1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
|
/*
* Copyright 2002, 2006 Adrian Thurston <thurston@complang.org>
*/
/* This file is part of Aapl.
*
* Aapl is free software; you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation; either version 2.1 of the License, or (at your option)
* any later version.
*
* Aapl is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
* more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Aapl; if not, write to the Free Software Foundation, Inc., 59
* Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef _AAPL_VECTOR_H
#define _AAPL_VECTOR_H
#include <new>
#include <string.h>
#include <stdlib.h>
#include <assert.h>
#include "table.h"
#ifdef AAPL_NAMESPACE
namespace Aapl {
#endif
/**
* \addtogroup vector
* @{
*/
/** \class Vector
* \brief Dynamic array.
*
* This is typical vector implementation. It is a dynamic array that can be
* used to contain complex data structures that have constructors and
* destructors as well as simple types such as integers and pointers.
*
* Vector supports inserting, overwriting, and removing single or multiple
* elements at once. Constructors and destructors are called wherever
* appropriate. For example, before an element is overwritten, it's
* destructor is called.
*
* Vector provides automatic resizing of allocated memory as needed and offers
* different allocation schemes for controlling how the automatic allocation
* is done. Two senses of the the length of the data is maintained: the
* amount of raw memory allocated to the vector and the number of actual
* elements in the vector. The various allocation schemes control how the
* allocated space is changed in relation to the number of elements in the
* vector.
*
* \include ex_vector.cpp
*/
/*@}*/
template < class T, class Resize = ResizeExpn > class Vector
: public Table<T>, public Resize
{
private:
typedef Table<T> BaseTable;
public:
/**
* \brief Initialize an empty vector with no space allocated.
*
* If a linear resizer is used, the step defaults to 256 units of T. For a
* runtime vector both up and down allocation schemes default to
* Exponential.
*/
Vector() { }
/**
* \brief Create a vector that contains an initial element.
*
* The vector becomes one element in length. The element's copy
* constructor is used to place the value in the vector.
*/
Vector(const T &val) { setAs(&val, 1); }
/**
* \brief Create a vector that contains an array of elements.
*
* The vector becomes len elements in length. Copy constructors are used
* to place the new elements in the vector.
*/
Vector(const T *val, long len) { setAs(val, len); }
/* Deep copy. */
Vector( const Vector &v );
/* Free all mem used by the vector. */
~Vector() { empty(); }
/* Delete all items. */
void empty();
/* Abandon the contents of the vector without deleteing. */
void abandon();
/* Transfers the elements of another vector into this vector. First emptys
* the current vector. */
void transfer( Vector &v );
/* Perform a deep copy of another vector into this vector. */
Vector &operator=( const Vector &v );
/* Stack operations. */
void push( const T &t ) { append( t ); }
void pop() { remove( BaseTable::tabLen - 1 ); }
T &top() { return BaseTable::data[BaseTable::tabLen - 1]; }
/*@{*/
/**
* \brief Insert one element at position pos.
*
* Elements in the vector from pos onward are shifted one space to the
* right. The copy constructor is used to place the element into this
* vector. If pos is greater than the length of the vector then undefined
* behaviour results. If pos is negative then it is treated as an offset
* relative to the length of the vector.
*/
void insert(long pos, const T &val) { insert(pos, &val, 1); }
/* Insert an array of values. */
void insert(long pos, const T *val, long len);
/**
* \brief Insert all the elements from another vector at position pos.
*
* Elements in this vector from pos onward are shifted v.tabLen spaces to
* the right. The element's copy constructor is used to copy the items
* into this vector. The other vector is left unchanged. If pos is off the
* end of the vector, then undefined behaviour results. If pos is negative
* then it is treated as an offset relative to the length of the vector.
* Equivalent to vector.insert(pos, other.data, other.tabLen).
*/
void insert(long pos, const Vector &v) { insert(pos, v.data, v.tabLen); }
/* Insert len copies of val into the vector. */
void insertDup(long pos, const T &val, long len);
/**
* \brief Insert one new element using the default constrcutor.
*
* Elements in the vector from pos onward are shifted one space to the
* right. The default constructor is used to init the new element. If pos
* is greater than the length of the vector then undefined behaviour
* results. If pos is negative then it is treated as an offset relative to
* the length of the vector.
