summaryrefslogtreecommitdiff
path: root/lib/asan/asan_allocator.cc
blob: 05e2119d98d012a052499bcce53fac40bad91795 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
//===-- asan_allocator.cc ---------------------------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Implementation of ASan's memory allocator.
// Evey piece of memory (AsanChunk) allocated by the allocator
// has a left redzone of REDZONE bytes and
// a right redzone such that the end of the chunk is aligned by REDZONE
// (i.e. the right redzone is between 0 and REDZONE-1).
// The left redzone is always poisoned.
// The right redzone is poisoned on malloc, the body is poisoned on free.
// Once freed, a chunk is moved to a quarantine (fifo list).
// After quarantine, a chunk is returned to freelists.
//
// The left redzone contains ASan's internal data and the stack trace of
// the malloc call.
// Once freed, the body of the chunk contains the stack trace of the free call.
//
//===----------------------------------------------------------------------===//

#include "asan_allocator.h"
#include "asan_interceptors.h"
#include "asan_interface.h"
#include "asan_internal.h"
#include "asan_lock.h"
#include "asan_mapping.h"
#include "asan_stats.h"
#include "asan_thread.h"
#include "asan_thread_registry.h"

#if defined(_WIN32) && !defined(__clang__)
#include <intrin.h>
#endif

namespace __asan {

#define  REDZONE FLAG_redzone
static const size_t kMinAllocSize = REDZONE * 2;
static const uint64_t kMaxAvailableRam = 128ULL << 30;  // 128G
static const size_t kMaxThreadLocalQuarantine = 1 << 20;  // 1M

static const size_t kMinMmapSize = (ASAN_LOW_MEMORY) ? 4UL << 17 : 4UL << 20;
static const size_t kMaxSizeForThreadLocalFreeList =
    (ASAN_LOW_MEMORY) ? 1 << 15 : 1 << 17;

// Size classes less than kMallocSizeClassStep are powers of two.
// All other size classes are multiples of kMallocSizeClassStep.
static const size_t kMallocSizeClassStepLog = 26;
static const size_t kMallocSizeClassStep = 1UL << kMallocSizeClassStepLog;

static const size_t kMaxAllowedMallocSize =
    (__WORDSIZE == 32) ? 3UL << 30 : 8UL << 30;

static inline bool IsAligned(uintptr_t a, uintptr_t alignment) {
  return (a & (alignment - 1)) == 0;
}

static inline size_t Log2(size_t x) {
  CHECK(IsPowerOfTwo(x));
#if !defined(_WIN32) || defined(__clang__)
  return __builtin_ctzl(x);
#elif defined(_WIN64)
  unsigned long ret;  // NOLINT
  _BitScanForward64(&ret, x);
  return ret;
#else
  unsigned long ret;  // NOLINT
  _BitScanForward(&ret, x);
  return ret;
#endif
}

static inline size_t RoundUpToPowerOfTwo(size_t size) {
  CHECK(size);
  if (IsPowerOfTwo(size)) return size;

  unsigned long up;  // NOLINT
#if !defined(_WIN32) || defined(__clang__)
  up = __WORDSIZE - 1 - __builtin_clzl(size);
#elif defined(_WIN64)
  _BitScanReverse64(&up, size);
#else
  _BitScanReverse(&up, size);
#endif
  CHECK(size < (1ULL << (up + 1)));
  CHECK(size > (1ULL << up));
  return 1UL << (up + 1);
}

static inline size_t SizeClassToSize(uint8_t size_class) {
  CHECK(size_class < kNumberOfSizeClasses);
  if (size_class <= kMallocSizeClassStepLog) {
    return 1UL << size_class;
  } else {
    return (size_class - kMallocSizeClassStepLog) * kMallocSizeClassStep;
  }
}

static inline uint8_t SizeToSizeClass(size_t size) {
  uint8_t res = 0;
  if (size <= kMallocSizeClassStep) {
    size_t rounded = RoundUpToPowerOfTwo(size);
    res = Log2(rounded);
  } else {
    res = ((size + kMallocSizeClassStep - 1) / kMallocSizeClassStep)
        + kMallocSizeClassStepLog;
  }
  CHECK(res < kNumberOfSizeClasses);
  CHECK(size <= SizeClassToSize(res));
  return res;
}

// Given REDZONE bytes, we need to mark first size bytes
// as addressable and the rest REDZONE-size bytes as unaddressable.
static void PoisonHeapPartialRightRedzone(uintptr_t mem, size_t size) {
  CHECK(size <= REDZONE);
  CHECK(IsAligned(mem, REDZONE));
  CHECK(IsPowerOfTwo(SHADOW_GRANULARITY));
  CHECK(IsPowerOfTwo(REDZONE));
  CHECK(REDZONE >= SHADOW_GRANULARITY);
  PoisonShadowPartialRightRedzone(mem, size, REDZONE,
                                  kAsanHeapRightRedzoneMagic);
}

static uint8_t *MmapNewPagesAndPoisonShadow(size_t size) {
  CHECK(IsAligned(size, kPageSize));
  uint8_t *res = (uint8_t*)AsanMmapSomewhereOrDie(size, __FUNCTION__);
  PoisonShadow((uintptr_t)res, size, kAsanHeapLeftRedzoneMagic);
  if (FLAG_debug) {
    Printf("ASAN_MMAP: [%p, %p)\n", res, res + size);
  }
  return res;
}

