summaryrefslogtreecommitdiff
path: root/colm/fsmgraph.cc
blob: bf2d2446d60c7637dc78158933eebcac54cf6725 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
/*
 *  Copyright 2006-2012 Adrian Thurston <thurston@complang.org>
 */

/*  This file is part of Colm.
 *
 *  Colm is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 * 
 *  Colm is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 * 
 *  You should have received a copy of the GNU General Public License
 *  along with Colm; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 */

#include <assert.h>
#include <iostream>

#include "config.h"
#include "defs.h"
#include "fsmgraph.h"
#include "mergesort.h"

using std::cerr;
using std::endl;

/* Make a new state. The new state will be put on the graph's
 * list of state. The new state can be created final or non final. */
FsmState *FsmGraph::addState()
{
	/* Make the new state to return. */
	FsmState *state = new FsmState();

	if ( misfitAccounting ) {
		/* Create the new state on the misfit list. All states are created
		 * with no foreign in transitions. */
		misfitList.append( state );
	}
	else {
		/* Create the new state. */
		stateList.append( state );
	}

	return state;
}

/* Construct an FSM that is the concatenation of an array of characters. A new
 * machine will be made that has len+1 states with one transition between each
 * state for each integer in str. IsSigned determines if the integers are to
 * be considered as signed or unsigned ints. */
void FsmGraph::concatFsm( Key *str, int len )
{
	/* Make the first state and set it as the start state. */
	FsmState *last = addState();
	setStartState( last );

	/* Attach subsequent states. */
	for ( int i = 0; i < len; i++ ) {
		FsmState *newState = addState();
		attachNewTrans( last, newState, str[i], str[i] );
		last = newState;
	}

	/* Make the last state the final state. */
	setFinState( last );
}

/* Case insensitive version of concatFsm. */
void FsmGraph::concatFsmCI( Key *str, int len )
{
	/* Make the first state and set it as the start state. */
	FsmState *last = addState();
	setStartState( last );

	/* Attach subsequent states. */
	for ( int i = 0; i < len; i++ ) {
		FsmState *newState = addState();

		KeySet keySet;
		if ( str[i].isLower() )
			keySet.insert( str[i].toUpper() );
		if ( str[i].isUpper() )
			keySet.insert( str[i].toLower() );
		keySet.insert( str[i] );

		for ( int i = 0; i < keySet.length(); i++ )
			attachNewTrans( last, newState, keySet[i], keySet[i] );

		last = newState;
	}

	/* Make the last state the final state. */
	setFinState( last );
}

/* Construct a machine that matches one character.  A new machine will be made
 * that has two states with a single transition between the states. IsSigned
 * determines if the integers are to be considered as signed or unsigned ints. */
void FsmGraph::concatFsm( Key chr )
{
	/* Two states first start, second final. */
	setStartState( addState() );

	FsmState *end = addState();
	setFinState( end );

	/* Attach on the character. */
	attachNewTrans( startState, end, chr, chr );
}

/* Construct a machine that matches any character in set.  A new machine will
 * be made that has two states and len transitions between the them. The set
 * should be ordered correctly accroding to KeyOps and should not contain
 * any duplicates. */
void FsmGraph::orFsm( Key *set, int len )
{
	/* Two states first start, second final. */
	setStartState( addState() );

	FsmState *end = addState();
	setFinState( end );

	for ( int i = 1; i < len; i++ )
		assert( set[i-1] < set[i] );

	/* Attach on all the integers in the given string of ints. */
	for ( int i = 0; i < len; i++ )
		attachNewTrans( startState, end, set[i], set[i] );
}

/* Construct a machine that matches a range of characters.  A new machine will
 * be made with two states and a range transition between them. The range will
 * match any characters from low to high inclusive. Low should be less than or
 * equal to high otherwise undefined behaviour results.  IsSigned determines
 * if the integers are to be considered as signed or unsigned ints. */
void FsmGraph::rangeFsm( Key low, Key high )
{
	/* Two states first start, second final. */
	setStartState( addState() );

