CMake

Cross-platform Make

| ntroduction

The Cross-Platform Make fecility (CMake) manages the build process—in a portable manne—across
Windows and Unix platforms (hopefully Mac as well in the near future). CMake can be used to compile
source code, cregte libraries, and build executables in arbitrary combinations. On Unix platforms,
CMake produces makefiles that may be used with the standard make facility. In the Microsoft Visud
C++ environment, CMake cresates projects and workspaces that can be imported into MSVC.

CMake is desgned to support complex directory hierarchies and applications dependent on severd

libraries. For example, CMake supports projects consisting of multiple toolkits (i.e., libraries), where
each toolkit might contain severd directories, and the gpplication depends on the toolkits plus additiona
code. CMake can dso handle situations where executables must be built in order to generate code that
isthen compiled and linked into a find gpplication.

Usng CMake is smple. The build process is controlled by cresting a CMakeLidsitxt file in each
directory (including subdirectories) of a project. Each CMakelLigstxt file congsts of one or more
commands. Each command has the form COMMAND (args...) where COMMAND is the name of
the command, and args is a white-space separated list of arguments. CMake provides many pre-
defined commands, but if you need to, you can add your own commands. In addition, the advanced
user can add other makefile generators for particular compiler/OS combinations.

| nstalling CM ake

You can download and ingtdl precompiled binaries of CMake for Windows and UNIX from
http://public.kitware.com/CMake. If you want to build CMake yourself, you can download the source
code using CV'S (available at http://cvshome.org) and typing:

cvs -d :pserver:anonymous@public.kitware.com:/insight/cmakecvsroot login
(respond with password cmake)

Follow this command by checking out the source code:
cvs -d :pserver:anonymous@public.kitware.com:/insight/cmakecvsroot co CMake

Then you can build CMake on Windows by loading the CM ake.Source/CM ake.dsp file into Microsoft
Visud Studio or on UNIX by running

cd CMake
Jeonfigure
make
make ingdl

Running CM ake

Once CMake has been ingdled on your system using it to build a project is easy. We will cover the
process for Windows and then UNIX.

Running CMake for Windows/ Microsoft Visual C++ (MSVC)

Run CMakeSetup.exe which should be in your Start menu under Program Files, there may dso be a
shortcut on your desktop. A GUI will appear smilar to what is shown below (but possibly different as
CMake is dill being developed). The top two entries are the source code and binary directories. They
dlow you to specify where the source code is for what you want to compile and where the resulting
binaries should be placed. Y ou should set these two vauesfirg. If the binary directory you specify does

not exig, it will be crested for you.

= CMakeSetupbDialog
“Where is the source code: Ic::\martink"-,vtknew j Browse... |
‘YWhere do you want to build the binaries: If:\vtkwin j Browse... |
— Cache Yalues
BUILD_SHARED_LIBS OFF =
CHMAKE_Cx WCED
CMAKE _Cx FLAGS M3 Zm1000 fGHIGR
CMAKE Cx FLAGS DEBUG D (21 0d G2
CMAKE _Cix FLAGS MINSIZEREL D O
CMAKE Cx FLAGS RELEASE D 02
EXECUTAELE OUTPUT _PATH
JANA_AWT LIBRARY Tk .3/ lib fjawt lib
Jawa INCLUDE_PATH ffjdk1.3finclude
Jawa INCLUDE _PATHZ ffjdk1.3/includefwin 32
JAVE_AWT_IMNCLUDE_PATH ffjdk.3fincludle
LIBRARY_QUTPUT_PATH =l

Right cli

Build Froject Files

Yarsion 0.1

ck on cache entries for additional options

Close

The cache vaues area is where you can specify different options for the build process. The example
shown below is for VTK which has a large number of options. Once you have specified the source
code and binary directories you should click the Build Project Files button. This will cause CMake to
read in the CMakeligsitxt files from the source code directory and produce Microsoft Visua C++
workspaces. It will also cause the cache area to be updated to display any new options for the project.
Adjust your cache settings if desired and click the Build project Files button again. Keep repesting this
process until you are happy with the cache options (typically just once or twice).

