summaryrefslogtreecommitdiff
path: root/lib/asan/asan_allocator.cc
blob: 9ef1e28d43c4e8258687568717df0ddb04108976 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
//===-- asan_allocator.cc -------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is a part of AddressSanitizer, an address sanity checker.
//
// Implementation of ASan's memory allocator.
// Evey piece of memory (AsanChunk) allocated by the allocator
// has a left redzone of REDZONE bytes and
// a right redzone such that the end of the chunk is aligned by REDZONE
// (i.e. the right redzone is between 0 and REDZONE-1).
// The left redzone is always poisoned.
// The right redzone is poisoned on malloc, the body is poisoned on free.
// Once freed, a chunk is moved to a quarantine (fifo list).
// After quarantine, a chunk is returned to freelists.
//
// The left redzone contains ASan's internal data and the stack trace of
// the malloc call.
// Once freed, the body of the chunk contains the stack trace of the free call.
//
//===----------------------------------------------------------------------===//
#include "asan_allocator.h"

#if ASAN_ALLOCATOR_VERSION == 1
#include "asan_interceptors.h"
#include "asan_internal.h"
#include "asan_lock.h"
#include "asan_mapping.h"
#include "asan_stats.h"
#include "asan_report.h"
#include "asan_thread.h"
#include "asan_thread_registry.h"
#include "sanitizer/asan_interface.h"
#include "sanitizer_common/sanitizer_atomic.h"

namespace __asan {

#define REDZONE ((uptr)(flags()->redzone))
static const uptr kMinAllocSize = REDZONE * 2;
static const u64 kMaxAvailableRam = 128ULL << 30;  // 128G
static const uptr kMaxThreadLocalQuarantine = 1 << 20;  // 1M

static const uptr kMinMmapSize = (ASAN_LOW_MEMORY) ? 4UL << 17 : 4UL << 20;
static const uptr kMaxSizeForThreadLocalFreeList =
    (ASAN_LOW_MEMORY) ? 1 << 15 : 1 << 17;

// Size classes less than kMallocSizeClassStep are powers of two.
// All other size classes are multiples of kMallocSizeClassStep.
static const uptr kMallocSizeClassStepLog = 26;
static const uptr kMallocSizeClassStep = 1UL << kMallocSizeClassStepLog;

static const uptr kMaxAllowedMallocSize =
    (SANITIZER_WORDSIZE == 32) ? 3UL << 30 : 8UL << 30;

static inline uptr SizeClassToSize(u8 size_class) {
  CHECK(size_class < kNumberOfSizeClasses);
  if (size_class <= kMallocSizeClassStepLog) {
    return 1UL << size_class;
  } else {
    return (size_class - kMallocSizeClassStepLog) * kMallocSizeClassStep;
  }
}

static inline u8 SizeToSizeClass(uptr size) {
  u8 res = 0;
  if (size <= kMallocSizeClassStep) {
    uptr rounded = RoundUpToPowerOfTwo(size);
    res = Log2(rounded);
  } else {
    res = ((size + kMallocSizeClassStep - 1) / kMallocSizeClassStep)
        + kMallocSizeClassStepLog;
  }
  CHECK(res < kNumberOfSizeClasses);
  CHECK(size <= SizeClassToSize(res));
  return res;
}

// Given REDZONE bytes, we need to mark first size bytes
// as addressable and the rest REDZONE-size bytes as unaddressable.
static void PoisonHeapPartialRightRedzone(uptr mem, uptr size) {
  CHECK(size <= REDZONE);
  CHECK(IsAligned(mem, REDZONE));
  CHECK(IsPowerOfTwo(SHADOW_GRANULARITY));
  CHECK(IsPowerOfTwo(REDZONE));
  CHECK(REDZONE >= SHADOW_GRANULARITY);
  PoisonShadowPartialRightRedzone(mem, size, REDZONE,
                                  kAsanHeapRightRedzoneMagic);
}

static u8 *MmapNewPagesAndPoisonShadow(uptr size) {
  CHECK(IsAligned(size, GetPageSizeCached()));
  u8 *res = (u8*)MmapOrDie(size, __FUNCTION__);
  PoisonShadow((uptr)res, size, kAsanHeapLeftRedzoneMagic);
  if (flags()->debug) {
    Printf("ASAN_MMAP: [%p, %p)\n", res, res + size);
  }
  return res;
}