	FsmState *end = addState();
	setFinState( end );

	/* Attach using the range of characters. */
	attachNewTrans( startState, end, low, high );
}

/* Construct a machine that a repeated range of characters.  */
void FsmGraph::rangeStarFsm( Key low, Key high)
{
	/* One state which is final and is the start state. */
	setStartState( addState() );
	setFinState( startState );

	/* Attach start to start using range of characters. */
	attachNewTrans( startState, startState, low, high );
}

/* Construct a machine that matches the empty string.  A new machine will be
 * made with only one state. The new state will be both a start and final
 * state. IsSigned determines if the machine has a signed or unsigned
 * alphabet. Fsm operations must be done on machines with the same alphabet
 * signedness. */
void FsmGraph::lambdaFsm( )
{
	/* Give it one state with no transitions making it
	 * the start state and final state. */
	setStartState( addState() );
	setFinState( startState );
}

/* Construct a machine that matches nothing at all. A new machine will be
 * made with only one state. It will not be final. */
void FsmGraph::emptyFsm( )
{
	/* Give it one state with no transitions making it
	 * the start state and final state. */
	setStartState( addState() );
}

void FsmGraph::transferOutData( FsmState *destState, FsmState *srcState )
{
	for ( TransList::Iter trans = destState->outList; trans.lte(); trans++ ) {
		if ( trans->toState != 0 ) {
			/* Get the actions data from the outActionTable. */
			trans->actionTable.setActions( srcState->outActionTable );

			/* Get the priorities from the outPriorTable. */
			trans->priorTable.setPriors( srcState->outPriorTable );
		}
	}
}

/* Kleene star operator. Makes this machine the kleene star of itself. Any
 * transitions made going out of the machine and back into itself will be
 * notified that they are leaving transitions by having the leavingFromState
 * callback invoked. */
void FsmGraph::starOp( )
{
	/* For the merging process. */
	MergeData md;

	/* Turn on misfit accounting to possibly catch the old start state. */
	setMisfitAccounting( true );

	/* Create the new new start state. It will be set final after the merging
	 * of the final states with the start state is complete. */
	FsmState *prevStartState = startState;
	unsetStartState();
	setStartState( addState() );

	/* Merge the new start state with the old one to isolate it. */
	mergeStates( md, startState, prevStartState );

	/* Merge the start state into all final states. Except the start state on
	 * the first pass. If the start state is set final we will be doubling up
	 * its transitions, which will get transfered to any final states that
	 * follow it in the final state set. This will be determined by the order
	 * of items in the final state set. To prevent this we just merge with the
	 * start on a second pass. */
	for ( StateSet::Iter st = finStateSet; st.lte(); st++ ) {
		if ( *st != startState )
			mergeStatesLeaving( md, *st, startState );
	}

	/* Now it is safe to merge the start state with itself (provided it
	 * is set final). */
	if ( startState->isFinState() )
		mergeStatesLeaving( md, startState, startState );

	/* Now ensure the new start state is a final state. */
	setFinState( startState );

	/* Fill in any states that were newed up as combinations of others. */
	fillInStates( md );

	/* Remove the misfits and turn off misfit accounting. */
	removeMisfits();
	setMisfitAccounting( false );
}

void FsmGraph::repeatOp( int times )
{
	/* Must be 1 and up. 0 produces null machine and requires deleting this. */
	assert( times > 0 );

	/* A repeat of one does absolutely nothing. */
	if ( times == 1 )
		return;

	/* Make a machine to make copies from. */
	FsmGraph *copyFrom = new FsmGraph( *this );

	/* Concatentate duplicates onto the end up until before the last. */
	for ( int i = 1; i < times-1; i++ ) {
		FsmGraph *dup = new FsmGraph( *copyFrom );
		doConcat( dup, 0, false );
	}

	/* Now use the copyFrom on the end. */
	doConcat( copyFrom, 0, false );
}

void FsmGraph::optionalRepeatOp( int times )
{
	/* Must be 1 and up. 0 produces null machine and requires deleting this. */
	assert( times > 0 );