CMakeSetup.exe generates a M SV C workspace file in the binary directory you specified. Typicaly this
file has the same name as what you are compiling (e.g. VTK.dsp, ITK.dsw €tc).

The next step in this process is to open the workspace with MSVC. Once open, the project can be
built in the norma manner of Microsoft Visua C++. The ALL_BUILD target can be used to build dl of
the libraries and executables in the package.

Running CMake on Unix

Using CMake to build a project on UNIX is a smple process. Change directory into where you want
the binaries to be placed. This can be the same directory as the source code for what we cal in-place
builds (the binaries are in the same place as the source code) or it can be a new directory you create.
For an in-place build you then run cmake and it will produce a CMakeCache:txt file that contains build
options that you can adjust using any text editor. For non in-place builds the process is the same except
you run cmake and provide the path to the source code as its argument. Once you have edited the
CMakeCacheitxt file you rerun cmake, repest this process until you are happy with the cache settings.
The type make and your project should compile. Some projects will have ingtal targets as well so you
can type make inddl to ingdl them.

Two examples of CMake usage on the Unix platform follow for a hello world project cdled Hdlo. In
the first example, and in-place build is performed, i.e., the binaries are placed in the same directory as
the source code.

cd Hdlo

cmake

(optiondly edit CMakeCache.txt and rerun cmake)
make

In the second example, an out-of-place build is performed, i.e, the source code, libraries, and
executables are produced in a directory separate from the source code directory(ies).

mkdir Hello-Linux

cd Hello-Linux

cmake ./Hdlo

(optiondly edit CMakeCache.txt and rerun cmake ../Hello)

make
Why do | haveto edit the cache mor e than once for some projects?

Some projects are very complex and setting one vaue in the cache may cause new options to appear
the next time the cache is built. For example, VTK supports the use of MPI for performing distributed
computing. This requires the build process to determine where the MPI libraries and heeder files are
and to let the user adjust ther vaues But MPl is only avalable if another option
VTK_USE PARALLEL isfirg turned on in VTK. So to avoid confusion for people who don’t know
what MPI is, we hide those options until VTK_USE _PARALLEL isturned on. So CMake shows the
VTK_USE PARALLEL option in the cache ares, if the user turns that on and rebuilds the cache, new
options will gppear for MP! that they can then set. The rule is to keep building the cache until it doesn't
change. For mogt projects thiswill be just once. For some complicated onesit will be twice.

Developer's Guide

This section describes how to use CMake from the software developer’s point of view. That is, if your
am is to e CMake to manage your build process, read this section first. An Extenson Guide follows
later in this document to explain the internals of CMake, and how to setup the CMake environment.
Read that section only if you plan to ingdl, extend, or enhance the features of CMake. This section of
the User’s Guide begins with a description of the CMake inputs. Examples then follow to clarify these
descriptions.

Input to CM ake

CMake' sinput isthe text file CMakeligtsitxt in your source directory. Thisinput file specifies the things
that need to be built in the current directory. The CMakeLigtsitxt conssts of one or more commands.
Each command is of the form:

COMMAND(args...)
Where COMMAND is the name of the command, and args is a white-space separated list of
arguments to the command. (Arguments with embedded white-space should be quoted.) Typicdly there
will be a CMakeligsixt file for each directory of the project. Let's start with a Smple example.
Congder building hello world. Y ou would have a source tree with the following files
Hello.c CMakeligstxt
The CMakeligsitxt file would contain two lines:

PROJECT (Héllo)
ADD_EXECUTABLE(Hdlo Hello.)

To build the Hello executable you just follow the process described in Running CMake above to
generate the makefiles or Microsoft project files. The PROJECT command indicates what the name of
the resulting workspace should be and the ADD_EXECUTABLE command adds an executable target
to the build process. That's dl thereisto it for this smple example. If your project requires afew files it
is aso quite easy, just modify the ADD_EXECUTABLE line as shown below.

ADD_EXECUTABLE(Helo Hello.c File2.c File3.c File4.c)

ADD_EXECUTABLE is jus one of many commands avalable in CMake. Condder the more
complicated example below.

