summaryrefslogtreecommitdiff
path: root/colm/parsetree.cc
blob: f613ff3b716682b5af2fbf5fdba0cf569584030c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
/*
 *  Copyright 2006-2012 Adrian Thurston <thurston@complang.org>
 */

/*  This file is part of Colm.
 *
 *  Colm is free software; you can redistribute it and/or modify
 *  it under the terms of the GNU General Public License as published by
 *  the Free Software Foundation; either version 2 of the License, or
 *  (at your option) any later version.
 * 
 *  Colm is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *  GNU General Public License for more details.
 * 
 *  You should have received a copy of the GNU General Public License
 *  along with Colm; if not, write to the Free Software
 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 */

#include "lmparse.h"
#include "parsetree.h"
#include "input.h"
#include "fsmrun.h"

#include <iostream>
#include <iomanip>
#include <errno.h>
#include <limits.h>
#include <stdlib.h>


using namespace std;
ostream &operator<<( ostream &out, const NameRef &nameRef );
ostream &operator<<( ostream &out, const NameInst &nameInst );
ostream &operator<<( ostream &out, const Token &token );

/* Convert the literal string which comes in from the scanner into an array of
 * characters with escapes and options interpreted. Also null terminates the
 * string. Though this null termination should not be relied on for
 * interpreting literals in the parser because the string may contain a
 * literal string with \0 */
void prepareLitString( String &result, bool &caseInsensitive, 
		const String &srcString, const InputLoc &loc )
{
	result.setAs( String::Fresh(), srcString.length() );
	caseInsensitive = false;

	char *src = srcString.data + 1;
	char *end = srcString.data + srcString.length() - 1;

	while ( *end != '\'' && *end != '\"' && *end != '\n' ) {
		if ( *end == 'i' )
			caseInsensitive = true;
		else {
			error( loc ) << "literal string '" << *end << 
					"' option not supported" << endl;
		}
		end -= 1;
	}

	if ( *end == '\n' )
		end++;

	char *dest = result.data;
	int len = 0;
	while ( src != end ) {
		if ( *src == '\\' ) {
			switch ( src[1] ) {
			case '0': dest[len++] = '\0'; break;
			case 'a': dest[len++] = '\a'; break;
			case 'b': dest[len++] = '\b'; break;
			case 't': dest[len++] = '\t'; break;
			case 'n': dest[len++] = '\n'; break;
			case 'v': dest[len++] = '\v'; break;
			case 'f': dest[len++] = '\f'; break;
			case 'r': dest[len++] = '\r'; break;
			case '\n':  break;
			default: dest[len++] = src[1]; break;
			}
			src += 2;
		}
		else {
			dest[len++] = *src++;
		}
	}

	result.chop( len );
}

int CmpUniqueType::compare( const UniqueType &ut1, const UniqueType &ut2 )
{
	if ( ut1.typeId < ut2.typeId )
		return -1;
	else if ( ut1.typeId > ut2.typeId )
		return 1;
	else if ( ut1.typeId == TYPE_TREE || 
			ut1.typeId == TYPE_PTR || 
			ut1.typeId == TYPE_REF )
	{
		if ( ut1.langEl < ut2.langEl )
			return -1;
		else if ( ut1.langEl > ut2.langEl )
			return 1;
	}
	else if ( ut1.typeId == TYPE_ITER ) {
		if ( ut1.iterDef < ut2.iterDef )
			return -1;
		else if ( ut1.iterDef > ut2.iterDef )
			return 1;
	}
	else {
		/* Fail on anything unimplemented. */
		assert( false );
	}

	return 0;
}

int CmpUniqueRepeat::compare( const UniqueRepeat &ut1, const UniqueRepeat &ut2 )
{
	if ( ut1.repeatType < ut2.repeatType )
		return -1;
	else if ( ut1.repeatType > ut2.repeatType )
		return 1;
	else {
		if ( ut1.langEl < ut2.langEl )
			return -1;
		else if ( ut1.langEl > ut2.langEl )
			return 1;
	}

	return 0;
}

int CmpUniqueMap::compare( const UniqueMap &ut1, const UniqueMap &ut2 )
{
	if ( ut1.key < ut2.key )
		return -1;
	else if ( ut1.key > ut2.key )
		return 1;
	else {
		if ( ut1.value < ut2.value )
			return -1;
		else if ( ut1.value > ut2.value )
			return 1;
	}

	return 0;
}

int CmpUniqueList::compare( const UniqueList &ut1, const UniqueList &ut2 )
{
	if ( ut1.value < ut2.value )
		return -1;
	else if ( ut1.value > ut2.value )
		return 1;

	return 0;
}

int CmpUniqueVector::compare( const UniqueVector &ut1, const UniqueVector &ut2 )
{
	if ( ut1.value < ut2.value )
		return -1;
	else if ( ut1.value > ut2.value )
		return 1;

	return 0;
}

int CmpUniqueParser::compare( const UniqueParser &ut1, const UniqueParser &ut2 )
{
	if ( ut1.parseType < ut2.parseType )
		return -1;
	else if ( ut1.parseType > ut2.parseType )
		return 1;

	return 0;
}

FsmGraph *VarDef::walk( ParseData *pd )
{
	/* We enter into a new name scope. */
	NameFrame nameFrame = pd->enterNameScope( true, 1 );

	/* Recurse on the expression. */
	FsmGraph *rtnVal = joinOrLm->walk( pd );
	
	/* Do the tranfer of local error actions. */
	LocalErrDictEl *localErrDictEl = pd->localErrDict.find( name );
	if ( localErrDictEl != 0 ) {
		for ( StateList::Iter state = rtnVal->stateList; state.lte(); state++ )
			rtnVal->transferErrorActions( state, localErrDictEl->value );
	}

	/* If the expression below is a join operation with multiple expressions
	 * then it just had epsilon transisions resolved. If it is a join
	 * with only a single expression then run the epsilon op now. */
	if ( joinOrLm->type == JoinOrLm::JoinType && joinOrLm->join->exprList.length() == 1 )
		rtnVal->epsilonOp();

	/* We can now unset entry points that are not longer used. */
	pd->unsetObsoleteEntries( rtnVal );

	/* If the name of the variable is referenced then add the entry point to
	 * the graph. */
	if ( pd->curNameInst->numRefs > 0 )
		rtnVal->setEntry( pd->curNameInst->id, rtnVal->startState );
	
	/* Pop the name scope. */
	pd->popNameScope( nameFrame );
	return rtnVal;
}

void VarDef::makeNameTree( const InputLoc &loc, ParseData *pd )
{
	/* The variable definition enters a new scope. */
	NameInst *prevNameInst = pd->curNameInst;
	pd->curNameInst = pd->addNameInst( loc, name, false );

	if ( joinOrLm->type == JoinOrLm::LongestMatchType )
		pd->curNameInst->isLongestMatch = true;

	/* Recurse. */
	joinOrLm->makeNameTree( pd );

	/* The name scope ends, pop the name instantiation. */
	pd->curNameInst = prevNameInst;
}

void VarDef::resolveNameRefs( ParseData *pd )
{
	/* Entering into a new scope. */
	NameFrame nameFrame = pd->enterNameScope( true, 1 );

	/* Recurse. */
	joinOrLm->resolveNameRefs( pd );
	
	/* The name scope ends, pop the name instantiation. */
	pd->popNameScope( nameFrame );
}

InputLoc TokenDef::getLoc()
{ 
	return action != 0 ? action->loc : semiLoc;
}

/*
 * If there are any LMs then all of the following entry points must reset
 * tokstart:
 *
 *  1. fentry(StateRef)
 *  2. ftoto(StateRef), fcall(StateRef), fnext(StateRef)
 *  3. targt of any transition that has an fcall (the return loc).
 *  4. start state of all longest match routines.
 */

Action *TokenRegion::newAction( ParseData *pd, const InputLoc &loc, 
		const String &name, InlineList *inlineList )
{
	Action *action = new Action( loc, name, inlineList );
	pd->actionList.append( action );
	action->isLmAction = true;
	return action;
}

void TokenRegion::makeActions( ParseData *pd )
{
	/* Make actions that set the action id. */
	for ( TokenDefListReg::Iter lmi = tokenDefList; lmi.lte(); lmi++ ) {
		/* For each part create actions for setting the match type.  We need
		 * to do this so that the actions will go into the actionIndex. */
		InlineList *inlineList = new InlineList;
		inlineList->append( new InlineItem( lmi->getLoc(), this, lmi, 
				InlineItem::LmSetActId ) );
		char *actName = new char[50];
		sprintf( actName, "store%i", lmi->longestMatchId );
		lmi->setActId = newAction( pd, lmi->getLoc(), actName, inlineList );
	}