// Every chunk of memory allocated by this allocator can be in one of 3 states:
// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
//
// The pseudo state CHUNK_MEMALIGN is used to mark that the address is not
// the beginning of a AsanChunk (in which the actual chunk resides at
// this - this->used_size).
//
// The magic numbers for the enum values are taken randomly.
enum {
  CHUNK_AVAILABLE  = 0x57,
  CHUNK_ALLOCATED  = 0x32,
  CHUNK_QUARANTINE = 0x19,
  CHUNK_MEMALIGN   = 0xDC
};

struct ChunkBase {
  // First 8 bytes.
  uptr  chunk_state : 8;
  uptr  alloc_tid   : 24;
  uptr  size_class  : 8;
  uptr  free_tid    : 24;

  // Second 8 bytes.
  uptr alignment_log : 8;
  uptr used_size : FIRST_32_SECOND_64(32, 56);  // Size requested by the user.

  // This field may overlap with the user area and thus should not
  // be used while the chunk is in CHUNK_ALLOCATED state.
  AsanChunk *next;

  // Typically the beginning of the user-accessible memory is 'this'+REDZONE
  // and is also aligned by REDZONE. However, if the memory is allocated
  // by memalign, the alignment might be higher and the user-accessible memory
  // starts at the first properly aligned address after 'this'.
  uptr Beg() { return RoundUpTo((uptr)this + 1, 1 << alignment_log); }
  uptr Size() { return SizeClassToSize(size_class); }
  u8 SizeClass() { return size_class; }
};

struct AsanChunk: public ChunkBase {
  u32 *compressed_alloc_stack() {
    return (u32*)((uptr)this + sizeof(ChunkBase));
  }
  u32 *compressed_free_stack() {
    return (u32*)((uptr)this + Max((uptr)REDZONE, (uptr)sizeof(ChunkBase)));
  }

  // The left redzone after the ChunkBase is given to the alloc stack trace.
  uptr compressed_alloc_stack_size() {
    if (REDZONE < sizeof(ChunkBase)) return 0;
    return (REDZONE - sizeof(ChunkBase)) / sizeof(u32);
  }
  uptr compressed_free_stack_size() {
    if (REDZONE < sizeof(ChunkBase)) return 0;
    return (REDZONE) / sizeof(u32);
  }
};

uptr AsanChunkView::Beg() { return chunk_->Beg(); }
uptr AsanChunkView::End() { return Beg() + UsedSize(); }
uptr AsanChunkView::UsedSize() { return chunk_->used_size; }
uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }

void AsanChunkView::GetAllocStack(StackTrace *stack) {
  StackTrace::UncompressStack(stack, chunk_->compressed_alloc_stack(),
                              chunk_->compressed_alloc_stack_size());
}

void AsanChunkView::GetFreeStack(StackTrace *stack) {
  StackTrace::UncompressStack(stack, chunk_->compressed_free_stack(),
                              chunk_->compressed_free_stack_size());
}

static AsanChunk *PtrToChunk(uptr ptr) {
  AsanChunk *m = (AsanChunk*)(ptr - REDZONE);
  if (m->chunk_state == CHUNK_MEMALIGN) {
    m = (AsanChunk*)((uptr)m - m->used_size);
  }
  return m;
}

void AsanChunkFifoList::PushList(AsanChunkFifoList *q) {
  CHECK(q->size() > 0);
  size_ += q->size();
  append_back(q);
  q->clear();
}

void AsanChunkFifoList::Push(AsanChunk *n) {
  push_back(n);
  size_ += n->Size();
}

// Interesting performance observation: this function takes up to 15% of overal
// allocator time. That's because *first_ has been evicted from cache long time
// ago. Not sure if we can or want to do anything with this.
AsanChunk *AsanChunkFifoList::Pop() {
  CHECK(first_);
  AsanChunk *res = front();
  size_ -= res->Size();
  pop_front();
  return res;
}

// All pages we ever allocated.
struct PageGroup {
  uptr beg;
  uptr end;
  uptr size_of_chunk;
  uptr last_chunk;
  bool InRange(uptr addr) {
    return addr >= beg && addr < end;
  }
};

class MallocInfo {
 public:
  explicit MallocInfo(LinkerInitialized x) : mu_(x) { }

