summaryrefslogtreecommitdiff
path: root/libfsm/redfsm.cc
blob: 1b83e5b51bdfe0fa9d4fba4a239dd77228fd3486 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
/*
 * Copyright 2001-2018 Adrian Thurston <thurston@colm.net>
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to
 * deal in the Software without restriction, including without limitation the
 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
 * sell copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "redfsm.h"
#include "avlmap.h"
#include "mergesort.h"
#include "fsmgraph.h"
#include <iostream>
#include <sstream>
#include <ctime>

using std::ostringstream;

GenInlineItem::~GenInlineItem()
{
	if ( children != 0 ) {
		children->empty();
		delete children;
	}
}

string GenAction::nameOrLoc()
{
	if ( name.empty() ) {
		ostringstream ret;
		ret << loc.line << ":" << loc.col;
		return ret.str();
	}
	else {
		return name;
	}
}

RedFsmAp::RedFsmAp( FsmCtx *fsmCtx, int machineId )
:
	keyOps(fsmCtx->keyOps),
	fsmCtx(fsmCtx),
	machineId(machineId),
	forcedErrorState(false),
	nextActionId(0),
	nextTransId(0),
	nextCondId(0),
	startState(0),
	errState(0),
	errTrans(0),
	errCond(0),
	firstFinState(0),
	numFinStates(0),
	bAnyToStateActions(false),
	bAnyFromStateActions(false),
	bAnyRegActions(false),
	bAnyEofActions(false),
	bAnyEofTrans(false),
	bAnyEofActivity(false),
	bAnyActionGotos(false),
	bAnyActionCalls(false),
	bAnyActionNcalls(false),
	bAnyActionRets(false),
	bAnyActionNrets(false),
	bAnyActionByValControl(false),
	bAnyRegActionRets(false),
	bAnyRegActionByValControl(false),
	bAnyRegNextStmt(false),
	bAnyRegCurStateRef(false),
	bAnyRegBreak(false),
	bAnyRegNbreak(false),
	bUsingAct(false),
	bAnyNfaStates(false),
	bAnyNfaPushPops(false),
	bAnyNfaPushes(false),
	bAnyNfaPops(false),
	bAnyTransCondRefs(false),
	bAnyNfaCondRefs(false),
	nextClass(0),
	classMap(0)
{
}

RedFsmAp::~RedFsmAp()
{
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		delete[] st->transList;
		if ( st->nfaTargs != 0 )
			delete st->nfaTargs;
		if ( st->inConds != 0 )
			delete[] st->inConds;
		if ( st->inCondTests != 0 )
			delete[] st->inCondTests;
	}

	delete[] allStates;
	if ( classMap != 0 )
		delete[] classMap;

	for ( TransApSet::Iter ti = transSet; ti.lte(); ti++ ) {
		if ( ti->condSpace != 0 )
			delete[] ti->v.outConds;
	}

	condSet.empty();
	transSet.empty();
}

/* Does the machine have any actions. */
bool RedFsmAp::anyActions()
{
	return actionMap.length() > 0;
}

void RedFsmAp::depthFirstOrdering( RedStateAp *state )
{
	/* Nothing to do if the state is already on the list. */
	if ( state->onStateList )
		return;

	/* Doing depth first, put state on the list. */
	state->onStateList = true;
	stateList.append( state );
	
	/* At this point transitions should only be in ranges. */
	assert( state->outSingle.length() == 0 );
	assert( state->defTrans == 0 );

	/* Recurse on everything ranges. */
	for ( RedTransList::Iter rtel = state->outRange; rtel.lte(); rtel++ ) {
		for ( int c = 0; c < rtel->value->numConds(); c++ ) {
			RedCondPair *cond = rtel->value->outCond( c );
			if ( cond->targ != 0 )
				depthFirstOrdering( cond->targ );
		}
	}

	if ( state->nfaTargs ) {
		for ( RedNfaTargs::Iter s = *state->nfaTargs; s.lte(); s++ )
			depthFirstOrdering( s->state );
	}
}

/* Ordering states by transition connections. */
void RedFsmAp::depthFirstOrdering()
{
	/* Init on state list flags. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ )
		st->onStateList = false;
	
	/* Clear out the state list, we will rebuild it. */
	int stateListLen = stateList.length();
	stateList.abandon();

	/* Add back to the state list from the start state and all other entry
	 * points. */
	if ( startState != 0 )
		depthFirstOrdering( startState );
	for ( RedStateSet::Iter en = entryPoints; en.lte(); en++ )
		depthFirstOrdering( *en );
	if ( forcedErrorState )
		depthFirstOrdering( errState );
	