	/* Make actions that execute the user action and restart on the last character. */
	for ( TokenDefListReg::Iter lmi = tokenDefList; lmi.lte(); lmi++ ) {
		/* For each part create actions for setting the match type.  We need
		 * to do this so that the actions will go into the actionIndex. */
		InlineList *inlineList = new InlineList;
		inlineList->append( new InlineItem( lmi->getLoc(), this, lmi, 
				InlineItem::LmOnLast ) );
		char *actName = new char[50];
		sprintf( actName, "imm%i", lmi->longestMatchId );
		lmi->actOnLast = newAction( pd, lmi->getLoc(), actName, inlineList );
	}

	/* Make actions that execute the user action and restart on the next
	 * character.  These actions will set tokend themselves (it is the current
	 * char). */
	for ( TokenDefListReg::Iter lmi = tokenDefList; lmi.lte(); lmi++ ) {
		/* For each part create actions for setting the match type.  We need
		 * to do this so that the actions will go into the actionIndex. */
		InlineList *inlineList = new InlineList;
		inlineList->append( new InlineItem( lmi->getLoc(), this, lmi, 
				InlineItem::LmOnNext ) );
		char *actName = new char[50];
		sprintf( actName, "lagh%i", lmi->longestMatchId );
		lmi->actOnNext = newAction( pd, lmi->getLoc(), actName, inlineList );
	}

	/* Make actions that execute the user action and restart at tokend. These
	 * actions execute some time after matching the last char. */
	for ( TokenDefListReg::Iter lmi = tokenDefList; lmi.lte(); lmi++ ) {
		/* For each part create actions for setting the match type.  We need
		 * to do this so that the actions will go into the actionIndex. */
		InlineList *inlineList = new InlineList;
		inlineList->append( new InlineItem( lmi->getLoc(), this, lmi, 
				InlineItem::LmOnLagBehind ) );
		char *actName = new char[50];
		sprintf( actName, "lag%i", lmi->longestMatchId );
		lmi->actLagBehind = newAction( pd, lmi->getLoc(), actName, inlineList );
	}

	InputLoc loc;
	loc.line = 1;
	loc.col = 1;

	/* Create the error action. */
	InlineList *il6 = new InlineList;
	il6->append( new InlineItem( loc, this, 0, InlineItem::LmSwitch ) );
	lmActSelect = newAction( pd, loc, "lagsel", il6 );
}

void TokenRegion::findName( ParseData *pd )
{
	NameInst *nameInst = pd->curNameInst;
	while ( nameInst->name == 0 ) {
		nameInst = nameInst->parent;
		/* Since every machine must must have a name, we should always find a
		 * name for the longest match. */
		assert( nameInst != 0 );
	}
	name = nameInst->name;
}

void TokenRegion::makeNameTree( ParseData *pd )
{
	/* Create an anonymous scope for the longest match. Will be used for
	 * restarting machine after matching a token. */
	NameInst *prevNameInst = pd->curNameInst;
	pd->curNameInst = pd->addNameInst( loc, 0, false );

	/* Save off the name inst into the token region. This is only legal for
	 * token regions because they are only ever referenced once (near the root
	 * of the name tree). They cannot have more than one corresponding name
	 * inst. */
	assert( regionNameInst == 0 );
	regionNameInst = pd->curNameInst;

	/* Recurse into all parts of the longest match operator. */
	for ( TokenDefListReg::Iter td = tokenDefList; td.lte(); td++ ) {
		/* Watch out for patternless tokens. */
		if ( td->join != 0 ) 
			td->join->makeNameTree( pd );
	}

	/* Traverse the name tree upwards to find a name for this lm. */
	findName( pd );

	/* Also make the longest match's actions at this point. */
	makeActions( pd );

	/* The name scope ends, pop the name instantiation. */
	pd->curNameInst = prevNameInst;
}

void TokenRegion::resolveNameRefs( ParseData *pd )
{
	/* The longest match gets its own name scope. */
	NameFrame nameFrame = pd->enterNameScope( true, 1 );

	/* Take an action reference for each longest match item and recurse. */
	for ( TokenDefListReg::Iter lmi = tokenDefList; lmi.lte(); lmi++ ) {
		/* Watch out for patternless tokens. */
		if ( lmi->join != 0 )
			lmi->join->resolveNameRefs( pd );
	}

	/* The name scope ends, pop the name instantiation. */
	pd->popNameScope( nameFrame );
}

void TokenRegion::restart( FsmGraph *graph, FsmTrans *trans )
{
	FsmState *fromState = trans->fromState;
	graph->detachTrans( fromState, trans->toState, trans );
	graph->attachTrans( fromState, graph->startState, trans );
}

void TokenRegion::runLongestMatch( ParseData *pd, FsmGraph *graph )
{
	graph->markReachableFromHereStopFinal( graph->startState );
	for ( StateList::Iter ms = graph->stateList; ms.lte(); ms++ ) {
		if ( ms->stateBits & SB_ISMARKED ) {
			ms->lmItemSet.insert( 0 );
			ms->stateBits &= ~ SB_ISMARKED;
		}
	}

	/* Transfer the first item of non-empty lmAction tables to the item sets
	 * of the states that follow. Exclude states that have no transitions out.
	 * This must happen on a separate pass so that on each iteration of the
	 * next pass we have the item set entries from all lmAction tables. */
	for ( StateList::Iter st = graph->stateList; st.lte(); st++ ) {
		for ( TransList::Iter trans = st->outList; trans.lte(); trans++ ) {
			if ( trans->lmActionTable.length() > 0 ) {
				LmActionTableEl *lmAct = trans->lmActionTable.data;
				FsmState *toState = trans->toState;
				assert( toState );

				/* Check if there are transitions out, this may be a very
				 * close approximation? Out transitions going nowhere?
				 * FIXME: Check. */
				if ( toState->outList.length() > 0 ) {
					/* Fill the item sets. */
					graph->markReachableFromHereStopFinal( toState );
					for ( StateList::Iter ms = graph->stateList; ms.lte(); ms++ ) {
						if ( ms->stateBits & SB_ISMARKED ) {
							ms->lmItemSet.insert( lmAct->value );
							ms->stateBits &= ~ SB_ISMARKED;
						}
					}
				}
			}
		}
	}

	/* The lmItem sets are now filled, telling us which longest match rules
	 * can succeed in which states. First determine if we need to make sure
	 * act is defaulted to zero. */
	int maxItemSetLength = 0;
	graph->markReachableFromHereStopFinal( graph->startState );
	for ( StateList::Iter ms = graph->stateList; ms.lte(); ms++ ) {
		if ( ms->stateBits & SB_ISMARKED ) {
			if ( ms->lmItemSet.length() > maxItemSetLength )
				maxItemSetLength = ms->lmItemSet.length();
			ms->stateBits &= ~ SB_ISMARKED;
		}
	}

	/* The actions executed on starting to match a token. */
	graph->isolateStartState();
	graph->startState->fromStateActionTable.setAction( pd->setTokStartOrd, pd->setTokStart );
	if ( maxItemSetLength > 1 ) {
		/* The longest match action switch may be called when tokens are
		 * matched, in which case act must be initialized, there must be a
		 * case to handle the error, and the generated machine will require an
		 * error state. */
		lmSwitchHandlesError = true;
		graph->startState->toStateActionTable.setAction( pd->initActIdOrd, pd->initActId );
	}

	/* The place to store transitions to restart. It maybe possible for the
	 * restarting to affect the searching through the graph that follows. For
	 * now take the safe route and save the list of transitions to restart
	 * until after all searching is done. */
	Vector<FsmTrans*> restartTrans;

	/* Set actions that do immediate token recognition, set the longest match part
	 * id and set the token ending. */
	for ( StateList::Iter st = graph->stateList; st.lte(); st++ ) {
		for ( TransList::Iter trans = st->outList; trans.lte(); trans++ ) {
			if ( trans->lmActionTable.length() > 0 ) {
				LmActionTableEl *lmAct = trans->lmActionTable.data;
				FsmState *toState = trans->toState;
				assert( toState );