  AsanChunk *AllocateChunks(u8 size_class, uptr n_chunks) {
    AsanChunk *m = 0;
    AsanChunk **fl = &free_lists_[size_class];
    {
      ScopedLock lock(&mu_);
      for (uptr i = 0; i < n_chunks; i++) {
        if (!(*fl)) {
          *fl = GetNewChunks(size_class);
        }
        AsanChunk *t = *fl;
        *fl = t->next;
        t->next = m;
        CHECK(t->chunk_state == CHUNK_AVAILABLE);
        m = t;
      }
    }
    return m;
  }

  void SwallowThreadLocalMallocStorage(AsanThreadLocalMallocStorage *x,
                                       bool eat_free_lists) {
    CHECK(flags()->quarantine_size > 0);
    ScopedLock lock(&mu_);
    AsanChunkFifoList *q = &x->quarantine_;
    if (q->size() > 0) {
      quarantine_.PushList(q);
      while (quarantine_.size() > (uptr)flags()->quarantine_size) {
        QuarantinePop();
      }
    }
    if (eat_free_lists) {
      for (uptr size_class = 0; size_class < kNumberOfSizeClasses;
           size_class++) {
        AsanChunk *m = x->free_lists_[size_class];
        while (m) {
          AsanChunk *t = m->next;
          m->next = free_lists_[size_class];
          free_lists_[size_class] = m;
          m = t;
        }
        x->free_lists_[size_class] = 0;
      }
    }
  }

  void BypassThreadLocalQuarantine(AsanChunk *chunk) {
    ScopedLock lock(&mu_);
    quarantine_.Push(chunk);
  }

  AsanChunk *FindChunkByAddr(uptr addr) {
    ScopedLock lock(&mu_);
    return FindChunkByAddrUnlocked(addr);
  }

  uptr AllocationSize(uptr ptr) {
    if (!ptr) return 0;
    ScopedLock lock(&mu_);

    // Make sure this is our chunk and |ptr| actually points to the beginning
    // of the allocated memory.
    AsanChunk *m = FindChunkByAddrUnlocked(ptr);
    if (!m || m->Beg() != ptr) return 0;

    if (m->chunk_state == CHUNK_ALLOCATED) {
      return m->used_size;
    } else {
      return 0;
    }
  }

  void ForceLock() {
    mu_.Lock();
  }

  void ForceUnlock() {
    mu_.Unlock();
  }

  void PrintStatus() {
    ScopedLock lock(&mu_);
    uptr malloced = 0;

    Printf(" MallocInfo: in quarantine: %zu malloced: %zu; ",
           quarantine_.size() >> 20, malloced >> 20);
    for (uptr j = 1; j < kNumberOfSizeClasses; j++) {
      AsanChunk *i = free_lists_[j];
      if (!i) continue;
      uptr t = 0;
      for (; i; i = i->next) {
        t += i->Size();
      }
      Printf("%zu:%zu ", j, t >> 20);
    }
    Printf("\n");
  }

  PageGroup *FindPageGroup(uptr addr) {
    ScopedLock lock(&mu_);
    return FindPageGroupUnlocked(addr);
  }

 private:
  PageGroup *FindPageGroupUnlocked(uptr addr) {
    int n = atomic_load(&n_page_groups_, memory_order_relaxed);
    // If the page groups are not sorted yet, sort them.
    if (n_sorted_page_groups_ < n) {
      SortArray((uptr*)page_groups_, n);
      n_sorted_page_groups_ = n;
    }
    // Binary search over the page groups.
    int beg = 0, end = n;
    while (beg < end) {
      int med = (beg + end) / 2;
      uptr g = (uptr)page_groups_[med];
      if (addr > g) {
        // 'g' points to the end of the group, so 'addr'
        // may not belong to page_groups_[med] or any previous group.
        beg = med + 1;
      } else {
        // 'addr' may belong to page_groups_[med] or a previous group.
        end = med;
      }
    }
    if (beg >= n)
      return 0;
    PageGroup *g = page_groups_[beg];
    CHECK(g);
    if (g->InRange(addr))
      return g;
    return 0;
  }

  // We have an address between two chunks, and we want to report just one.
  AsanChunk *ChooseChunk(uptr addr,
                         AsanChunk *left_chunk, AsanChunk *right_chunk) {
    // Prefer an allocated chunk or a chunk from quarantine.
    if (left_chunk->chunk_state == CHUNK_AVAILABLE &&
        right_chunk->chunk_state != CHUNK_AVAILABLE)
      return right_chunk;
    if (right_chunk->chunk_state == CHUNK_AVAILABLE &&
        left_chunk->chunk_state != CHUNK_AVAILABLE)
      return left_chunk;
    // Choose based on offset.
    uptr l_offset = 0, r_offset = 0;
    CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
    CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
    if (l_offset < r_offset)
      return left_chunk;
    return right_chunk;
  }