	/* Make sure we put everything back on. */
	assert( stateListLen == stateList.length() );
}

void RedFsmAp::breadthFirstAdd( RedStateAp *state )
{
	if ( state->onStateList )
		return;

	state->onStateList = true;
	stateList.append( state );
}

void RedFsmAp::breadthFirstOrdering()
{
	/* Init on state list flags. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ )
		st->onStateList = false;
	
	/* Clear out the state list, we will rebuild it. */
	int stateListLen = stateList.length();
	stateList.abandon();

	if ( startState != 0 )
		breadthFirstAdd( startState );
	
	int depth = 0;
	int nextLevel = stateList.length();
	int pos = 0;

	/* To implement breadth-first we traverse the current list (assuming a
	 * start state) and add children. */
	RedStateAp *cur = stateList.head;
	while ( cur != 0 ) {
		/* Recurse on everything ranges. */
		for ( RedTransList::Iter rtel = cur->outRange; rtel.lte(); rtel++ ) {
			for ( int c = 0; c < rtel->value->numConds(); c++ ) {
				RedCondPair *cond = rtel->value->outCond( c );
				if ( cond->targ != 0 )
					breadthFirstAdd( cond->targ );
			}
		}

		if ( cur->nfaTargs ) {
			for ( RedNfaTargs::Iter s = *cur->nfaTargs; s.lte(); s++ )
				breadthFirstAdd( s->state );
		}

		cur = cur->next;
		pos += 1;

		if ( pos == nextLevel ) {
			depth += 1;
			nextLevel = stateList.length();
		}
	}

	for ( RedStateSet::Iter en = entryPoints; en.lte(); en++ )
		depthFirstOrdering( *en );
	if ( forcedErrorState )
		depthFirstOrdering( errState );

	assert( stateListLen == stateList.length() );
}

#ifdef SCORE_ORDERING
void RedFsmAp::readScores()
{
	/*
	 * Reads processed transitions logged by ASM codegen when LOG_TRANS is
	 * enabled. Process with:
	 *
	 * cat trans-log | sort -n -k 1 -k 2 -k 3 | uniq -c | sort -r -n -k1 -r > scores
	 */
	FILE *sfn = fopen( "scores", "r" );

	scores = new long*[nextStateId];
	for ( int i = 0; i < nextStateId; i++ ) {
		scores[i] = new long[256];
		memset( scores[i], 0, sizeof(long) * 256 );
	}

	long score, m, state, ch;
	while ( true ) {
		int n = fscanf( sfn, "%ld %ld %ld %ld\n", &score, &m, &state, &ch );
		if ( n != 4 )
			break;
		if ( m == machineId )
			scores[state][ch] = score;
	}
	fclose( sfn );

	/* Init on state list flags. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		RedTransList::Iter rtel = st->outRange;
		int chi = 0;
		while ( rtel.lte() ) {
			/* 1. Bring chi up to lower end of out range. */
			while ( chi < rtel->lowKey.getVal() ) {
				chi++;
			}

			/* 2. While inside lower, add in score. */
			while ( chi <= rtel->highKey.getVal() ) {
				rtel->score += scores[st->id][chi];
				chi++;
			}

			/* 3. Next range. */
			rtel++;
		}
	}
}

/* This second pass will collect any states that didn't make it in the first
 * pass. Used for depth-first and breadth-first passes. */
void RedFsmAp::scoreSecondPass( RedStateAp *state )
{
	/* Nothing to do if the state is already on the list. */
	if ( state->onListRest )
		return;

	/* Doing depth first, put state on the list. */
	state->onListRest = true;

	if ( !state->onStateList ) {
		state->onStateList = true;
		stateList.append( state );
	}
	
	/* At this point transitions should only be in ranges. */
	assert( state->outSingle.length() == 0 );
	assert( state->defTrans == 0 );

	/* Recurse on everything ranges. */
	for ( RedTransList::Iter rtel = state->outRange; rtel.lte(); rtel++ ) {
		for ( int c = 0; c < rtel->value->numConds(); c++ ) {
			RedCondPair *cond = rtel->value->outCond( c );
			if ( cond->targ != 0 )
				scoreSecondPass( cond->targ );
		}
	}

	if ( state->nfaTargs ) {
		for ( RedNfaTargs::Iter s = *state->nfaTargs; s.lte(); s++ )
			scoreSecondPass( s->state );
	}
}

void RedFsmAp::scoreOrderingDepth( RedStateAp *state )
{
	/* Nothing to do if the state is already on the list. */
	if ( state->onStateList )
		return;

	/* Doing depth first, put state on the list. */
	state->onStateList = true;
	stateList.append( state );