*/
void insertNew(long pos) { insertNew(pos, 1); }
/* Insert len new items using default constructor. */
void insertNew(long pos, long len);
/*@}*/
/*@{*/
/**
* \brief Remove one element at position pos.
*
* The element's destructor is called. Elements to the right of pos are
* shifted one space to the left to take up the free space. If pos is greater
* than or equal to the length of the vector then undefined behavior results.
* If pos is negative then it is treated as an offset relative to the length
* of the vector.
*/
void remove(long pos) { remove(pos, 1); }
/* Delete a number of elements. */
void remove(long pos, long len);
/*@}*/
/*@{*/
/**
* \brief Replace one element at position pos.
*
* If there is an existing element at position pos (if pos is less than
* the length of the vector) then its destructor is called before the
* space is used. The copy constructor is used to place the element into
* the vector. If pos is greater than the length of the vector then
* undefined behaviour results. If pos is negative then it is treated as
* an offset relative to the length of the vector.
*/
void replace(long pos, const T &val) { replace(pos, &val, 1); }
/* Replace with an array of values. */
void replace(long pos, const T *val, long len);
/**
* \brief Replace at position pos with all the elements of another vector.
*
* Replace at position pos with all the elements of another vector. The
* other vector is left unchanged. If there are existing elements at the
* positions to be replaced, then destructors are called before the space
* is used. Copy constructors are used to place the elements into this
* vector. It is allowable for the pos and length of the other vector to
* specify a replacement that overwrites existing elements and creates new
* ones. If pos is greater than the length of the vector then undefined
* behaviour results. If pos is negative, then it is treated as an offset
* relative to the length of the vector.
*/
void replace(long pos, const Vector &v) { replace(pos, v.data, v.tabLen); }
/* Replace len items with len copies of val. */
void replaceDup(long pos, const T &val, long len);
/**
* \brief Replace at position pos with one new element.
*
* If there is an existing element at the position to be replaced (pos is
* less than the length of the vector) then the element's destructor is
* called before the space is used. The default constructor is used to
* initialize the new element. If pos is greater than the length of the
* vector then undefined behaviour results. If pos is negative, then it is
* treated as an offset relative to the length of the vector.
*/
void replaceNew(long pos) { replaceNew(pos, 1); }
/* Replace len items at pos with newly constructed objects. */
void replaceNew(long pos, long len);
/*@}*/
/*@{*/
/**
* \brief Set the contents of the vector to be val exactly.
*
* The vector becomes one element in length. Destructors are called on any
* existing elements in the vector. The element's copy constructor is used
* to place the val in the vector.
*/
void setAs(const T &val) { setAs(&val, 1); }
/* Set to the contents of an array. */
void setAs(const T *val, long len);
/**
* \brief Set the vector to exactly the contents of another vector.
*
* The vector becomes v.tabLen elements in length. Destructors are called
* on any existing elements. Copy constructors are used to place the new
* elements in the vector.
*/
void setAs(const Vector &v) { setAs(v.data, v.tabLen); }
/* Set as len copies of item. */
void setAsDup(const T &item, long len);
/**
* \brief Set the vector to exactly one new item.
*
* The vector becomes one element in length. Destructors are called on any
* existing elements in the vector. The default constructor is used to
* init the new item.
*/
void setAsNew() { setAsNew(1); }
/* Set as newly constructed objects using the default constructor. */
void setAsNew(long len);
/*@}*/
/*@{*/
/**
* \brief Append one elment to the end of the vector.
*
* Copy constructor is used to place the element in the vector.
*/
void append(const T &val) { replace(BaseTable::tabLen, &val, 1); }
/**
* \brief Append len elements to the end of the vector.
*
* Copy constructors are used to place the elements in the vector.
*/
void append(const T *val, long len) { replace(BaseTable::tabLen, val, len); }
/**
* \brief Append the contents of another vector.
*
* The other vector is left unchanged. Copy constructors are used to place the
* elements in the vector.
*/
void append(const Vector &v) { replace(BaseTable::tabLen, v.data, v.tabLen); }
/**
* \brief Append len copies of item.
*
* The copy constructor is used to place the item in the vector.
*/
void appendDup(const T &item, long len) { replaceDup(BaseTable::tabLen, item, len); }
/**
* \brief Append a single newly created item.
*
* The new element is initialized with the default constructor.
*/
void appendNew() { replaceNew(BaseTable::tabLen, 1); }
/**
* \brief Append len newly created items.