				/* Check if there are transitions out, this may be a very
				 * close approximation? Out transitions going nowhere?
				 * FIXME: Check. */
				if ( toState->outList.length() == 0 ) {
					/* Can execute the immediate action for the longest match
					 * part. Redirect the action to the start state. */
					trans->actionTable.setAction( lmAct->key, 
							lmAct->value->actOnLast );
					restartTrans.append( trans );
				}
				else {
					/* Look for non final states that have a non-empty item
					 * set. If these are present then we need to record the
					 * end of the token.  Also Find the highest item set
					 * length reachable from here (excluding at transtions to
					 * final states). */
					bool nonFinalNonEmptyItemSet = false;
					maxItemSetLength = 0;
					graph->markReachableFromHereStopFinal( toState );
					for ( StateList::Iter ms = graph->stateList; ms.lte(); ms++ ) {
						if ( ms->stateBits & SB_ISMARKED ) {
							if ( ms->lmItemSet.length() > 0 && !ms->isFinState() )
								nonFinalNonEmptyItemSet = true;
							if ( ms->lmItemSet.length() > maxItemSetLength )
								maxItemSetLength = ms->lmItemSet.length();
							ms->stateBits &= ~ SB_ISMARKED;
						}
					}

					/* If there are reachable states that are not final and
					 * have non empty item sets or that have an item set
					 * length greater than one then we need to set tokend
					 * because the error action that matches the token will
					 * require it. */
					if ( nonFinalNonEmptyItemSet || maxItemSetLength > 1 )
						trans->actionTable.setAction( pd->setTokEndOrd, pd->setTokEnd );

					/* Some states may not know which longest match item to
					 * execute, must set it. */
					if ( maxItemSetLength > 1 ) {
						/* There are transitions out, another match may come. */
						trans->actionTable.setAction( lmAct->key, 
								lmAct->value->setActId );
					}
				}
			}
		}
	}

	/* Now that all graph searching is done it certainly safe set the
	 * restarting. It may be safe above, however this must be verified. */
	for ( Vector<FsmTrans*>::Iter rs = restartTrans; rs.lte(); rs++ )
		restart( graph, *rs );

	int lmErrActionOrd = pd->curActionOrd++;

	/* Embed the error for recognizing a char. */
	for ( StateList::Iter st = graph->stateList; st.lte(); st++ ) {
		if ( st->lmItemSet.length() == 1 && st->lmItemSet[0] != 0 ) {
			if ( st->isFinState() ) {
				/* On error execute the onActNext action, which knows that
				 * the last character of the token was one back and restart. */
				graph->setErrorTarget( st, graph->startState, &lmErrActionOrd, 
						&st->lmItemSet[0]->actOnNext, 1 );
				st->eofActionTable.setAction( lmErrActionOrd, 
						st->lmItemSet[0]->actOnNext );
				st->eofTarget = graph->startState;
			}
			else {
				graph->setErrorTarget( st, graph->startState, &lmErrActionOrd, 
						&st->lmItemSet[0]->actLagBehind, 1 );
				st->eofActionTable.setAction( lmErrActionOrd, 
						st->lmItemSet[0]->actLagBehind );
				st->eofTarget = graph->startState;
			}
		}
		else if ( st->lmItemSet.length() > 1 ) {
			/* Need to use the select. Take note of the which items the select
			 * is needed for so only the necessary actions are included. */
			for ( LmItemSet::Iter plmi = st->lmItemSet; plmi.lte(); plmi++ ) {
				if ( *plmi != 0 )
					(*plmi)->inLmSelect = true;
			}
			/* On error, execute the action select and go to the start state. */
			graph->setErrorTarget( st, graph->startState, &lmErrActionOrd, 
					&lmActSelect, 1 );
			st->eofActionTable.setAction( lmErrActionOrd, lmActSelect );
			st->eofTarget = graph->startState;
		}
	}
	
	/* Finally, the start state should be made final. */
	graph->setFinState( graph->startState );
}

void TokenRegion::transferScannerLeavingActions( FsmGraph *graph )
{
	for ( StateList::Iter st = graph->stateList; st.lte(); st++ ) {
		if ( st->outActionTable.length() > 0 )
			graph->setErrorActions( st, st->outActionTable );
	}
}

FsmGraph *TokenRegion::walk( ParseData *pd )
{
	/* The longest match has it's own name scope. */
	NameFrame nameFrame = pd->enterNameScope( true, 1 );

	/* Make each part of the longest match. */
	int numParts = 0;
	FsmGraph **parts = new FsmGraph*[tokenDefList.length()];
	for ( TokenDefListReg::Iter lmi = tokenDefList; lmi.lte(); lmi++ ) {
		/* Watch out for patternless tokens. */
		if ( lmi->join != 0 ) {
			/* Create the machine and embed the setting of the longest match id. */
			parts[numParts] = lmi->join->walk( pd );
			parts[numParts]->longMatchAction( pd->curActionOrd++, lmi );

			/* Look for tokens that accept the zero length-word. The first one found
			 * will be used as the default token. */
			if ( defaultTokenDef == 0 && parts[numParts]->startState->isFinState() )
				defaultTokenDef = lmi;

			numParts += 1;
		}
	}
	FsmGraph *retFsm = parts[0];

	if ( defaultTokenDef != 0 && defaultTokenDef->tdLangEl->ignore )
		error() << "ignore token cannot be a scanner's zero-length token" << endp;

	/* The region is empty. Return the empty set. */
	if ( numParts == 0 ) {
		retFsm = new FsmGraph();
		retFsm->lambdaFsm();
	}
	else {
		/* Before we union the patterns we need to deal with leaving actions. They
		 * are transfered to error transitions out of the final states (like local
		 * error actions) and to eof actions. In the scanner we need to forbid
		 * on_last for any final state that has an leaving action. */
		for ( int i = 0; i < numParts; i++ )
			transferScannerLeavingActions( parts[i] );

		/* Union machines one and up with machine zero. */
		FsmGraph *retFsm = parts[0];
		for ( int i = 1; i < numParts; i++ ) {
			retFsm->unionOp( parts[i] );
			afterOpMinimize( retFsm );
		}

		runLongestMatch( pd, retFsm );
		delete[] parts;
	}

	/* Pop the name scope. */
	pd->popNameScope( nameFrame );

	return retFsm;
}

FsmGraph *JoinOrLm::walk( ParseData *pd )
{
	FsmGraph *rtnVal = 0;
	switch ( type ) {
	case JoinType:
		rtnVal = join->walk( pd );
		break;
	case LongestMatchType:
		rtnVal = tokenRegion->walk( pd );
		break;
	}
	return rtnVal;
}

void JoinOrLm::makeNameTree( ParseData *pd )
{
	switch ( type ) {
	case JoinType:
		join->makeNameTree( pd );
		break;
	case LongestMatchType:
		tokenRegion->makeNameTree( pd );
		break;
	}
}

void JoinOrLm::resolveNameRefs( ParseData *pd )
{
	switch ( type ) {
	case JoinType:
		join->resolveNameRefs( pd );
		break;
	case LongestMatchType:
		tokenRegion->resolveNameRefs( pd );
		break;
	}
}


/* Construct with a location and the first expression. */
Join::Join( Expression *expr )
:
	context(0),
	mark(0)
{
	exprList.append( expr );
}

/* Walk an expression node. */
FsmGraph *Join::walk( ParseData *pd )
{
	assert( exprList.length() == 1 );

	FsmGraph *retFsm = exprList.head->walk( pd );

	/* Maybe the the context. */
	if ( context != 0 ) {
		retFsm->leaveFsmAction( pd->curActionOrd++, mark );
		FsmGraph *contextGraph = context->walk( pd );
		retFsm->concatOp( contextGraph );
	}

	return retFsm;
}

void Join::makeNameTree( ParseData *pd )
{
	assert( exprList.length() == 1 );

	/* Recurse into the single expression. */
	exprList.head->makeNameTree( pd );

	/* Maybe the the context. */
	if ( context != 0 )
		context->makeNameTree( pd );
}


void Join::resolveNameRefs( ParseData *pd )
{
	/* Branch on whether or not there is to be a join. */
	assert( exprList.length() == 1 );

	/* Recurse into the single expression. */
	exprList.head->resolveNameRefs( pd );

	/* Maybe the the context. */
	if ( context != 0 )
		context->resolveNameRefs( pd );
}

/* Clean up after an expression node. */
Expression::~Expression()
{
	switch ( type ) {
		case OrType: case IntersectType: case SubtractType:
		case StrongSubtractType:
			delete expression;
			delete term;
			break;
		case TermType:
			delete term;
			break;
		case BuiltinType:
			break;
	}
}

