//===-- sanitizer_posix.cc ------------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries and implements POSIX-specific functions from // sanitizer_libc.h. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_POSIX #include "sanitizer_common.h" #include "sanitizer_libc.h" #include "sanitizer_procmaps.h" #include "sanitizer_stacktrace.h" #include #if SANITIZER_LINUX #include #endif #if SANITIZER_LINUX && !SANITIZER_ANDROID #include #endif namespace __sanitizer { // ------------- sanitizer_common.h uptr GetMmapGranularity() { return GetPageSize(); } #if SANITIZER_WORDSIZE == 32 // Take care of unusable kernel area in top gigabyte. static uptr GetKernelAreaSize() { #if SANITIZER_LINUX const uptr gbyte = 1UL << 30; // Firstly check if there are writable segments // mapped to top gigabyte (e.g. stack). MemoryMappingLayout proc_maps(/*cache_enabled*/true); uptr end, prot; while (proc_maps.Next(/*start*/0, &end, /*offset*/0, /*filename*/0, /*filename_size*/0, &prot)) { if ((end >= 3 * gbyte) && (prot & MemoryMappingLayout::kProtectionWrite) != 0) return 0; } #if !SANITIZER_ANDROID // Even if nothing is mapped, top Gb may still be accessible // if we are running on 64-bit kernel. // Uname may report misleading results if personality type // is modified (e.g. under schroot) so check this as well. struct utsname uname_info; int pers = personality(0xffffffffUL); if (!(pers & PER_MASK) && uname(&uname_info) == 0 && internal_strstr(uname_info.machine, "64")) return 0; #endif // SANITIZER_ANDROID // Top gigabyte is reserved for kernel. return gbyte; #else return 0; #endif // SANITIZER_LINUX } #endif // SANITIZER_WORDSIZE == 32 uptr GetMaxVirtualAddress() { #if SANITIZER_WORDSIZE == 64 # if defined(__powerpc64__) // On PowerPC64 we have two different address space layouts: 44- and 46-bit. // We somehow need to figure out which one we are using now and choose // one of 0x00000fffffffffffUL and 0x00003fffffffffffUL. // Note that with 'ulimit -s unlimited' the stack is moved away from the top // of the address space, so simply checking the stack address is not enough. // This should (does) work for both PowerPC64 Endian modes. return (1ULL << (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1)) - 1; # elif defined(__aarch64__) return (1ULL << 39) - 1; # elif defined(__mips64) return (1ULL << 40) - 1; // 0x000000ffffffffffUL; # else return (1ULL << 47) - 1; // 0x00007fffffffffffUL; # endif #else // SANITIZER_WORDSIZE == 32 uptr res = (1ULL << 32) - 1; // 0xffffffff; if (!common_flags()->full_address_space) res -= GetKernelAreaSize(); CHECK_LT(reinterpret_cast(&res), res); return res; #endif // SANITIZER_WORDSIZE } void *MmapOrDie(uptr size, const char *mem_type) { size = RoundUpTo(size, GetPageSizeCached()); uptr res = internal_mmap(0, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON, -1, 0); int reserrno; if (internal_iserror(res, &reserrno)) { static int recursion_count; if (recursion_count) { // The Report() and CHECK calls below may call mmap recursively and fail. // If we went into recursion, just die. RawWrite("ERROR: Failed to mmap\n"); Die(); } recursion_count++; Report("ERROR: %s failed to " "allocate 0x%zx (%zd) bytes of %s (errno: %d)\n", SanitizerToolName, size, size, mem_type, reserrno); DumpProcessMap(); CHECK("unable to mmap" && 0); } IncreaseTotalMmap(size); return (void *)res; } void UnmapOrDie(void *addr, uptr size) { if (!addr || !size) return; uptr res = internal_munmap(addr, size); if (internal_iserror(res)) { Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n", SanitizerToolName, size, size, addr); CHECK("unable to unmap" && 0); } DecreaseTotalMmap(size); } void *MmapNoReserveOrDie(uptr size, const char *mem_type) { uptr PageSize = GetPageSizeCached(); uptr p = internal_mmap(0, RoundUpTo(size, PageSize), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, -1, 0); int reserrno; if (internal_iserror(p, &reserrno)) { Report("ERROR: %s failed to " "allocate noreserve 0x%zx (%zd) bytes for '%s' (errno: %d)\n", SanitizerToolName, size, size, mem_type, reserrno); CHECK("unable to mmap" && 0); } IncreaseTotalMmap(size); return (void *)p; } void *MmapFixedNoReserve(uptr fixed_addr, uptr size) { uptr PageSize = GetPageSizeCached(); uptr p = internal_mmap((void*)(fixed_addr & ~(PageSize - 1)), RoundUpTo(size, PageSize), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON | MAP_FIXED | MAP_NORESERVE, -1, 0); int