CMake

Cross-platform Make

| ntroduction

The Cross-Platform Make fecility (CMake) manages the build process—in a portable manne—across
Windows and Unix platforms (hopefully Mac as well in the near future). CMake can be used to compile
source code, cregte libraries, and build executables in arbitrary combinations. On Unix platforms,
CMake produces makefiles that may be used with the standard make facility. In the Microsoft Visud
C++ environment, CMake cresates projects and workspaces that can be imported into MSVC.

CMake is desgned to support complex directory hierarchies and applications dependent on severd

libraries. For example, CMake supports projects consisting of multiple toolkits (i.e., libraries), where
each toolkit might contain severd directories, and the gpplication depends on the toolkits plus additiona
code. CMake can dso handle situations where executables must be built in order to generate code that
isthen compiled and linked into a find gpplication.

Usng CMake is smple. The build process is controlled by cresting a CMakeLidsitxt file in each
directory (including subdirectories) of a project. Each CMakelLigstxt file congsts of one or more
commands. Each command has the form COMMAND (args...) where COMMAND is the name of
the command, and args is a white-space separated list of arguments. CMake provides many pre-
defined commands, but if you need to, you can add your own commands. In addition, the advanced
user can add other makefile generators for particular compiler/OS combinations.

| nstalling CM ake

You can download and ingtdl precompiled binaries of CMake for Windows and UNIX from
http://public.kitware.com/CMake. If you want to build CMake yourself, you can download the source
code using CV'S (available at http://cvshome.org) and typing:

cvs -d :pserver:anonymous@public.kitware.com:/CMake/cvsroot login
(respond with password cmake)

Follow this command by checking out the source code:
cvs -d :pserver:anonymous@public.kitware.com:/CMake/cvsroot co CMake

Then you can build CMake on Windows by loading the CMake.Source/CM ake.dsp file into Microsoft
Visud Studio or on UNIX by running:

cd CMake
Jeonfigure
make
meke ingdl

On UNIX, if you are not using the GNU C++ compiler, you need to tell configure which compiler you
want to use. Thisis done by setting the environment variable CXX before running configure. If you
need to use any specid flags with your compiler use the CXXFLAGS varigble.

For example on the SGI with the 7.3X compiler, you build like this:
cd CMake

(setenv CXX CC; setenv CXXFLAGS “-LANG:gd”; /configure)
make

meke ingdll

Running CM ake

Once CMake has been ingtdled on your system using it to build a project is easy. We will cover the
process for Windows and then UNIX.

Running CMake for Windows/ Microsoft Visual C++ (MSVC)

Run CMakeSetup.exe which should be in your Start menu under Program Files, there may aso be a
shortcut on your desktop. A GUI will gppear smilar to what is shown below (but possbly different as
CMake is dill being developed). The top two entries are the source code and binary directories. They
dlow you to specify where the source code is for what you want to compile and where the resulting
binaries should be placed. Y ou should set these two vauesfirg. If the binary directory you specify does
not exig, it will be created for you The Build for option, alows you to sdect which type of build files
are generated. Currently, on windows, visud studio 6 and Borland makefiles are supported.

=10l x|
Wwhere iz the zource code; IE;Hanfman'-.vtknew j Er-:lwse...l Build Far:

“Where o build the binaries: (BRI fre e = e - Eru:nwse...l |‘-.nfisual Studio & j

WinM T AfC++60 -
OM

OFF

OFF

0N

WC++E0

i3 21000 G /GR

MDd /Zi /0d /52

/MD /01

/MD /02 |

— Cache Walues

Right click on cache entries for additional options

Canfigure (] | Cancel |

Yerzion 0.93

The cache vaues area is where you can specify different options for the build process. The example
shown below is for VTK which has a large number of options. Once you have specified the source
code and binary directories you should click the Configure button. Thiswill cause CMaketo read in the
CMakeLigs.txt files from the source code directory and the cache area to be updated to display any
new options for the project. Adjust your cache settings if desired and click the Configure button again.
New vaues that were caused by the configure process will be colored red. To be sure you have seen
al possble vaues you should click Configure until no vaues are red and your are happy with al the
stings. Once you are done configuring, click the OK button, this will produce Microsoft Visud C++
workspaces and exit CMakeSetup.exe.