*
* The new elements are initialized with the default constructor.
*/
void appendNew(long len) { replaceNew(BaseTable::tabLen, len); }
/*@}*/
/*@{*/
/** \fn Vector::prepend(const T &val)
* \brief Prepend one elment to the front of the vector.
*
* Copy constructor is used to place the element in the vector.
*/
void prepend(const T &val) { insert(0, &val, 1); }
/**
* \brief Prepend len elements to the front of the vector.
*
* Copy constructors are used to place the elements in the vector.
*/
void prepend(const T *val, long len) { insert(0, val, len); }
/**
* \brief Prepend the contents of another vector.
*
* The other vector is left unchanged. Copy constructors are used to place the
* elements in the vector.
*/
void prepend(const Vector &v) { insert(0, v.data, v.tabLen); }
/**
* \brief Prepend len copies of item.
*
* The copy constructor is used to place the item in the vector.
*/
void prependDup(const T &item, long len) { insertDup(0, item, len); }
/**
* \brief Prepend a single newly created item.
*
* The new element is initialized with the default constructor.
*/
void prependNew() { insertNew(0, 1); }
/**
* \brief Prepend len newly created items.
*
* The new elements are initialized with the default constructor.
*/
void prependNew(long len) { insertNew(0, len); }
/*@}*/
/* Convenience access. */
T &operator[](int i) const { return BaseTable::data[i]; }
long size() const { return BaseTable::tabLen; }
/* Forward this so a ref can be used. */
struct Iter;
/* Various classes for setting the iterator */
struct IterFirst { IterFirst( const Vector &v ) : v(v) { } const Vector &v; };
struct IterLast { IterLast( const Vector &v ) : v(v) { } const Vector &v; };
struct IterNext { IterNext( const Iter &i ) : i(i) { } const Iter &i; };
struct IterPrev { IterPrev( const Iter &i ) : i(i) { } const Iter &i; };
/**
* \brief Vector Iterator.
* \ingroup iterators
*/
struct Iter
{
/* Construct, assign. */
Iter() : ptr(0), ptrBeg(0), ptrEnd(0) { }
/* Construct. */
Iter( const Vector &v );
Iter( const IterFirst &vf );
Iter( const IterLast &vl );
inline Iter( const IterNext &vn );
inline Iter( const IterPrev &vp );
/* Assign. */
Iter &operator=( const Vector &v );
Iter &operator=( const IterFirst &vf );
Iter &operator=( const IterLast &vl );
inline Iter &operator=( const IterNext &vf );
inline Iter &operator=( const IterPrev &vl );
/** \brief Less than end? */
bool lte() const { return ptr != ptrEnd; }
/** \brief At end? */
bool end() const { return ptr == ptrEnd; }
/** \brief Greater than beginning? */
bool gtb() const { return ptr != ptrBeg; }
/** \brief At beginning? */
bool beg() const { return ptr == ptrBeg; }
/** \brief At first element? */
bool first() const { return ptr == ptrBeg+1; }
/** \brief At last element? */
bool last() const { return ptr == ptrEnd-1; }
/* Return the position. */
long pos() const { return ptr - ptrBeg - 1; }
T &operator[](int i) const { return ptr[i]; }
/** \brief Implicit cast to T*. */
operator T*() const { return ptr; }
/** \brief Dereference operator returns T&. */
T &operator *() const { return *ptr; }
/** \brief Arrow operator returns T*. */
T *operator->() const { return ptr; }
/** \brief Move to next item. */
T *operator++() { return ++ptr; }
/** \brief Move to next item. */
T *operator++(int) { return ptr++; }
/** \brief Move to next item. */
T *increment() { return ++ptr; }
/** \brief Move n items forward. */
T *operator+=(long n) { return ptr+=n; }
/** \brief Move to previous item. */
T *operator--() { return --ptr; }
/** \brief Move to previous item. */
T *operator--(int) { return ptr--; }
