1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
|
/*
* Copyright 2006-2012 Adrian Thurston <thurston@complang.org>
*/
/* This file is part of Colm.
*
* Colm is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Colm is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Colm; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "avltree.h"
#include "parsedata.h"
#include "parser.h"
#include "parsetree.h"
#include "input.h"
#include <iostream>
#include <iomanip>
#include <errno.h>
#include <limits.h>
#include <stdlib.h>
using namespace std;
ostream &operator<<( ostream &out, const NameRef &nameRef );
ostream &operator<<( ostream &out, const NameInst &nameInst );
ostream &operator<<( ostream &out, const Token &token );
/* Convert the literal string which comes in from the scanner into an array of
* characters with escapes and options interpreted. Also null terminates the
* string. Though this null termination should not be relied on for
* interpreting literals in the parser because the string may contain a
* literal string with \0 */
void prepareLitString( String &result, bool &caseInsensitive,
const String &srcString, const InputLoc &loc )
{
result.setAs( String::Fresh(), srcString.length() );
caseInsensitive = false;
char *src = srcString.data + 1;
char *end = srcString.data + srcString.length() - 1;
while ( *end != '\'' && *end != '\"' && *end != '\n' ) {
if ( *end == 'i' )
caseInsensitive = true;
else {
error( loc ) << "literal string '" << *end <<
"' option not supported" << endl;
}
end -= 1;
}
if ( *end == '\n' )
end++;
char *dest = result.data;
int len = 0;
while ( src != end ) {
if ( *src == '\\' ) {
switch ( src[1] ) {
case '0': dest[len++] = '\0'; break;
case 'a': dest[len++] = '\a'; break;
case 'b': dest[len++] = '\b'; break;
case 't': dest[len++] = '\t'; break;
case 'n': dest[len++] = '\n'; break;
case 'v': dest[len++] = '\v'; break;
case 'f': dest[len++] = '\f'; break;
case 'r': dest[len++] = '\r'; break;
case '\n': break;
default: dest[len++] = src[1]; break;
}
src += 2;
}
else {
dest[len++] = *src++;
}
}
result.chop( len );
}
int CmpUniqueType::compare( const UniqueType &ut1, const UniqueType &ut2 )
{
if ( ut1.typeId < ut2.typeId )
return -1;
else if ( ut1.typeId > ut2.typeId )
return 1;
else if ( ut1.typeId == TYPE_TREE ||
ut1.typeId == TYPE_PTR ||
ut1.typeId == TYPE_REF )
{
if ( ut1.langEl < ut2.langEl )
return -1;
else if ( ut1.langEl > ut2.langEl )
return 1;
}
else if ( ut1.typeId == TYPE_ITER ) {
if ( ut1.iterDef < ut2.iterDef )
return -1;
else if ( ut1.iterDef > ut2.iterDef )
return 1;
}
else {
/* Fail on anything unimplemented. */
assert( false );
}
return 0;
}
int CmpUniqueRepeat::compare( const UniqueRepeat &ut1, const UniqueRepeat &ut2 )
{
if ( ut1.repeatType < ut2.repeatType )
return -1;
else if ( ut1.repeatType > ut2.repeatType )
return 1;
else {
if ( ut1.langEl < ut2.langEl )
return -1;
else if ( ut1.langEl > ut2.langEl )
return 1;
}
return 0;
}
int CmpUniqueMap::compare( const UniqueMap &ut1, const UniqueMap &ut2 )
{
if ( ut1.key < ut2.key )
return -1;
else if ( ut1.key > ut2.key )
return 1;
else {
if ( ut1.value < ut2.value )
return -1;
else if ( ut1.value > ut2.value )
return 1;
}
return 0;
}
int CmpUniqueList::compare( const UniqueList &ut1, const UniqueList &ut2 )
{
if ( ut1.value < ut2.value )
return -1;
else if ( ut1.value > ut2.value )
return 1;
return 0;
}
int CmpUniqueVector::compare( const UniqueVector &ut1, const UniqueVector &ut2 )
{
if ( ut1.value < ut2.value )
return -1;
else if ( ut1.value > ut2.value )
return 1;
return 0;
}
int CmpUniqueParser::compare( const UniqueParser &ut1, const UniqueParser &ut2 )
{
if ( ut1.parseType < ut2.parseType )
return -1;
else if ( ut1.parseType > ut2.parseType )
return 1;
return 0;
}
FsmGraph *LexDefinition::walk( Compiler *pd )
{
/* Recurse on the expression. */
FsmGraph *rtnVal = join->walk( pd );
/* If the expression below is a join operation with multiple expressions
* then it just had epsilon transisions resolved. If it is a join
* with only a single expression then run the epsilon op now. */
if ( join->expr != 0 )
rtnVal->epsilonOp();
return rtnVal;
}
void RegionImpl::makeNameTree( const InputLoc &loc, Compiler *pd )
{
NameInst *nameInst = new NameInst( pd->nextNameId++ );
pd->nameInstList.append( nameInst );
/* Guess we do this now. */
makeActions( pd );
/* Save off the name inst into the token region. This is only legal for
* token regions because they are only ever referenced once (near the root
* of the name tree). They cannot have more than one corresponding name
* inst. */
assert( regionNameInst == 0 );
regionNameInst = nameInst;
}
InputLoc TokenInstance::getLoc()
{
return action != 0 ? action->loc : semiLoc;
}
/*
* If there are any LMs then all of the following entry points must reset
* tokstart:
*
* 1. fentry(StateRef)
* 2. ftoto(StateRef), fcall(StateRef), fnext(StateRef)
* 3. targt of any transition that has an fcall (the return loc).