	/* A repeat of one optional merely allows zero string. */
	if ( times == 1 ) {
		setFinState( startState );
		return;
	}

	/* Make a machine to make copies from. */
	FsmGraph *copyFrom = new FsmGraph( *this );

	/* The state set used in the from end of the concatentation. Starts with
	 * the initial final state set, then after each concatenation, gets set to
	 * the the final states that come from the the duplicate. */
	StateSet lastFinSet( finStateSet );

	/* Set the initial state to zero to allow zero copies. */
	setFinState( startState );

	/* Concatentate duplicates onto the end up until before the last. */
	for ( int i = 1; i < times-1; i++ ) {
		/* Make a duplicate for concating and set the fin bits to graph 2 so we
		 * can pick out it's final states after the optional style concat. */
		FsmGraph *dup = new FsmGraph( *copyFrom );
		dup->setFinBits( SB_GRAPH2 );
		doConcat( dup, &lastFinSet, true );

		/* Clear the last final state set and make the new one by taking only
		 * the final states that come from graph 2.*/
		lastFinSet.empty();
		for ( int i = 0; i < finStateSet.length(); i++ ) {
			/* If the state came from graph 2, add it to the last set and clear
			 * the bits. */
			FsmState *fs = finStateSet[i];
			if ( fs->stateBits & SB_GRAPH2 ) {
				lastFinSet.insert( fs );
				fs->stateBits &= ~SB_GRAPH2;
			}
		}
	}

	/* Now use the copyFrom on the end, no bits set, no bits to clear. */
	doConcat( copyFrom, &lastFinSet, true );
}


/* Fsm concatentation worker. Supports treating the concatentation as optional,
 * which essentially leaves the final states of machine one as final. */
void FsmGraph::doConcat( FsmGraph *other, StateSet *fromStates, bool optional )
{
	/* For the merging process. */
	StateSet finStateSetCopy, startStateSet;
	MergeData md;

	/* Turn on misfit accounting for both graphs. */
	setMisfitAccounting( true );
	other->setMisfitAccounting( true );

	/* Get the other's start state. */
	FsmState *otherStartState = other->startState;

	/* Unset other's start state before bringing in the entry points. */
	other->unsetStartState();

	/* Bring in the rest of other's entry points. */
	copyInEntryPoints( other );
	other->entryPoints.empty();

	/* Bring in other's states into our state lists. */
	stateList.append( other->stateList );
	misfitList.append( other->misfitList );

	/* If from states is not set, then get a copy of our final state set before
	 * we clobber it and use it instead. */
	if ( fromStates == 0 ) {
		finStateSetCopy = finStateSet;
		fromStates = &finStateSetCopy;
	}

	/* Unset all of our final states and get the final states from other. */
	if ( !optional )
		unsetAllFinStates();
	finStateSet.insert( other->finStateSet );
	
	/* Since other's lists are empty, we can delete the fsm without
	 * affecting any states. */
	delete other;

	/* Merge our former final states with the start state of other. */
	for ( int i = 0; i < fromStates->length(); i++ ) {
		FsmState *state = fromStates->data[i];

		/* Merge the former final state with other's start state. */
		mergeStatesLeaving( md, state, otherStartState );

		/* If the former final state was not reset final then we must clear
		 * the state's out trans data. If it got reset final then it gets to
		 * keep its out trans data. This must be done before fillInStates gets
		 * called to prevent the data from being sourced. */
		if ( ! state->isFinState() )
			clearOutData( state );
	}

	/* Fill in any new states made from merging. */
	fillInStates( md );

	/* Remove the misfits and turn off misfit accounting. */
	removeMisfits();
	setMisfitAccounting( false );
}

/* Concatenates other to the end of this machine. Other is deleted.  Any
 * transitions made leaving this machine and entering into other are notified
 * that they are leaving transitions by having the leavingFromState callback
 * invoked. */
void FsmGraph::concatOp( FsmGraph *other )
{
	/* Assert same signedness and return graph concatenation op. */
	doConcat( other, 0, false );
}


void FsmGraph::doOr( FsmGraph *other )
{
	/* For the merging process. */
	MergeData md;