// Every chunk of memory allocated by this allocator can be in one of 3 states:
// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
//
// The pseudo state CHUNK_MEMALIGN is used to mark that the address is not
// the beginning of a AsanChunk (in which case 'next' contains the address
// of the AsanChunk).
//
// The magic numbers for the enum values are taken randomly.
enum {
  CHUNK_AVAILABLE  = 0x573B,
  CHUNK_ALLOCATED  = 0x3204,
  CHUNK_QUARANTINE = 0x1978,
  CHUNK_MEMALIGN   = 0xDC68,
};

struct ChunkBase {
  uint16_t   chunk_state;
  uint8_t    size_class;
  uint32_t   offset;  // User-visible memory starts at this+offset (beg()).
  int32_t    alloc_tid;
  int32_t    free_tid;
  size_t     used_size;  // Size requested by the user.
  AsanChunk *next;

  uintptr_t   beg() { return (uintptr_t)this + offset; }
  size_t Size() { return SizeClassToSize(size_class); }
  uint8_t SizeClass() { return size_class; }
};

struct AsanChunk: public ChunkBase {
  uint32_t *compressed_alloc_stack() {
    CHECK(REDZONE >= sizeof(ChunkBase));
    return (uint32_t*)((uintptr_t)this + sizeof(ChunkBase));
  }
  uint32_t *compressed_free_stack() {
    CHECK(REDZONE >= sizeof(ChunkBase));
    return (uint32_t*)((uintptr_t)this + REDZONE);
  }

  // The left redzone after the ChunkBase is given to the alloc stack trace.
  size_t compressed_alloc_stack_size() {
    return (REDZONE - sizeof(ChunkBase)) / sizeof(uint32_t);
  }
  size_t compressed_free_stack_size() {
    return (REDZONE) / sizeof(uint32_t);
  }

  bool AddrIsInside(uintptr_t addr, size_t access_size, size_t *offset) {
    if (addr >= beg() && (addr + access_size) <= (beg() + used_size)) {
      *offset = addr - beg();
      return true;
    }
    return false;
  }

  bool AddrIsAtLeft(uintptr_t addr, size_t access_size, size_t *offset) {
    if (addr < beg()) {
      *offset = beg() - addr;
      return true;
    }
    return false;
  }

  bool AddrIsAtRight(uintptr_t addr, size_t access_size, size_t *offset) {
    if (addr + access_size >= beg() + used_size) {
      if (addr <= beg() + used_size)
        *offset = 0;
      else
        *offset = addr - (beg() + used_size);
      return true;
    }
    return false;
  }

  void DescribeAddress(uintptr_t addr, size_t access_size) {
    size_t offset;
    Printf("%p is located ", addr);
    if (AddrIsInside(addr, access_size, &offset)) {
      Printf("%zu bytes inside of", offset);
    } else if (AddrIsAtLeft(addr, access_size, &offset)) {
      Printf("%zu bytes to the left of", offset);
    } else if (AddrIsAtRight(addr, access_size, &offset)) {
      Printf("%zu bytes to the right of", offset);
    } else {
      Printf(" somewhere around (this is AddressSanitizer bug!)");
    }
    Printf(" %zu-byte region [%p,%p)\n",
           used_size, beg(), beg() + used_size);
  }
};

static AsanChunk *PtrToChunk(uintptr_t ptr) {
  AsanChunk *m = (AsanChunk*)(ptr - REDZONE);
  if (m->chunk_state == CHUNK_MEMALIGN) {
    m = m->next;
  }
  return m;
}


void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
  CHECK(q->size() > 0);
  if (last_) {
    CHECK(first_);
    CHECK(!last_->next);
    last_->next = q->first_;
    last_ = q->last_;
  } else {
    CHECK(!first_);
    last_ = q->last_;
    first_ = q->first_;
    CHECK(first_);
  }
  CHECK(last_);
  CHECK(!last_->next);
  size_ += q->size();
  q->clear();
}

void AsanChunkFifoList::Push(AsanChunk *n) {
  CHECK(n->next == NULL);
  if (last_) {
    CHECK(first_);
    CHECK(!last_->next);
    last_->next = n;
    last_ = n;
  } else {
    CHECK(!first_);
    last_ = first_ = n;
  }
  size_ += n->Size();
}

// Interesting performance observation: this function takes up to 15% of overal
// allocator time. That's because *first_ has been evicted from cache long time
// ago. Not sure if we can or want to do anything with this.
AsanChunk *AsanChunkFifoList::Pop() {
  CHECK(first_);
  AsanChunk *res = first_;
  first_ = first_->next;
  if (first_ == NULL)
    last_ = NULL;
  CHECK(size_ >= res->Size());
  size_ -= res->Size();
  if (last_) {
    CHECK(!last_->next);
  }
  return res;
}