* 4. start state of all longest match routines.
*/
Action *RegionImpl::newAction( Compiler *pd, const InputLoc &loc,
const String &name, InlineList *inlineList )
{
Action *action = Action::cons( loc, name, inlineList );
pd->actionList.append( action );
action->isLmAction = true;
return action;
}
void RegionImpl::makeActions( Compiler *pd )
{
/* Make actions that set the action id. */
for ( TokenInstanceListReg::Iter lmi = tokenInstanceList; lmi.lte(); lmi++ ) {
/* For each part create actions for setting the match type. We need
* to do this so that the actions will go into the actionIndex. */
InlineList *inlineList = InlineList::cons();
inlineList->append( InlineItem::cons( lmi->getLoc(), this, lmi,
InlineItem::LmSetActId ) );
char *actName = new char[50];
sprintf( actName, "store%i", lmi->longestMatchId );
lmi->setActId = newAction( pd, lmi->getLoc(), actName, inlineList );
}
/* Make actions that execute the user action and restart on the last character. */
for ( TokenInstanceListReg::Iter lmi = tokenInstanceList; lmi.lte(); lmi++ ) {
/* For each part create actions for setting the match type. We need
* to do this so that the actions will go into the actionIndex. */
InlineList *inlineList = InlineList::cons();
inlineList->append( InlineItem::cons( lmi->getLoc(), this, lmi,
InlineItem::LmOnLast ) );
char *actName = new char[50];
sprintf( actName, "imm%i", lmi->longestMatchId );
lmi->actOnLast = newAction( pd, lmi->getLoc(), actName, inlineList );
}
/* Make actions that execute the user action and restart on the next
* character. These actions will set tokend themselves (it is the current
* char). */
for ( TokenInstanceListReg::Iter lmi = tokenInstanceList; lmi.lte(); lmi++ ) {
/* For each part create actions for setting the match type. We need
* to do this so that the actions will go into the actionIndex. */
InlineList *inlineList = InlineList::cons();
inlineList->append( InlineItem::cons( lmi->getLoc(), this, lmi,
InlineItem::LmOnNext ) );
char *actName = new char[50];
sprintf( actName, "lagh%i", lmi->longestMatchId );
lmi->actOnNext = newAction( pd, lmi->getLoc(), actName, inlineList );
}
/* Make actions that execute the user action and restart at tokend. These
* actions execute some time after matching the last char. */
for ( TokenInstanceListReg::Iter lmi = tokenInstanceList; lmi.lte(); lmi++ ) {
/* For each part create actions for setting the match type. We need
* to do this so that the actions will go into the actionIndex. */
InlineList *inlineList = InlineList::cons();
inlineList->append( InlineItem::cons( lmi->getLoc(), this, lmi,
InlineItem::LmOnLagBehind ) );
char *actName = new char[50];
sprintf( actName, "lag%i", lmi->longestMatchId );
lmi->actLagBehind = newAction( pd, lmi->getLoc(), actName, inlineList );
}
InputLoc loc;
loc.line = 1;
loc.col = 1;
/* Create the error action. */
InlineList *il6 = InlineList::cons();
il6->append( InlineItem::cons( loc, this, 0, InlineItem::LmSwitch ) );
lmActSelect = newAction( pd, loc, "lagsel", il6 );
}
void RegionImpl::restart( FsmGraph *graph, FsmTrans *trans )
{
FsmState *fromState = trans->fromState;
graph->detachTrans( fromState, trans->toState, trans );
graph->attachTrans( fromState, graph->startState, trans );
}
void RegionImpl::runLongestMatch( Compiler *pd, FsmGraph *graph )
{
graph->markReachableFromHereStopFinal( graph->startState );
for ( StateList::Iter ms = graph->stateList; ms.lte(); ms++ ) {
if ( ms->stateBits & SB_ISMARKED ) {
ms->lmItemSet.insert( 0 );
ms->stateBits &= ~ SB_ISMARKED;
}
}
/* Transfer the first item of non-empty lmAction tables to the item sets
* of the states that follow. Exclude states that have no transitions out.
* This must happen on a separate pass so that on each iteration of the
* next pass we have the item set entries from all lmAction tables. */
for ( StateList::Iter st = graph->stateList; st.lte(); st++ ) {
for ( TransList::Iter trans = st->outList; trans.lte(); trans++ ) {
if ( trans->lmActionTable.length() > 0 ) {
LmActionTableEl *lmAct = trans->lmActionTable.data;
FsmState *toState = trans->toState;
assert( toState );
/* Check if there are transitions out, this may be a very
* close approximation? Out transitions going nowhere?
