == max)
        throw new NoSuchElementException();
      last = next;
      next = successor(last);

      if (type == VALUES)
        return last.value;
      else if (type == KEYS)
        return last.key;
      return last;
    }

    /**
     * Removes from the backing TreeMap the last element which was fetched
     * with the <code>next()</code> method.
     * @throws ConcurrentModificationException if the TreeMap was modified
     * @throws IllegalStateException if called when there is no last element
     */
    public void remove()
    {
      if (last == null)
        throw new IllegalStateException();
      if (knownMod != modCount)
        throw new ConcurrentModificationException();

      removeNode(last);
      last = null;
      knownMod++;
    }
  } // class TreeIterator

  /**
   * Implementation of {@link #subMap(Object, Object)} and other map
   * ranges. This class provides a view of a portion of the original backing
   * map, and throws {@link IllegalArgumentException} for attempts to
   * access beyond that range.
   *
   * @author Eric Blake (ebb9@email.byu.edu)
   */
  private final class SubMap<SK extends K,SV extends V>
    extends AbstractMap<SK,SV>
    implements SortedMap<SK,SV>
  {
    /**
     * The lower range of this view, inclusive, or nil for unbounded.
     * Package visible for use by nested classes.
     */
    final SK minKey;

    /**
     * The upper range of this view, exclusive, or nil for unbounded.
     * Package visible for use by nested classes.
     */
    final SK maxKey;

    /**
     * The cache for {@link #entrySet()}.
     */
    private Set<Map.Entry<SK,SV>> entries;

    /**
     * Create a SubMap representing the elements between minKey (inclusive)
     * and maxKey (exclusive). If minKey is nil, SubMap has no lower bound
     * (headMap). If maxKey is nil, the SubMap has no upper bound (tailMap).
     *
     * @param minKey the lower bound
     * @param maxKey the upper bound
     * @throws IllegalArgumentException if minKey &gt; maxKey
     */
    SubMap(SK minKey, SK maxKey)
    {
      if (minKey != nil && maxKey != nil && compare((K) minKey, (K) maxKey) > 0)
        throw new IllegalArgumentException("fromKey > toKey");
      this.minKey = minKey;
      this.maxKey = maxKey;
    }

    /**
     * Check if "key" is in within the range bounds for this SubMap. The
     * lower ("from") SubMap range is inclusive, and the upper ("to") bound
     * is exclusive. Package visible for use by nested classes.
     *
     * @param key the key to check
     * @return true if the key is in range
     */
    boolean keyInRange(SK key)
    {
      return ((minKey == nil || compare((K) key, (K) minKey) >= 0)
              && (maxKey == nil || compare((K) key, (K) maxKey) < 0));
    }

    public void clear()
    {
      Node next = lowestGreaterThan(minKey, true);
      Node max = lowestGreaterThan(maxKey, false);
      while (next != max)
        {
          Node current = next;
          next = successor(current);
          removeNode(current);
        }
    }

    public Comparator<? super SK> comparator()
    {
      return comparator;
    }

    public boolean containsKey(Object key)
    {
      return keyInRange((SK) key) && TreeMap.this.containsKey(key);
    }

    public boolean containsValue(Object value)
    {
      Node node = lowestGreaterThan(minKey, true);
      Node max = lowestGreaterThan(maxKey, false);
      while (node != max)
        {
          if (equals(value, node.getValue()))
            return true;
          node = successor(node);
        }
      return false;
    }

    public Set<Map.Entry<SK,SV>> entrySet()
    {
      if (entries == null)
        // Create an AbstractSet with custom implementations of those methods
        // that can be overriden easily and efficiently.
        entries = new AbstractSet<Map.Entry<SK,SV>>()
        {
          public int size()
          {
            return SubMap.this.size();
          }

          public Iterator<Map.Entry<SK,SV>> iterator()
          {
            Node first = lowestGreaterThan(minKey, true);
            Node max = lowestGreaterThan(maxKey, false);
            return new TreeIterator(ENTRIES, first, max);
          }