/* Evaluate a single expression node. */
FsmGraph *Expression::walk( ParseData *pd, bool lastInSeq )
{
	FsmGraph *rtnVal = 0;
	switch ( type ) {
		case OrType: {
			/* Evaluate the expression. */
			rtnVal = expression->walk( pd, false );
			/* Evaluate the term. */
			FsmGraph *rhs = term->walk( pd );
			/* Perform union. */
			rtnVal->unionOp( rhs );
			afterOpMinimize( rtnVal, lastInSeq );
			break;
		}
		case IntersectType: {
			/* Evaluate the expression. */
			rtnVal = expression->walk( pd );
			/* Evaluate the term. */
			FsmGraph *rhs = term->walk( pd );
			/* Perform intersection. */
			rtnVal->intersectOp( rhs );
			afterOpMinimize( rtnVal, lastInSeq );
			break;
		}
		case SubtractType: {
			/* Evaluate the expression. */
			rtnVal = expression->walk( pd );
			/* Evaluate the term. */
			FsmGraph *rhs = term->walk( pd );
			/* Perform subtraction. */
			rtnVal->subtractOp( rhs );
			afterOpMinimize( rtnVal, lastInSeq );
			break;
		}
		case StrongSubtractType: {
			/* Evaluate the expression. */
			rtnVal = expression->walk( pd );

			/* Evaluate the term and pad it with any* machines. */
			FsmGraph *rhs = dotStarFsm( pd );
			FsmGraph *termFsm = term->walk( pd );
			FsmGraph *trailAnyStar = dotStarFsm( pd );
			rhs->concatOp( termFsm );
			rhs->concatOp( trailAnyStar );

			/* Perform subtraction. */
			rtnVal->subtractOp( rhs );
			afterOpMinimize( rtnVal, lastInSeq );
			break;
		}
		case TermType: {
			/* Return result of the term. */
			rtnVal = term->walk( pd );
			break;
		}
		case BuiltinType: {
			/* Duplicate the builtin. */
			rtnVal = makeBuiltin( builtin, pd );
			break;
		}
	}

	return rtnVal;
}

void Expression::makeNameTree( ParseData *pd )
{
	switch ( type ) {
	case OrType:
	case IntersectType:
	case SubtractType:
	case StrongSubtractType:
		expression->makeNameTree( pd );
		term->makeNameTree( pd );
		break;
	case TermType:
		term->makeNameTree( pd );
		break;
	case BuiltinType:
		break;
	}
}

void Expression::resolveNameRefs( ParseData *pd )
{
	switch ( type ) {
	case OrType:
	case IntersectType:
	case SubtractType:
	case StrongSubtractType:
		expression->resolveNameRefs( pd );
		term->resolveNameRefs( pd );
		break;
	case TermType:
		term->resolveNameRefs( pd );
		break;
	case BuiltinType:
		break;
	}
}

/* Clean up after a term node. */
Term::~Term()
{
	switch ( type ) {
		case ConcatType:
		case RightStartType:
		case RightFinishType:
		case LeftType:
			delete term;
			delete factorWithAug;
			break;
		case FactorWithAugType:
			delete factorWithAug;
			break;
	}
}

/* Evaluate a term node. */
FsmGraph *Term::walk( ParseData *pd, bool lastInSeq )
{
	FsmGraph *rtnVal = 0;
	switch ( type ) {
		case ConcatType: {
			/* Evaluate the Term. */
			rtnVal = term->walk( pd, false );
			/* Evaluate the FactorWithRep. */
			FsmGraph *rhs = factorWithAug->walk( pd );
			/* Perform concatenation. */
			rtnVal->concatOp( rhs );
			afterOpMinimize( rtnVal, lastInSeq );
			break;
		}
		case RightStartType: {
			/* Evaluate the Term. */
			rtnVal = term->walk( pd );

			/* Evaluate the FactorWithRep. */
			FsmGraph *rhs = factorWithAug->walk( pd );

			/* Set up the priority descriptors. The left machine gets the
			 * lower priority where as the right get the higher start priority. */
			priorDescs[0].key = pd->nextPriorKey++;
			priorDescs[0].priority = 0;
			rtnVal->allTransPrior( pd->curPriorOrd++, &priorDescs[0] );

			/* The start transitions right machine get the higher priority.
			 * Use the same unique key. */
			priorDescs[1].key = priorDescs[0].key;
			priorDescs[1].priority = 1;
			rhs->startFsmPrior( pd->curPriorOrd++, &priorDescs[1] );

			/* Perform concatenation. */
			rtnVal->concatOp( rhs );
			afterOpMinimize( rtnVal, lastInSeq );
			break;
		}
		case RightFinishType: {
			/* Evaluate the Term. */
			rtnVal = term->walk( pd );

			/* Evaluate the FactorWithRep. */
			FsmGraph *rhs = factorWithAug->walk( pd );

			/* Set up the priority descriptors. The left machine gets the
			 * lower priority where as the finishing transitions to the right
			 * get the higher priority. */
			priorDescs[0].key = pd->nextPriorKey++;
			priorDescs[0].priority = 0;
			rtnVal->allTransPrior( pd->curPriorOrd++, &priorDescs[0] );

			/* The finishing transitions of the right machine get the higher
			 * priority. Use the same unique key. */
			priorDescs[1].key = priorDescs[0].key;
			priorDescs[1].priority = 1;
			rhs->finishFsmPrior( pd->curPriorOrd++, &priorDescs[1] );

			/* Perform concatenation. */
			rtnVal->concatOp( rhs );
			afterOpMinimize( rtnVal, lastInSeq );
			break;
		}
		case LeftType: {
			/* Evaluate the Term. */
			rtnVal = term->walk( pd );

			/* Evaluate the FactorWithRep. */
			FsmGraph *rhs = factorWithAug->walk( pd );

			/* Set up the priority descriptors. The left machine gets the
			 * higher priority. */
			priorDescs[0].key = pd->nextPriorKey++;
			priorDescs[0].priority = 1;
			rtnVal->allTransPrior( pd->curPriorOrd++, &priorDescs[0] );

			/* The right machine gets the lower priority.  Since
			 * startTransPrior might unnecessarily increase the number of
			 * states during the state machine construction process (due to
			 * isolation), we use allTransPrior instead, which has the same
			 * effect. */
			priorDescs[1].key = priorDescs[0].key;
			priorDescs[1].priority = 0;
			rhs->allTransPrior( pd->curPriorOrd++, &priorDescs[1] );

			/* Perform concatenation. */
			rtnVal->concatOp( rhs );
			afterOpMinimize( rtnVal, lastInSeq );
			break;
		}
		case FactorWithAugType: {
			rtnVal = factorWithAug->walk( pd );
			break;
		}
	}
	return rtnVal;
}

void Term::makeNameTree( ParseData *pd )
{
	switch ( type ) {
	case ConcatType:
	case RightStartType:
	case RightFinishType:
	case LeftType:
		term->makeNameTree( pd );
		factorWithAug->makeNameTree( pd );
		break;
	case FactorWithAugType:
		factorWithAug->makeNameTree( pd );
		break;
	}
}

void Term::resolveNameRefs( ParseData *pd )
{
	switch ( type ) {
	case ConcatType:
	case RightStartType:
	case RightFinishType:
	case LeftType:
		term->resolveNameRefs( pd );
		factorWithAug->resolveNameRefs( pd );
		break;
	case FactorWithAugType:
		factorWithAug->resolveNameRefs( pd );
		break;
	}
}

/* Clean up after a factor with augmentation node. */
FactorWithAug::~FactorWithAug()
{
	delete factorWithRep;

	/* Walk the vector of parser actions, deleting function names. */

	/* Clean up priority descriptors. */
	if ( priorDescs != 0 )
		delete[] priorDescs;
}

void FactorWithAug::assignActions( ParseData *pd, FsmGraph *graph, int *actionOrd )
{
	/* Assign actions. */
	for ( int i = 0; i < actions.length(); i++ )  {
		switch ( actions[i].type ) {
		/* Transition actions. */
		case at_start:
			graph->startFsmAction( actionOrd[i], actions[i].action );
			afterOpMinimize( graph );
			break;
		case at_all:
			graph->allTransAction( actionOrd[i], actions[i].action );
			break;
		case at_finish:
			graph->finishFsmAction( actionOrd[i], actions[i].action );
			break;
		case at_leave:
			graph->leaveFsmAction( actionOrd[i], actions[i].action );
			break;