CMakeSetup.exe generates a M SV C workspace file in the binary directory you specified. Typicdly this
file has the same name as what you are compiling (e.g. VTK.dsp, ITK.dsw €tc).

The next step in this process is to open the workspace with MSVC. Once open, the project can be
built in the norma manner of Microsoft Visud C++. The ALL_BUILD target can be used to build dl of
the libraries and executables in the package.

Running CMake on Unix

If you have FLTK ingtaled on your machine, a UNIX GUI will be produced for cmake. It is called
CMakeSetup and is smilar to the Windows GUI described above. The only differenceisthat it

produces makefiles and not Microsoft project files. If you do not have FLTK, see the indructions for
running CMake from the command line.

Running CMake from the command line

Usng CMake to build a project from the command line is a Smple process. Change directory into
where you want the binaries to be placed. This can be the same directory as the source code for what
we cdl in-place builds (the binaries are in the same place as the source code) or it can be a new
directory you create. For an in-place build you then run cmake and it will produce a CMakeCache.txt
file that contains build options that you can adjust using any text editor. For non in-place builds the
process is the same except you run cmake and provide the path to the source code as its argument.
Once you have edited the CMakeCacheitxt file you rerun cmake, repeat this process until you are
happy with the cache settings. The type make and your project should compile. Some projects will have
inddl targets as well 0 you can type make ingdl to indal them.

Two examples of CMake usage on the Unix platform follow for a hello world project cdled Hdlo. In
the first example, and in-place build is performed, i.e,, the binaries are placed in the same directory as
the source code.

cd Hdlo

cmake

(optiondly edit CMakeCache.txt and rerun cmake)
make

In the second example, an out-of-place build is performed, i.e., the source code, libraries, and
executables are produced in a directory separate from the source code directory(ies).

mkdir Hello-Linux

cd Hello-Linux

cmake ./Hdlo

(optiondly edit CMakeCache.txt and rerun cmake ../Hello)
make

What isthe CM ake cache?

The cacheis better thought of as a configuration file. Indeed Unix users could consider the cache as
equivaent to the set of flags passed to the configure command. Thefirgt time CMake is run, it produces
aCMakeCachetxt file. Thisfile contains things like the existence and location of native JPEG library.
The entries are added in response to certain CMake commands (e.g. FIND_LIBRARY) asthey are
processed anywhere in CMakeligts files anywhere in the source tree.

After CMake has been run, and created a CMakeCache.txt file - you may edit it. The CMake GUI,
will dlow you to edit the options easlly, or you can edit thefile directly. The main reason for editing the
cache would be to give CMake the location of a native library such as JPEG, or to stop it from using a
native library and use aversion of the library in your source tree.

CMakewill not dter an exiging entry in the cachefile itsdf. If your CMakeligsitxt files change
ggnificantly, you will need to remove the rdevant entries from the cache file. If you have not dready
hand- edited the cache file, you could just delete it before re-running CMake.

Why do | haveto edit the cache more than once for some pr ojects?

Some projects are very complex and setting one vaue in the cache may cause new options to appear
the next time the cache is built. For example, VTK supports the use of MPI for performing distributed
computing. This requires the build process to determine where the MP! libraries and header files are
ad to let the user adjust ther vaues But MPl is only avalable if another option
VTK_USE PARALLEL isfirg turned on in VTK. So to avoid confusion for people who don’t know
what MP! is, we hide those options until VTK_USE _PARALLEL isturned on. So CMake shows the
VTK_USE PARALLEL option in the cache areq, if the user turns that on and rebuilds the cache, new
options will gppear for MPI that they can then set. The ruleis to keep building the cache until it doesn't
change. For most projects thiswill be just once. For some complicated ones it will be twice.

Developer's Guide

This section describes how to use CMake from the software developer’s point of view. That is, if your
am is to use CMake to manage your build process, read this section first. An Extenson Guide follows
later in this document to explain the internas of CMake, and how to setup the CMake environment.
Read that section only if you plan to ingal, extend, or enhance the features of CMake. This section of
the Usar’s Guide begins with a description of the CMake inputs. Examples then follow to clarify these
descriptions.