* FIXME: Check. */
if ( toState->outList.length() > 0 ) {
/* Fill the item sets. */
graph->markReachableFromHereStopFinal( toState );
for ( StateList::Iter ms = graph->stateList; ms.lte(); ms++ ) {
if ( ms->stateBits & SB_ISMARKED ) {
ms->lmItemSet.insert( lmAct->value );
ms->stateBits &= ~ SB_ISMARKED;
}
}
}
}
}
}
/* The lmItem sets are now filled, telling us which longest match rules
* can succeed in which states. First determine if we need to make sure
* act is defaulted to zero. */
int maxItemSetLength = 0;
graph->markReachableFromHereStopFinal( graph->startState );
for ( StateList::Iter ms = graph->stateList; ms.lte(); ms++ ) {
if ( ms->stateBits & SB_ISMARKED ) {
if ( ms->lmItemSet.length() > maxItemSetLength )
maxItemSetLength = ms->lmItemSet.length();
ms->stateBits &= ~ SB_ISMARKED;
}
}
/* The actions executed on starting to match a token. */
graph->isolateStartState();
graph->startState->fromStateActionTable.setAction( pd->setTokStartOrd, pd->setTokStart );
if ( maxItemSetLength > 1 ) {
/* The longest match action switch may be called when tokens are
* matched, in which case act must be initialized, there must be a
* case to handle the error, and the generated machine will require an
* error state. */
lmSwitchHandlesError = true;
graph->startState->toStateActionTable.setAction( pd->initActIdOrd, pd->initActId );
}
/* The place to store transitions to restart. It maybe possible for the
* restarting to affect the searching through the graph that follows. For
* now take the safe route and save the list of transitions to restart
* until after all searching is done. */
Vector<FsmTrans*> restartTrans;
/* Set actions that do immediate token recognition, set the longest match part
* id and set the token ending. */
for ( StateList::Iter st = graph->stateList; st.lte(); st++ ) {
for ( TransList::Iter trans = st->outList; trans.lte(); trans++ ) {
if ( trans->lmActionTable.length() > 0 ) {
LmActionTableEl *lmAct = trans->lmActionTable.data;
FsmState *toState = trans->toState;
assert( toState );
/* Check if there are transitions out, this may be a very
* close approximation? Out transitions going nowhere?
* FIXME: Check. */
if ( toState->outList.length() == 0 ) {
/* Can execute the immediate action for the longest match
* part. Redirect the action to the start state. */
trans->actionTable.setAction( lmAct->key,
lmAct->value->actOnLast );
restartTrans.append( trans );
}
else {
/* Look for non final states that have a non-empty item
* set. If these are present then we need to record the
* end of the token. Also Find the highest item set
* length reachable from here (excluding at transtions to
* final states). */
bool nonFinalNonEmptyItemSet = false;
maxItemSetLength = 0;
graph->markReachableFromHereStopFinal( toState );
for ( StateList::Iter ms = graph->stateList; ms.lte(); ms++ ) {
if ( ms->stateBits & SB_ISMARKED ) {
if ( ms->lmItemSet.length() > 0 && !ms->isFinState() )
nonFinalNonEmptyItemSet = true;
if ( ms->lmItemSet.length() > maxItemSetLength )
maxItemSetLength = ms->lmItemSet.length();
ms->stateBits &= ~ SB_ISMARKED;
}
}
/* If there are reachable states that are not final and
* have non empty item sets or that have an item set
* length greater than one then we need to set tokend
* because the error action that matches the token will
* require it. */
if ( nonFinalNonEmptyItemSet || maxItemSetLength > 1 )
trans->actionTable.setAction( pd->setTokEndOrd, pd->setTokEnd );
/* Some states may not know which longest match item to
* execute, must set it. */
if ( maxItemSetLength > 1 ) {
/* There are transitions out, another match may come. */
trans->actionTable.setAction( lmAct->key,
lmAct->value->setActId );
}
}
}
}
}
/* Now that all graph searching is done it certainly safe set the
* restarting. It may be safe above, however this must be verified. */
for ( Vector<FsmTrans*>::Iter rs = restartTrans; rs.lte(); rs++ )
restart( graph, *rs );
int lmErrActionOrd = pd->curActionOrd++;
/* Embed the error for recognizing a char. */
for ( StateList::Iter st = graph->stateList; st.lte(); st++ ) {
if ( st->lmItemSet.length() == 1 && st->lmItemSet[0] != 0 ) {
if ( st->isFinState() ) {
/* On error execute the onActNext action, which knows that
* the last character of the token was one back and restart. */
graph->setErrorTarget( st, graph->startState, &lmErrActionOrd,
&st->lmItemSet[0]->actOnNext, 1 );
st->eofActionTable.setAction( lmErrActionOrd,
st->lmItemSet[0]->actOnNext );
st->eofTarget = graph->startState;
}
else {
graph->setErrorTarget( st, graph->startState, &lmErrActionOrd,
&st->lmItemSet[0]->actLagBehind, 1 );
st->eofActionTable.setAction( lmErrActionOrd,
st->lmItemSet[0]->actLagBehind );
st->eofTarget = graph->startState;
}
}
else if ( st->lmItemSet.length() > 1 ) {
/* Need to use the select. Take note of the which items the select
* is needed for so only the necessary actions are included. */
for ( LmItemSet::Iter plmi = st->lmItemSet; plmi.lte(); plmi++ ) {
if ( *plmi != 0 )
(*plmi)->inLmSelect = true;
}
/* On error, execute the action select and go to the start state. */
graph->setErrorTarget( st, graph->startState, &lmErrActionOrd,
&lmActSelect, 1 );
st->eofActionTable.setAction( lmErrActionOrd, lmActSelect );
st->eofTarget = graph->startState;