	/* At this point transitions should only be in ranges. */
	assert( state->outSingle.length() == 0 );
	assert( state->defTrans == 0 );

	/* Recurse on everything ranges. */
	for ( RedTransList::Iter rtel = state->outRange; rtel.lte(); rtel++ ) {
		if ( rtel->score > 10 ) {
			for ( int c = 0; c < rtel->value->numConds(); c++ ) {
				RedCondPair *cond = rtel->value->outCond( c );
				if ( cond->targ != 0 )
					scoreOrderingDepth( cond->targ );
			}
		}
	}
}

void RedFsmAp::scoreOrderingDepth()
{
	readScores();

	/* Init on state list flags. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		st->onStateList = false;
		st->onListRest = false;
	}
	
	/* Clear out the state list, we will rebuild it. */
	int stateListLen = stateList.length();
	stateList.abandon();

	scoreOrderingDepth( startState );

	scoreSecondPass( startState );
	for ( RedStateSet::Iter en = entryPoints; en.lte(); en++ )
		scoreSecondPass( *en );
	if ( forcedErrorState )
		scoreSecondPass( errState );

	assert( stateListLen == stateList.length() );
}

void RedFsmAp::scoreOrderingBreadth()
{
	readScores();

	/* Init on state list flags. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		st->onStateList = false;
		st->onListRest = false;
	}
	
	/* Clear out the state list, we will rebuild it. */
	int stateListLen = stateList.length();
	stateList.abandon();

	if ( startState != 0 )
		breadthFirstAdd( startState );
	
	int depth = 0;
	int nextLevel = stateList.length();
	int pos = 0;

	/* To implement breadth-first we traverse the current list (assuming a
	 * start state) and add children. */
	RedStateAp *cur = stateList.head;
	while ( cur != 0 ) {
		/* Recurse on everything ranges. */
		for ( RedTransList::Iter rtel = cur->outRange; rtel.lte(); rtel++ ) {
			if ( rtel->score > 100 ) {
				for ( int c = 0; c < rtel->value->numConds(); c++ ) {
					RedCondPair *cond = rtel->value->outCond( c );
					if ( cond->targ != 0 )
						breadthFirstAdd( cond->targ );
				}
			}
		}

		cur = cur->next;
		pos += 1;

		if ( pos == nextLevel ) {
			depth += 1;
			nextLevel = stateList.length();
		}
	}

	scoreSecondPass( startState );
	for ( RedStateSet::Iter en = entryPoints; en.lte(); en++ )
		scoreSecondPass( *en );
	if ( forcedErrorState )
		scoreSecondPass( errState );

	assert( stateListLen == stateList.length() );
}
#endif

void RedFsmAp::randomizedOrdering()
{
	for ( RedStateList::Iter st = stateList; st.lte(); st++ )
		st->onStateList = false;

	/* Clear out the state list, we will rebuild it. */
	int stateListLen = stateList.length();
	stateList.abandon();

	srand( time( 0 ) );

	for ( int i = nextStateId; i > 0; i-- ) {
		/* Pick one from 0 ... i (how many are left). */
		int nth = rand() % i;

		/* Go forward through the list adding the nth. Need to scan because
		 * there are items already added in the list. */
		for ( int j = 0; j < nextStateId; j++ ) {
			if ( !allStates[j].onStateList ) {
				if ( nth == 0 ) {
					/* Add. */
					allStates[j].onStateList = true;
					stateList.append( &allStates[j] );
					break;
				}
				else {
					nth -= 1;
				}
			}
		}
	}
	assert( stateListLen == stateList.length() );
}

/* Assign state ids by appearance in the state list. */
void RedFsmAp::sequentialStateIds()
{
	/* Table based machines depend on the state numbers starting at zero. */
	nextStateId = 0;
	for ( RedStateList::Iter st = stateList; st.lte(); st++ )
		st->id = nextStateId++;
}

/* Stable sort the states by final state status. */
void RedFsmAp::sortStatesByFinal()
{
	/* Move forward through the list and move final states onto the end. */
	RedStateAp *state = 0;
	RedStateAp *next = stateList.head;
	RedStateAp *last = stateList.tail;
	while ( state != last ) {
		/* Move forward and load up the next. */
		state = next;
		next = state->next;

		/* Throw to the end? */
		if ( state->isFinal ) {
			stateList.detach( state );
			stateList.append( state );
		}
	}
}

/* Assign state ids by final state state status. */
void RedFsmAp::sortStateIdsByFinal()
{
	/* Table based machines depend on this starting at zero. */
	nextStateId = 0;

	/* First pass to assign non final ids. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		if ( ! st->isFinal ) 
			st->id = nextStateId++;
	}