PROJECT (HELLO)
SOURCE_FILES(HELLO_SRCS Hdlo.c File2.c File3.c)
IF (WIN32)

SOURCE_FILES(HELLO_SRCS WinSupport.c)
EL SE (WIN32)

SOURCE_FILES(HELLO_SRCS UnixSupport.c)
ENDIF (WIN32)
ADD_EXECUTABLE (Hello HELLO_SRCS)

#look for the Tdl library

FIND_LIBRARY(TCL_LIBRARY NAMEStdl tcl84 tcl83 tcl82 tcl80
PATHS /ugl/lib /usr/locallib)

IF (TCL_LIBRARY)
TARGET_ADD_LIBRARY (Hedlo TCL_LIBRARY)

ENDIF (TCL_LIBRARY)

In this example the SOURCE_FILES command is used to group together source filesinto alist. The IF
command is used to add ether WinSupport.c or UnixSupport.c to this li. And findly the
ADD_EXECUTABLE command is used to build the executable with the files listed in the source list
HELLO_SRCS. The FIND_LIBRARY command looks for the Tdl library under afew different names
and in afew different paths, and if it isfound addsit to the link line for the Hello executable target. Note
the use of the # character to denote a comment line.

CMake dways defines some variables for use within CMakel it files. For example, WIN32 is dways
defined on windows systems and UNIX is aways defined for UNIX systems. CMake defines a number
of commands. A brief summary of the most commonly used commands follows here. Later in the
document an exhaudtive lig of dl pre-defined commands is presented. (You may aso add your own
commands, see the Extenson Guide for more information.)

A) Build Targets
SOURCE_FILEY()

B)

C)

SUBDIRS()

ADD_LIBRARY()
ADD_EXECUTABLE()
AUX_SOURCE._DIRECTORY ()
PROJECT()

CMake works recursively, descending from the current directory into any subdirectories listed
in the SUBDIRS command. The command SOURCE_FILES is used for grouping source files
together for later use. (Note currently only C and C++ code can be compiled.)
ADD_LIBRARY adds a libray to the lig of targets this makefile will produce.
ADD_EXECUTABLE adds an executable to the list of targets this makefile will produce.
(Note: source code is compiled firgt, then libraries are built, and then executables are created.)
The AUX_SOURCE DIRECTORY is a directory where other source code, not in this
directory, whose object code is to be inserted into the current LIBRARY . All sourcefilesinthe
AUX_SOURCE_DIRECTORY are compiled (eg. *.c, *.cxx, *.cpp, etc.). PROJECT
(PojectName) is a speciad variable used in the MSVC to create the project for the compiler, it
aso defines two useful varidbles for CMAKE: ProjectName SOURCE DIR and
ProjectName BINARY_DIR.

Build flags and options. In addition to the commands listed above, CMakel igsitxt often
contain the following commands.

INCLUDE_DIRECTORIES()
LINK_DIRECTORIES()
LINK_LIBRARIES()
TARGET_LINK_LIBRARIES)

These commands define directories and libraries used to compile source code and build
executables. An important feature of the commands listed above is that are inherited by any
subdirectories. That is, as CMake descends through a directory hierarchy (defined by
SUBDIRY()) these commands are expanded each time a definition for a command is
encountered. For example, if in the toplevd CMakelids file has
INCLUDE_DIRECTORIES(/us/include), with SUBDIRS(/subdirl), and the file
Jsubdirl/CMakelLists.txt has INCLUDE_DIRECTORIES(/tmp/foobar), then the net result is

INCLUDE_DIRECTORIES(/ust/include /tmp/foobar)
CMake comes with a number of modules that look for commonly used packages such as
OpenGL or Java These modules save you from having to write dl the CMake code to find
these packages yoursdf. Modules can be used by including them into your CMakel.is file as

shown below.

INCLUDE (${ CMAKE_ROOT}/Modules/FindTCL .cmake)

CMAKE_ROOT is aways defined in CMake and can be used to point to where CMake was
ingtdled. Looking through some of the files in the Modules subdirectory can provide good ideas
on how to use some of the CMake commands.