}
}
/* Finally, the start state should be made final. */
graph->setFinState( graph->startState );
}
void RegionImpl::transferScannerLeavingActions( FsmGraph *graph )
{
for ( StateList::Iter st = graph->stateList; st.lte(); st++ ) {
if ( st->outActionTable.length() > 0 )
graph->setErrorActions( st, st->outActionTable );
}
}
FsmGraph *RegionImpl::walk( Compiler *pd )
{
/* Make each part of the longest match. */
int numParts = 0;
FsmGraph **parts = new FsmGraph*[tokenInstanceList.length()];
for ( TokenInstanceListReg::Iter lmi = tokenInstanceList; lmi.lte(); lmi++ ) {
/* Watch out for patternless tokens. */
if ( lmi->join != 0 ) {
/* Create the machine and embed the setting of the longest match id. */
parts[numParts] = lmi->join->walk( pd );
parts[numParts]->longMatchAction( pd->curActionOrd++, lmi );
/* Look for tokens that accept the zero length-word. The first one found
* will be used as the default token. */
if ( defaultTokenInstance == 0 && parts[numParts]->startState->isFinState() )
defaultTokenInstance = lmi;
numParts += 1;
}
}
FsmGraph *retFsm = parts[0];
if ( defaultTokenInstance != 0 && defaultTokenInstance->tokenDef->tdLangEl->isIgnore )
error() << "ignore token cannot be a scanner's zero-length token" << endp;
/* The region is empty. Return the empty set. */
if ( numParts == 0 ) {
retFsm = new FsmGraph();
retFsm->lambdaFsm();
}
else {
/* Before we union the patterns we need to deal with leaving actions. They
* are transfered to error transitions out of the final states (like local
* error actions) and to eof actions. In the scanner we need to forbid
* on_last for any final state that has an leaving action. */
for ( int i = 0; i < numParts; i++ )
transferScannerLeavingActions( parts[i] );
/* Union machines one and up with machine zero. */
FsmGraph *retFsm = parts[0];
for ( int i = 1; i < numParts; i++ ) {
retFsm->unionOp( parts[i] );
afterOpMinimize( retFsm );
}
runLongestMatch( pd, retFsm );
delete[] parts;
}
/* Need the entry point for the region. */
retFsm->setEntry( regionNameInst->id, retFsm->startState );
return retFsm;
}
/* Walk an expression node. */
FsmGraph *LexJoin::walk( Compiler *pd )
{
FsmGraph *retFsm = expr->walk( pd );
/* Maybe the the context. */
if ( context != 0 ) {
retFsm->leaveFsmAction( pd->curActionOrd++, mark );
FsmGraph *contextGraph = context->walk( pd );
retFsm->concatOp( contextGraph );
}
return retFsm;
}
/* Clean up after an expression node. */
LexExpression::~LexExpression()
{
switch ( type ) {
case OrType: case IntersectType: case SubtractType:
case StrongSubtractType:
delete expression;
delete term;
break;
case TermType:
delete term;
break;
case BuiltinType:
break;
}
}
/* Evaluate a single expression node. */
FsmGraph *LexExpression::walk( Compiler *pd, bool lastInSeq )
{
FsmGraph *rtnVal = 0;
switch ( type ) {
case OrType: {
/* Evaluate the expression. */
rtnVal = expression->walk( pd, false );
/* Evaluate the term. */
FsmGraph *rhs = term->walk( pd );
/* Perform union. */
rtnVal->unionOp( rhs );
afterOpMinimize( rtnVal, lastInSeq );
break;
}
case IntersectType: {
/* Evaluate the expression. */
rtnVal = expression->walk( pd );
/* Evaluate the term. */
FsmGraph *rhs = term->walk( pd );
/* Perform intersection. */
rtnVal->intersectOp( rhs );
afterOpMinimize( rtnVal, lastInSeq );
break;
}
case SubtractType: {
/* Evaluate the expression. */
rtnVal = expression->walk( pd );
/* Evaluate the term. */
FsmGraph *rhs = term->walk( pd );
/* Perform subtraction. */
rtnVal->subtractOp( rhs );
afterOpMinimize( rtnVal, lastInSeq );
break;
}
case StrongSubtractType: {
/* Evaluate the expression. */
rtnVal = expression->walk( pd );
/* Evaluate the term and pad it with any* machines. */
FsmGraph *rhs = dotStarFsm( pd );
FsmGraph *termFsm = term->walk( pd );
FsmGraph *trailAnyStar = dotStarFsm( pd );
rhs->concatOp( termFsm );
rhs->concatOp( trailAnyStar );
/* Perform subtraction. */
rtnVal->subtractOp( rhs );
afterOpMinimize( rtnVal, lastInSeq );
break;
}
case TermType: {
/* Return result of the term. */
rtnVal = term->walk( pd );
break;
}
case BuiltinType: {
/* Duplicate the builtin. */
rtnVal = makeBuiltin( builtin, pd );
break;
}
}
return rtnVal;
}
/* Clean up after a term node. */
LexTerm::~LexTerm()
{
switch ( type ) {
case ConcatType:
case RightStartType:
case RightFinishType:
case LeftType:
delete term;
delete factorAug;
break;
case FactorAugType:
delete factorAug;
break;
}
}
/* Evaluate a term node. */
FsmGraph *LexTerm::walk( Compiler *pd, bool lastInSeq )
{
FsmGraph *rtnVal = 0;
switch ( type ) {
case ConcatType: {
/* Evaluate the Term. */
rtnVal = term->walk( pd, false );
/* Evaluate the LexFactorRep. */
FsmGraph *rhs = factorAug->walk( pd );
/* Perform concatenation. */
rtnVal->concatOp( rhs );
afterOpMinimize( rtnVal, lastInSeq );
break;
}
case RightStartType: {
/* Evaluate the Term. */
rtnVal = term->walk( pd );
/* Evaluate the LexFactorRep. */
FsmGraph *rhs = factorAug->walk( pd );
/* Set up the priority descriptors. The left machine gets the
* lower priority where as the right get the higher start priority. */
priorDescs[0].key = pd->nextPriorKey++;
priorDescs[0].priority = 0;
rtnVal->allTransPrior( pd->curPriorOrd++, &priorDescs[0] );
/* The start transitions right machine get the higher priority.