Input to CMake

CMake sinput is the text file CMakeLigtsitxt in your source directory. Thisinput file specifies the things
that need to be built in the current directory. The CMakeLigtsitxt conssts of one or more commands.
Each command is of the form:

COMMAND(args...)
Where COMMAND is the name of the command, and args is a white-space separated list of

arguments to the command. (Arguments with embedded white-space should be quoted.) Typicaly there
will be a CMakeLigsitxt file for each directory of the project. Let’'s $art with a smple example.

Consder building hello world. Y ou would have a source tree with the following files
Hello.c CMakeligsixt
The CMakeLigsitxt file would contain two lines:

PROJECT (Hello)
ADD_EXECUTABLE(Helo Helo.)

To build the Hello executable you just follow the process described in Running CMake above to
generate the makefiles or Microsoft project files. The PROJECT command indicates what the name of
the resulting workspace should be and the ADD_EXECUTABLE command adds an executable target
to the build process. That's dl thereisto it for this smple example. If your project requires afew files it
is aso quite easy, just modify the ADD_EXECUTABLE line as shown below.

ADD_EXECUTABLE(H€lo Hello.c File2.c File3.c File4.c)

ADD_EXECUTABLE is jus one of many commands avalable in CMake. Condder the more
complicated example below.

PROJECT (HELLO)
SOURCE_FILES(HELLO_SRCS Hdlo.c File2.c File3.c)
IF (WIN32)

SOURCE_FILES(HELLO_SRCS WinSupport.c)
EL SE (WIN32)

SOURCE_FILES(HELLO_SRCS UnixSupport.c)
ENDIF (WIN32)
ADD_EXECUTABLE (Hello HELLO_SRCS)

#look for the Tdl library

FIND_LIBRARY(TCL_LIBRARY NAMEStd tcl84 tcl83 tcl82 tcl80
PATHS /ugl/lib /usr/locallib)

IF (TCL_LIBRARY)
TARGET_ADD_LIBRARY (Hedlo TCL_LIBRARY)

ENDIF (TCL_LIBRARY)

In this example the SOURCE_FILES command is used to group together source filesinto alist. The IF
command is used to add ether WinSupport.c or UnixSupport.c to this lis. And findly the
ADD_EXECUTABLE command is used to build the executable with the files listed in the source list
HELLO_SRCS. The FIND_LIBRARY command looks for the Tdl library under afew different names
and in afew different paths, and if it isfound addsit to the link line for the Hello executable target. Note
the use of the # character to denote a comment line.

CMake dways defines some variables for use within CMakel it files. For example, WIN32 is dways
defined on windows systems and UNIX is dways defined for UNIX systems. CMake defines a number
of commands. A brief summary of the most commonly used commands follows here. Later in the
document an exhaudtive lig of dl pre-defined commands is presented. (You may dso add your own
commands, see the Extenson Guide for more information.)

A) Build Targets

B)

SOURCE_FILES/)

SUBDIRS()

ADD_LIBRARY()
ADD_EXECUTABLE()
AUX_SOURCE._DIRECTORY ()
PROJECT()

CMake works recursively, descending from the current directory into any subdirectories listed
in the SUBDIRS command. The command SOURCE_FILES is used for grouping source files
together for later use. (Note currently only C and C++ code can be compiled.)
ADD_LIBRARY adds a libray to the lig of targets this makefile will produce.
ADD_EXECUTABLE adds an executable to the list of targets this makefile will produce.
(Note: source code is compiled firgt, then libraries are built, and then executables are created.)
The AUX_SOURCE DIRECTORY is a directory where other source code, not in this
directory, whose object code is to be inserted into the current LIBRARY . All sourcefilesinthe
AUX_SOURCE_DIRECTORY are compiled (eg. *.c, *.cxx, *.cpp, etc.). PROJECT
(PojectName) is a specia variable used in the MSVC to create the project for the compiler, it
aso defines two useful varidbles for CMAKE: ProjectName SOURCE DIR and
ProjectName BINARY_DIR.

Build flags and options. In addition to the commands listed above, CMakel igsitxt often
contain the following commands.