Adding A New Directory to a project
A common way to extend a project isto add anew directory. This involves three steps:

1. Create the new directory somewhere in your source directory hierarchy.
2. Add the new directory to the SUBDIRS command in the parent directories CMakel igs.txt

3. Create aCMakeligsitxt in the new directory with the gppropriate commands

CMake Commands
Thefollowing is an exhaudive ligt of pre-defined CMake commands, with brief descriptions.

ABSTRACT_FILES - A list of abstract classes, useful for wappers.
Usage: ABSTRACT _FILES(filel file2 ..)

ADD_CUSTOM TARGET - Add an extra target to the build systemthat does
not produce output, so it is run each tine the target is built.

Usage: ADD_CUSTOM TARGET(Name "command to run" ALL)

The ALL option is optional. If it is specified it indicates that this
target should be added to the Build all target.

ADD_DEFI NI TIONS - Add -D define flags to command line for environnents.
Usage: ADD _DEFI NI TI ONS(- DFOO - DBAR . ..)
Add -D define flags to command |ine for environnents.

ADD EXECUTABLE - Add an executable to the project that uses the
specified srclists

Usage: ADD _EXECUTABLE(exename srclist srclist srclist ...)
ADD_EXECUTABLE(exename W N32 srclist srclist srclist ...)This command
adds an executable target to the current directory. The executable will
be built fromthe source files / source lists specified. The second
argunment to this command can be W N32 which indicates that the
execut abl e (when conpiled on wi ndows) is a wi ndows app (using

W nMai n) not a consol e app (using main).

ADD LI BRARY - Add an library to the project that uses the specified
srclists
Usage: ADD LI BRARY(Ilibname srclist srclist srclist ...)

ADD TEST - Add a test to the project with the specified argunents.
Usage: ADD TEST(testname exenanme argl arg2 arg3 ...)

This command adds a test target to the current directory. The tests are
run by the testing subsystem by executing exename with the specified

argunments. exenane can be either an executable built by built by this
project or an arbitrary executable on the system (like tclsh).

AUX_SOURCE_DI RECTORY - Add all the source files found in the specified
directory to the build as source |ist NAME.
Usage: AUX_SOURCE_DI RECTORY(dir srcLi st Nane)

BU LD COMVAND - Deternine the command |ine that will build this project.
Usage: BUI LD _COWVMAND(NAME)

Wthin CMAKE set NAME to the command that will build this project from
t he command |i ne.

BU LD_NAME - Set a CMAKE variable to the build type.
Usage: BUI LD_NAME(NAME)
Wthin CMAKE sets NAME to the build type.

BUI LD_SHARED LI BRARIES - Build shared libraries instead of static
Usage: BU LD _SHARED_ LI BRARI ES()

CABLE_CLASS SET - Define a set of classes for use in other CABLE
conmands.

Usage: CABLE CLASS SET(set_nanme classl class2 ...)

Defines a set with the given nanme containing classes and their
associ ated header files. The set can | ater be used by other CABLE
conmands.

CABLE WRAP_TCL - Wap a set of classes in Tcl.

Usage: CABLE WRAP_TCL(target classl class2 ...)

Wap the given set of classes in Tcl using the CABLE tool. The set
of source files produced for the given package nane will be added to
a source list with the given nane.

CONFI GURE_FILE - Create a file froman autoconf style file.in file.
Usage: CONFI GURE_FI LE(I nputFile QutputFile [COPYONLY])

The I nput and Quput files have to have full paths.

They can al so use variables |ike CMAKE BI NARY_DI R, CMAKE_SOURCE_DI R.
This command repl aces any variables in the input file with their
val ues as determ ned by Cvake. If a variables in not defined, it
will be replaced with nothing. |f COPYONLY is passed in, then
then no varible expansion will take place.

ELSE - starts the else portion of an if block
Usage: ELSE(defi ne)

ENABLE_TESTI NG - Enable testing for this directory and bel ow.

Usage: ENABLE_TESTI NX)

Enabl es testing for this directory and bel ow. See al so the ADD TEST
conmand.

ENDI F - ends an if bl ock
Usage: ENDI F(defi ne)

EXEC _PROGRAM - Run and executabl e program during the processing of the
CvakeList.txt file.
Usage: EXEC_PROGRAM Execut bl e)

FIND FILE - Find a file.
Usage: FIND_FILE(NAME file extrapath extrapath ...)