	/* Build a state set consisting of both start states */
	StateSet startStateSet;
	startStateSet.insert( startState );
	startStateSet.insert( other->startState );

	/* Both of the original start states loose their start state status. */
	unsetStartState();
	other->unsetStartState();

	/* Bring in the rest of other's entry points. */
	copyInEntryPoints( other );
	other->entryPoints.empty();

	/* Merge the lists. This will move all the states from other
	 * into this. No states will be deleted. */
	stateList.append( other->stateList );
	misfitList.append( other->misfitList );

	/* Move the final set data from other into this. */
	finStateSet.insert(other->finStateSet);
	other->finStateSet.empty();

	/* Since other's list is empty, we can delete the fsm without
	 * affecting any states. */
	delete other;

	/* Create a new start state. */
	setStartState( addState() );

	/* Merge the start states. */
	mergeStates( md, startState, startStateSet.data, startStateSet.length() );

	/* Fill in any new states made from merging. */
	fillInStates( md );
}

/* Unions other with this machine. Other is deleted. */
void FsmGraph::unionOp( FsmGraph *other )
{
	/* Turn on misfit accounting for both graphs. */
	setMisfitAccounting( true );
	other->setMisfitAccounting( true );

	/* Call Worker routine. */
	doOr( other );

	/* Remove the misfits and turn off misfit accounting. */
	removeMisfits();
	setMisfitAccounting( false );
}

/* Intersects other with this machine. Other is deleted. */
void FsmGraph::intersectOp( FsmGraph *other )
{
	/* Turn on misfit accounting for both graphs. */
	setMisfitAccounting( true );
	other->setMisfitAccounting( true );

	/* Set the fin bits on this and other to want each other. */
	setFinBits( SB_GRAPH1 );
	other->setFinBits( SB_GRAPH2 );

	/* Call worker Or routine. */
	doOr( other );

	/* Unset any final states that are no longer to 
	 * be final due to final bits. */
	unsetIncompleteFinals();

	/* Remove the misfits and turn off misfit accounting. */
	removeMisfits();
	setMisfitAccounting( false );

	/* Remove states that have no path to a final state. */
	removeDeadEndStates();
}

/* Set subtracts other machine from this machine. Other is deleted. */
void FsmGraph::subtractOp( FsmGraph *other )
{
	/* Turn on misfit accounting for both graphs. */
	setMisfitAccounting( true );
	other->setMisfitAccounting( true );

	/* Set the fin bits of other to be killers. */
	other->setFinBits( SB_GRAPH1 );

	/* Call worker Or routine. */
	doOr( other );

	/* Unset any final states that are no longer to 
	 * be final due to final bits. */
	unsetKilledFinals();

	/* Remove the misfits and turn off misfit accounting. */
	removeMisfits();
	setMisfitAccounting( false );

	/* Remove states that have no path to a final state. */
	removeDeadEndStates();
}

bool FsmGraph::inEptVect( EptVect *eptVect, FsmState *state )
{
	if ( eptVect != 0 ) {
		/* Vect is there, walk it looking for state. */
		for ( int i = 0; i < eptVect->length(); i++ ) {
			if ( eptVect->data[i].targ == state )
				return true;
		}
	}
	return false;
}

/* Fill epsilon vectors in a root state from a given starting point. Epmploys
 * a depth first search through the graph of epsilon transitions. */
void FsmGraph::epsilonFillEptVectFrom( FsmState *root, FsmState *from, bool parentLeaving )
{
	/* Walk the epsilon transitions out of the state. */
	for ( EpsilonTrans::Iter ep = from->epsilonTrans; ep.lte(); ep++ ) {
		/* Find the entry point, if the it does not resove, ignore it. */
		EntryMapEl *enLow, *enHigh;
		if ( entryPoints.findMulti( *ep, enLow, enHigh ) ) {
			/* Loop the targets. */
			for ( EntryMapEl *en = enLow; en <= enHigh; en++ ) {
				/* Do not add the root or states already in eptVect. */
				FsmState *targ = en->value;
				if ( targ != from && !inEptVect(root->eptVect, targ) ) {
					/* Maybe need to create the eptVect. */
					if ( root->eptVect == 0 )
						root->eptVect = new EptVect();