	/* Second pass to assign final ids. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		if ( st->isFinal ) 
			st->id = nextStateId++;
	}
}

struct CmpStateById
{
	static int compare( RedStateAp *st1, RedStateAp *st2 )
	{
		if ( st1->id < st2->id )
			return -1;
		else if ( st1->id > st2->id )
			return 1;
		else
			return 0;
	}
};

void RedFsmAp::sortByStateId()
{
	/* Make the array. */
	int pos = 0;
	RedStateAp **ptrList = new RedStateAp*[stateList.length()];
	for ( RedStateList::Iter st = stateList; st.lte(); st++, pos++ )
		ptrList[pos] = st;
	
	MergeSort<RedStateAp*, CmpStateById> mergeSort;
	mergeSort.sort( ptrList, stateList.length() );

	stateList.abandon();
	for ( int st = 0; st < pos; st++ )
		stateList.append( ptrList[st] );

	delete[] ptrList;
}

/* Find the final state with the lowest id. */
void RedFsmAp::findFirstFinState()
{
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		if ( st->isFinal && (firstFinState == 0 || st->id < firstFinState->id) )
			firstFinState = st;
	}
}

void RedFsmAp::assignActionLocs()
{
	int nextLocation = 0;
	for ( GenActionTableMap::Iter act = actionMap; act.lte(); act++ ) {
		/* Store the loc, skip over the array and a null terminator. */
		act->location = nextLocation;
		nextLocation += act->key.length() + 1;		
	}
}

/* Check if we can extend the current range by displacing any ranges
 * ahead to the singles. */
bool RedFsmAp::canExtend( const RedTransList &list, int pos )
{
	/* Get the transition that we want to extend. */
	RedTransAp *extendTrans = list[pos].value;

	/* Look ahead in the transition list. */
	for ( int next = pos + 1; next < list.length(); pos++, next++ ) {
		/* If they are not continuous then cannot extend. */
		Key nextKey = list[next].lowKey;
		keyOps->decrement( nextKey );
		if ( keyOps->ne( list[pos].highKey, nextKey ) )
			break;

		/* Check for the extenstion property. */
		if ( extendTrans == list[next].value )
			return true;

		/* If the span of the next element is more than one, then don't keep
		 * checking, it won't be moved to single. */
		unsigned long long nextSpan = keyOps->span( list[next].lowKey, list[next].highKey );
		if ( nextSpan > 1 )
			break;
	}
	return false;
}

/* Move ranges to the singles list if it means we can extend some ranges, or if
 * the spans are of length one. */
void RedFsmAp::moveSelectTransToSingle( RedStateAp *state )
{
	RedTransList &range = state->outRange;
	RedTransList &single = state->outSingle;
	for ( int rpos = 0; rpos < range.length(); ) {
		/* Check if this is a range we can extend. */
		if ( canExtend( range, rpos ) ) {
			/* Transfer singles over. */
			while ( range[rpos].value != range[rpos+1].value ) {
				/* Transfer the range to single. */
				single.append( range[rpos+1] );
				range.remove( rpos+1 );
			}

			/* Extend. */
			range[rpos].highKey = range[rpos+1].highKey;
			range.remove( rpos+1 );
		}
		/* Maybe move it to the singles. */
		else if ( keyOps->span( range[rpos].lowKey, range[rpos].highKey ) == 1 ) {
			single.append( range[rpos] );
			range.remove( rpos );
		}
		else {
			/* Keeping it in the ranges. */
			rpos += 1;
		}
	}
}

void RedFsmAp::moveAllTransToSingle( RedStateAp *state )
{
	RedTransList &range = state->outRange;
	RedTransList &single = state->outSingle;
	for ( int rpos = 0; rpos < range.length(); rpos++ ) {

		RedTransEl el = range[rpos];
		unsigned long long span = keyOps->span( el.lowKey, el.highKey );

		Key key = el.lowKey;
		for ( unsigned long long pos = 0; pos < span; pos++ ) {
			el.lowKey = el.highKey = key;
			single.append( el );
			keyOps->increment( key );
		}
	}
	range.empty();
}