// All pages we ever allocated.
struct PageGroup {
  uintptr_t beg;
  uintptr_t end;
  size_t size_of_chunk;
  uintptr_t last_chunk;
  bool InRange(uintptr_t addr) {
    return addr >= beg && addr < end;
  }
};

class MallocInfo {
 public:

  explicit MallocInfo(LinkerInitialized x) : mu_(x) { }

  AsanChunk *AllocateChunks(uint8_t size_class, size_t n_chunks) {
    AsanChunk *m = NULL;
    AsanChunk **fl = &free_lists_[size_class];
    {
      ScopedLock lock(&mu_);
      for (size_t i = 0; i < n_chunks; i++) {
        if (!(*fl)) {
          *fl = GetNewChunks(size_class);
        }
        AsanChunk *t = *fl;
        *fl = t->next;
        t->next = m;
        CHECK(t->chunk_state == CHUNK_AVAILABLE);
        m = t;
      }
    }
    return m;
  }

  void SwallowThreadLocalMallocStorage(AsanThreadLocalMallocStorage *x,
                                       bool eat_free_lists) {
    CHECK(FLAG_quarantine_size > 0);
    ScopedLock lock(&mu_);
    AsanChunkFifoList *q = &x->quarantine_;
    if (q->size() > 0) {
      quarantine_.PushList(q);
      while (quarantine_.size() > FLAG_quarantine_size) {
        QuarantinePop();
      }
    }
    if (eat_free_lists) {
      for (size_t size_class = 0; size_class < kNumberOfSizeClasses;
           size_class++) {
        AsanChunk *m = x->free_lists_[size_class];
        while (m) {
          AsanChunk *t = m->next;
          m->next = free_lists_[size_class];
          free_lists_[size_class] = m;
          m = t;
        }
        x->free_lists_[size_class] = 0;
      }
    }
  }

  void BypassThreadLocalQuarantine(AsanChunk *chunk) {
    ScopedLock lock(&mu_);
    quarantine_.Push(chunk);
  }

  AsanChunk *FindMallocedOrFreed(uintptr_t addr, size_t access_size) {
    ScopedLock lock(&mu_);
    return FindChunkByAddr(addr);
  }

  size_t AllocationSize(uintptr_t ptr) {
    if (!ptr) return 0;
    ScopedLock lock(&mu_);

    // first, check if this is our memory
    PageGroup *g = FindPageGroupUnlocked(ptr);
    if (!g) return 0;
    AsanChunk *m = PtrToChunk(ptr);
    if (m->chunk_state == CHUNK_ALLOCATED) {
      return m->used_size;
    } else {
      return 0;
    }
  }

  void ForceLock() {
    mu_.Lock();
  }

  void ForceUnlock() {
    mu_.Unlock();
  }

  void PrintStatus() {
    ScopedLock lock(&mu_);
    size_t malloced = 0;

    Printf(" MallocInfo: in quarantine: %zu malloced: %zu; ",
           quarantine_.size() >> 20, malloced >> 20);
    for (size_t j = 1; j < kNumberOfSizeClasses; j++) {
      AsanChunk *i = free_lists_[j];
      if (!i) continue;
      size_t t = 0;
      for (; i; i = i->next) {
        t += i->Size();
      }
      Printf("%zu:%zu ", j, t >> 20);
    }
    Printf("\n");
  }

  PageGroup *FindPageGroup(uintptr_t addr) {
    ScopedLock lock(&mu_);
    return FindPageGroupUnlocked(addr);
  }

 private:
  PageGroup *FindPageGroupUnlocked(uintptr_t addr) {
    int n = n_page_groups_;
    // If the page groups are not sorted yet, sort them.
    if (n_sorted_page_groups_ < n) {
      SortArray((uintptr_t*)page_groups_, n);
      n_sorted_page_groups_ = n;
    }
    // Binary search over the page groups.
    int beg = 0, end = n;
    while (beg < end) {
      int med = (beg + end) / 2;
      uintptr_t g = (uintptr_t)page_groups_[med];
      if (addr > g) {
        // 'g' points to the end of the group, so 'addr'
        // may not belong to page_groups_[med] or any previous group.
        beg = med + 1;
      } else {
        // 'addr' may belong to page_groups_[med] or a previous group.
        end = med;
      }
    }
    if (beg >= n)
      return NULL;
    PageGroup *g = page_groups_[beg];
    CHECK(g);
    if (g->InRange(addr))
      return g;
    return NULL;
  }

  // We have an address between two chunks, and we want to report just one.
  AsanChunk *ChooseChunk(uintptr_t addr,
                         AsanChunk *left_chunk, AsanChunk *right_chunk) {
    // Prefer an allocated chunk or a chunk from quarantine.
    if (left_chunk->chunk_state == CHUNK_AVAILABLE &&
        right_chunk->chunk_state != CHUNK_AVAILABLE)
      return right_chunk;
    if (right_chunk->chunk_state == CHUNK_AVAILABLE &&
        left_chunk->chunk_state != CHUNK_AVAILABLE)
      return left_chunk;
    // Choose based on offset.
    size_t l_offset = 0, r_offset = 0;
    CHECK(left_chunk->AddrIsAtRight(addr, 1, &l_offset));
    CHECK(right_chunk->AddrIsAtLeft(addr, 1, &r_offset));
    if (l_offset < r_offset)
      return left_chunk;
    return right_chunk;
  }