		/* Global error actions. */
		case at_start_gbl_error:
			graph->startErrorAction( actionOrd[i], actions[i].action, 0 );
			afterOpMinimize( graph );
			break;
		case at_all_gbl_error:
			graph->allErrorAction( actionOrd[i], actions[i].action, 0 );
			break;
		case at_final_gbl_error:
			graph->finalErrorAction( actionOrd[i], actions[i].action, 0 );
			break;
		case at_not_start_gbl_error:
			graph->notStartErrorAction( actionOrd[i], actions[i].action, 0 );
			break;
		case at_not_final_gbl_error:
			graph->notFinalErrorAction( actionOrd[i], actions[i].action, 0 );
			break;
		case at_middle_gbl_error:
			graph->middleErrorAction( actionOrd[i], actions[i].action, 0 );
			break;

		/* Local error actions. */
		case at_start_local_error:
			graph->startErrorAction( actionOrd[i], actions[i].action,
					actions[i].localErrKey );
			afterOpMinimize( graph );
			break;
		case at_all_local_error:
			graph->allErrorAction( actionOrd[i], actions[i].action,
					actions[i].localErrKey );
			break;
		case at_final_local_error:
			graph->finalErrorAction( actionOrd[i], actions[i].action,
					actions[i].localErrKey );
			break;
		case at_not_start_local_error:
			graph->notStartErrorAction( actionOrd[i], actions[i].action,
					actions[i].localErrKey );
			break;
		case at_not_final_local_error:
			graph->notFinalErrorAction( actionOrd[i], actions[i].action,
					actions[i].localErrKey );
			break;
		case at_middle_local_error:
			graph->middleErrorAction( actionOrd[i], actions[i].action,
					actions[i].localErrKey );
			break;

		/* EOF actions. */
		case at_start_eof:
			graph->startEOFAction( actionOrd[i], actions[i].action );
			afterOpMinimize( graph );
			break;
		case at_all_eof:
			graph->allEOFAction( actionOrd[i], actions[i].action );
			break;
		case at_final_eof:
			graph->finalEOFAction( actionOrd[i], actions[i].action );
			break;
		case at_not_start_eof:
			graph->notStartEOFAction( actionOrd[i], actions[i].action );
			break;
		case at_not_final_eof:
			graph->notFinalEOFAction( actionOrd[i], actions[i].action );
			break;
		case at_middle_eof:
			graph->middleEOFAction( actionOrd[i], actions[i].action );
			break;

		/* To State Actions. */
		case at_start_to_state:
			graph->startToStateAction( actionOrd[i], actions[i].action );
			afterOpMinimize( graph );
			break;
		case at_all_to_state:
			graph->allToStateAction( actionOrd[i], actions[i].action );
			break;
		case at_final_to_state:
			graph->finalToStateAction( actionOrd[i], actions[i].action );
			break;
		case at_not_start_to_state:
			graph->notStartToStateAction( actionOrd[i], actions[i].action );
			break;
		case at_not_final_to_state:
			graph->notFinalToStateAction( actionOrd[i], actions[i].action );
			break;
		case at_middle_to_state:
			graph->middleToStateAction( actionOrd[i], actions[i].action );
			break;

		/* From State Actions. */
		case at_start_from_state:
			graph->startFromStateAction( actionOrd[i], actions[i].action );
			afterOpMinimize( graph );
			break;
		case at_all_from_state:
			graph->allFromStateAction( actionOrd[i], actions[i].action );
			break;
		case at_final_from_state:
			graph->finalFromStateAction( actionOrd[i], actions[i].action );
			break;
		case at_not_start_from_state:
			graph->notStartFromStateAction( actionOrd[i], actions[i].action );
			break;
		case at_not_final_from_state:
			graph->notFinalFromStateAction( actionOrd[i], actions[i].action );
			break;
		case at_middle_from_state:
			graph->middleFromStateAction( actionOrd[i], actions[i].action );
			break;

		/* Remaining cases, prevented by the parser. */
		default: 
			assert( false );
			break;
		}
	}
}

void FactorWithAug::assignPriorities( FsmGraph *graph, int *priorOrd )
{
	/* Assign priorities. */
	for ( int i = 0; i < priorityAugs.length(); i++ ) {
		switch ( priorityAugs[i].type ) {
		case at_start:
			graph->startFsmPrior( priorOrd[i], &priorDescs[i]);
			/* Start fsm priorities are a special case that may require
			 * minimization afterwards. */
			afterOpMinimize( graph );
			break;
		case at_all:
			graph->allTransPrior( priorOrd[i], &priorDescs[i] );
			break;
		case at_finish:
			graph->finishFsmPrior( priorOrd[i], &priorDescs[i] );
			break;
		case at_leave:
			graph->leaveFsmPrior( priorOrd[i], &priorDescs[i] );
			break;

		default:
			/* Parser Prevents this case. */
			break;
		}
	}
}

void FactorWithAug::assignConditions( FsmGraph *graph )
{
	for ( int i = 0; i < conditions.length(); i++ )  {
		switch ( conditions[i].type ) {
		/* Transition actions. */
		case at_start:
			graph->startFsmCondition( conditions[i].action );
			afterOpMinimize( graph );
			break;
		case at_all:
			graph->allTransCondition( conditions[i].action );
			break;
		case at_leave:
			graph->leaveFsmCondition( conditions[i].action );
			break;
		default:
			break;
		}
	}
}


/* Evaluate a factor with augmentation node. */
FsmGraph *FactorWithAug::walk( ParseData *pd )
{
	/* Enter into the scopes created for the labels. */
	NameFrame nameFrame = pd->enterNameScope( false, labels.length() );

	/* Make the array of function orderings. */
	int *actionOrd = 0;
	if ( actions.length() > 0 )
		actionOrd = new int[actions.length()];
	
	/* First walk the list of actions, assigning order to all starting
	 * actions. */
	for ( int i = 0; i < actions.length(); i++ ) {
		if ( actions[i].type == at_start || 
				actions[i].type == at_start_gbl_error ||
				actions[i].type == at_start_local_error ||
				actions[i].type == at_start_to_state ||
				actions[i].type == at_start_from_state ||
				actions[i].type == at_start_eof )
			actionOrd[i] = pd->curActionOrd++;
	}

	/* Evaluate the factor with repetition. */
	FsmGraph *rtnVal = factorWithRep->walk( pd );

	/* Compute the remaining action orderings. */
	for ( int i = 0; i < actions.length(); i++ ) {
		if ( actions[i].type != at_start && 
				actions[i].type != at_start_gbl_error &&
				actions[i].type != at_start_local_error &&
				actions[i].type != at_start_to_state &&
				actions[i].type != at_start_from_state &&
				actions[i].type != at_start_eof )
			actionOrd[i] = pd->curActionOrd++;
	}

	assignConditions( rtnVal );

	assignActions( pd, rtnVal , actionOrd );

	/* Make the array of priority orderings. Orderings are local to this walk
	 * of the factor with augmentation. */
	int *priorOrd = 0;
	if ( priorityAugs.length() > 0 )
		priorOrd = new int[priorityAugs.length()];
	
	/* Walk all priorities, assigning the priority ordering. */
	for ( int i = 0; i < priorityAugs.length(); i++ )
		priorOrd[i] = pd->curPriorOrd++;

	/* If the priority descriptors have not been made, make them now.  Make
	 * priority descriptors for each priority asignment that will be passed to
	 * the fsm. Used to keep track of the key, value and used bit. */
	if ( priorDescs == 0 && priorityAugs.length() > 0 ) {
		priorDescs = new PriorDesc[priorityAugs.length()];
		for ( int i = 0; i < priorityAugs.length(); i++ ) {
			/* Init the prior descriptor for the priority setting. */
			priorDescs[i].key = priorityAugs[i].priorKey;
			priorDescs[i].priority = priorityAugs[i].priorValue;
		}
	}

	/* Assign priorities into the machine. */
	assignPriorities( rtnVal, priorOrd );

	/* Assign epsilon transitions. */
	for ( int e = 0; e < epsilonLinks.length(); e++ ) {
		/* Get the name, which may not exist. If it doesn't then silently
		 * ignore it because an error has already been reported. */
		NameInst *epTarg = pd->epsilonResolvedLinks[pd->nextEpsilonResolvedLink++];
		if ( epTarg != 0 ) {
			/* Make the epsilon transitions. */
			rtnVal->epsilonTrans( epTarg->id );

			/* Note that we have made a link to the name. */
			pd->localNameScope->referencedNames.append( epTarg );
		}
	}

	/* Set entry points for labels. */
	if ( labels.length() > 0 ) {
		/* Pop the names. */
		pd->resetNameScope( nameFrame );

		/* Make labels that are referenced into entry points. */
		for ( int i = 0; i < labels.length(); i++ ) {
			pd->enterNameScope( false, 1 );