INCLUDE_DIRECTORIES()
LINK_DIRECTORIES()
LINK_LIBRARIES()
TARGET_LINK_LIBRARIES()

These commands define directories and libraries used to compile source code and build
executables. An important feature of the commands listed above is that are inherited by any
subdirectories. That is, as CMake descends through a directory hierarchy (defined by
SUBDIRY()) these commands are expanded each time a definition for a command is
encountered. For example, if in the toplevd CMakelids file has
INCLUDE_DIRECTORIES(/us/include), with SUBDIRS(/subdirl), and the file
Jsubdirl/CMakelLists.txt has INCLUDE_DIRECTORIES(/tmp/foobar), then the net result is

INCLUDE_DIRECTORIES(/usr/include /tmp/foobar)

C) CMake comes with a number of modules that look for commonly used packages such as
OpenGL or Java. These modules save you from having to write al the CMake code to find
these packages yoursdf. Modules can be used by including them into your CMakelis file as
shown below.

INCLUDE (${ CMAKE_ROOT}/Modules/FindTCL .cmake)

CMAKE_ROOT is aways defined in CMake and can be used to point to where CMake was
ingtdled. Looking through some of the files in the Modules subdirectory can provide good ideas
on how to use some of the CMake commands.

Adding A New Directory to a project
A common way to extend a project isto add a new directory. This involves three steps:

1. Create the new directory somewhere in your source directory hierarchy.
2. Add the new directory to the SUBDIRS command in the parent directories CMakel igs.txt

3. Create aCMakeligsitxt in the new directory with the gppropriate commands

CMake Commands
Thefollowing is an exhaudive lig of pre-defined CMake commands, with brief descriptions.

ABSTRACT_FILES - A list of abgtract classes, useful for wrappers.
Usage: ABSTRACT_FILES(filel file2 ..)

ADD_CUSTOM_TARGET - Add an extratarget to the build system that does not produce
output, S0 it isrun each time the target is built.

Usage: ADD_CUSTOM_TARGET(Name[ALL] command arg arg arg ...) The ALL option
isoptiond. If it is gpecified it indicates that this target should be added to the Build dl target.

ADD_DEFINITIONS - Add -D define flags to command line for environments.
Usage: ADD_DEFINITIONS(-DFOO -DBAR ...) Add -D define flags to command line for
environments.

ADD_DEPENDENCIES - Add an dependency to atarget

Usage: ADD_DEPENDENCIES(target- name depend-target depend-target) Add a
dependency to atarget. Thisis only used to add dependeci es between one executable and
another. Regular build dependencies are handled automaticaly.

ADD EXECUTABLE - Add an executable to the project that uses the specified srclists
Usage: ADD_EXECUTABLE(exename scligt srdligt srclist ...)
ADD_EXECUTABLE(exename WIN32 scligt srcligt sralist ...) This command adds an
executable target to the current directory. The executable will be built from the source files/
source lists specified. The second argument to this command can be WIN32 which indicates
that the executable (when compiled on windows) is awindows app (using WinMain)not a
console gpp (using main).

ADD_LIBRARY - Add an library to the project that uses the specified srclists

Usage: ADD_LIBRARY (libname [SHARED | STATIC | MODULE] gdig scligt ...) Addsa
library target. SHARED, STATIC or MODULE keywords are used to st the library type. If
the keywork MODULE appears, the library typeis set to MH_BUNDLE on systemswhich
use dyld. Systems without dyld MODULE is trested like SHARED. If no keywords appear as
the second argument, the type defaults to the current value of BUILD_SHARED LIBS. If this
variableis not s, the type defaultsto STATIC.

ADD_TEST - Add atest to the project with the specified arguments.

Usage: ADD_TEST (testhame exename argl arg2 arg3 ...) If the ENABLE_TESTING
command has been run, this command adds atest target to the current directory. If
ENABLE_TESTING has notbeen run, this command does nothing. The tests are run by the
testing subsystemn by executing exename with the pecified arguments. exename can be ether an
executable built by built by this project or an arbitrary executable on the system (like tclsh).

AUX_SOURCE_DIRECTORY - Add dl the source files found in the pecified directory to
the build as source lis NAME.
Usage: AUX_SOURCE_DIRECTORY (dir srcListName)

BUILD_COMMAND - Determine the command line that will build this project.
Usage: BUILD_COMMAND(NAME) Within CMAKE st NAME to the command that will
build this project from the command line.

BUILD_NAME - Set aCMAKE variable to the build type.
Usage: BUILD_NAME(NAME) Within CMAKE sets NAME to the build type.

