diff options
author | Alexey Samsonov <samsonov@google.com> | 2014-02-14 09:20:33 +0000 |
---|---|---|
committer | Alexey Samsonov <samsonov@google.com> | 2014-02-14 09:20:33 +0000 |
commit | 53aa4fda49f94920139300227786ac47c393f1ce (patch) | |
tree | 6d022d04ee279fe1afd89668f346e28a9e3e1559 /lib/muldf3.c | |
parent | 6d999e478fecb10dc43f20b85385d25cc239db0a (diff) | |
download | compiler-rt-53aa4fda49f94920139300227786ac47c393f1ce.tar.gz |
Move original compiler-rt functions (libgcc replacement) to lib/builtins directory
git-svn-id: https://llvm.org/svn/llvm-project/compiler-rt/trunk@201393 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/muldf3.c')
-rw-r--r-- | lib/muldf3.c | 122 |
1 files changed, 0 insertions, 122 deletions
diff --git a/lib/muldf3.c b/lib/muldf3.c deleted file mode 100644 index c38edba90..000000000 --- a/lib/muldf3.c +++ /dev/null @@ -1,122 +0,0 @@ -//===-- lib/muldf3.c - Double-precision multiplication ------------*- C -*-===// -// -// The LLVM Compiler Infrastructure -// -// This file is dual licensed under the MIT and the University of Illinois Open -// Source Licenses. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -// This file implements double-precision soft-float multiplication -// with the IEEE-754 default rounding (to nearest, ties to even). -// -//===----------------------------------------------------------------------===// - -#define DOUBLE_PRECISION -#include "fp_lib.h" - -ARM_EABI_FNALIAS(dmul, muldf3) - -COMPILER_RT_ABI fp_t -__muldf3(fp_t a, fp_t b) { - - const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; - const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; - const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit; - - rep_t aSignificand = toRep(a) & significandMask; - rep_t bSignificand = toRep(b) & significandMask; - int scale = 0; - - // Detect if a or b is zero, denormal, infinity, or NaN. - if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) { - - const rep_t aAbs = toRep(a) & absMask; - const rep_t bAbs = toRep(b) & absMask; - - // NaN * anything = qNaN - if (aAbs > infRep) return fromRep(toRep(a) | quietBit); - // anything * NaN = qNaN - if (bAbs > infRep) return fromRep(toRep(b) | quietBit); - - if (aAbs == infRep) { - // infinity * non-zero = +/- infinity - if (bAbs) return fromRep(aAbs | productSign); - // infinity * zero = NaN - else return fromRep(qnanRep); - } - - if (bAbs == infRep) { - // non-zero * infinity = +/- infinity - if (aAbs) return fromRep(bAbs | productSign); - // zero * infinity = NaN - else return fromRep(qnanRep); - } - - // zero * anything = +/- zero - if (!aAbs) return fromRep(productSign); - // anything * zero = +/- zero - if (!bAbs) return fromRep(productSign); - - // one or both of a or b is denormal, the other (if applicable) is a - // normal number. Renormalize one or both of a and b, and set scale to - // include the necessary exponent adjustment. - if (aAbs < implicitBit) scale += normalize(&aSignificand); - if (bAbs < implicitBit) scale += normalize(&bSignificand); - } - - // Or in the implicit significand bit. (If we fell through from the - // denormal path it was already set by normalize( ), but setting it twice - // won't hurt anything.) - aSignificand |= implicitBit; - bSignificand |= implicitBit; - - // Get the significand of a*b. Before multiplying the significands, shift - // one of them left to left-align it in the field. Thus, the product will - // have (exponentBits + 2) integral digits, all but two of which must be - // zero. Normalizing this result is just a conditional left-shift by one - // and bumping the exponent accordingly. - rep_t productHi, productLo; - wideMultiply(aSignificand, bSignificand << exponentBits, - &productHi, &productLo); - - int productExponent = aExponent + bExponent - exponentBias + scale; - - // Normalize the significand, adjust exponent if needed. - if (productHi & implicitBit) productExponent++; - else wideLeftShift(&productHi, &productLo, 1); - - // If we have overflowed the type, return +/- infinity. - if (productExponent >= maxExponent) return fromRep(infRep | productSign); - - if (productExponent <= 0) { - // Result is denormal before rounding - // - // If the result is so small that it just underflows to zero, return - // a zero of the appropriate sign. Mathematically there is no need to - // handle this case separately, but we make it a special case to - // simplify the shift logic. - const unsigned int shift = 1U - (unsigned int)productExponent; - if (shift >= typeWidth) return fromRep(productSign); - - // Otherwise, shift the significand of the result so that the round - // bit is the high bit of productLo. - wideRightShiftWithSticky(&productHi, &productLo, shift); - } - - else { - // Result is normal before rounding; insert the exponent. - productHi &= significandMask; - productHi |= (rep_t)productExponent << significandBits; - } - - // Insert the sign of the result: - productHi |= productSign; - - // Final rounding. The final result may overflow to infinity, or underflow - // to zero, but those are the correct results in those cases. We use the - // default IEEE-754 round-to-nearest, ties-to-even rounding mode. - if (productLo > signBit) productHi++; - if (productLo == signBit) productHi += productHi & 1; - return fromRep(productHi); -} |