/* Look through ranges and choose suitable single character transitions. */
void RedFsmAp::moveSelectTransToSingle()
{
	/* Loop the states. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		/* Rewrite the transition list taking out the suitable single
		 * transtions. */
		moveSelectTransToSingle( st );
	}
}

void RedFsmAp::moveAllTransToSingle()
{
	/* Loop the states. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		/* Rewrite the transition list taking out the suitable single
		 * transtions. */
		moveAllTransToSingle( st );
	}
}

void RedFsmAp::makeFlat()
{
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		if ( st->outRange.length() == 0 ) {
			st->lowKey = st->highKey = 0;
			st->transList = 0;
		}
		else {
			st->lowKey = st->outRange[0].lowKey;
			st->highKey = st->outRange[st->outRange.length()-1].highKey;
			unsigned long long span = keyOps->span( st->lowKey, st->highKey );
			st->transList = new RedTransAp*[ span ];
			memset( st->transList, 0, sizeof(RedTransAp*)*span );
			
			for ( RedTransList::Iter trans = st->outRange; trans.lte(); trans++ ) {
				unsigned long long base, trSpan;
				base = keyOps->span( st->lowKey, trans->lowKey )-1;
				trSpan = keyOps->span( trans->lowKey, trans->highKey );
				for ( unsigned long long pos = 0; pos < trSpan; pos++ )
					st->transList[base+pos] = trans->value;
			}

			/* Fill in the gaps with the default transition. */
			for ( unsigned long long pos = 0; pos < span; pos++ ) {
				if ( st->transList[pos] == 0 )
					st->transList[pos] = st->defTrans;
			}
		}
	}
}

void RedFsmAp::characterClass( EquivList &equiv )
{
	/* Find the global low and high keys. */
	bool anyTrans = false;
	Key lowKey = keyOps->maxKey;
	Key highKey = keyOps->minKey;
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		if ( st->outRange.length() == 0 )
			continue;

		st->lowKey = st->outRange[0].lowKey;
		st->highKey = st->outRange[st->outRange.length()-1].highKey;

		if ( keyOps->lt( st->lowKey, lowKey ) )
			lowKey = st->lowKey;

		if ( keyOps->gt( st->highKey, highKey ) )
			highKey = st->highKey;

		anyTrans = true;
	}

	if ( ! anyTrans ) {
		this->lowKey = lowKey;
		this->highKey = highKey;
		this->classMap = 0;
		this->nextClass = 1;
		return;
	}

	long long next = 1;
	equiv.append( new EquivClass( lowKey, highKey, next++ ) );

	/* Start with a single equivalence class and break it up using range
	 * boundaries of each state. This will tell us what the equivalence class
	 * ranges are. These are the ranges that always go to the same state,
	 * across all states. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		if ( st->outRange.length() == 0 )
			continue;

		EquivList newList;
		PairKeyMap uniqPairs;

		/* What is the set of unique transitions (*for this state) */
		EquivAlloc uniqTrans;
		for ( RedTransList::Iter rtel = st->outRange; rtel.lte(); rtel++ ) {
			if ( ! uniqTrans.find( rtel->value ) )
				uniqTrans.insert( rtel->value, next++ );
		}

		/* Merge with whole-machine equiv classes. */
                typedef RangePairIter< PiList<EquivClass>, PiVector<RedTransEl> > RangePairIterPiListEquivClassPiVectorRedTransEl;
		for ( RangePairIterPiListEquivClassPiVectorRedTransEl
				pair( fsmCtx, equiv, st->outRange ); !pair.end(); pair++ )
		{
			switch ( pair.userState ) {

			case RangePairIterPiListEquivClassPiVectorRedTransEl::RangeOverlap: {
				/* Look up the char for s2. */
				EquivAllocEl *s2El = uniqTrans.find( pair.s2Tel.trans->value );

				/* Can't use either equiv classes, find uniques. */
				PairKey pairKey( pair.s1Tel.trans->value, s2El->value );
				PairKeyMapEl *pairEl = uniqPairs.find( pairKey );
				if ( ! pairEl ) 
					pairEl = uniqPairs.insert( pairKey, next++ );

				EquivClass *equivClass = new EquivClass(
						pair.s1Tel.lowKey, pair.s1Tel.highKey,
						pairEl->value );
				newList.append( equivClass );
				break;
			}

			case RangePairIterPiListEquivClassPiVectorRedTransEl::RangeInS1: {
				EquivClass *equivClass = new EquivClass(
						pair.s1Tel.lowKey, pair.s1Tel.highKey,
						pair.s1Tel.trans->value );
				newList.append( equivClass );
				break;
			}

			case RangePairIterPiListEquivClassPiVectorRedTransEl::RangeInS2: {
				/* Look up the char for s2. */
				EquivAllocEl *s2El = uniqTrans.find( pair.s2Tel.trans->value );