* Use the same unique key. */
priorDescs[1].key = priorDescs[0].key;
priorDescs[1].priority = 1;
rhs->startFsmPrior( pd->curPriorOrd++, &priorDescs[1] );
/* Perform concatenation. */
rtnVal->concatOp( rhs );
afterOpMinimize( rtnVal, lastInSeq );
break;
}
case RightFinishType: {
/* Evaluate the Term. */
rtnVal = term->walk( pd );
/* Evaluate the LexFactorRep. */
FsmGraph *rhs = factorAug->walk( pd );
/* Set up the priority descriptors. The left machine gets the
* lower priority where as the finishing transitions to the right
* get the higher priority. */
priorDescs[0].key = pd->nextPriorKey++;
priorDescs[0].priority = 0;
rtnVal->allTransPrior( pd->curPriorOrd++, &priorDescs[0] );
/* The finishing transitions of the right machine get the higher
* priority. Use the same unique key. */
priorDescs[1].key = priorDescs[0].key;
priorDescs[1].priority = 1;
rhs->finishFsmPrior( pd->curPriorOrd++, &priorDescs[1] );
/* Perform concatenation. */
rtnVal->concatOp( rhs );
afterOpMinimize( rtnVal, lastInSeq );
break;
}
case LeftType: {
/* Evaluate the Term. */
rtnVal = term->walk( pd );
/* Evaluate the LexFactorRep. */
FsmGraph *rhs = factorAug->walk( pd );
/* Set up the priority descriptors. The left machine gets the
* higher priority. */
priorDescs[0].key = pd->nextPriorKey++;
priorDescs[0].priority = 1;
rtnVal->allTransPrior( pd->curPriorOrd++, &priorDescs[0] );
/* The right machine gets the lower priority. Since
* startTransPrior might unnecessarily increase the number of
* states during the state machine construction process (due to
* isolation), we use allTransPrior instead, which has the same
* effect. */
priorDescs[1].key = priorDescs[0].key;
priorDescs[1].priority = 0;
rhs->allTransPrior( pd->curPriorOrd++, &priorDescs[1] );
/* Perform concatenation. */
rtnVal->concatOp( rhs );
afterOpMinimize( rtnVal, lastInSeq );
break;
}
case FactorAugType: {
rtnVal = factorAug->walk( pd );
break;
}
}
return rtnVal;
}
LexFactorAug::~LexFactorAug()
{
delete factorRep;
}
void LexFactorAug::assignActions( Compiler *pd, FsmGraph *graph, int *actionOrd )
{
/* Assign actions. */
for ( int i = 0; i < actions.length(); i++ ) {
switch ( actions[i].type ) {
case at_start:
graph->startFsmAction( actionOrd[i], actions[i].action );
afterOpMinimize( graph );
break;
case at_leave:
graph->leaveFsmAction( actionOrd[i], actions[i].action );
break;
}
}
}
/* Evaluate a factor with augmentation node. */
FsmGraph *LexFactorAug::walk( Compiler *pd )
{
/* Make the array of function orderings. */
int *actionOrd = 0;
if ( actions.length() > 0 )
actionOrd = new int[actions.length()];
/* First walk the list of actions, assigning order to all starting
* actions. */
for ( int i = 0; i < actions.length(); i++ ) {
if ( actions[i].type == at_start )
actionOrd[i] = pd->curActionOrd++;
}
/* Evaluate the factor with repetition. */
FsmGraph *rtnVal = factorRep->walk( pd );
/* Compute the remaining action orderings. */
for ( int i = 0; i < actions.length(); i++ ) {
if ( actions[i].type != at_start )
actionOrd[i] = pd->curActionOrd++;
}
assignActions( pd, rtnVal , actionOrd );
if ( actionOrd != 0 )
delete[] actionOrd;
return rtnVal;
}
/* Clean up after a factor with repetition node. */
LexFactorRep::~LexFactorRep()
{
switch ( type ) {
case StarType: case StarStarType: case OptionalType: case PlusType:
case ExactType: case MaxType: case MinType: case RangeType:
delete factorRep;
break;
case FactorNegType:
delete factorNeg;
break;
}
}
/* Evaluate a factor with repetition node. */
FsmGraph *LexFactorRep::walk( Compiler *pd )
{
FsmGraph *retFsm = 0;
switch ( type ) {
case StarType: {
/* Evaluate the LexFactorRep. */
retFsm = factorRep->walk( pd );
if ( retFsm->startState->isFinState() ) {
warning(loc) << "applying kleene star to a machine that "
"accepts zero length word" << endl;
}
/* Shift over the start action orders then do the kleene star. */
pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );
retFsm->starOp( );
afterOpMinimize( retFsm );
break;
}
case StarStarType: {
/* Evaluate the LexFactorRep. */
retFsm = factorRep->walk( pd );
if ( retFsm->startState->isFinState() ) {
warning(loc) << "applying kleene star to a machine that "
"accepts zero length word" << endl;
}
/* Set up the prior descs. All gets priority one, whereas leaving gets
* priority zero. Make a unique key so that these priorities don't
* interfere with any priorities set by the user. */
priorDescs[0].key = pd->nextPriorKey++;
priorDescs[0].priority = 1;
retFsm->allTransPrior( pd->curPriorOrd++, &priorDescs[0] );
/* Leaveing gets priority 0. Use same unique key. */
priorDescs[1].key = priorDescs[0].key;
priorDescs[1].priority = 0;
retFsm->leaveFsmPrior( pd->curPriorOrd++, &priorDescs[1] );
/* Shift over the start action orders then do the kleene star. */
pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );
retFsm->starOp( );
afterOpMinimize( retFsm );
break;
}
case OptionalType: {
/* Make the null fsm. */
FsmGraph *nu = new FsmGraph();
nu->lambdaFsm( );
/* Evaluate the LexFactorRep. */
retFsm = factorRep->walk( pd );
/* Perform the question operator. */
retFsm->unionOp( nu );
afterOpMinimize( retFsm );
break;
}
case PlusType: {
/* Evaluate the LexFactorRep. */
retFsm = factorRep->walk( pd );
if ( retFsm->startState->isFinState() ) {
warning(loc) << "applying plus operator to a machine that "
"accpets zero length word" << endl;
}
/* Need a duplicated for the star end. */
FsmGraph *dup = new FsmGraph( *retFsm );
/* The start func orders need to be shifted before doing the star. */
pd->curActionOrd += dup->shiftStartActionOrder( pd->curActionOrd );
/* Star the duplicate. */
dup->starOp( );
afterOpMinimize( dup );
retFsm->concatOp( dup );
afterOpMinimize( retFsm );
break;
}
case ExactType: {
/* Get an int from the repetition amount. */
if ( lowerRep == 0 ) {
/* No copies. Don't need to evaluate the factorRep.