/** \brief Move to previous item. */
T *decrement() { return --ptr; }
/** \brief Move n items back. */
T *operator-=(long n) { return ptr-=n; }
/** \brief Return the next item. Does not modify this. */
inline IterNext next() const { return IterNext(*this); }
/** \brief Return the previous item. Does not modify this. */
inline IterPrev prev() const { return IterPrev(*this); }
/** \brief The iterator is simply a pointer. */
T *ptr;
/* For testing endpoints. */
T *ptrBeg, *ptrEnd;
};
/** \brief Return first element. */
IterFirst first() { return IterFirst( *this ); }
/** \brief Return last element. */
IterLast last() { return IterLast( *this ); }
protected:
void makeRawSpaceFor(long pos, long len);
void upResize(long len);
void downResize(long len);
};
/* Init a vector iterator with just a vector. */
template <class T, class Resize> Vector<T, Resize>::Iter::Iter( const Vector &v )
{
if ( v.tabLen == 0 )
ptr = ptrBeg = ptrEnd = 0;
else {
ptr = v.data;
ptrBeg = v.data-1;
ptrEnd = v.data+v.tabLen;
}
}
/* Init a vector iterator with the first of a vector. */
template <class T, class Resize> Vector<T, Resize>::Iter::Iter(
const IterFirst &vf )
{
if ( vf.v.tabLen == 0 )
ptr = ptrBeg = ptrEnd = 0;
else {
ptr = vf.v.data;
ptrBeg = vf.v.data-1;
ptrEnd = vf.v.data+vf.v.tabLen;
}
}
/* Init a vector iterator with the last of a vector. */
template <class T, class Resize> Vector<T, Resize>::Iter::Iter(
const IterLast &vl )
{
if ( vl.v.tabLen == 0 )
ptr = ptrBeg = ptrEnd = 0;
else {
ptr = vl.v.data+vl.v.tabLen-1;
ptrBeg = vl.v.data-1;
ptrEnd = vl.v.data+vl.v.tabLen;
}
}
/* Init a vector iterator with the next of some other iterator. */
template <class T, class Resize> Vector<T, Resize>::Iter::Iter(
const IterNext &vn )
:
ptr(vn.i.ptr+1),
ptrBeg(vn.i.ptrBeg),
ptrEnd(vn.i.ptrEnd)
{
}
/* Init a vector iterator with the prev of some other iterator. */
template <class T, class Resize> Vector<T, Resize>::Iter::Iter(
const IterPrev &vp )
:
ptr(vp.i.ptr-1),
ptrBeg(vp.i.ptrBeg),
ptrEnd(vp.i.ptrEnd)
{
}
/* Set a vector iterator with some vector. */
template <class T, class Resize> typename Vector<T, Resize>::Iter &
Vector<T, Resize>::Iter::operator=( const Vector &v )
{
if ( v.tabLen == 0 )
ptr = ptrBeg = ptrEnd = 0;
else {
ptr = v.data;
ptrBeg = v.data-1;
ptrEnd = v.data+v.tabLen;
}
return *this;
}
/* Set a vector iterator with the first element in a vector. */
template <class T, class Resize> typename Vector<T, Resize>::Iter &
Vector<T, Resize>::Iter::operator=( const IterFirst &vf )
{
if ( vf.v.tabLen == 0 )
ptr = ptrBeg = ptrEnd = 0;
else {
ptr = vf.v.data;
ptrBeg = vf.v.data-1;
ptrEnd = vf.v.data+vf.v.tabLen;
}
return *this;
}
/* Set a vector iterator with the last element in a vector. */
template <class T, class Resize> typename Vector<T, Resize>::Iter &
Vector<T, Resize>::Iter::operator=( const IterLast &vl )
{
if ( vl.v.tabLen == 0 )
ptr = ptrBeg = ptrEnd = 0;
else {
ptr = vl.v.data+vl.v.tabLen-1;
ptrBeg = vl.v.data-1;
ptrEnd = vl.v.data+vl.v.tabLen;
}
return *this;
}
/* Set a vector iterator with the next of some other iterator. */
template <class T, class Resize> typename Vector<T, Resize>::Iter &
Vector<T, Resize>::Iter::operator=( const IterNext &vn )
{
ptr = vn.i.ptr+1;
ptrBeg = vn.i.ptrBeg;
ptrEnd = vn.i.ptrEnd;
return *this;
}
/* Set a vector iterator with the prev of some other iterator. */
template <class T, class Resize> typename Vector<T, Resize>::Iter &
Vector<T, Resize>::Iter::operator=( const IterPrev &vp )
{
ptr = vp.i.ptr-1;
ptrBeg = vp.i.ptrBeg;
ptrEnd = vp.i.ptrEnd;
return *this;
}
/**
* \brief Forget all elements in the vector.