CABLE_CLASS SET - Define aset of classes for use in other CABLE commands.

Usage: CABLE CLASS SET(set nameclassl class2 ...) Defines a set with the given name
containing classes and their associated header files. The set can later be used by other CABLE
commands.

CABLE_WRAP_TCL - Wrap ast of classesin Tcl.

Usage: CABLE WRAP_TCL (target classl class2 ...) Wrap the given sat of classesin Tcl
using the CABLE tool. The set of source files produced for the given package name will be
added to a source list with the given name.

CONFIGURE_FILE - Create afile from an autoconf sylefileinfile

Usage: CONFIGURE_FILE(InputFile OutputFile [COPYONLY] [ESCAPE_QUOTES]
[IMMEDIATE]) The Input and Ouput files have to have full paths They can aso use varigbles
like CMAKE_BINARY_DIR,CMAKE_SOURCE_DIR. This command replaces any
variablesin the input file with their values as determined by CMake. If avariablesin not defined,
it will be replaced with nothing. If COPYONLY is passed in, then then no varible expansion will
take place. If ESCAPE_QUOTES is passed in then any substitued quotes will be C style
escaped. If IMMEDIATE is specified, then the file will be configured with the current values of
CMake varigbles ingtead of waiting until the end of CMakeLists processing.

CONFIGURE_GCCXML - Configure the flags needed for GCC-XML to run.

Usage: CONFIGURE_GCCXML (exe location flags_def) Configures the flags GCC-XML
needs to parse source code just as the current compiler would. Thisincludes using the
compiler's standard header files. First argument isinput of the full path to the GCC-XML
executable. The second argument should be the name of a cache entry to set with the flags
chosen.

EL SE - dartsthe else portion of an if block
Usage: ELSE(args), Note that the args for the EL SE clause must match those of the IF clause.
See the IF command for more informétion.

ENABLE_TESTING - Enable testing for this directory and below.
Usage: ENABLE TESTING() Enablestesting for this directory and below. See dso the
ADD_TEST command.

ENDFOREACH - ends aforeach block
Usage: ENDFOREACH(define)

ENDIF - endsan if block
Usage: ENDIF(define)

EXEC_PROGRAM - Run and executable program during the processing of the
CMakelLigt.txt file.
Usage: EXEC_PROGRAM (Executble)

FIND FILE - Find afile.
Usage: FIND_FILE(NAME file extrapath extrapath ...)

FIND_LIBRARY - Find alibrary.

Usage: FIND_LIBRARY (DEFINE_PATH libraryName [NAMES] namel name2 name3
[PATHS pathl path2 path3...]) If thelibrary isfound, then DEFINE_PATH is st to the full
path where it was found

FIND_PATH - Find apath for afile.
Usage: FIND_PATH(PATH_DEFNE fileName pathl path2 path3...) If thefileisfound, then
PATH_DEFINE is st to the path where it was found

FIND_PROGRAM - Find an executable program.
Usage: FIND_PROGRAM(NAME executablel extrapath extrapath ...)

FOREACH - gart aforeach loop
Usage: FOREACH (define argl arg2 arg2) Starts a foreach block.

GET_FILENAME_COMPONENT - Get aspecific component of afull filename.

Usage: GET_FILENAME_COMPONENT(VarName FileName
PATHINAME|EXTINAME_WE) Set VarName to be the path (PATH), file name (NAME),
file extengon (EXT) or file name without extenson (NAME_WE) of FileName. Note that the
path is converted to Unix dashes format and has no trailing dashes. The longest file extenson is
aways considered.

| F - start an if block

Usage: IF (define) Starts an if block. Optiondly it can be invoked using (NOT define) (def
AND def2) (def OR def2) (def MATCHES def2) MATCHES checks if def matches the
regular expression def2

INCLUDE - Bascdly identicd to a C #include "somthing” command.
Usage: INCLUDE(filel [OPTIONAL]) If OPTIONAL is present, then do not complain if the
file does not exig.

INCLUDE_DIRECTORIES - Add include directories to the build.
Usage: INCLUDE_DIRECTORIES(dirl dir2 ...)

INCLUDE_REGULAR_EXPRESSION - Set the regular expression used for dependency
checking.