  AsanChunk *FindChunkByAddr(uintptr_t addr) {
    PageGroup *g = FindPageGroupUnlocked(addr);
    if (!g) return 0;
    CHECK(g->size_of_chunk);
    uintptr_t offset_from_beg = addr - g->beg;
    uintptr_t this_chunk_addr = g->beg +
        (offset_from_beg / g->size_of_chunk) * g->size_of_chunk;
    CHECK(g->InRange(this_chunk_addr));
    AsanChunk *m = (AsanChunk*)this_chunk_addr;
    CHECK(m->chunk_state == CHUNK_ALLOCATED ||
          m->chunk_state == CHUNK_AVAILABLE ||
          m->chunk_state == CHUNK_QUARANTINE);
    size_t offset = 0;
    if (m->AddrIsInside(addr, 1, &offset))
      return m;

    if (m->AddrIsAtRight(addr, 1, &offset)) {
      if (this_chunk_addr == g->last_chunk)  // rightmost chunk
        return m;
      uintptr_t right_chunk_addr = this_chunk_addr + g->size_of_chunk;
      CHECK(g->InRange(right_chunk_addr));
      return ChooseChunk(addr, m, (AsanChunk*)right_chunk_addr);
    } else {
      CHECK(m->AddrIsAtLeft(addr, 1, &offset));
      if (this_chunk_addr == g->beg)  // leftmost chunk
        return m;
      uintptr_t left_chunk_addr = this_chunk_addr - g->size_of_chunk;
      CHECK(g->InRange(left_chunk_addr));
      return ChooseChunk(addr, (AsanChunk*)left_chunk_addr, m);
    }
  }

  void QuarantinePop() {
    CHECK(quarantine_.size() > 0);
    AsanChunk *m = quarantine_.Pop();
    CHECK(m);
    // if (F_v >= 2) Printf("MallocInfo::pop %p\n", m);

    CHECK(m->chunk_state == CHUNK_QUARANTINE);
    m->chunk_state = CHUNK_AVAILABLE;
    PoisonShadow((uintptr_t)m, m->Size(), kAsanHeapLeftRedzoneMagic);
    CHECK(m->alloc_tid >= 0);
    CHECK(m->free_tid >= 0);

    size_t size_class = m->SizeClass();
    m->next = free_lists_[size_class];
    free_lists_[size_class] = m;

    // Statistics.
    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    thread_stats.real_frees++;
    thread_stats.really_freed += m->used_size;
    thread_stats.really_freed_redzones += m->Size() - m->used_size;
    thread_stats.really_freed_by_size[m->SizeClass()]++;
  }

  // Get a list of newly allocated chunks.
  AsanChunk *GetNewChunks(uint8_t size_class) {
    size_t size = SizeClassToSize(size_class);
    CHECK(IsPowerOfTwo(kMinMmapSize));
    CHECK(size < kMinMmapSize || (size % kMinMmapSize) == 0);
    size_t mmap_size = Max(size, kMinMmapSize);
    size_t n_chunks = mmap_size / size;
    CHECK(n_chunks * size == mmap_size);
    if (size < kPageSize) {
      // Size is small, just poison the last chunk.
      n_chunks--;
    } else {
      // Size is large, allocate an extra page at right and poison it.
      mmap_size += kPageSize;
    }
    CHECK(n_chunks > 0);
    uint8_t *mem = MmapNewPagesAndPoisonShadow(mmap_size);

    // Statistics.
    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    thread_stats.mmaps++;
    thread_stats.mmaped += mmap_size;
    thread_stats.mmaped_by_size[size_class] += n_chunks;

    AsanChunk *res = NULL;
    for (size_t i = 0; i < n_chunks; i++) {
      AsanChunk *m = (AsanChunk*)(mem + i * size);
      m->chunk_state = CHUNK_AVAILABLE;
      m->size_class = size_class;
      m->next = res;
      res = m;
    }
    PageGroup *pg = (PageGroup*)(mem + n_chunks * size);
    // This memory is already poisoned, no need to poison it again.
    pg->beg = (uintptr_t)mem;
    pg->end = pg->beg + mmap_size;
    pg->size_of_chunk = size;
    pg->last_chunk = (uintptr_t)(mem + size * (n_chunks - 1));
    int page_group_idx = AtomicInc(&n_page_groups_) - 1;
    CHECK(page_group_idx < (int)ASAN_ARRAY_SIZE(page_groups_));
    page_groups_[page_group_idx] = pg;
    return res;
  }

  AsanChunk *free_lists_[kNumberOfSizeClasses];
  AsanChunkFifoList quarantine_;
  AsanLock mu_;