FIND LIBRARY - Find a library.

Usage: FIND_LI BRARY(DEFI NE_PATH | i braryName [NAMES] nanel nanme2 nane3

[PATHS pathl path2 path3...])

If the library is found, then DEFINE PATH is set to the full path where
it was found

FIND_PATH - Find a path for a file.

Usage: FI ND_PATH(PATH DEFI NE fil eName pat hl path2 path3...)

If the file is found, then PATH DEFINE is set to the path where it was
f ound

FI ND_PROGRAM - Find an executabl e program
Usage: FI ND_PROGRAM NAME execut abl el extrapath extrapath ...)

GET_FI LENAME_COMPONENT - Get a specific conmponent of a full filenane.
Usage: GET_FI LENAME_COVPONENT(Var Nanme Fi | eNanme PATH| NAME| EXT| NAMVE_V\E)
Set VarNane to be the path (PATH), file name (NAME), file extension
(EXT) or file nane without extension (NAME_WE) of Fil eNane.

Note that the path is converted to Unix slashes format and has no
trailing slashes. The longest file extension is always consi dered.

IF - start an if block

Usage: | F (define) Starts an if block. Optionally there it can be

i nvoked as IF (NOT Define) the matching ELSE and ENDI F require the NOT
as wel | .

I NCLUDE - Basically identical to a C #include "sonthing" comrand.
Usage: | NCLUDE(filel file2)

| NCLUDE_DI RECTORIES - Add include directories to the build.
Usage: | NCLUDE_ DI RECTORIES(dirl dir2 ...)

| NCLUDE_REGULAR _EXPRESSI ON - Set the regul ar expression used for
dependency checki ng.

Usage: | NCLUDE REGULAR EXPRESSI ON(regex)

Sets the regul ar expression used in dependency checking. Only
include files matching this regular expression will be traced.

| NSTALL_FILES - Create install rules for files

Usage: | NSTALL_FI LES(path extension srclist file file srclist ...)
Create rules to install the listed files into the path. Path is relative
to the variable PREFI X. The files can be specified explicitly or by
referenceing source lists. Al files nust either have the extension
specified or exist with the extension appended. A typical extension is
.h etc..

| NSTALL_TARGETS - Create install rules for targets

Usage: | NSTALL_TARCETS(path target target)
Create rules to install the listed targets into the path. Path is
relative to the variable PREFI X

LI NK_DI RECTORI ES - Specify link directories.

Usage: LINK DI RECTORI ES(directoryl directory2 ...)

Specify the paths to the libraries that will be linked in. The
directories can use built in definitions |ike CMAKE BI NARY_DI R and
CMAKE_SOURCE_DI R

LINK LIBRARIES - Specify a list of libraries to be linked into
execut abl es or shared objects.

Usage: LINK LIBRARIES(libraryl <debug | optinized> library2 ...)
Specify a list of libraries to be linked into executables or shared
objects. This command is passed down to all other conmands. The debug
and optim zed strings may be used to indicate that the next library
listed is to be used only for that specific type of build

LOAD CACHE - load in the values from anot her cache.

Usage: LOAD_CACHE(pat hToCacheFil e)

Load in the values from another cache. This is useful for a project that
depends on another project built in a different tree.

MAKE_DI RECTORY - Create a directory in the build tree if it does not
exist. Parent directories will be created if the do not exist.
Usage: MAKE_DI RECTORY(directory)

MESSAGE - Display a nmessage to the user

Usage: MESSAGE("the nmessage to display" "Title for dial og")

The first argunent is the nessage to display. The second argunent is
optional and is the title for the dialog box on w ndows.

OPTION - Provides an option that the user can optionally sel ect
Usage: OPTION(USE_MPI "help string decribing the option" [initia
val ue])

Provi de an option for the user to sel ect

PRQJECT - Set a nanme for the entire project. One argunent.
Usage: PROJECT(projectnane) Sets the name of the M crosoft workspace
.dsw file.