* This Defeats the purpose so give a warning. */
warning(loc) << "exactly zero repetitions results "
"in the null machine" << endl;
retFsm = new FsmGraph();
retFsm->lambdaFsm();
}
else {
/* Evaluate the first LexFactorRep. */
retFsm = factorRep->walk( pd );
if ( retFsm->startState->isFinState() ) {
warning(loc) << "applying repetition to a machine that "
"accepts zero length word" << endl;
}
/* The start func orders need to be shifted before doing the
* repetition. */
pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );
/* Do the repetition on the machine. Already guarded against n == 0 */
retFsm->repeatOp( lowerRep );
afterOpMinimize( retFsm );
}
break;
}
case MaxType: {
/* Get an int from the repetition amount. */
if ( upperRep == 0 ) {
/* No copies. Don't need to evaluate the factorRep.
* This Defeats the purpose so give a warning. */
warning(loc) << "max zero repetitions results "
"in the null machine" << endl;
retFsm = new FsmGraph();
retFsm->lambdaFsm();
}
else {
/* Evaluate the first LexFactorRep. */
retFsm = factorRep->walk( pd );
if ( retFsm->startState->isFinState() ) {
warning(loc) << "applying max repetition to a machine that "
"accepts zero length word" << endl;
}
/* The start func orders need to be shifted before doing the
* repetition. */
pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );
/* Do the repetition on the machine. Already guarded against n == 0 */
retFsm->optionalRepeatOp( upperRep );
afterOpMinimize( retFsm );
}
break;
}
case MinType: {
/* Evaluate the repeated machine. */
retFsm = factorRep->walk( pd );
if ( retFsm->startState->isFinState() ) {
warning(loc) << "applying min repetition to a machine that "
"accepts zero length word" << endl;
}
/* The start func orders need to be shifted before doing the repetition
* and the kleene star. */
pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );
if ( lowerRep == 0 ) {
/* Acts just like a star op on the machine to return. */
retFsm->starOp( );
afterOpMinimize( retFsm );
}
else {
/* Take a duplicate for the plus. */
FsmGraph *dup = new FsmGraph( *retFsm );
/* Do repetition on the first half. */
retFsm->repeatOp( lowerRep );
afterOpMinimize( retFsm );
/* Star the duplicate. */
dup->starOp( );
afterOpMinimize( dup );
/* Tak on the kleene star. */
retFsm->concatOp( dup );
afterOpMinimize( retFsm );
}
break;
}
case RangeType: {
/* Check for bogus range. */
if ( upperRep - lowerRep < 0 ) {
error(loc) << "invalid range repetition" << endl;
/* Return null machine as recovery. */
retFsm = new FsmGraph();
retFsm->lambdaFsm();
}
else if ( lowerRep == 0 && upperRep == 0 ) {
/* No copies. Don't need to evaluate the factorRep. This
* defeats the purpose so give a warning. */
warning(loc) << "zero to zero repetitions results "
"in the null machine" << endl;
retFsm = new FsmGraph();
retFsm->lambdaFsm();
}
else {
/* Now need to evaluate the repeated machine. */
retFsm = factorRep->walk( pd );
if ( retFsm->startState->isFinState() ) {
warning(loc) << "applying range repetition to a machine that "
"accepts zero length word" << endl;
}
/* The start func orders need to be shifted before doing both kinds
* of repetition. */
pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );
if ( lowerRep == 0 ) {
/* Just doing max repetition. Already guarded against n == 0. */
retFsm->optionalRepeatOp( upperRep );
afterOpMinimize( retFsm );
}
else if ( lowerRep == upperRep ) {
/* Just doing exact repetition. Already guarded against n == 0. */
retFsm->repeatOp( lowerRep );
afterOpMinimize( retFsm );
}
else {
/* This is the case that 0 < lowerRep < upperRep. Take a
* duplicate for the optional repeat. */
FsmGraph *dup = new FsmGraph( *retFsm );
/* Do repetition on the first half. */
retFsm->repeatOp( lowerRep );
afterOpMinimize( retFsm );
/* Do optional repetition on the second half. */
dup->optionalRepeatOp( upperRep - lowerRep );
afterOpMinimize( dup );
/* Tak on the duplicate machine. */
retFsm->concatOp( dup );
afterOpMinimize( retFsm );
}
}
break;
}
case FactorNegType: {
/* Evaluate the Factor. Pass it up. */
retFsm = factorNeg->walk( pd );
break;
}}
return retFsm;
}
/* Clean up after a factor with negation node. */
LexFactorNeg::~LexFactorNeg()
{
switch ( type ) {
case NegateType:
case CharNegateType:
delete factorNeg;
break;
case FactorType:
delete factor;
break;
}
}
/* Evaluate a factor with negation node. */
FsmGraph *LexFactorNeg::walk( Compiler *pd )