  PageGroup *page_groups_[kMaxAvailableRam / kMinMmapSize];
  int n_page_groups_;  // atomic
  int n_sorted_page_groups_;
};

static MallocInfo malloc_info(LINKER_INITIALIZED);

void AsanThreadLocalMallocStorage::CommitBack() {
  malloc_info.SwallowThreadLocalMallocStorage(this, true);
}

static void Describe(uintptr_t addr, size_t access_size) {
  AsanChunk *m = malloc_info.FindMallocedOrFreed(addr, access_size);
  if (!m) return;
  m->DescribeAddress(addr, access_size);
  CHECK(m->alloc_tid >= 0);
  AsanThreadSummary *alloc_thread =
      asanThreadRegistry().FindByTid(m->alloc_tid);
  AsanStackTrace alloc_stack;
  AsanStackTrace::UncompressStack(&alloc_stack, m->compressed_alloc_stack(),
                                  m->compressed_alloc_stack_size());
  AsanThread *t = asanThreadRegistry().GetCurrent();
  CHECK(t);
  if (m->free_tid >= 0) {
    AsanThreadSummary *free_thread =
        asanThreadRegistry().FindByTid(m->free_tid);
    Printf("freed by thread T%d here:\n", free_thread->tid());
    AsanStackTrace free_stack;
    AsanStackTrace::UncompressStack(&free_stack, m->compressed_free_stack(),
                                    m->compressed_free_stack_size());
    free_stack.PrintStack();
    Printf("previously allocated by thread T%d here:\n",
           alloc_thread->tid());

    alloc_stack.PrintStack();
    t->summary()->Announce();
    free_thread->Announce();
    alloc_thread->Announce();
  } else {
    Printf("allocated by thread T%d here:\n", alloc_thread->tid());
    alloc_stack.PrintStack();
    t->summary()->Announce();
    alloc_thread->Announce();
  }
}

static uint8_t *Allocate(size_t alignment, size_t size, AsanStackTrace *stack) {
  __asan_init();
  CHECK(stack);
  if (size == 0) {
    size = 1;  // TODO(kcc): do something smarter
  }
  CHECK(IsPowerOfTwo(alignment));
  size_t rounded_size = RoundUpTo(size, REDZONE);
  size_t needed_size = rounded_size + REDZONE;
  if (alignment > REDZONE) {
    needed_size += alignment;
  }
  CHECK(IsAligned(needed_size, REDZONE));
  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n", size);
    return 0;
  }

  uint8_t size_class = SizeToSizeClass(needed_size);
  size_t size_to_allocate = SizeClassToSize(size_class);
  CHECK(size_to_allocate >= kMinAllocSize);
  CHECK(size_to_allocate >= needed_size);
  CHECK(IsAligned(size_to_allocate, REDZONE));

  if (FLAG_v >= 3) {
    Printf("Allocate align: %zu size: %zu class: %u real: %zu\n",
         alignment, size, size_class, size_to_allocate);
  }

  AsanThread *t = asanThreadRegistry().GetCurrent();
  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
  // Statistics
  thread_stats.mallocs++;
  thread_stats.malloced += size;
  thread_stats.malloced_redzones += size_to_allocate - size;
  thread_stats.malloced_by_size[size_class]++;

  AsanChunk *m = NULL;
  if (!t || size_to_allocate >= kMaxSizeForThreadLocalFreeList) {
    // get directly from global storage.
    m = malloc_info.AllocateChunks(size_class, 1);
    thread_stats.malloc_large++;
  } else {
    // get from the thread-local storage.
    AsanChunk **fl = &t->malloc_storage().free_lists_[size_class];
    if (!*fl) {
      size_t n_new_chunks = kMaxSizeForThreadLocalFreeList / size_to_allocate;
      *fl = malloc_info.AllocateChunks(size_class, n_new_chunks);
      thread_stats.malloc_small_slow++;
    }
    m = *fl;
    *fl = (*fl)->next;
  }
  CHECK(m);
  CHECK(m->chunk_state == CHUNK_AVAILABLE);
  m->chunk_state = CHUNK_ALLOCATED;
  m->next = NULL;
  CHECK(m->Size() == size_to_allocate);
  uintptr_t addr = (uintptr_t)m + REDZONE;
  CHECK(addr == (uintptr_t)m->compressed_free_stack());

  if (alignment > REDZONE && (addr & (alignment - 1))) {
    addr = RoundUpTo(addr, alignment);
    CHECK((addr & (alignment - 1)) == 0);
    AsanChunk *p = (AsanChunk*)(addr - REDZONE);
    p->chunk_state = CHUNK_MEMALIGN;
    p->next = m;
  }
  CHECK(m == PtrToChunk(addr));
  m->used_size = size;
  m->offset = addr - (uintptr_t)m;
  CHECK(m->beg() == addr);
  m->alloc_tid = t ? t->tid() : 0;
  m->free_tid   = AsanThread::kInvalidTid;
  AsanStackTrace::CompressStack(stack, m->compressed_alloc_stack(),
                                m->compressed_alloc_stack_size());
  PoisonShadow(addr, rounded_size, 0);
  if (size < rounded_size) {
    PoisonHeapPartialRightRedzone(addr + rounded_size - REDZONE,
                                  size & (REDZONE - 1));
  }
  if (size <= FLAG_max_malloc_fill_size) {
    REAL(memset)((void*)addr, 0, rounded_size);
  }
  return (uint8_t*)addr;
}