  AsanChunk *FindChunkByAddrUnlocked(uptr addr) {
    PageGroup *g = FindPageGroupUnlocked(addr);
    if (!g) return 0;
    CHECK(g->size_of_chunk);
    uptr offset_from_beg = addr - g->beg;
    uptr this_chunk_addr = g->beg +
        (offset_from_beg / g->size_of_chunk) * g->size_of_chunk;
    CHECK(g->InRange(this_chunk_addr));
    AsanChunk *m = (AsanChunk*)this_chunk_addr;
    CHECK(m->chunk_state == CHUNK_ALLOCATED ||
          m->chunk_state == CHUNK_AVAILABLE ||
          m->chunk_state == CHUNK_QUARANTINE);
    uptr offset = 0;
    AsanChunkView m_view(m);
    if (m_view.AddrIsInside(addr, 1, &offset))
      return m;

    if (m_view.AddrIsAtRight(addr, 1, &offset)) {
      if (this_chunk_addr == g->last_chunk)  // rightmost chunk
        return m;
      uptr right_chunk_addr = this_chunk_addr + g->size_of_chunk;
      CHECK(g->InRange(right_chunk_addr));
      return ChooseChunk(addr, m, (AsanChunk*)right_chunk_addr);
    } else {
      CHECK(m_view.AddrIsAtLeft(addr, 1, &offset));
      if (this_chunk_addr == g->beg)  // leftmost chunk
        return m;
      uptr left_chunk_addr = this_chunk_addr - g->size_of_chunk;
      CHECK(g->InRange(left_chunk_addr));
      return ChooseChunk(addr, (AsanChunk*)left_chunk_addr, m);
    }
  }

  void QuarantinePop() {
    CHECK(quarantine_.size() > 0);
    AsanChunk *m = quarantine_.Pop();
    CHECK(m);
    // if (F_v >= 2) Printf("MallocInfo::pop %p\n", m);

    CHECK(m->chunk_state == CHUNK_QUARANTINE);
    m->chunk_state = CHUNK_AVAILABLE;
    PoisonShadow((uptr)m, m->Size(), kAsanHeapLeftRedzoneMagic);
    CHECK(m->alloc_tid >= 0);
    CHECK(m->free_tid >= 0);

    uptr size_class = m->SizeClass();
    m->next = free_lists_[size_class];
    free_lists_[size_class] = m;

    // Statistics.
    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    thread_stats.real_frees++;
    thread_stats.really_freed += m->used_size;
    thread_stats.really_freed_redzones += m->Size() - m->used_size;
    thread_stats.really_freed_by_size[m->SizeClass()]++;
  }

  // Get a list of newly allocated chunks.
  AsanChunk *GetNewChunks(u8 size_class) {
    uptr size = SizeClassToSize(size_class);
    CHECK(IsPowerOfTwo(kMinMmapSize));
    CHECK(size < kMinMmapSize || (size % kMinMmapSize) == 0);
    uptr mmap_size = Max(size, kMinMmapSize);
    uptr n_chunks = mmap_size / size;
    CHECK(n_chunks * size == mmap_size);
    uptr PageSize = GetPageSizeCached();
    if (size < PageSize) {
      // Size is small, just poison the last chunk.
      n_chunks--;
    } else {
      // Size is large, allocate an extra page at right and poison it.
      mmap_size += PageSize;
    }
    CHECK(n_chunks > 0);
    u8 *mem = MmapNewPagesAndPoisonShadow(mmap_size);

    // Statistics.
    AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
    thread_stats.mmaps++;
    thread_stats.mmaped += mmap_size;
    thread_stats.mmaped_by_size[size_class] += n_chunks;

    AsanChunk *res = 0;
    for (uptr i = 0; i < n_chunks; i++) {
      AsanChunk *m = (AsanChunk*)(mem + i * size);
      m->chunk_state = CHUNK_AVAILABLE;
      m->size_class = size_class;
      m->next = res;
      res = m;
    }
    PageGroup *pg = (PageGroup*)(mem + n_chunks * size);
    // This memory is already poisoned, no need to poison it again.
    pg->beg = (uptr)mem;
    pg->end = pg->beg + mmap_size;
    pg->size_of_chunk = size;
    pg->last_chunk = (uptr)(mem + size * (n_chunks - 1));
    int idx = atomic_fetch_add(&n_page_groups_, 1, memory_order_relaxed);
    CHECK(idx < (int)ARRAY_SIZE(page_groups_));
    page_groups_[idx] = pg;
    return res;
  }

  AsanChunk *free_lists_[kNumberOfSizeClasses];
  AsanChunkFifoList quarantine_;
  AsanLock mu_;