{
FsmGraph *retFsm = 0;
switch ( type ) {
case NegateType: {
/* Evaluate the factorNeg. */
FsmGraph *toNegate = factorNeg->walk( pd );
/* Negation is subtract from dot-star. */
retFsm = dotStarFsm( pd );
retFsm->subtractOp( toNegate );
afterOpMinimize( retFsm );
break;
}
case CharNegateType: {
/* Evaluate the factorNeg. */
FsmGraph *toNegate = factorNeg->walk( pd );
/* CharNegation is subtract from dot. */
retFsm = dotFsm( pd );
retFsm->subtractOp( toNegate );
afterOpMinimize( retFsm );
break;
}
case FactorType: {
/* Evaluate the Factor. Pass it up. */
retFsm = factor->walk( pd );
break;
}}
return retFsm;
}
/* Clean up after a factor node. */
LexFactor::~LexFactor()
{
switch ( type ) {
case LiteralType:
delete literal;
break;
case RangeType:
delete range;
break;
case OrExprType:
delete reItem;
break;
case RegExprType:
delete regExp;
break;
case ReferenceType:
break;
case ParenType:
delete join;
break;
}
}
/* Evaluate a factor node. */
FsmGraph *LexFactor::walk( Compiler *pd )
{
FsmGraph *rtnVal = 0;
switch ( type ) {
case LiteralType:
rtnVal = literal->walk( pd );
break;
case RangeType:
rtnVal = range->walk( pd );
break;
case OrExprType:
rtnVal = reItem->walk( pd, 0 );
break;
case RegExprType:
rtnVal = regExp->walk( pd, 0 );
break;
case ReferenceType:
rtnVal = varDef->walk( pd );
break;
case ParenType:
rtnVal = join->walk( pd );
break;
}
return rtnVal;
}
/* Clean up a range object. Must delete the two literals. */
Range::~Range()
{
delete lowerLit;
delete upperLit;
}
bool Range::verifyRangeFsm( FsmGraph *rangeEnd )
{
/* Must have two states. */
if ( rangeEnd->stateList.length() != 2 )
return false;
/* The start state cannot be final. */
if ( rangeEnd->startState->isFinState() )
return false;
/* There should be only one final state. */
if ( rangeEnd->finStateSet.length() != 1 )
return false;
/* The final state cannot have any transitions out. */
if ( rangeEnd->finStateSet[0]->outList.length() != 0 )
return false;
/* The start state should have only one transition out. */
if ( rangeEnd->startState->outList.length() != 1 )
return false;
/* The singe transition out of the start state should not be a range. */
FsmTrans *startTrans = rangeEnd->startState->outList.head;
if ( startTrans->lowKey != startTrans->highKey )
return false;
return true;
}
/* Evaluate a range. Gets the lower an upper key and makes an fsm range. */
FsmGraph *Range::walk( Compiler *pd )
{
/* Construct and verify the suitability of the lower end of the range. */
FsmGraph *lowerFsm = lowerLit->walk( pd );
if ( !verifyRangeFsm( lowerFsm ) ) {
error(lowerLit->loc) <<
"bad range lower end, must be a single character" << endl;
}
/* Construct and verify the upper end. */
FsmGraph *upperFsm = upperLit->walk( pd );
if ( !verifyRangeFsm( upperFsm ) ) {
error(upperLit->loc) <<
"bad range upper end, must be a single character" << endl;
}
/* Grab the keys from the machines, then delete them. */
Key lowKey = lowerFsm->startState->outList.head->lowKey;
Key highKey = upperFsm->startState->outList.head->lowKey;
delete lowerFsm;
delete upperFsm;
/* Validate the range. */
if ( lowKey > highKey ) {
/* Recover by setting upper to lower; */
error(lowerLit->loc) << "lower end of range is greater then upper end" << endl;
highKey = lowKey;
}
/* Return the range now that it is validated. */
FsmGraph *retFsm = new FsmGraph();
retFsm->rangeFsm( lowKey, highKey );
return retFsm;
}
/* Evaluate a literal object. */
FsmGraph *Literal::walk( Compiler *pd )
{
/* FsmGraph to return, is the alphabet signed. */
FsmGraph *rtnVal = 0;
switch ( type ) {
case Number: {
/* Make the fsm key in int format. */
Key fsmKey = makeFsmKeyNum( literal.data, loc, pd );
/* Make the new machine. */
rtnVal = new FsmGraph();
rtnVal->concatFsm( fsmKey );
break;
}
case LitString: {
/* Make the array of keys in int format. */
String interp;
bool caseInsensitive;
prepareLitString( interp, caseInsensitive, literal, loc );
Key *arr = new Key[interp.length()];
makeFsmKeyArray( arr, interp.data, interp.length(), pd );
/* Make the new machine. */
rtnVal = new FsmGraph();
if ( caseInsensitive )
rtnVal->concatFsmCI( arr, interp.length() );
else
rtnVal->concatFsm( arr, interp.length() );
delete[] arr;
break;
}}
return rtnVal;
}
/* Clean up after a regular expression object. */
RegExpr::~RegExpr()
{
switch ( type ) {
case RecurseItem:
delete regExp;
delete item;
break;
case Empty:
break;