static void Deallocate(uint8_t *ptr, AsanStackTrace *stack) {
  if (!ptr) return;
  CHECK(stack);

  if (FLAG_debug) {
    CHECK(malloc_info.FindPageGroup((uintptr_t)ptr));
  }

  // Printf("Deallocate %p\n", ptr);
  AsanChunk *m = PtrToChunk((uintptr_t)ptr);

  // Flip the state atomically to avoid race on double-free.
  uint16_t old_chunk_state = AtomicExchange(&m->chunk_state, CHUNK_QUARANTINE);

  if (old_chunk_state == CHUNK_QUARANTINE) {
    Report("ERROR: AddressSanitizer attempting double-free on %p:\n", ptr);
    stack->PrintStack();
    Describe((uintptr_t)ptr, 1);
    ShowStatsAndAbort();
  } else if (old_chunk_state != CHUNK_ALLOCATED) {
    Report("ERROR: AddressSanitizer attempting free on address which was not"
           " malloc()-ed: %p\n", ptr);
    stack->PrintStack();
    ShowStatsAndAbort();
  }
  CHECK(old_chunk_state == CHUNK_ALLOCATED);
  CHECK(m->free_tid == AsanThread::kInvalidTid);
  CHECK(m->alloc_tid >= 0);
  AsanThread *t = asanThreadRegistry().GetCurrent();
  m->free_tid = t ? t->tid() : 0;
  AsanStackTrace::CompressStack(stack, m->compressed_free_stack(),
                                m->compressed_free_stack_size());
  size_t rounded_size = RoundUpTo(m->used_size, REDZONE);
  PoisonShadow((uintptr_t)ptr, rounded_size, kAsanHeapFreeMagic);

  // Statistics.
  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
  thread_stats.frees++;
  thread_stats.freed += m->used_size;
  thread_stats.freed_by_size[m->SizeClass()]++;

  CHECK(m->chunk_state == CHUNK_QUARANTINE);
  if (t) {
    AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
    CHECK(!m->next);
    ms->quarantine_.Push(m);

    if (ms->quarantine_.size() > kMaxThreadLocalQuarantine) {
      malloc_info.SwallowThreadLocalMallocStorage(ms, false);
    }
  } else {
    CHECK(!m->next);
    malloc_info.BypassThreadLocalQuarantine(m);
  }
}

static uint8_t *Reallocate(uint8_t *old_ptr, size_t new_size,
                           AsanStackTrace *stack) {
  CHECK(old_ptr && new_size);

  // Statistics.
  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
  thread_stats.reallocs++;
  thread_stats.realloced += new_size;

  AsanChunk *m = PtrToChunk((uintptr_t)old_ptr);
  CHECK(m->chunk_state == CHUNK_ALLOCATED);
  size_t old_size = m->used_size;
  size_t memcpy_size = Min(new_size, old_size);
  uint8_t *new_ptr = Allocate(0, new_size, stack);
  if (new_ptr) {
    CHECK(REAL(memcpy) != NULL);
    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
    Deallocate(old_ptr, stack);
  }
  return new_ptr;
}

}  // namespace __asan

// Malloc hooks declaration.
// ASAN_NEW_HOOK(ptr, size) is called immediately after
//   allocation of "size" bytes, which returned "ptr".
// ASAN_DELETE_HOOK(ptr) is called immediately before
//   deallocation of "ptr".
// If ASAN_NEW_HOOK or ASAN_DELETE_HOOK is defined, user
// program must provide implementation of this hook.
// If macro is undefined, the hook is no-op.
#ifdef ASAN_NEW_HOOK
extern "C" void ASAN_NEW_HOOK(void *ptr, size_t size);
#else
static inline void ASAN_NEW_HOOK(void *ptr, size_t size) { }
#endif

#ifdef ASAN_DELETE_HOOK
extern "C" void ASAN_DELETE_HOOK(void *ptr);
#else
static inline void ASAN_DELETE_HOOK(void *ptr) { }
#endif

namespace __asan {

void *asan_memalign(size_t alignment, size_t size, AsanStackTrace *stack) {
  void *ptr = (void*)Allocate(alignment, size, stack);
  ASAN_NEW_HOOK(ptr, size);
  return ptr;
}

void asan_free(void *ptr, AsanStackTrace *stack) {
  ASAN_DELETE_HOOK(ptr);
  Deallocate((uint8_t*)ptr, stack);
}

void *asan_malloc(size_t size, AsanStackTrace *stack) {
  void *ptr = (void*)Allocate(0, size, stack);
  ASAN_NEW_HOOK(ptr, size);
  return ptr;
}