SET - Set a CMAKE variable to a val ue

Usage: SET(VAR [VALUE] [CACHE TYPE DOCSTRI NG)

Wthin CMAKE sets VAR to the value VALUE. VALUE is expanded before VAR
is set toit. If CACHE is present, then the VAR is put in the cache.
TYPE and DOCSTRING are required. |If TYPE is |INTERNAL, then the VALUE
is Always witten into the cache, replacing any values existing in the
cache. If it is not a CACHE VAR, then this always writes into the
current makefile.

SITE_NAME - Set a CMAKE variable to the name of this conputer
Usage: S| TE_NAME(NAME)
Wthin CMAKE sets NAME to the host name of the conputer

SOURCE_FILES - Add a list of source files, associate themw th a NAME
Usage: SOURCE_FI LES(NAME filel file2 ...)

SOURCE_GROUP - Define a grouping for sources in the makefile.

Usage: SOURCE_GROUP(nanme regex)

Defines a new source group. Any file whose nane matches the regul ar
expression will be placed in this group. The LAST regul ar expression
of all defined SOURCE_GROUPs that matches the file will be sel ected.

SUBDIRS - Add a list of subdirectories to the build.

Usage: SUBDIRS(dirl dir2 ...)

Add a list of subdirectories to the build. This will cause any
CMakeLists.txt files in the sub directories to be processed by ChMake.

TARGET_LINK LI BRARIES - Specify a list of libraries to be linked into
execut abl es or shared objects.

Usage: TARGET_LINK LIBRARIES(target |ibraryl <debug | optim zed>
library2 ...)

Specify a list of libraries to be Iinked into the specified target
The debug and optinized strings may be used to indicate that the next
library listed is to be used only for that specific type of build

UTI LI TY_SOURCE - Specify the source tree of a third-party utility.
Usage: UTILITY_SOURCE(cache_entry executabl e_name path_to_source [filel
file2 ...])

When a third-party utility's source is included in the distribution,
this command specifies its |location and name. The cache entry will

not be set unless the path_to_source and all listed files exist. It

is assuned that the source tree of the utility will have been built
before it is needed.

VTK_WRAP_JAVA - Create Java Wappers.
Usage: VTK WRAP_JAVA(resul tingLi braryName Sourceli st Name SourcelLists

-)

VTK_WRAP_PYTHON - Create Python Wappers.
Usage: VTK WRAP_PYTHON(resul ti ngLi braryName Sourceli st Name SourcelLi sts

-)
VTK_WRAP_TCL - Create Tcl Wappers for VIK cl asses.
Usage: VTK WRAP_TCL(resul tingLi braryNane [SOURCES] SourcelLi st Nanme
SourceLists ... [COWANDS ConmandNamel ComrandNanme2 ...])

WRAP_EXCLUDE_FILES - A list of classes, to exclude from w apping.
Usage: WRAP_EXCLUDE_FI LES(filel file2 ..)

Extending CM ake Guide

This section describes some of theinternas of CMake. Read this section only if you intend to add new
commands to the CMake executable or debug CMake. First you must download and ingtall the source
code for CMake as described in the I nstalling CM ak e section.

Adding a New Rule

Rules can be added to CMake by deriving new commands from the class cnCommand (defined in
CMake/Source/lcmCommand.hV.cxx). Typically each rule isimplemented in aclass cdled
cmRuleNameCommand stored in cmRuleNameCommand.h and cmRuleNameCommand.cxx. If you
want to create arule the best bet isto take alook at some of the existing rulesin CMake. They tend to
befairly short.

Adding a New M akefile Gener ator

Different types of makefiles (corresponding to a different compiler and/or qerating system) can be
added by subclassng from cmMakefileGenerator (defined in cmMakefileGenerator.h.cxx). Makefile
generators process the information defined by the commands in CMakelidsixt to generate the
appropriate makefile(s). Again, the best bet isto work from one of the existing generators.

Further Information

Much of the development of CMake was performed a Kitware http://iwww kitware.com/. The
developers can be reached at mailto:kitware@kitware.com CMake wasiinitidly developed for the
NIH/NLM Insght Segmentation and Registration Toolkit, see the Web Ste at
http://publickitware.convinsght.html.