					/* If moving to a different graph or if any parent is
					 * leaving then we are leaving. */
					bool leaving = parentLeaving || 
							root->owningGraph != targ->owningGraph;

					/* All ok, add the target epsilon and recurse. */
					root->eptVect->append( EptVectEl(targ, leaving) );
					epsilonFillEptVectFrom( root, targ, leaving );
				}
			}
		}
	}
}

void FsmGraph::shadowReadWriteStates( MergeData &md )
{
	/* Init isolatedShadow algorithm data. */
	for ( StateList::Iter st = stateList; st.lte(); st++ )
		st->isolatedShadow = 0;

	/* Any states that may be both read from and written to must 
	 * be shadowed. */
	for ( StateList::Iter st = stateList; st.lte(); st++ ) {
		/* Find such states by looping through stateVect lists, which give us
		 * the states that will be read from. May cause us to visit the states
		 * that we are interested in more than once. */
		if ( st->eptVect != 0 ) {
			/* For all states that will be read from. */
			for ( EptVect::Iter ept = *st->eptVect; ept.lte(); ept++ ) {
				/* Check for read and write to the same state. */
				FsmState *targ = ept->targ;
				if ( targ->eptVect != 0 ) {
					/* State is to be written to, if the shadow is not already
					 * there, create it. */
					if ( targ->isolatedShadow == 0 ) {
						FsmState *shadow = addState();
						mergeStates( md, shadow, targ );
						targ->isolatedShadow = shadow;
					}

					/* Write shadow into the state vector so that it is the
					 * state that the epsilon transition will read from. */
					ept->targ = targ->isolatedShadow;
				}
			}
		}
	}
}

void FsmGraph::resolveEpsilonTrans( MergeData &md )
{
	/* Walk the state list and invoke recursive worker on each state. */
	for ( StateList::Iter st = stateList; st.lte(); st++ )
		epsilonFillEptVectFrom( st, st, false );

	/* Prevent reading from and writing to of the same state. */
	shadowReadWriteStates( md );

	/* For all states that have epsilon transitions out, draw the transitions,
	 * clear the epsilon transitions. */
	for ( StateList::Iter st = stateList; st.lte(); st++ ) {
		/* If there is a state vector, then create the pre-merge state. */
		if ( st->eptVect != 0 ) {
			/* Merge all the epsilon targets into the state. */
			for ( EptVect::Iter ept = *st->eptVect; ept.lte(); ept++ ) {
				if ( ept->leaving )
					mergeStatesLeaving( md, st, ept->targ );
				else
					mergeStates( md, st, ept->targ );
			}

			/* Clean up the target list. */
			delete st->eptVect;
			st->eptVect = 0;
		}

		/* Clear the epsilon transitions vector. */
		st->epsilonTrans.empty();
	}
}

void FsmGraph::epsilonOp()
{
	/* For merging process. */
	MergeData md;

	setMisfitAccounting( true );

	for ( StateList::Iter st = stateList; st.lte(); st++ )
		st->owningGraph = 0;

	/* Perform merges. */
	resolveEpsilonTrans( md );

	/* Epsilons can caused merges which leave behind unreachable states. */
	fillInStates( md );

	/* Remove the misfits and turn off misfit accounting. */
	removeMisfits();
	setMisfitAccounting( false );
}

/* Make a new maching by joining together a bunch of machines without making
 * any transitions between them. A negative finalId results in there being no
 * final id. */
void FsmGraph::joinOp( int startId, int finalId, FsmGraph **others, int numOthers )
{
	/* For the merging process. */
	MergeData md;