*
* The contents of the vector are reset to null without without the space
* being freed.
*/
template<class T, class Resize> void Vector<T, Resize>::
abandon()
{
BaseTable::data = 0;
BaseTable::tabLen = 0;
BaseTable::allocLen = 0;
}
/**
* \brief Transfer the contents of another vector into this vector.
*
* The dynamic array of the other vector is moved into this vector by
* reference. If this vector is non-empty then its contents are first deleted.
* Afterward the other vector will be empty.
*/
template<class T, class Resize> void Vector<T, Resize>::
transfer( Vector &v )
{
empty();
BaseTable::data = v.data;
BaseTable::tabLen = v.tabLen;
BaseTable::allocLen = v.allocLen;
v.abandon();
}
/**
* \brief Deep copy another vector into this vector.
*
* Copies the entire contents of the other vector into this vector. Any
* existing contents are first deleted. Equivalent to setAs.
*
* \returns A reference to this.
*/
template<class T, class Resize> Vector<T, Resize> &Vector<T, Resize>::
operator=( const Vector &v )
{
setAs(v.data, v.tabLen);
return *this;
}
/* Up resize the data for len elements using Resize::upResize to tell us the
* new tabLen. Reads and writes allocLen. Does not read or write tabLen. */
template<class T, class Resize> void Vector<T, Resize>::
upResize(long len)
{
/* Ask the resizer what the new tabLen will be. */
long newLen = Resize::upResize(BaseTable::allocLen, len);
/* Did the data grow? */
if ( newLen > BaseTable::allocLen ) {
BaseTable::allocLen = newLen;
if ( BaseTable::data != 0 ) {
/* Table exists already, resize it up. */
BaseTable::data = (T*) realloc( BaseTable::data, sizeof(T) * newLen );
if ( BaseTable::data == 0 )
throw std::bad_alloc();
}
else {
/* Create the data. */
BaseTable::data = (T*) malloc( sizeof(T) * newLen );
if ( BaseTable::data == 0 )
throw std::bad_alloc();
}
}
}
/* Down resize the data for len elements using Resize::downResize to determine
* the new tabLen. Reads and writes allocLen. Does not read or write tabLen. */
template<class T, class Resize> void Vector<T, Resize>::
downResize(long len)
{
/* Ask the resizer what the new tabLen will be. */
long newLen = Resize::downResize( BaseTable::allocLen, len );
/* Did the data shrink? */
if ( newLen < BaseTable::allocLen ) {
BaseTable::allocLen = newLen;
if ( newLen == 0 ) {
/* Simply free the data. */
free( BaseTable::data );
BaseTable::data = 0;
}
else {
/* Not shrinking to size zero, realloc it to the smaller size. */
BaseTable::data = (T*) realloc( BaseTable::data, sizeof(T) * newLen );
if ( BaseTable::data == 0 )
throw std::bad_alloc();
}
}
}
/**
* \brief Perform a deep copy of the vector.
*
* The contents of the other vector are copied into this vector. This vector
* gets the same allocation size as the other vector. All items are copied
* using the element's copy constructor.
*/
template<class T, class Resize> Vector<T, Resize>::
Vector(const Vector<T, Resize> &v)
{
BaseTable::tabLen = v.tabLen;
BaseTable::allocLen = v.allocLen;
if ( BaseTable::allocLen > 0 ) {
/* Allocate needed space. */
BaseTable::data = (T*) malloc(sizeof(T) * BaseTable::allocLen);
if ( BaseTable::data == 0 )
throw std::bad_alloc();
/* If there are any items in the src data, copy them in. */
T *dst = BaseTable::data, *src = v.data;
for (long pos = 0; pos < BaseTable::tabLen; pos++, dst++, src++ )
new(dst) T(*src);
}
else {
/* Nothing allocated. */
BaseTable::data = 0;
}
}
/** \fn Vector::~Vector()
* \brief Free all memory used by the vector.
*
* The vector is reset to zero elements. Destructors are called on all
* elements in the vector. The space allocated for the vector is freed.
*/
/**
* \brief Free all memory used by the vector.
*
* The vector is reset to zero elements. Destructors are called on all
* elements in the vector. The space allocated for the vector is freed.