          public void clear()
          {
            SubMap.this.clear();
          }

          public boolean contains(Object o)
          {
            if (! (o instanceof Map.Entry))
              return false;
            Map.Entry<SK,SV> me = (Map.Entry<SK,SV>) o;
            SK key = me.getKey();
            if (! keyInRange(key))
              return false;
            Node<K,V> n = getNode((K) key);
            return n != nil && AbstractSet.equals(me.getValue(), n.value);
          }

          public boolean remove(Object o)
          {
            if (! (o instanceof Map.Entry))
              return false;
            Map.Entry<SK,SV> me = (Map.Entry<SK,SV>) o;
            SK key = me.getKey();
            if (! keyInRange(key))
              return false;
            Node<K,V> n = getNode((K) key);
            if (n != nil && AbstractSet.equals(me.getValue(), n.value))
              {
                removeNode(n);
                return true;
              }
            return false;
          }
        };
      return entries;
    }

    public SK firstKey()
    {
      Node<SK,SV> node = (Node<SK,SV>) lowestGreaterThan(minKey, true);
      if (node == nil || ! keyInRange(node.key))
        throw new NoSuchElementException();
      return node.key;
    }

    public SV get(Object key)
    {
      if (keyInRange((SK) key))
        return (SV) TreeMap.this.get(key);
      return null;
    }

    public SortedMap<SK,SV> headMap(SK toKey)
    {
      if (! keyInRange(toKey))
        throw new IllegalArgumentException("key outside range");
      return new SubMap(minKey, toKey);
    }

    public Set<SK> keySet()
    {
      if (this.keys == null)
        // Create an AbstractSet with custom implementations of those methods
        // that can be overriden easily and efficiently.
        this.keys = new AbstractSet()
        {
          public int size()
          {
            return SubMap.this.size();
          }

          public Iterator<SK> iterator()
          {
            Node first = lowestGreaterThan(minKey, true);
            Node max = lowestGreaterThan(maxKey, false);
            return new TreeIterator(KEYS, first, max);
          }

          public void clear()
          {
            SubMap.this.clear();
          }

          public boolean contains(Object o)
          {
            if (! keyInRange((SK) o))
              return false;
            return getNode((K) o) != nil;
          }

          public boolean remove(Object o)
          {
            if (! keyInRange((SK) o))
              return false;
            Node n = getNode((K) o);
            if (n != nil)
              {
                removeNode(n);
                return true;
              }
            return false;
          }
        };
      return this.keys;
    }

    public SK lastKey()
    {
      Node<SK,SV> node = (Node<SK,SV>) highestLessThan(maxKey);
      if (node == nil || ! keyInRange(node.key))
        throw new NoSuchElementException();
      return (SK) node.key;
    }

    public SV put(SK key, SV value)
    {
      if (! keyInRange(key))
        throw new IllegalArgumentException("Key outside range");
      return (SV) TreeMap.this.put(key, value);
    }

    public SV remove(Object key)
    {
      if (keyInRange((SK)key))
        return (SV) TreeMap.this.remove(key);
      return null;
    }

    public int size()
    {
      Node node = lowestGreaterThan(minKey, true);
      Node max = lowestGreaterThan(maxKey, false);
      int count = 0;
      while (node != max)
        {
          count++;
          node = successor(node);
        }
      return count;
    }

    public SortedMap<SK, SV> subMap(SK fromKey, SK toKey)
    {
      if (! keyInRange(fromKey) || ! keyInRange(toKey))
        throw new IllegalArgumentException("key outside range");
      return new SubMap(fromKey, toKey);
    }

    public SortedMap<SK, SV> tailMap(SK fromKey)
    {
      if (! keyInRange(fromKey))
        throw new IllegalArgumentException("key outside range");
      return new SubMap(fromKey, maxKey);
    }

    public Collection<SV> values()
    {
      if (this.values == null)
        // Create an AbstractCollection with custom implementations of those
        // methods that can be overriden easily and efficiently.
        this.values = new AbstractCollection()
        {
          public int size()
          {
            return SubMap.this.size();
          }

          public Iterator<SV> iterator()
          {
            Node first = lowestGreaterThan(minKey, true);
            Node max = lowestGreaterThan(maxKey, false);
            return new TreeIterator(VALUES, first, max);
          }

          public void clear()
          {
            SubMap.this.clear();
          }
        };
      return this.values;
    }
  } // class SubMap  
} // class TreeMap