	/* Set the owning machines. Start at one. Zero is reserved for the start
	 * and final states. */
	for ( StateList::Iter st = stateList; st.lte(); st++ )
		st->owningGraph = 1;
	for ( int m = 0; m < numOthers; m++ ) {
		for ( StateList::Iter st = others[m]->stateList; st.lte(); st++ )
			st->owningGraph = 2+m;
	}

	/* All machines loose start state status. */
	unsetStartState();
	for ( int m = 0; m < numOthers; m++ )
		others[m]->unsetStartState();
	
	/* Bring the other machines into this. */
	for ( int m = 0; m < numOthers; m++ ) {
		/* Bring in the rest of other's entry points. */
		copyInEntryPoints( others[m] );
		others[m]->entryPoints.empty();

		/* Merge the lists. This will move all the states from other into
		 * this. No states will be deleted. */
		stateList.append( others[m]->stateList );
		assert( others[m]->misfitList.length() == 0 );

		/* Move the final set data from other into this. */
		finStateSet.insert( others[m]->finStateSet );
		others[m]->finStateSet.empty();

		/* Since other's list is empty, we can delete the fsm without
		 * affecting any states. */
		delete others[m];
	}

	/* Look up the start entry point. */
	EntryMapEl *enLow = 0, *enHigh = 0;
	bool findRes = entryPoints.findMulti( startId, enLow, enHigh );
	if ( ! findRes ) {
		/* No start state. Set a default one and proceed with the join. Note
		 * that the result of the join will be a very uninteresting machine. */
		setStartState( addState() );
	}
	else {
		/* There is at least one start state, create a state that will become
		 * the new start state. */
		FsmState *newStart = addState();
		setStartState( newStart );

		/* The start state is in an owning machine class all it's own. */
		newStart->owningGraph = 0;

		/* Create the set of states to merge from. */
		StateSet stateSet;
		for ( EntryMapEl *en = enLow; en <= enHigh; en++ )
			stateSet.insert( en->value );

		/* Merge in the set of start states into the new start state. */
		mergeStates( md, newStart, stateSet.data, stateSet.length() );
	}

	/* Take a copy of the final state set, before unsetting them all. This
	 * will allow us to call clearOutData on the states that don't get
	 * final state status back back. */
	StateSet finStateSetCopy = finStateSet;

	/* Now all final states are unset. */
	unsetAllFinStates();

	if ( finalId >= 0 ) {
		/* Create the implicit final state. */
		FsmState *finState = addState();
		setFinState( finState );

		/* Assign an entry into the final state on the final state entry id. Note
		 * that there may already be an entry on this id. That's ok. Also set the
		 * final state owning machine id. It's in a class all it's own. */
		setEntry( finalId, finState );
		finState->owningGraph = 0;
	}

	/* Hand over to workers for resolving epsilon trans. This will merge states
	 * with the targets of their epsilon transitions. */
	resolveEpsilonTrans( md );

	/* Invoke the relinquish final callback on any states that did not get
	 * final state status back. */
	for ( StateSet::Iter st = finStateSetCopy; st.lte(); st++ ) {
		if ( !((*st)->stateBits & SB_ISFINAL) )
			clearOutData( *st );
	}

	/* Fill in any new states made from merging. */
	fillInStates( md );

	/* Joining can be messy. Instead of having misfit accounting on (which is
	 * tricky here) do a full cleaning. */
	removeUnreachableStates();
}

void FsmGraph::globOp( FsmGraph **others, int numOthers )
{
	/* All other machines loose start states status. */
	for ( int m = 0; m < numOthers; m++ )
		others[m]->unsetStartState();
	
	/* Bring the other machines into this. */
	for ( int m = 0; m < numOthers; m++ ) {
		/* Bring in the rest of other's entry points. */
		copyInEntryPoints( others[m] );
		others[m]->entryPoints.empty();

		/* Merge the lists. This will move all the states from other into
		 * this. No states will be deleted. */
		stateList.append( others[m]->stateList );
		assert( others[m]->misfitList.length() == 0 );