*/
template<class T, class Resize> void Vector<T, Resize>::
empty()
{
if ( BaseTable::data != 0 ) {
/* Call All destructors. */
T *pos = BaseTable::data;
for ( long i = 0; i < BaseTable::tabLen; pos++, i++ )
pos->~T();
/* Free the data space. */
free( BaseTable::data );
BaseTable::data = 0;
BaseTable::tabLen = BaseTable::allocLen = 0;
}
}
/**
* \brief Set the contents of the vector to be len elements exactly.
*
* The vector becomes len elements in length. Destructors are called on any
* existing elements in the vector. Copy constructors are used to place the
* new elements in the vector.
*/
template<class T, class Resize> void Vector<T, Resize>::
setAs(const T *val, long len)
{
/* Call All destructors. */
long i;
T *pos = BaseTable::data;
for ( i = 0; i < BaseTable::tabLen; pos++, i++ )
pos->~T();
/* Adjust the allocated length. */
if ( len < BaseTable::tabLen )
downResize( len );
else if ( len > BaseTable::tabLen )
upResize( len );
/* Set the new data length to exactly len. */
BaseTable::tabLen = len;
/* Copy data in. */
T *dst = BaseTable::data;
const T *src = val;
for ( i = 0; i < len; i++, dst++, src++ )
new(dst) T(*src);
}
/**
* \brief Set the vector to len copies of item.
*
* The vector becomes len elements in length. Destructors are called on any
* existing elements in the vector. The element's copy constructor is used to
* copy the item into the vector.
*/
template<class T, class Resize> void Vector<T, Resize>::
setAsDup(const T &item, long len)
{
/* Call All destructors. */
T *pos = BaseTable::data;
for ( long i = 0; i < BaseTable::tabLen; pos++, i++ )
pos->~T();
/* Adjust the allocated length. */
if ( len < BaseTable::tabLen )
downResize( len );
else if ( len > BaseTable::tabLen )
upResize( len );
/* Set the new data length to exactly len. */
BaseTable::tabLen = len;
/* Copy item in one spot at a time. */
T *dst = BaseTable::data;
for ( long i = 0; i < len; i++, dst++ )
new(dst) T(item);
}
/**
* \brief Set the vector to exactly len new items.
*
* The vector becomes len elements in length. Destructors are called on any
* existing elements in the vector. Default constructors are used to init the
* new items.
*/
template<class T, class Resize> void Vector<T, Resize>::
setAsNew(long len)
{
/* Call All destructors. */
T *pos = BaseTable::data;
for ( long i = 0; i < BaseTable::tabLen; pos++, i++ )
pos->~T();
/* Adjust the allocated length. */
if ( len < BaseTable::tabLen )
downResize( len );
else if ( len > BaseTable::tabLen )
upResize( len );
/* Set the new data length to exactly len. */
BaseTable::tabLen = len;
/* Create items using default constructor. */
T *dst = BaseTable::data;
for ( long i = 0; i < len; i++, dst++ )
new(dst) T();
}
/**
* \brief Replace len elements at position pos.
*
* If there are existing elements at the positions to be replaced, then
* destructors are called before the space is used. Copy constructors are used
* to place the elements into the vector. It is allowable for the pos and
* length to specify a replacement that overwrites existing elements and
* creates new ones. If pos is greater than the length of the vector then
* undefined behaviour results. If pos is negative, then it is treated as an
* offset relative to the length of the vector.
*/
template<class T, class Resize> void Vector<T, Resize>::
replace(long pos, const T *val, long len)
{
long endPos, i;
T *item;
/* If we are given a negative position to replace at then
* treat it as a position relative to the length. */
if ( pos < 0 )
pos = BaseTable::tabLen + pos;
/* The end is the one past the last item that we want
* to write to. */
endPos = pos + len;
/* Make sure we have enough space. */
if ( endPos > BaseTable::tabLen ) {
upResize( endPos );
/* Delete any objects we need to delete. */
item = BaseTable::data + pos;
for ( i = pos; i < BaseTable::tabLen; i++, item++ )
item->~T();
/* We are extending the vector, set the new data length. */
BaseTable::tabLen = endPos;
}
else {
/* Delete any objects we need to delete. */
item = BaseTable::data + pos;
for ( i = pos; i < endPos; i++, item++ )
item->~T();
}
/* Copy data in using copy constructor. */
T *dst = BaseTable::data + pos;
const T *src = val;
for ( i = 0; i < len; i++, dst++, src++ )
new(dst) T(*src);
}
/**
* \brief Replace at position pos with len copies of an item.