}
}
/* Evaluate a regular expression object. */
FsmGraph *RegExpr::walk( Compiler *pd, RegExpr *rootRegex )
{
/* This is the root regex, pass down a pointer to this. */
if ( rootRegex == 0 )
rootRegex = this;
FsmGraph *rtnVal = 0;
switch ( type ) {
case RecurseItem: {
/* Walk both items. */
FsmGraph *fsm1 = regExp->walk( pd, rootRegex );
FsmGraph *fsm2 = item->walk( pd, rootRegex );
if ( fsm1 == 0 )
rtnVal = fsm2;
else {
fsm1->concatOp( fsm2 );
rtnVal = fsm1;
}
break;
}
case Empty: {
/* FIXME: Return something here. */
rtnVal = 0;
break;
}
}
return rtnVal;
}
/* Clean up after an item in a regular expression. */
ReItem::~ReItem()
{
switch ( type ) {
case Data:
case Dot:
break;
case OrBlock:
case NegOrBlock:
delete orBlock;
break;
}
}
/* Evaluate a regular expression object. */
FsmGraph *ReItem::walk( Compiler *pd, RegExpr *rootRegex )
{
/* The fsm to return, is the alphabet signed? */
FsmGraph *rtnVal = 0;
switch ( type ) {
case Data: {
/* Move the data into an integer array and make a concat fsm. */
Key *arr = new Key[data.length()];
makeFsmKeyArray( arr, data.data, data.length(), pd );
/* Make the concat fsm. */
rtnVal = new FsmGraph();
if ( rootRegex != 0 && rootRegex->caseInsensitive )
rtnVal->concatFsmCI( arr, data.length() );
else
rtnVal->concatFsm( arr, data.length() );
delete[] arr;
break;
}
case Dot: {
/* Make the dot fsm. */
rtnVal = dotFsm( pd );
break;
}
case OrBlock: {
/* Get the or block and minmize it. */
rtnVal = orBlock->walk( pd, rootRegex );
rtnVal->minimizePartition2();
break;
}
case NegOrBlock: {
/* Get the or block and minimize it. */
FsmGraph *fsm = orBlock->walk( pd, rootRegex );
fsm->minimizePartition2();
/* Make a dot fsm and subtract from it. */
rtnVal = dotFsm( pd );
rtnVal->subtractOp( fsm );
rtnVal->minimizePartition2();
break;
}
}
return rtnVal;
}
/* Clean up after an or block of a regular expression. */
ReOrBlock::~ReOrBlock()
{
switch ( type ) {
case RecurseItem:
delete orBlock;
delete item;
break;
case Empty:
break;
}
}
/* Evaluate an or block of a regular expression. */
FsmGraph *ReOrBlock::walk( Compiler *pd, RegExpr *rootRegex )
{
FsmGraph *rtnVal = 0;
switch ( type ) {
case RecurseItem: {
/* Evaluate the two fsm. */
FsmGraph *fsm1 = orBlock->walk( pd, rootRegex );
FsmGraph *fsm2 = item->walk( pd, rootRegex );
if ( fsm1 == 0 )
rtnVal = fsm2;
else {
fsm1->unionOp( fsm2 );
rtnVal = fsm1;
}
break;
}
case Empty: {
rtnVal = 0;
break;
}
}
return rtnVal;;
}
/* Evaluate an or block item of a regular expression. */
FsmGraph *ReOrItem::walk( Compiler *pd, RegExpr *rootRegex )
{
/* The return value, is the alphabet signed? */
FsmGraph *rtnVal = 0;
switch ( type ) {
case Data: {
/* Make the or machine. */
rtnVal = new FsmGraph();
/* Put the or data into an array of ints. Note that we find unique
* keys. Duplicates are silently ignored. The alternative would be to
* issue warning or an error but since we can't with [a0-9a] or 'a' |
* 'a' don't bother here. */
KeySet keySet;
makeFsmUniqueKeyArray( keySet, data.data, data.length(),
rootRegex != 0 ? rootRegex->caseInsensitive : false, pd );
/* Run the or operator. */
rtnVal->orFsm( keySet.data, keySet.length() );
break;
}
case Range: {
/* Make the upper and lower keys. */
Key lowKey = makeFsmKeyChar( lower, pd );
Key highKey = makeFsmKeyChar( upper, pd );
/* Validate the range. */
if ( lowKey > highKey ) {
/* Recover by setting upper to lower; */
error(loc) << "lower end of range is greater then upper end" << endl;
highKey = lowKey;
}
/* Make the range machine. */
rtnVal = new FsmGraph();
rtnVal->rangeFsm( lowKey, highKey );
if ( rootRegex != 0 && rootRegex->caseInsensitive ) {
if ( lowKey <= 'Z' && 'A' <= highKey ) {
Key otherLow = lowKey < 'A' ? Key('A') : lowKey;
Key otherHigh = 'Z' < highKey ? Key('Z') : highKey;
otherLow = 'a' + ( otherLow - 'A' );
otherHigh = 'a' + ( otherHigh - 'A' );
FsmGraph *otherRange = new FsmGraph();
otherRange->rangeFsm( otherLow, otherHigh );
rtnVal->unionOp( otherRange );
rtnVal->minimizePartition2();
}
else if ( lowKey <= 'z' && 'a' <= highKey ) {
Key otherLow = lowKey < 'a' ? Key('a') : lowKey;
Key otherHigh = 'z' < highKey ? Key('z') : highKey;
otherLow = 'A' + ( otherLow - 'a' );
otherHigh = 'A' + ( otherHigh - 'a' );
FsmGraph *otherRange = new FsmGraph();
otherRange->rangeFsm( otherLow, otherHigh );
rtnVal->unionOp( otherRange );
rtnVal->minimizePartition2();
}
}
break;
}}
return rtnVal;
}
|