Usage: INCLUDE_REGULAR_EXPRESSION(regex_matich [regex_complain]) Set the
regular expressions used in dependency checking. Only files matching regex_match will be
traced as dependencies. Only files matching regex_complain will generate warnings if they
cannot be found (standard header paths are not searched). The defaults are: regex_match =
"Ax$" (match everything) regex_complain =""$" (match empty string only)

INSTALL FILES - Createinddl rulesfor files

Usage: INSTALL_FILES(path extenson gclit filefilesclist ...) INSTALL_FILES(path
regexp) Create rulesto indal the listed files into the path. Path isrelative to the variable
CMAKE_INSTALL_PREFIX. There are two forms for this command. In the first the files can
be specified explicitly or by referenceing source ligs. All files must elther have the extenson
Specified or exist with the extenson appended. A typical extensonis.h etc... In the second
form any filesin the current directory that match the regular expression will be ingdled.

INSTALL_PROGRAMS- Create ingdl rulesfor programs

Usage: INSTALL_PROGRAM S(path filefile...) INSTALL_PROGRAM S(path regexp)
Create rulesto ingd|l the listed programs into the path. Peth isrelaive to the varidble
CMAKE _INSTALL_PREFIX. There are two forms for this command. In thefirst the
programs can be specified explicitly. In the second form any program in the current directory
that match the regular expresson will be ingdled.

INSTALL _TARGETS - Create ingdl rulesfor targets
Usage: INSTALL_TARGETS(path target target) Create rulesto ingtd| the listed targets into
the path. Path is rdative to the variable PREFI X

LINK_DIRECTORIES - Specify link directories.

Usage: LINK_DIRECTORIES(directoryl directory?2 ...) Specify the paths to the libraries that
will be linked in. The directories can use built in definitions like CMAKE_BINARY_DIR and
CMAKE_SOURCE_DIR.

LINK_LIBRARIES - Specify alig of librariesto be linked into executables or shared
objects.

Usage: LINK_LIBRARIES(libraryl library?2 ...) Specify aligt of libraries to be linked into
executables or shared objects. This command is passed down to al other commands. The
debug and optimized strings may be used to indicate that the next library listed isto be used only
for that specific type of build

LOAD_CACHE - load in the vaues from another cache.

Usage: LOAD_CACHE(pathToCacheFile [EXCLUDE entry1..] [INCLUDE_INTERNALS
entryl...]) Load in the values from another cache. Thisis useful for a project that depends on
another project built in a different tree EXCLUDE option can be used to provide alist of entries
to beincluded.INCLUDE_INTERNALS can be used to provide aligt of internd entriesto be
included. Normally, no internd entries are brougt in.

MAKE_DIRECTORY - Cregte adirectory in the build treeif it does not exist. Parent
directories will be created if the do not exi<t.
Usage: MAKE_DIRECTORY (directory)

M ESSAGE - Display a message to the user.

Usage: MESSAGE("the message to display™ "Title for didog") The first argument isthe
message to digplay. The second argument is optiond and isthetitle for the didog box on
windows.

OPTION - Provides an option thet the user can optiondly select
Usage: OPTION(USE_MP "hdp string decribing the option™ [initid value]) Provide an option
for the user to select

OUTPUT_REQUIRED_FILES - Output alist of required source files for a specified source
file

Usage: OUTPUT_REQUIRED FILES(scfile outputfile) Outputs alist of dl the source files
that are required by the specified srcfile. Thisligt iswritten into outputfile. Thisis Smilar to
writing out the dependencies for srcfile except that it jumps from .hfilesinto .cxx, .c and .cpp
filesif posshle

PROJECT - Set aname for the entire project. One argument.
Usage: PROJECT (projectname) Sets the name of the Microsoft workspace .dsw file. Does
nothing on UNIX currently

SET - Set aCMAKE variableto avalue

Usage: SET(VAR [VALUE] [CACHE TYPE DOCSTRING]) Within CMAKE sets VAR to
the vdlue VALUE. VALUE is expanded before VAR is st to it. If CACHE is present, then the
VAR isput in the cache. TYPE and DOCSTRING are required. If TYPE isINTERNAL, then
the VALUE is Always written into the cache, replacing any vaues exiging in the cache. If it is
not a CACHE VAR, then this dways writes into the current makefile.