*
* If there are existing elements at the positions to be replaced, then
* destructors are called before the space is used. The copy constructor is
* used to place the element into this vector. It is allowable for the pos and
* length to specify a replacement that overwrites existing elements and
* creates new ones. If pos is greater than the length of the vector then
* undefined behaviour results. If pos is negative, then it is treated as an
* offset relative to the length of the vector.
*/
template<class T, class Resize> void Vector<T, Resize>::
replaceDup(long pos, const T &val, long len)
{
long endPos, i;
T *item;
/* If we are given a negative position to replace at then
* treat it as a position relative to the length. */
if ( pos < 0 )
pos = BaseTable::tabLen + pos;
/* The end is the one past the last item that we want
* to write to. */
endPos = pos + len;
/* Make sure we have enough space. */
if ( endPos > BaseTable::tabLen ) {
upResize( endPos );
/* Delete any objects we need to delete. */
item = BaseTable::data + pos;
for ( i = pos; i < BaseTable::tabLen; i++, item++ )
item->~T();
/* We are extending the vector, set the new data length. */
BaseTable::tabLen = endPos;
}
else {
/* Delete any objects we need to delete. */
item = BaseTable::data + pos;
for ( i = pos; i < endPos; i++, item++ )
item->~T();
}
/* Copy data in using copy constructor. */
T *dst = BaseTable::data + pos;
for ( long i = 0; i < len; i++, dst++ )
new(dst) T(val);
}
/**
* \brief Replace at position pos with len new elements.
*
* If there are existing elements at the positions to be replaced, then
* destructors are called before the space is used. The default constructor is
* used to initialize the new elements. It is allowable for the pos and length
* to specify a replacement that overwrites existing elements and creates new
* ones. If pos is greater than the length of the vector then undefined
* behaviour results. If pos is negative, then it is treated as an offset
* relative to the length of the vector.
*/
template<class T, class Resize> void Vector<T, Resize>::
replaceNew(long pos, long len)
{
long endPos, i;
T *item;
/* If we are given a negative position to replace at then
* treat it as a position relative to the length. */
if ( pos < 0 )
pos = BaseTable::tabLen + pos;
/* The end is the one past the last item that we want
* to write to. */
endPos = pos + len;
/* Make sure we have enough space. */
if ( endPos > BaseTable::tabLen ) {
upResize( endPos );
/* Delete any objects we need to delete. */
item = BaseTable::data + pos;
for ( i = pos; i < BaseTable::tabLen; i++, item++ )
item->~T();
/* We are extending the vector, set the new data length. */
BaseTable::tabLen = endPos;
}
else {
/* Delete any objects we need to delete. */
item = BaseTable::data + pos;
for ( i = pos; i < endPos; i++, item++ )
item->~T();
}
/* Copy data in using copy constructor. */
T *dst = BaseTable::data + pos;
for ( long i = 0; i < len; i++, dst++ )
new(dst) T();
}
/**
* \brief Remove len elements at position pos.
*
* Destructor is called on all elements removed. Elements to the right of pos
* are shifted len spaces to the left to take up the free space. If pos is
* greater than or equal to the length of the vector then undefined behavior
* results. If pos is negative then it is treated as an offset relative to the
* length of the vector.
*/
template<class T, class Resize> void Vector<T, Resize>::
remove(long pos, long len)
{
long newLen, lenToSlideOver, endPos;
T *dst, *item;
/* If we are given a negative position to remove at then
* treat it as a position relative to the length. */
if ( pos < 0 )
pos = BaseTable::tabLen + pos;
/* The first position after the last item deleted. */
endPos = pos + len;
/* The new data length. */
newLen = BaseTable::tabLen - len;
/* The place in the data we are deleting at. */
dst = BaseTable::data + pos;
/* Call Destructors. */
item = dst;
for ( long i = 0; i < len; i += 1, item += 1 )
item->~T();
/* Shift data over if necessary. */
lenToSlideOver = BaseTable::tabLen - endPos;
if ( len > 0 && lenToSlideOver > 0 )
memmove(dst, dst + len, sizeof(T)*lenToSlideOver);
/* Shrink the data if necessary. */
downResize( newLen );
/* Set the new data length. */
BaseTable::tabLen = newLen;
}
/**
* \brief Insert len elements at position pos.