reserrno; if (internal_iserror(p, &reserrno)) Report("ERROR: %s failed to " "allocate 0x%zx (%zd) bytes at address %zx (errno: %d)\n", SanitizerToolName, size, size, fixed_addr, reserrno); IncreaseTotalMmap(size); return (void *)p; } void *MmapFixedOrDie(uptr fixed_addr, uptr size) { uptr PageSize = GetPageSizeCached(); uptr p = internal_mmap((void*)(fixed_addr & ~(PageSize - 1)), RoundUpTo(size, PageSize), PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANON | MAP_FIXED, -1, 0); int reserrno; if (internal_iserror(p, &reserrno)) { Report("ERROR: %s failed to " "allocate 0x%zx (%zd) bytes at address %zx (errno: %d)\n", SanitizerToolName, size, size, fixed_addr, reserrno); CHECK("unable to mmap" && 0); } IncreaseTotalMmap(size); return (void *)p; } void *Mprotect(uptr fixed_addr, uptr size) { return (void *)internal_mmap((void*)fixed_addr, size, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_FIXED | MAP_NORESERVE, -1, 0); } void *MapFileToMemory(const char *file_name, uptr *buff_size) { uptr openrv = OpenFile(file_name, false); CHECK(!internal_iserror(openrv)); fd_t fd = openrv; uptr fsize = internal_filesize(fd); CHECK_NE(fsize, (uptr)-1); CHECK_GT(fsize, 0); *buff_size = RoundUpTo(fsize, GetPageSizeCached()); uptr map = internal_mmap(0, *buff_size, PROT_READ, MAP_PRIVATE, fd, 0); return internal_iserror(map) ? 0 : (void *)map; } void *MapWritableFileToMemory(void *addr, uptr size, uptr fd, uptr offset) { uptr flags = MAP_SHARED; if (addr) flags |= MAP_FIXED; uptr p = internal_mmap(addr, size, PROT_READ | PROT_WRITE, flags, fd, offset); if (internal_iserror(p)) { Printf("could not map writable file (%zd, %zu, %zu): %zd\n", fd, offset, size, p); return 0; } return (void *)p; } static inline bool IntervalsAreSeparate(uptr start1, uptr end1, uptr start2, uptr end2) { CHECK(start1 <= end1); CHECK(start2 <= end2); return (end1 < start2) || (end2 < start1); } // FIXME: this is thread-unsafe, but should not cause problems most of the time. // When the shadow is mapped only a single thread usually exists (plus maybe // several worker threads on Mac, which aren't expected to map big chunks of // memory). bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) { MemoryMappingLayout proc_maps(/*cache_enabled*/true); uptr start, end; while (proc_maps.Next(&start, &end, /*offset*/0, /*filename*/0, /*filename_size*/0, /*protection*/0)) { if (!IntervalsAreSeparate(start, end, range_start, range_end)) return false; } return true; } void DumpProcessMap() { MemoryMappingLayout proc_maps(/*cache_enabled*/true); uptr start, end; const sptr kBufSize = 4095; char *filename = (char*)MmapOrDie(kBufSize, __func__); Report("Process memory map follows:\n"); while (proc_maps.Next(&start, &end, /* file_offset */0, filename, kBufSize, /* protection */0)) { Printf("\t%p-%p\t%s\n", (void*)start, (void*)end, filename); } Report("End of process memory map.\n"); UnmapOrDie(filename, kBufSize); } const char *GetPwd() { return GetEnv("PWD"); } char *FindPathToBinary(const char *name) { const char *path = GetEnv("PATH"); if (!path) return 0; uptr name_len = internal_strlen(name); InternalScopedBuffer buffer(kMaxPathLength); const char *beg = path; while (true) { const char *end = internal_strchrnul(beg, ':'); uptr prefix_len = end - beg; if (prefix_len + name_len + 2 <= kMaxPathLength) { internal_memcpy(buffer.data(), beg, prefix_len); buffer[prefix_len] = '/'; internal_memcpy(&buffer[prefix_len + 1], name, name_len); buffer[prefix_len + 1 + name_len] = '\0'; if (FileExists(buffer.data())) return internal_strdup(buffer.data()); } if (*end == '\0') break; beg = end + 1; } return 0; } void ReportFile::Write(const char *buffer, uptr length) { SpinMutexLock l(mu); static const char *kWriteError = "ReportFile::Write() can't output requested buffer!\n"; ReopenIfNecessary(); if (length != internal_write(fd, buffer, length)) { internal_write(fd, kWriteError, internal_strlen(kWriteError)); Die(); } } bool GetCodeRangeForFile(const char *module, uptr *start, uptr *end) { uptr s, e, off, prot; InternalScopedString buff(kMaxPathLength); MemoryMappingLayout proc_maps(/*cache_enabled*/false); while (proc_maps.Next(&s, &e, &off, buff.data(), buff.size(), &prot)) { if ((prot & MemoryMappingLayout::kProtectionExecute) != 0 && internal_strcmp(module, buff.data()) == 0) { *start = s; *end = e; return true; } } return false; } } // namespace __sanitizer #endif // SANITIZER_POSIX