SITE_NAME - Set aCMAKE variable to the name of this computer.
Usage: SSTE NAME(NAME) Within CMAKE sets NAME to the host name of the
computer.

SOURCE_FILES - Add aligt of sourcefiles, associate them with aNAME.
Usage: SOURCE_FILES(NAME filel file2 ...)

SOURCE_FILES REMOVE - Removealig of source files- associated with NAME.
Usage: SOURCE_FILES REMOVE(NAME filel file2 ...)

SOURCE_GROUP - Define agrouping for sources in the makefile.

Usage: SOURCE _GROUP(name regex) Defines a new source group. Any file whose name
matches the regular expression will be placed in this group. The LAST regular expresson of all
defined SOURCE_GROUPs that matches the file will be selected.

SUBDIRS - Add aligt of subdirectories to the build.
Usage: SUBDIRS(dirl dir2 ...) Add alist of subdirectoriesto the build. Thiswill cause any
CMakeLigtsitxt filesin the sub directories to be processed by CMake.

SUBDIR_DEPENDS - Add a set of subdirectories on which another subdirectory depends.
Usage: SUBDIR_DEPENDS(subdir depl dep? ...) Add a set of subdirectories on which
"subdir" depends. This sets up the generated makefiles to build the subdirectries depl, dep2, ...
before "subdir” itsdif.

TARGET_LINK_LIBRARIES - Specify alig of libraries to be linked into executables or
shared objects.

Usage: TARGET_LINK_LIBRARIES(target libraryl library?2 ...) Specify alist of librariesto
be linked into the specified target The debug and optimized strings may be used to indicate that
the next library listed isto be used only for that specific type of build

USE_ MANGLED_MESA - Cresate copies of mesa headersfor usein combination with
sysemgl.
Usage: USE MANGLED_ MESA("path to gl_mangleh" "directory for output")

UTILITY_SOURCE - Specify the source tree of athird-party utility.

Usage: UTILITY_SOURCE(cache entry executable name path to source [filel file2 ...])
When athird-party utility's source isincluded in the digtribution, this command specifiesits
location and name. The cache entry will not be set unlessthe path_to_source and dl listed files
exig. It isassumed that the source tree of the utility will have been built before it is needed.

VTK_WRAP_JAVA - Create Java Wrappers.
Usage: VTK_WRAP_JAVA(resultingLibraryName Sourcel.isName Sourcel.iss ...)

VTK_WRAP_PYTHON - Create Python Wrappers.
Usage: VTK_WRAP_PYTHON(resultingLibraryName Sourcel.istName Sourcel.iss ...)

VTK_WRAP_TCL - Create Tcl Wrappersfor VTK classes.
Usage: VTK_WRAP_TCL (resultingLibraryName [SOURCES] SourcelistName Sourceligts
... [COMMANDS CommandNamel CommandName2 ...])

WRAP_EXCLUDE_FILES - A lig of classes, to exclude from wrapping.
Usage: WRAP_EXCLUDE FILES(filel file2 ..)

Extending CM ake Guide

This section describes some of the interna's of CMake. Read this section only if you intend to add new
commands to the CMake executable or debug CMake. First you must download and install the source
code for CMake as described in the Installing CM ake section.

Adding a New Command

Commands can be added to CMake by deriving new commands from the class cnCommand (defined
in CMake/Source/lcmCommand.h.cxx). Typicaly each command isimplemented in a class caled
cmRuleNameCommand stored in cmRuleNameCommand.h and cmRuleNameCommand.cxx. If you
want to create arule the best bet isto take alook at some of the exigting rulesin CMake. They tend to
befairly short.

Adding a New M akefile Gener ator

Different types of makefiles (corresponding to a different compiler and/or operating system) can be
added by subclassng from cmMakefileGenerator (defined in cmM akefileGenerator.hV.cxx). Makefile
generators process the information defined by the commands in CMakelidsixt to generate the
appropriate makefile(s). Again, the best bet isto work from one of the existing generators.

Further Information

Much of the development of CMake was performed a Kitware http://www.kitware.conv. The
developers can be reached at mailto:kitware@kitware.com CMake was initidly developed for the
NIH/NLM Insght Segmentation and Registration Toolkit, see the Web Ste at
http://publickitware.conv/ingght.html. Cmake' s web page can be found at
http://public.kitware.com/CMake.