void *asan_calloc(size_t nmemb, size_t size, AsanStackTrace *stack) {
  void *ptr = (void*)Allocate(0, nmemb * size, stack);
  if (ptr)
    REAL(memset)(ptr, 0, nmemb * size);
  ASAN_NEW_HOOK(ptr, nmemb * size);
  return ptr;
}

void *asan_realloc(void *p, size_t size, AsanStackTrace *stack) {
  if (p == NULL) {
    void *ptr = (void*)Allocate(0, size, stack);
    ASAN_NEW_HOOK(ptr, size);
    return ptr;
  } else if (size == 0) {
    ASAN_DELETE_HOOK(p);
    Deallocate((uint8_t*)p, stack);
    return NULL;
  }
  return Reallocate((uint8_t*)p, size, stack);
}

void *asan_valloc(size_t size, AsanStackTrace *stack) {
  void *ptr = (void*)Allocate(kPageSize, size, stack);
  ASAN_NEW_HOOK(ptr, size);
  return ptr;
}

void *asan_pvalloc(size_t size, AsanStackTrace *stack) {
  size = RoundUpTo(size, kPageSize);
  if (size == 0) {
    // pvalloc(0) should allocate one page.
    size = kPageSize;
  }
  void *ptr = (void*)Allocate(kPageSize, size, stack);
  ASAN_NEW_HOOK(ptr, size);
  return ptr;
}

int asan_posix_memalign(void **memptr, size_t alignment, size_t size,
                          AsanStackTrace *stack) {
  void *ptr = Allocate(alignment, size, stack);
  CHECK(IsAligned((uintptr_t)ptr, alignment));
  ASAN_NEW_HOOK(ptr, size);
  *memptr = ptr;
  return 0;
}

size_t asan_malloc_usable_size(void *ptr, AsanStackTrace *stack) {
  CHECK(stack);
  if (ptr == NULL) return 0;
  size_t usable_size = malloc_info.AllocationSize((uintptr_t)ptr);
  if (FLAG_check_malloc_usable_size && (usable_size == 0)) {
    Report("ERROR: AddressSanitizer attempting to call malloc_usable_size() "
           "for pointer which is not owned: %p\n", ptr);
    stack->PrintStack();
    Describe((uintptr_t)ptr, 1);
    ShowStatsAndAbort();
  }
  return usable_size;
}

size_t asan_mz_size(const void *ptr) {
  return malloc_info.AllocationSize((uintptr_t)ptr);
}

void DescribeHeapAddress(uintptr_t addr, uintptr_t access_size) {
  Describe(addr, access_size);
}

void asan_mz_force_lock() {
  malloc_info.ForceLock();
}

void asan_mz_force_unlock() {
  malloc_info.ForceUnlock();
}

// ---------------------- Fake stack-------------------- {{{1
FakeStack::FakeStack() {
  CHECK(REAL(memset) != NULL);
  REAL(memset)(this, 0, sizeof(*this));
}

bool FakeStack::AddrIsInSizeClass(uintptr_t addr, size_t size_class) {
  uintptr_t mem = allocated_size_classes_[size_class];
  uintptr_t size = ClassMmapSize(size_class);
  bool res = mem && addr >= mem && addr < mem + size;
  return res;
}

uintptr_t FakeStack::AddrIsInFakeStack(uintptr_t addr) {
  for (size_t i = 0; i < kNumberOfSizeClasses; i++) {
    if (AddrIsInSizeClass(addr, i)) return allocated_size_classes_[i];
  }
  return 0;
}

// We may want to compute this during compilation.
inline size_t FakeStack::ComputeSizeClass(size_t alloc_size) {
  size_t rounded_size = RoundUpToPowerOfTwo(alloc_size);
  size_t log = Log2(rounded_size);
  CHECK(alloc_size <= (1UL << log));
  if (!(alloc_size > (1UL << (log-1)))) {
    Printf("alloc_size %zu log %zu\n", alloc_size, log);
  }
  CHECK(alloc_size > (1UL << (log-1)));
  size_t res = log < kMinStackFrameSizeLog ? 0 : log - kMinStackFrameSizeLog;
  CHECK(res < kNumberOfSizeClasses);
  CHECK(ClassSize(res) >= rounded_size);
  return res;
}

void FakeFrameFifo::FifoPush(FakeFrame *node) {
  CHECK(node);
  node->next = 0;
  if (first_ == 0 && last_ == 0) {
    first_ = last_ = node;
  } else {
    CHECK(first_);
    CHECK(last_);
    last_->next = node;
    last_ = node;
  }
}