*
* Elements in the vector from pos onward are shifted len spaces to the right.
* The copy constructor is used to place the elements into this vector. If pos
* is greater than the length of the vector then undefined behaviour results.
* If pos is negative then it is treated as an offset relative to the length
* of the vector.
*/
template<class T, class Resize> void Vector<T, Resize>::
insert(long pos, const T *val, long len)
{
/* If we are given a negative position to insert at then
* treat it as a position relative to the length. */
if ( pos < 0 )
pos = BaseTable::tabLen + pos;
/* Calculate the new length. */
long newLen = BaseTable::tabLen + len;
/* Up resize, we are growing. */
upResize( newLen );
/* Shift over data at insert spot if needed. */
if ( len > 0 && pos < BaseTable::tabLen ) {
memmove(BaseTable::data + pos + len, BaseTable::data + pos,
sizeof(T)*(BaseTable::tabLen-pos));
}
/* Copy data in element by element. */
T *dst = BaseTable::data + pos;
const T *src = val;
for ( long i = 0; i < len; i++, dst++, src++ )
new(dst) T(*src);
/* Set the new length. */
BaseTable::tabLen = newLen;
}
/**
* \brief Insert len copies of item at position pos.
*
* Elements in the vector from pos onward are shifted len spaces to the right.
* The copy constructor is used to place the element into this vector. If pos
* is greater than the length of the vector then undefined behaviour results.
* If pos is negative then it is treated as an offset relative to the length
* of the vector.
*/
template<class T, class Resize> void Vector<T, Resize>::
insertDup(long pos, const T &item, long len)
{
/* If we are given a negative position to insert at then
* treat it as a position relative to the length. */
if ( pos < 0 )
pos = BaseTable::tabLen + pos;
/* Calculate the new length. */
long newLen = BaseTable::tabLen + len;
/* Up resize, we are growing. */
upResize( newLen );
/* Shift over data at insert spot if needed. */
if ( len > 0 && pos < BaseTable::tabLen ) {
memmove(BaseTable::data + pos + len, BaseTable::data + pos,
sizeof(T)*(BaseTable::tabLen-pos));
}
/* Copy the data item in one at a time. */
T *dst = BaseTable::data + pos;
for ( long i = 0; i < len; i++, dst++ )
new(dst) T(item);
/* Set the new length. */
BaseTable::tabLen = newLen;
}
/**
* \brief Insert len new elements using the default constructor.
*
* Elements in the vector from pos onward are shifted len spaces to the right.
* Default constructors are used to init the new elements. If pos is off the
* end of the vector then undefined behaviour results. If pos is negative then
* it is treated as an offset relative to the length of the vector.
*/
template<class T, class Resize> void Vector<T, Resize>::
insertNew(long pos, long len)
{
/* If we are given a negative position to insert at then
* treat it as a position relative to the length. */
if ( pos < 0 )
pos = BaseTable::tabLen + pos;
/* Calculate the new length. */
long newLen = BaseTable::tabLen + len;
/* Up resize, we are growing. */
upResize( newLen );
/* Shift over data at insert spot if needed. */
if ( len > 0 && pos < BaseTable::tabLen ) {
memmove(BaseTable::data + pos + len, BaseTable::data + pos,
sizeof(T)*(BaseTable::tabLen-pos));
}
/* Init new data with default constructors. */
T *dst = BaseTable::data + pos;
for ( long i = 0; i < len; i++, dst++ )
new(dst) T();
/* Set the new length. */
BaseTable::tabLen = newLen;
}
/* Makes space for len items, Does not init the items in any way. If pos is
* greater than the length of the vector then undefined behaviour results.
* Updates the length of the vector. */
template<class T, class Resize> void Vector<T, Resize>::
makeRawSpaceFor(long pos, long len)
{
/* Calculate the new length. */
long newLen = BaseTable::tabLen + len;
/* Up resize, we are growing. */
upResize( newLen );
/* Shift over data at insert spot if needed. */
if ( len > 0 && pos < BaseTable::tabLen ) {
memmove(BaseTable::data + pos + len, BaseTable::data + pos,
sizeof(T)*(BaseTable::tabLen-pos));
}
/* Save the new length. */
BaseTable::tabLen = newLen;
}
#ifdef AAPL_NAMESPACE
}
#endif
#endif /* _AAPL_VECTOR_H */
|