			/* Will always be found. */
			NameInst *name = pd->curNameInst;

			/* If the name is referenced then set the entry point. */
			if ( name->numRefs > 0 )
				rtnVal->setEntry( name->id, rtnVal->startState );
		}

		pd->popNameScope( nameFrame );
	}

	if ( priorOrd != 0 )
		delete[] priorOrd;
	if ( actionOrd != 0 )
		delete[] actionOrd;	
	return rtnVal;
}

void FactorWithAug::makeNameTree( ParseData *pd )
{
	/* Add the labels to the tree of instantiated names. Each label
	 * makes a new scope. */
	NameInst *prevNameInst = pd->curNameInst;
	for ( int i = 0; i < labels.length(); i++ )
		pd->curNameInst = pd->addNameInst( labels[i].loc, labels[i].data, true );

	/* Recurse, then pop the names. */
	factorWithRep->makeNameTree( pd );
	pd->curNameInst = prevNameInst;
}


void FactorWithAug::resolveNameRefs( ParseData *pd )
{
	/* Enter into the name scope created by any labels. */
	NameFrame nameFrame = pd->enterNameScope( false, labels.length() );

	/* Recurse first. IMPORTANT: we must do the exact same traversal as when
	 * the tree is constructed. */
	factorWithRep->resolveNameRefs( pd );

	/* Resolve epsilon transitions. */
	for ( int ep = 0; ep < epsilonLinks.length(); ep++ ) {
		/* Get the link. */
		EpsilonLink &link = epsilonLinks[ep];
		NameInst *resolvedName = 0;

		if ( link.target.length() == 1 && strcmp( link.target.data[0], "final" ) == 0 ) {
			/* Epsilon drawn to an implicit final state. An implicit final is
			 * only available in join operations. */
			resolvedName = pd->localNameScope->final;
		}
		else {
			/* Do an search for the name. */
			NameSet resolved;
			pd->resolveFrom( resolved, pd->localNameScope, link.target, 0 );
			if ( resolved.length() > 0 ) {
				/* Take the first one. */
				resolvedName = resolved[0];
				if ( resolved.length() > 1 ) {
					/* Complain about the multiple references. */
					error(link.loc) << "state reference " << link.target << 
							" resolves to multiple entry points" << endl;
					errorStateLabels( resolved );
				}
			}
		}

		/* This is tricky, we stuff resolved epsilon transitions into one long
		 * vector in the parse data structure. Since the name resolution and
		 * graph generation both do identical walks of the parse tree we
		 * should always find the link resolutions in the right place.  */
		pd->epsilonResolvedLinks.append( resolvedName );

		if ( resolvedName != 0 ) {
			/* Found the name, bump of the reference count on it. */
			resolvedName->numRefs += 1;
		}
		else {
			/* Complain, no recovery action, the epsilon op will ignore any
			 * epsilon transitions whose names did not resolve. */
			error(link.loc) << "could not resolve label " << link.target << endl;
		}
	}

	if ( labels.length() > 0 )
		pd->popNameScope( nameFrame );
}


/* Clean up after a factor with repetition node. */
FactorWithRep::~FactorWithRep()
{
	switch ( type ) {
		case StarType: case StarStarType: case OptionalType: case PlusType:
		case ExactType: case MaxType: case MinType: case RangeType:
			delete factorWithRep;
			break;
		case FactorWithNegType:
			delete factorWithNeg;
			break;
	}
}

/* Evaluate a factor with repetition node. */
FsmGraph *FactorWithRep::walk( ParseData *pd )
{
	FsmGraph *retFsm = 0;

	switch ( type ) {
	case StarType: {
		/* Evaluate the FactorWithRep. */
		retFsm = factorWithRep->walk( pd );
		if ( retFsm->startState->isFinState() ) {
			warning(loc) << "applying kleene star to a machine that "
					"accepts zero length word" << endl;
		}

		/* Shift over the start action orders then do the kleene star. */
		pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );
		retFsm->starOp( );
		afterOpMinimize( retFsm );
		break;
	}
	case StarStarType: {
		/* Evaluate the FactorWithRep. */
		retFsm = factorWithRep->walk( pd );
		if ( retFsm->startState->isFinState() ) {
			warning(loc) << "applying kleene star to a machine that "
					"accepts zero length word" << endl;
		}

		/* Set up the prior descs. All gets priority one, whereas leaving gets
		 * priority zero. Make a unique key so that these priorities don't
		 * interfere with any priorities set by the user. */
		priorDescs[0].key = pd->nextPriorKey++;
		priorDescs[0].priority = 1;
		retFsm->allTransPrior( pd->curPriorOrd++, &priorDescs[0] );

		/* Leaveing gets priority 0. Use same unique key. */
		priorDescs[1].key = priorDescs[0].key;
		priorDescs[1].priority = 0;
		retFsm->leaveFsmPrior( pd->curPriorOrd++, &priorDescs[1] );

		/* Shift over the start action orders then do the kleene star. */
		pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );
		retFsm->starOp( );
		afterOpMinimize( retFsm );
		break;
	}
	case OptionalType: {
		/* Make the null fsm. */
		FsmGraph *nu = new FsmGraph();
		nu->lambdaFsm( );

		/* Evaluate the FactorWithRep. */
		retFsm = factorWithRep->walk( pd );

		/* Perform the question operator. */
		retFsm->unionOp( nu );
		afterOpMinimize( retFsm );
		break;
	}
	case PlusType: {
		/* Evaluate the FactorWithRep. */
		retFsm = factorWithRep->walk( pd );
		if ( retFsm->startState->isFinState() ) {
			warning(loc) << "applying plus operator to a machine that "
					"accpets zero length word" << endl;
		}

		/* Need a duplicated for the star end. */
		FsmGraph *dup = new FsmGraph( *retFsm );

		/* The start func orders need to be shifted before doing the star. */
		pd->curActionOrd += dup->shiftStartActionOrder( pd->curActionOrd );

		/* Star the duplicate. */
		dup->starOp( );
		afterOpMinimize( dup );

		retFsm->concatOp( dup );
		afterOpMinimize( retFsm );
		break;
	}
	case ExactType: {
		/* Get an int from the repetition amount. */
		if ( lowerRep == 0 ) {
			/* No copies. Don't need to evaluate the factorWithRep. 
			 * This Defeats the purpose so give a warning. */
			warning(loc) << "exactly zero repetitions results "
					"in the null machine" << endl;

			retFsm = new FsmGraph();
			retFsm->lambdaFsm();
		}
		else {
			/* Evaluate the first FactorWithRep. */
			retFsm = factorWithRep->walk( pd );
			if ( retFsm->startState->isFinState() ) {
				warning(loc) << "applying repetition to a machine that "
						"accepts zero length word" << endl;
			}

			/* The start func orders need to be shifted before doing the
			 * repetition. */
			pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );

			/* Do the repetition on the machine. Already guarded against n == 0 */
			retFsm->repeatOp( lowerRep );
			afterOpMinimize( retFsm );
		}
		break;
	}
	case MaxType: {
		/* Get an int from the repetition amount. */
		if ( upperRep == 0 ) {
			/* No copies. Don't need to evaluate the factorWithRep. 
			 * This Defeats the purpose so give a warning. */
			warning(loc) << "max zero repetitions results "
					"in the null machine" << endl;

			retFsm = new FsmGraph();
			retFsm->lambdaFsm();
		}
		else {
			/* Evaluate the first FactorWithRep. */
			retFsm = factorWithRep->walk( pd );
			if ( retFsm->startState->isFinState() ) {
				warning(loc) << "applying max repetition to a machine that "
						"accepts zero length word" << endl;
			}

			/* The start func orders need to be shifted before doing the 
			 * repetition. */
			pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );

			/* Do the repetition on the machine. Already guarded against n == 0 */
			retFsm->optionalRepeatOp( upperRep );
			afterOpMinimize( retFsm );
		}
		break;
	}
	case MinType: {
		/* Evaluate the repeated machine. */
		retFsm = factorWithRep->walk( pd );
		if ( retFsm->startState->isFinState() ) {
			warning(loc) << "applying min repetition to a machine that "
					"accepts zero length word" << endl;
		}

		/* The start func orders need to be shifted before doing the repetition
		 * and the kleene star. */
		pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );
	
		if ( lowerRep == 0 ) {
			/* Acts just like a star op on the machine to return. */
			retFsm->starOp( );
			afterOpMinimize( retFsm );
		}
		else {
			/* Take a duplicate for the plus. */
			FsmGraph *dup = new FsmGraph( *retFsm );