				EquivClass *equivClass = new EquivClass(
						pair.s2Tel.lowKey, pair.s2Tel.highKey,
						s2El->value );
				newList.append( equivClass );
				break;
			}

			case RangePairIterPiListEquivClassPiVectorRedTransEl::BreakS1:
			case RangePairIterPiListEquivClassPiVectorRedTransEl::BreakS2:
				break;
			}
		}

		equiv.empty();
		equiv.transfer( newList );
	}
	
	/* Reduce to sequential. */
	next = 0;
	BstMap<long long, long long> map;
	for ( EquivClass *c = equiv.head; c != 0; c = c->next ) {
		BstMapEl<long long, long long> *el = map.find( c->value );
		if ( ! el ) 
			el = map.insert( c->value, next++ );
		c->value = el->value;
	}

	/* Build the map and emit arrays from the range-based equiv classes. Will
	 * likely crash if there are no transitions in the FSM. */
	long long maxSpan = keyOps->span( lowKey, highKey );
	long long *dest = new long long[maxSpan];
	memset( dest, 0, sizeof(long long) * maxSpan );

	for ( EquivClass *c = equiv.head; c != 0; c = c->next ) {
		long long base = keyOps->span( lowKey, c->lowKey ) - 1;
		long long span = keyOps->span( c->lowKey, c->highKey );
		for ( long long s = 0; s < span; s++ )
			dest[base + s] = c->value;
	}

	this->lowKey = lowKey;
	this->highKey = highKey;
	this->classMap = dest;
	this->nextClass = next;

}

void RedFsmAp::makeFlatClass()
{
	EquivList equiv;
	characterClass( equiv );

	/* Expand the transitions. This uses the equivalence classes. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		if ( st->outRange.length() == 0 ) {
			st->lowKey = st->highKey = 0;
			st->low = st->high = 0;
			st->transList = 0;
		}
		else {
			st->lowKey = st->outRange[0].lowKey;
			st->highKey = st->outRange[st->outRange.length()-1].highKey;

			/* Compute low and high in class space. Use a pair iter to find all
			 * the clases. Alleviates the need to iterate the whole input
			 * alphabet. */
			st->low = nextClass;
			st->high = -1;
			for ( RangePairIter< PiList<EquivClass>, PiVector<RedTransEl> >
					pair( fsmCtx, equiv, st->outRange ); !pair.end(); pair++ )
			{
				if ( pair.userState == RangePairIter<PiList<EquivClass>, PiVector<RedTransEl> >::RangeOverlap ||
						pair.userState == RangePairIter<PiList<EquivClass>, PiVector<RedTransEl> >::RangeInS2 )
				{
					long long off = keyOps->span( lowKey, pair.s2Tel.lowKey ) - 1;
					if ( classMap[off] < st->low )
						st->low = classMap[off];
					if ( classMap[off] > st->high )
						st->high = classMap[off];
				}
			}

			long long span = st->high - st->low + 1;
			st->transList = new RedTransAp*[ span ];
			memset( st->transList, 0, sizeof(RedTransAp*)*span );
			
			for ( RangePairIter< PiList<EquivClass>, PiVector<RedTransEl> >
					pair( fsmCtx, equiv, st->outRange ); !pair.end(); pair++ )
			{
				if ( pair.userState == RangePairIter< PiList<EquivClass>, PiVector<RedTransEl> >::RangeOverlap ||
						pair.userState == RangePairIter< PiList<EquivClass>, PiVector<RedTransEl> >::RangeInS2 )
				{
					long long off = keyOps->span( lowKey, pair.s2Tel.lowKey ) - 1;
					st->transList[ classMap[off] - st->low ] = pair.s2Tel.trans->value;
				}
			}

			/* Fill in the gaps with the default transition. */
			for ( long long pos = 0; pos < span; pos++ ) {
				if ( st->transList[pos] == 0 )
					st->transList[pos] = st->defTrans;
			}
		}
	}

	equiv.empty();
}


/* A default transition has been picked, move it from the outRange to the
 * default pointer. */
void RedFsmAp::moveToDefault( RedTransAp *defTrans, RedStateAp *state )
{
	/* Rewrite the outRange, omitting any ranges that use 
	 * the picked default. */
	RedTransList outRange;
	for ( RedTransList::Iter rtel = state->outRange; rtel.lte(); rtel++ ) {
		/* If it does not take the default, copy it over. */
		if ( rtel->value != defTrans )
			outRange.append( *rtel );
	}

	/* Save off the range we just created into the state's range. */
	state->outRange.transfer( outRange );

	/* Store the default. */
	state->defTrans = defTrans;
}

bool RedFsmAp::alphabetCovered( RedTransList &outRange )
{
	/* Cannot cover without any out ranges. */
	if ( outRange.length() == 0 )
		return false;

	/* If the first range doesn't start at the the lower bound then the
	 * alphabet is not covered. */
	RedTransList::Iter rtel = outRange;
	if ( keyOps->lt( keyOps->minKey, rtel->lowKey ) )
		return false;