FakeFrame *FakeFrameFifo::FifoPop() {
  CHECK(first_ && last_ && "Exhausted fake stack");
  FakeFrame *res = 0;
  if (first_ == last_) {
    res = first_;
    first_ = last_ = 0;
  } else {
    res = first_;
    first_ = first_->next;
  }
  return res;
}

void FakeStack::Init(size_t stack_size) {
  stack_size_ = stack_size;
  alive_ = true;
}

void FakeStack::Cleanup() {
  alive_ = false;
  for (size_t i = 0; i < kNumberOfSizeClasses; i++) {
    uintptr_t mem = allocated_size_classes_[i];
    if (mem) {
      PoisonShadow(mem, ClassMmapSize(i), 0);
      allocated_size_classes_[i] = 0;
      AsanUnmapOrDie((void*)mem, ClassMmapSize(i));
    }
  }
}

size_t FakeStack::ClassMmapSize(size_t size_class) {
  return RoundUpToPowerOfTwo(stack_size_);
}

void FakeStack::AllocateOneSizeClass(size_t size_class) {
  CHECK(ClassMmapSize(size_class) >= kPageSize);
  uintptr_t new_mem = (uintptr_t)AsanMmapSomewhereOrDie(
      ClassMmapSize(size_class), __FUNCTION__);
  // Printf("T%d new_mem[%zu]: %p-%p mmap %zu\n",
  //       asanThreadRegistry().GetCurrent()->tid(),
  //       size_class, new_mem, new_mem + ClassMmapSize(size_class),
  //       ClassMmapSize(size_class));
  size_t i;
  for (i = 0; i < ClassMmapSize(size_class);
       i += ClassSize(size_class)) {
    size_classes_[size_class].FifoPush((FakeFrame*)(new_mem + i));
  }
  CHECK(i == ClassMmapSize(size_class));
  allocated_size_classes_[size_class] = new_mem;
}

uintptr_t FakeStack::AllocateStack(size_t size, size_t real_stack) {
  if (!alive_) return real_stack;
  CHECK(size <= kMaxStackMallocSize && size > 1);
  size_t size_class = ComputeSizeClass(size);
  if (!allocated_size_classes_[size_class]) {
    AllocateOneSizeClass(size_class);
  }
  FakeFrame *fake_frame = size_classes_[size_class].FifoPop();
  CHECK(fake_frame);
  fake_frame->size_minus_one = size - 1;
  fake_frame->real_stack = real_stack;
  while (FakeFrame *top = call_stack_.top()) {
    if (top->real_stack > real_stack) break;
    call_stack_.LifoPop();
    DeallocateFrame(top);
  }
  call_stack_.LifoPush(fake_frame);
  uintptr_t ptr = (uintptr_t)fake_frame;
  PoisonShadow(ptr, size, 0);
  return ptr;
}

void FakeStack::DeallocateFrame(FakeFrame *fake_frame) {
  CHECK(alive_);
  size_t size = fake_frame->size_minus_one + 1;
  size_t size_class = ComputeSizeClass(size);
  CHECK(allocated_size_classes_[size_class]);
  uintptr_t ptr = (uintptr_t)fake_frame;
  CHECK(AddrIsInSizeClass(ptr, size_class));
  CHECK(AddrIsInSizeClass(ptr + size - 1, size_class));
  size_classes_[size_class].FifoPush(fake_frame);
}

void FakeStack::OnFree(size_t ptr, size_t size, size_t real_stack) {
  FakeFrame *fake_frame = (FakeFrame*)ptr;
  CHECK(fake_frame->magic = kRetiredStackFrameMagic);
  CHECK(fake_frame->descr != 0);
  CHECK(fake_frame->size_minus_one == size - 1);
  PoisonShadow(ptr, size, kAsanStackAfterReturnMagic);
}

}  // namespace __asan

// ---------------------- Interface ---------------- {{{1
using namespace __asan;  // NOLINT

size_t __asan_stack_malloc(size_t size, size_t real_stack) {
  if (!FLAG_use_fake_stack) return real_stack;
  AsanThread *t = asanThreadRegistry().GetCurrent();
  if (!t) {
    // TSD is gone, use the real stack.
    return real_stack;
  }
  size_t ptr = t->fake_stack().AllocateStack(size, real_stack);
  // Printf("__asan_stack_malloc %p %zu %p\n", ptr, size, real_stack);
  return ptr;
}

void __asan_stack_free(size_t ptr, size_t size, size_t real_stack) {
  if (!FLAG_use_fake_stack) return;
  if (ptr != real_stack) {
    FakeStack::OnFree(ptr, size, real_stack);
  }
}

// ASan allocator doesn't reserve extra bytes, so normally we would
// just return "size".
size_t __asan_get_estimated_allocated_size(size_t size) {
  if (size == 0) return 1;
  return Min(size, kMaxAllowedMallocSize);
}

bool __asan_get_ownership(const void *p) {
  return malloc_info.AllocationSize((uintptr_t)p) > 0;
}

size_t __asan_get_allocated_size(const void *p) {
  if (p == NULL) return 0;
  size_t allocated_size = malloc_info.AllocationSize((uintptr_t)p);
  // Die if p is not malloced or if it is already freed.
  if (allocated_size == 0) {
    Report("ERROR: AddressSanitizer attempting to call "
           "__asan_get_allocated_size() for pointer which is "
           "not owned: %p\n", p);
    PRINT_CURRENT_STACK();
    Describe((uintptr_t)p, 1);
    ShowStatsAndAbort();
  }
  return allocated_size;
}