			/* Do repetition on the first half. */
			retFsm->repeatOp( lowerRep );
			afterOpMinimize( retFsm );

			/* Star the duplicate. */
			dup->starOp( );
			afterOpMinimize( dup );

			/* Tak on the kleene star. */
			retFsm->concatOp( dup );
			afterOpMinimize( retFsm );
		}
		break;
	}
	case RangeType: {
		/* Check for bogus range. */
		if ( upperRep - lowerRep < 0 ) {
			error(loc) << "invalid range repetition" << endl;

			/* Return null machine as recovery. */
			retFsm = new FsmGraph();
			retFsm->lambdaFsm();
		}
		else if ( lowerRep == 0 && upperRep == 0 ) {
			/* No copies. Don't need to evaluate the factorWithRep.  This
			 * defeats the purpose so give a warning. */
			warning(loc) << "zero to zero repetitions results "
					"in the null machine" << endl;

			retFsm = new FsmGraph();
			retFsm->lambdaFsm();
		}
		else {
			/* Now need to evaluate the repeated machine. */
			retFsm = factorWithRep->walk( pd );
			if ( retFsm->startState->isFinState() ) {
				warning(loc) << "applying range repetition to a machine that "
						"accepts zero length word" << endl;
			}

			/* The start func orders need to be shifted before doing both kinds
			 * of repetition. */
			pd->curActionOrd += retFsm->shiftStartActionOrder( pd->curActionOrd );

			if ( lowerRep == 0 ) {
				/* Just doing max repetition. Already guarded against n == 0. */
				retFsm->optionalRepeatOp( upperRep );
				afterOpMinimize( retFsm );
			}
			else if ( lowerRep == upperRep ) {
				/* Just doing exact repetition. Already guarded against n == 0. */
				retFsm->repeatOp( lowerRep );
				afterOpMinimize( retFsm );
			}
			else {
				/* This is the case that 0 < lowerRep < upperRep. Take a
				 * duplicate for the optional repeat. */
				FsmGraph *dup = new FsmGraph( *retFsm );

				/* Do repetition on the first half. */
				retFsm->repeatOp( lowerRep );
				afterOpMinimize( retFsm );

				/* Do optional repetition on the second half. */
				dup->optionalRepeatOp( upperRep - lowerRep );
				afterOpMinimize( dup );

				/* Tak on the duplicate machine. */
				retFsm->concatOp( dup );
				afterOpMinimize( retFsm );
			}
		}
		break;
	}
	case FactorWithNegType: {
		/* Evaluate the Factor. Pass it up. */
		retFsm = factorWithNeg->walk( pd );
		break;
	}}
	return retFsm;
}

void FactorWithRep::makeNameTree( ParseData *pd )
{
	switch ( type ) {
	case StarType:
	case StarStarType:
	case OptionalType:
	case PlusType:
	case ExactType:
	case MaxType:
	case MinType:
	case RangeType:
		factorWithRep->makeNameTree( pd );
		break;
	case FactorWithNegType:
		factorWithNeg->makeNameTree( pd );
		break;
	}
}

void FactorWithRep::resolveNameRefs( ParseData *pd )
{
	switch ( type ) {
	case StarType:
	case StarStarType:
	case OptionalType:
	case PlusType:
	case ExactType:
	case MaxType:
	case MinType:
	case RangeType:
		factorWithRep->resolveNameRefs( pd );
		break;
	case FactorWithNegType:
		factorWithNeg->resolveNameRefs( pd );
		break;
	}
}

/* Clean up after a factor with negation node. */
FactorWithNeg::~FactorWithNeg()
{
	switch ( type ) {
		case NegateType:
		case CharNegateType:
			delete factorWithNeg;
			break;
		case FactorType:
			delete factor;
			break;
	}
}

/* Evaluate a factor with negation node. */
FsmGraph *FactorWithNeg::walk( ParseData *pd )
{
	FsmGraph *retFsm = 0;

	switch ( type ) {
	case NegateType: {
		/* Evaluate the factorWithNeg. */
		FsmGraph *toNegate = factorWithNeg->walk( pd );

		/* Negation is subtract from dot-star. */
		retFsm = dotStarFsm( pd );
		retFsm->subtractOp( toNegate );
		afterOpMinimize( retFsm );
		break;
	}
	case CharNegateType: {
		/* Evaluate the factorWithNeg. */
		FsmGraph *toNegate = factorWithNeg->walk( pd );

		/* CharNegation is subtract from dot. */
		retFsm = dotFsm( pd );
		retFsm->subtractOp( toNegate );
		afterOpMinimize( retFsm );
		break;
	}
	case FactorType: {
		/* Evaluate the Factor. Pass it up. */
		retFsm = factor->walk( pd );
		break;
	}}
	return retFsm;
}

void FactorWithNeg::makeNameTree( ParseData *pd )
{
	switch ( type ) {
	case NegateType:
	case CharNegateType:
		factorWithNeg->makeNameTree( pd );
		break;
	case FactorType:
		factor->makeNameTree( pd );
		break;
	}
}

void FactorWithNeg::resolveNameRefs( ParseData *pd )
{
	switch ( type ) {
	case NegateType:
	case CharNegateType:
		factorWithNeg->resolveNameRefs( pd );
		break;
	case FactorType:
		factor->resolveNameRefs( pd );
		break;
	}
}

/* Clean up after a factor node. */
Factor::~Factor()
{
	switch ( type ) {
		case LiteralType:
			delete literal;
			break;
		case RangeType:
			delete range;
			break;
		case OrExprType:
			delete reItem;
			break;
		case RegExprType:
			delete regExp;
			break;
		case ReferenceType:
			break;
		case ParenType:
			delete join;
			break;
	}
}

/* Evaluate a factor node. */
FsmGraph *Factor::walk( ParseData *pd )
{
	FsmGraph *rtnVal = 0;
	switch ( type ) {
	case LiteralType:
		rtnVal = literal->walk( pd );
		break;
	case RangeType:
		rtnVal = range->walk( pd );
		break;
	case OrExprType:
		rtnVal = reItem->walk( pd, 0 );
		break;
	case RegExprType:
		rtnVal = regExp->walk( pd, 0 );
		break;
	case ReferenceType:
		rtnVal = varDef->walk( pd );
		break;
	case ParenType:
		rtnVal = join->walk( pd );
		break;
	}

	return rtnVal;
}

void Factor::makeNameTree( ParseData *pd )
{
	switch ( type ) {
	case LiteralType:
	case RangeType:
	case OrExprType:
	case RegExprType:
		break;
	case ReferenceType:
		varDef->makeNameTree( loc, pd );
		break;
	case ParenType:
		join->makeNameTree( pd );
		break;
	}
}

void Factor::resolveNameRefs( ParseData *pd )
{
	switch ( type ) {
	case LiteralType:
	case RangeType:
	case OrExprType:
	case RegExprType:
		break;
	case ReferenceType:
		varDef->resolveNameRefs( pd );
		break;
	case ParenType:
		join->resolveNameRefs( pd );
		break;
	}
}

/* Clean up a range object. Must delete the two literals. */
Range::~Range()
{
	delete lowerLit;
	delete upperLit;
}

bool Range::verifyRangeFsm( FsmGraph *rangeEnd )
{
	/* Must have two states. */
	if ( rangeEnd->stateList.length() != 2 )
		return false;
	/* The start state cannot be final. */
	if ( rangeEnd->startState->isFinState() )
		return false;
	/* There should be only one final state. */
	if ( rangeEnd->finStateSet.length() != 1 )
		return false;
	/* The final state cannot have any transitions out. */
	if ( rangeEnd->finStateSet[0]->outList.length() != 0 )
		return false;
	/* The start state should have only one transition out. */
	if ( rangeEnd->startState->outList.length() != 1 )
		return false;
	/* The singe transition out of the start state should not be a range. */
	FsmTrans *startTrans = rangeEnd->startState->outList.head;
	if ( startTrans->lowKey != startTrans->highKey )
		return false;
	return true;
}

/* Evaluate a range. Gets the lower an upper key and makes an fsm range. */
FsmGraph *Range::walk( ParseData *pd )
{
	/* Construct and verify the suitability of the lower end of the range. */
	FsmGraph *lowerFsm = lowerLit->walk( pd );
	if ( !verifyRangeFsm( lowerFsm ) ) {
		error(lowerLit->loc) << 
			"bad range lower end, must be a single character" << endl;
	}