	/* Check that every range is next to the previous one. */
	rtel.increment();
	for ( ; rtel.lte(); rtel++ ) {
		Key highKey = rtel[-1].highKey;
		keyOps->increment( highKey );
		if ( keyOps->ne( highKey, rtel->lowKey ) )
			return false;
	}

	/* The last must extend to the upper bound. */
	RedTransEl *last = &outRange[outRange.length()-1];
	if ( keyOps->lt( last->highKey, keyOps->maxKey ) )
		return false;

	return true;
}

RedTransAp *RedFsmAp::chooseDefaultSpan( RedStateAp *state )
{
	/* Make a set of transitions from the outRange. */
	RedTransSet stateTransSet;
	for ( RedTransList::Iter rtel = state->outRange; rtel.lte(); rtel++ )
		stateTransSet.insert( rtel->value );
	
	/* For each transition in the find how many alphabet characters the
	 * transition spans. */
	unsigned long long *span = new unsigned long long[stateTransSet.length()];
	memset( span, 0, sizeof(unsigned long long) * stateTransSet.length() );
	for ( RedTransList::Iter rtel = state->outRange; rtel.lte(); rtel++ ) {
		/* Lookup the transition in the set. */
		RedTransAp **inSet = stateTransSet.find( rtel->value );
		int pos = inSet - stateTransSet.data;
		span[pos] += keyOps->span( rtel->lowKey, rtel->highKey );
	}

	/* Find the max span, choose it for making the default. */
	RedTransAp *maxTrans = 0;
	unsigned long long maxSpan = 0;
	for ( RedTransSet::Iter rtel = stateTransSet; rtel.lte(); rtel++ ) {
		if ( span[rtel.pos()] > maxSpan ) {
			maxSpan = span[rtel.pos()];
			maxTrans = *rtel;
		}
	}

	delete[] span;
	return maxTrans;
}

/* Pick default transitions from ranges for the states. */
void RedFsmAp::chooseDefaultSpan()
{
	/* Loop the states. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		/* Only pick a default transition if the alphabet is covered. This
		 * avoids any transitions in the out range that go to error and avoids
		 * the need for an ERR state. */
		if ( alphabetCovered( st->outRange ) ) {
			/* Pick a default transition by largest span. */
			RedTransAp *defTrans = chooseDefaultSpan( st );

			/* Rewrite the transition list taking out the transition we picked
			 * as the default and store the default. */
			moveToDefault( defTrans, st );
		}
	}
}

RedTransAp *RedFsmAp::chooseDefaultGoto( RedStateAp *state )
{
	/* Make a set of transitions from the outRange. */
	RedTransSet stateTransSet;
	for ( RedTransList::Iter rtel = state->outRange; rtel.lte(); rtel++ ) {
		for ( int c = 0; c < rtel->value->numConds(); c++ ) {
			RedCondPair *cond = rtel->value->outCond(c);
			if ( cond->targ == state->next )
				return rtel->value;
		}
	}
	return 0;
}

void RedFsmAp::chooseDefaultGoto()
{
	/* Loop the states. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		/* Pick a default transition. */
		RedTransAp *defTrans = chooseDefaultGoto( st );
		if ( defTrans == 0 )
			defTrans = chooseDefaultSpan( st );

		/* Rewrite the transition list taking out the transition we picked
		 * as the default and store the default. */
		moveToDefault( defTrans, st );
	}
}

RedTransAp *RedFsmAp::chooseDefaultNumRanges( RedStateAp *state )
{
	/* Make a set of transitions from the outRange. */
	RedTransSet stateTransSet;
	for ( RedTransList::Iter rtel = state->outRange; rtel.lte(); rtel++ )
		stateTransSet.insert( rtel->value );
	
	/* For each transition in the find how many ranges use the transition. */
	int *numRanges = new int[stateTransSet.length()];
	memset( numRanges, 0, sizeof(int) * stateTransSet.length() );
	for ( RedTransList::Iter rtel = state->outRange; rtel.lte(); rtel++ ) {
		/* Lookup the transition in the set. */
		RedTransAp **inSet = stateTransSet.find( rtel->value );
		numRanges[inSet - stateTransSet.data] += 1;
	}

	/* Find the max number of ranges. */
	RedTransAp *maxTrans = 0;
	int maxNumRanges = 0;
	for ( RedTransSet::Iter rtel = stateTransSet; rtel.lte(); rtel++ ) {
		if ( numRanges[rtel.pos()] > maxNumRanges ) {
			maxNumRanges = numRanges[rtel.pos()];
			maxTrans = *rtel;
		}
	}

	delete[] numRanges;
	return maxTrans;
}

void RedFsmAp::chooseDefaultNumRanges()
{
	/* Loop the states. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		/* Pick a default transition. */
		RedTransAp *defTrans = chooseDefaultNumRanges( st );