		/* Move the final set data from other into this. */
		finStateSet.insert( others[m]->finStateSet );
		others[m]->finStateSet.empty();

		/* Since other's list is empty, we can delete the fsm without
		 * affecting any states. */
		delete others[m];
	}
}

void FsmGraph::deterministicEntry()
{
	/* For the merging process. */
	MergeData md;

	/* States may loose their entry points, turn on misfit accounting. */
	setMisfitAccounting( true );

	/* Get a copy of the entry map then clear all the entry points. As we
	 * iterate the old entry map finding duplicates we will add the entry
	 * points for the new states that we create. */
	EntryMap prevEntry = entryPoints;
	unsetAllEntryPoints();

	for ( int enId = 0; enId < prevEntry.length(); ) {
		/* Count the number of states on this entry key. */
		int highId = enId;
		while ( highId < prevEntry.length() && prevEntry[enId].key == prevEntry[highId].key )
			highId += 1;

		int numIds = highId - enId;
		if ( numIds == 1 ) {
			/* Only a single entry point, just set the entry. */
			setEntry( prevEntry[enId].key, prevEntry[enId].value );
		}
		else {
			/* Multiple entry points, need to create a new state and merge in
			 * all the targets of entry points. */
			FsmState *newEntry = addState();
			for ( int en = enId; en < highId; en++ )
				mergeStates( md, newEntry, prevEntry[en].value );

			/* Add the new state as the single entry point. */
			setEntry( prevEntry[enId].key, newEntry );
		}

		enId += numIds;
	}

	/* The old start state may be unreachable. Remove the misfits and turn off
	 * misfit accounting. */
	removeMisfits();
	setMisfitAccounting( false );
}

/* Unset any final states that are no longer to be final due to final bits. */
void FsmGraph::unsetKilledFinals()
{
	/* Duplicate the final state set before we begin modifying it. */
	StateSet fin( finStateSet );

	for ( int s = 0; s < fin.length(); s++ ) {
		/* Check for killing bit. */
		FsmState *state = fin.data[s];
		if ( state->stateBits & SB_GRAPH1 ) {
			/* One final state is a killer, set to non-final. */
			unsetFinState( state );
		}

		/* Clear all killing bits. Non final states should never have had those
		 * state bits set in the first place. */
		state->stateBits &= ~SB_GRAPH1;
	}
}

/* Unset any final states that are no longer to be final due to final bits. */
void FsmGraph::unsetIncompleteFinals()
{
	/* Duplicate the final state set before we begin modifying it. */
	StateSet fin( finStateSet );

	for ( int s = 0; s < fin.length(); s++ ) {
		/* Check for one set but not the other. */
		FsmState *state = fin.data[s];
		if ( state->stateBits & SB_BOTH && 
				(state->stateBits & SB_BOTH) != SB_BOTH )
		{
			/* One state wants the other but it is not there. */
			unsetFinState( state );
		}

		/* Clear wanting bits. Non final states should never have had those
		 * state bits set in the first place. */
		state->stateBits &= ~SB_BOTH;
	}
}

/* Ensure that the start state is free of entry points (aside from the fact
 * that it is the start state). If the start state has entry points then Make a
 * new start state by merging with the old one. Useful before modifying start
 * transitions. If the existing start state has any entry points other than the
 * start state entry then modifying its transitions changes more than the start
 * transitions. So isolate the start state by separating it out such that it
 * only has start stateness as it's entry point. */
void FsmGraph::isolateStartState( )
{
	/* For the merging process. */
	MergeData md;

	/* Bail out if the start state is already isolated. */
	if ( isStartStateIsolated() )
		return;

	/* Turn on misfit accounting to possibly catch the old start state. */
	setMisfitAccounting( true );

	/* This will be the new start state. The existing start
	 * state is merged with it. */
	FsmState *prevStartState = startState;
	unsetStartState();
	setStartState( addState() );

	/* Merge the new start state with the old one to isolate it. */
	mergeStates( md, startState, prevStartState );