	/* Construct and verify the upper end. */
	FsmGraph *upperFsm = upperLit->walk( pd );
	if ( !verifyRangeFsm( upperFsm ) ) {
		error(upperLit->loc) << 
			"bad range upper end, must be a single character" << endl;
	}

	/* Grab the keys from the machines, then delete them. */
	Key lowKey = lowerFsm->startState->outList.head->lowKey;
	Key highKey = upperFsm->startState->outList.head->lowKey;
	delete lowerFsm;
	delete upperFsm;

	/* Validate the range. */
	if ( lowKey > highKey ) {
		/* Recover by setting upper to lower; */
		error(lowerLit->loc) << "lower end of range is greater then upper end" << endl;
		highKey = lowKey;
	}

	/* Return the range now that it is validated. */
	FsmGraph *retFsm = new FsmGraph();
	retFsm->rangeFsm( lowKey, highKey );
	return retFsm;
}

/* Evaluate a literal object. */
FsmGraph *Literal::walk( ParseData *pd )
{
	/* FsmGraph to return, is the alphabet signed. */
	FsmGraph *rtnVal = 0;

	switch ( type ) {
	case Number: {
		/* Make the fsm key in int format. */
		Key fsmKey = makeFsmKeyNum( literal.data, loc, pd );
		/* Make the new machine. */
		rtnVal = new FsmGraph();
		rtnVal->concatFsm( fsmKey );
		break;
	}
	case LitString: {
		/* Make the array of keys in int format. */
		String interp;
		bool caseInsensitive;
		prepareLitString( interp, caseInsensitive, literal, loc );
		Key *arr = new Key[interp.length()];
		makeFsmKeyArray( arr, interp.data, interp.length(), pd );

		/* Make the new machine. */
		rtnVal = new FsmGraph();
		if ( caseInsensitive )
			rtnVal->concatFsmCI( arr, interp.length() );
		else
			rtnVal->concatFsm( arr, interp.length() );
		delete[] arr;
		break;
	}}
	return rtnVal;
}

/* Clean up after a regular expression object. */
RegExpr::~RegExpr()
{
	switch ( type ) {
		case RecurseItem:
			delete regExp;
			delete item;
			break;
		case Empty:
			break;
	}
}

/* Evaluate a regular expression object. */
FsmGraph *RegExpr::walk( ParseData *pd, RegExpr *rootRegex )
{
	/* This is the root regex, pass down a pointer to this. */
	if ( rootRegex == 0 )
		rootRegex = this;

	FsmGraph *rtnVal = 0;
	switch ( type ) {
		case RecurseItem: {
			/* Walk both items. */
			FsmGraph *fsm1 = regExp->walk( pd, rootRegex );
			FsmGraph *fsm2 = item->walk( pd, rootRegex );
			if ( fsm1 == 0 )
				rtnVal = fsm2;
			else {
				fsm1->concatOp( fsm2 );
				rtnVal = fsm1;
			}
			break;
		}
		case Empty: {
			/* FIXME: Return something here. */
			rtnVal = 0;
			break;
		}
	}
	return rtnVal;
}

/* Clean up after an item in a regular expression. */
ReItem::~ReItem()
{
	switch ( type ) {
		case Data:
		case Dot:
			break;
		case OrBlock:
		case NegOrBlock:
			delete orBlock;
			break;
	}
}

/* Evaluate a regular expression object. */
FsmGraph *ReItem::walk( ParseData *pd, RegExpr *rootRegex )
{
	/* The fsm to return, is the alphabet signed? */
	FsmGraph *rtnVal = 0;

	switch ( type ) {
		case Data: {
			/* Move the data into an integer array and make a concat fsm. */
			Key *arr = new Key[data.length()];
			makeFsmKeyArray( arr, data.data, data.length(), pd );

			/* Make the concat fsm. */
			rtnVal = new FsmGraph();
			if ( rootRegex != 0 && rootRegex->caseInsensitive )
				rtnVal->concatFsmCI( arr, data.length() );
			else
				rtnVal->concatFsm( arr, data.length() );
			delete[] arr;
			break;
		}
		case Dot: {
			/* Make the dot fsm. */
			rtnVal = dotFsm( pd );
			break;
		}
		case OrBlock: {
			/* Get the or block and minmize it. */
			rtnVal = orBlock->walk( pd, rootRegex );
			rtnVal->minimizePartition2();
			break;
		}
		case NegOrBlock: {
			/* Get the or block and minimize it. */
			FsmGraph *fsm = orBlock->walk( pd, rootRegex );
			fsm->minimizePartition2();

			/* Make a dot fsm and subtract from it. */
			rtnVal = dotFsm( pd );
			rtnVal->subtractOp( fsm );
			rtnVal->minimizePartition2();
			break;
		}
	}

	/* If the item is followed by a star, then apply the star op. */
	if ( star ) {
		if ( rtnVal->startState->isFinState() ) {
			warning(loc) << "applying kleene star to a machine that "
					"accpets zero length word" << endl;
		}

		rtnVal->starOp();
		rtnVal->minimizePartition2();
	}
	return rtnVal;
}

/* Clean up after an or block of a regular expression. */
ReOrBlock::~ReOrBlock()
{
	switch ( type ) {
		case RecurseItem:
			delete orBlock;
			delete item;
			break;
		case Empty:
			break;
	}
}


/* Evaluate an or block of a regular expression. */
FsmGraph *ReOrBlock::walk( ParseData *pd, RegExpr *rootRegex )
{
	FsmGraph *rtnVal = 0;
	switch ( type ) {
		case RecurseItem: {
			/* Evaluate the two fsm. */
			FsmGraph *fsm1 = orBlock->walk( pd, rootRegex );
			FsmGraph *fsm2 = item->walk( pd, rootRegex );
			if ( fsm1 == 0 )
				rtnVal = fsm2;
			else {
				fsm1->unionOp( fsm2 );
				rtnVal = fsm1;
			}
			break;
		}
		case Empty: {
			rtnVal = 0;
			break;
		}
	}
	return rtnVal;;
}

/* Evaluate an or block item of a regular expression. */
FsmGraph *ReOrItem::walk( ParseData *pd, RegExpr *rootRegex )
{
	/* The return value, is the alphabet signed? */
	FsmGraph *rtnVal = 0;
	switch ( type ) {
	case Data: {
		/* Make the or machine. */
		rtnVal = new FsmGraph();

		/* Put the or data into an array of ints. Note that we find unique
		 * keys. Duplicates are silently ignored. The alternative would be to
		 * issue warning or an error but since we can't with [a0-9a] or 'a' |
		 * 'a' don't bother here. */
		KeySet keySet;
		makeFsmUniqueKeyArray( keySet, data.data, data.length(), 
			rootRegex != 0 ? rootRegex->caseInsensitive : false, pd );

		/* Run the or operator. */
		rtnVal->orFsm( keySet.data, keySet.length() );
		break;
	}
	case Range: {
		/* Make the upper and lower keys. */
		Key lowKey = makeFsmKeyChar( lower, pd );
		Key highKey = makeFsmKeyChar( upper, pd );

		/* Validate the range. */
		if ( lowKey > highKey ) {
			/* Recover by setting upper to lower; */
			error(loc) << "lower end of range is greater then upper end" << endl;
			highKey = lowKey;
		}

		/* Make the range machine. */
		rtnVal = new FsmGraph();
		rtnVal->rangeFsm( lowKey, highKey );

		if ( rootRegex != 0 && rootRegex->caseInsensitive ) {
			if ( lowKey <= 'Z' && 'A' <= highKey ) {
				Key otherLow = lowKey < 'A' ? Key('A') : lowKey;
				Key otherHigh = 'Z' < highKey ? Key('Z') : highKey;

				otherLow = 'a' + ( otherLow - 'A' );
				otherHigh = 'a' + ( otherHigh - 'A' );

				FsmGraph *otherRange = new FsmGraph();
				otherRange->rangeFsm( otherLow, otherHigh );
				rtnVal->unionOp( otherRange );
				rtnVal->minimizePartition2();
			}
			else if ( lowKey <= 'z' && 'a' <= highKey ) {
				Key otherLow = lowKey < 'a' ? Key('a') : lowKey;
				Key otherHigh = 'z' < highKey ? Key('z') : highKey;

				otherLow = 'A' + ( otherLow - 'a' );
				otherHigh = 'A' + ( otherHigh - 'a' );

				FsmGraph *otherRange = new FsmGraph();
				otherRange->rangeFsm( otherLow, otherHigh );
				rtnVal->unionOp( otherRange );
				rtnVal->minimizePartition2();
			}
		}

		break;
	}}
	return rtnVal;
}