		/* Rewrite the transition list taking out the transition we picked
		 * as the default and store the default. */
		moveToDefault( defTrans, st );
	}
}

RedCondAp *RedFsmAp::getErrorCond()
{
	return allocateCond( getErrorState(), 0 );
}

RedTransAp *RedFsmAp::getErrorTrans()
{
	return allocateTrans( getErrorState(), 0 );
}

RedStateAp *RedFsmAp::getErrorState()
{
	/* Something went wrong. An error state is needed but one was not supplied
	 * by the frontend. */
	assert( errState != 0 );
	return errState;
}

/* Makes a plain transition. */
RedTransAp *RedFsmAp::allocateTrans( RedStateAp *targ, RedAction *action )
{
	/* Create a reduced trans and look for it in the transiton set. */
	RedTransAp redTrans( 0, 0, targ, action );
	RedTransAp *inDict = transSet.find( &redTrans );
	if ( inDict == 0 ) {
		inDict = new RedTransAp( nextTransId++, nextCondId++, targ, action );
		transSet.insert( inDict );
	}
	return inDict;
}

/* Makes a cond list transition. */
RedTransAp *RedFsmAp::allocateTrans( GenCondSpace *condSpace,
		RedCondEl *outConds, int numConds, RedCondAp *errCond )
{
	/* Create a reduced trans and look for it in the transiton set. */
	RedTransAp redTrans( 0, condSpace, outConds, numConds, errCond );
	RedTransAp *inDict = transSet.find( &redTrans );
	if ( inDict == 0 ) {
		inDict = new RedTransAp( nextTransId++, condSpace, outConds, numConds, errCond );
		transSet.insert( inDict );
	}
	else {
		/* Need to free the out cond vector. */
		delete[] outConds;
	}
	return inDict;
}

RedCondAp *RedFsmAp::allocateCond( RedStateAp *targ, RedAction *action )
{
	/* Create a reduced trans and look for it in the transiton set. */
	RedCondAp redCond( targ, action, 0 );
	RedCondAp *inDict = condSet.find( &redCond );
	if ( inDict == 0 ) {
		inDict = new RedCondAp( targ, action, nextCondId++ );
		condSet.insert( inDict );
	}
	return inDict;
}

void RedFsmAp::partitionFsm( int nparts )
{
	/* At this point the states are ordered by a depth-first traversal. We
	 * will allocate to partitions based on this ordering. */
	this->nParts = nparts;
	int partSize = stateList.length() / nparts;
	int remainder = stateList.length() % nparts;
	int numInPart = partSize;
	int partition = 0;
	if ( remainder-- > 0 )
		numInPart += 1;
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		st->partition = partition;

		numInPart -= 1;
		if ( numInPart == 0 ) {
			partition += 1;
			numInPart = partSize;
			if ( remainder-- > 0 )
				numInPart += 1;
		}
	}
}

void RedFsmAp::setInTrans()
{
	/* First pass counts the number of transitions. */
	for ( CondApSet::Iter trans = condSet; trans.lte(); trans++ )
		trans->p.targ->numInConds += 1;

	for ( TransApSet::Iter trans = transSet; trans.lte(); trans++ ) {
		if ( trans->condSpace == 0 ) 
			trans->p.targ->numInConds += 1;
		else {
			/* We have a placement choice here, but associate it with the
			 * first. */
			RedCondPair *pair = trans->outCond( 0 );
			pair->targ->numInCondTests += 1;
		}
	}

	/* Allocate. Reset the counts so we can use them as the current size. */
	for ( RedStateList::Iter st = stateList; st.lte(); st++ ) {
		st->inConds = new RedCondPair*[st->numInConds];
		st->numInConds = 0;

		st->inCondTests = new RedTransAp*[st->numInCondTests];
		st->numInCondTests = 0;
	}

	/* Fill the arrays. */
	for ( CondApSet::Iter trans = condSet; trans.lte(); trans++ ) {
		RedStateAp *targ = trans->p.targ;
		targ->inConds[targ->numInConds++] = &trans->p;
	}

	for ( TransApSet::Iter trans = transSet; trans.lte(); trans++ ) {
		if ( trans->condSpace == 0 ) {
			RedStateAp *targ = trans->p.targ;
			targ->inConds[targ->numInConds++] = &trans->p;
		}
		else {
			RedCondPair *pair = trans->outCond( 0 );
			RedStateAp *targ = pair->targ;
			targ->inCondTests[targ->numInCondTests++] = trans;
		}
	}
}