	/* Stfil and stateDict will be empty because the merging of the old start
	 * state into the new one will not have any conflicting transitions. */
	assert( md.stateDict.treeSize == 0 );
	assert( md.stfillHead == 0 );

	/* The old start state may be unreachable. Remove the misfits and turn off
	 * misfit accounting. */
	removeMisfits();
	setMisfitAccounting( false );
}

/* A state merge which represents the drawing in of leaving transitions.  If
 * there is any out data then we duplicate the souce state, transfer the out
 * data, then merge in the state. The new state will be reaped because it will
 * not be given any in transitions. */
void FsmGraph::mergeStatesLeaving( MergeData &md, FsmState *destState, FsmState *srcState )
{
	if ( !hasOutData( destState ) )
		mergeStates( md, destState, srcState );
	else {
		FsmState *ssMutable = addState();
		mergeStates( md, ssMutable, srcState );
		transferOutData( ssMutable, destState );
		mergeStates( md, destState, ssMutable );
	}
}

void FsmGraph::mergeStates( MergeData &md, FsmState *destState, 
		FsmState **srcStates, int numSrc )
{
	for ( int s = 0; s < numSrc; s++ )
		mergeStates( md, destState, srcStates[s] );
}

void FsmGraph::mergeStates( MergeData &md, FsmState *destState, FsmState *srcState )
{
	outTransCopy( md, destState, srcState->outList.head );

	/* Get its bits and final state status. */
	destState->stateBits |= ( srcState->stateBits & ~SB_ISFINAL );
	if ( srcState->isFinState() )
		setFinState( destState );

	/* Draw in any properties of srcState into destState. */
	if ( srcState == destState ) {
		/* Duplicate the list to protect against write to source. The
		 * priorities sets are not copied in because that would have no
		 * effect. */
		destState->epsilonTrans.append( EpsilonTrans( srcState->epsilonTrans ) );

		/* Get all actions, duplicating to protect against write to source. */
		destState->toStateActionTable.setActions( 
				ActionTable( srcState->toStateActionTable ) );
		destState->fromStateActionTable.setActions( 
				ActionTable( srcState->fromStateActionTable ) );
		destState->outActionTable.setActions( ActionTable( srcState->outActionTable ) );
		destState->outCondSet.insert( ActionSet( srcState->outCondSet ) );
		destState->errActionTable.setActions( ErrActionTable( srcState->errActionTable ) );
		destState->eofActionTable.setActions( ActionTable( srcState->eofActionTable ) );
	}
	else {
		/* Get the epsilons, out priorities. */
		destState->epsilonTrans.append( srcState->epsilonTrans );
		destState->outPriorTable.setPriors( srcState->outPriorTable );

		/* Get all actions. */
		destState->toStateActionTable.setActions( srcState->toStateActionTable );
		destState->fromStateActionTable.setActions( srcState->fromStateActionTable );
		destState->outActionTable.setActions( srcState->outActionTable );
		destState->outCondSet.insert( srcState->outCondSet );
		destState->errActionTable.setActions( srcState->errActionTable );
		destState->eofActionTable.setActions( srcState->eofActionTable );
	}
}

void FsmGraph::fillInStates( MergeData &md )
{
	/* Merge any states that are awaiting merging. This will likey cause
	 * other states to be added to the stfil list. */
	FsmState *state = md.stfillHead;
	while ( state != 0 ) {
		StateSet *stateSet = &state->stateDictEl->stateSet;
		mergeStates( md, state, stateSet->data, stateSet->length() );
		state = state->alg.next;
	}

	/* Delete the state sets of all states that are on the fill list. */
	state = md.stfillHead;
	while ( state != 0 ) {
		/* Delete and reset the state set. */
		delete state->stateDictEl;
		state->stateDictEl = 0;

		/* Next state in the stfill list. */
		state = state->alg.next;
	}

	/* StateDict will still have its ptrs/size set but all of it's element
	 * will be deleted so we don't need to clean it up. */
}