  PageGroup *page_groups_[kMaxAvailableRam / kMinMmapSize];
  atomic_uint32_t n_page_groups_;
  int n_sorted_page_groups_;
};

static MallocInfo malloc_info(LINKER_INITIALIZED);

void AsanThreadLocalMallocStorage::CommitBack() {
  malloc_info.SwallowThreadLocalMallocStorage(this, true);
}

AsanChunkView FindHeapChunkByAddress(uptr address) {
  return AsanChunkView(malloc_info.FindChunkByAddr(address));
}

static u8 *Allocate(uptr alignment, uptr size, StackTrace *stack) {
  __asan_init();
  CHECK(stack);
  if (size == 0) {
    size = 1;  // TODO(kcc): do something smarter
  }
  CHECK(IsPowerOfTwo(alignment));
  uptr rounded_size = RoundUpTo(size, REDZONE);
  uptr needed_size = rounded_size + REDZONE;
  if (alignment > REDZONE) {
    needed_size += alignment;
  }
  CHECK(IsAligned(needed_size, REDZONE));
  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
           (void*)size);
    return 0;
  }

  u8 size_class = SizeToSizeClass(needed_size);
  uptr size_to_allocate = SizeClassToSize(size_class);
  CHECK(size_to_allocate >= kMinAllocSize);
  CHECK(size_to_allocate >= needed_size);
  CHECK(IsAligned(size_to_allocate, REDZONE));

  if (flags()->verbosity >= 3) {
    Printf("Allocate align: %zu size: %zu class: %u real: %zu\n",
         alignment, size, size_class, size_to_allocate);
  }

  AsanThread *t = asanThreadRegistry().GetCurrent();
  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
  // Statistics
  thread_stats.mallocs++;
  thread_stats.malloced += size;
  thread_stats.malloced_redzones += size_to_allocate - size;
  thread_stats.malloced_by_size[size_class]++;

  AsanChunk *m = 0;
  if (!t || size_to_allocate >= kMaxSizeForThreadLocalFreeList) {
    // get directly from global storage.
    m = malloc_info.AllocateChunks(size_class, 1);
    thread_stats.malloc_large++;
  } else {
    // get from the thread-local storage.
    AsanChunk **fl = &t->malloc_storage().free_lists_[size_class];
    if (!*fl) {
      uptr n_new_chunks = kMaxSizeForThreadLocalFreeList / size_to_allocate;
      *fl = malloc_info.AllocateChunks(size_class, n_new_chunks);
      thread_stats.malloc_small_slow++;
    }
    m = *fl;
    *fl = (*fl)->next;
  }
  CHECK(m);
  CHECK(m->chunk_state == CHUNK_AVAILABLE);
  m->chunk_state = CHUNK_ALLOCATED;
  m->next = 0;
  CHECK(m->Size() == size_to_allocate);
  uptr addr = (uptr)m + REDZONE;
  CHECK(addr <= (uptr)m->compressed_free_stack());

  if (alignment > REDZONE && (addr & (alignment - 1))) {
    addr = RoundUpTo(addr, alignment);
    CHECK((addr & (alignment - 1)) == 0);
    AsanChunk *p = (AsanChunk*)(addr - REDZONE);
    p->chunk_state = CHUNK_MEMALIGN;
    p->used_size = (uptr)p - (uptr)m;
    m->alignment_log = Log2(alignment);
    CHECK(m->Beg() == addr);
  } else {
    m->alignment_log = Log2(REDZONE);
  }
  CHECK(m == PtrToChunk(addr));
  m->used_size = size;
  CHECK(m->Beg() == addr);
  m->alloc_tid = t ? t->tid() : 0;
  m->free_tid   = kInvalidTid;
  StackTrace::CompressStack(stack, m->compressed_alloc_stack(),
                                m->compressed_alloc_stack_size());
  PoisonShadow(addr, rounded_size, 0);
  if (size < rounded_size) {
    PoisonHeapPartialRightRedzone(addr + rounded_size - REDZONE,
                                  size & (REDZONE - 1));
  }
  if (size <= (uptr)(flags()->max_malloc_fill_size)) {
    REAL(memset)((void*)addr, 0, rounded_size);
  }
  return (u8*)addr;
}

static void Deallocate(u8 *ptr, StackTrace *stack) {
  if (!ptr) return;
  CHECK(stack);

  if (flags()->debug) {
    CHECK(malloc_info.FindPageGroup((uptr)ptr));
  }

  // Printf("Deallocate %p\n", ptr);
  AsanChunk *m = PtrToChunk((uptr)ptr);

  // Flip the chunk_state atomically to avoid race on double-free.
  u8 old_chunk_state = atomic_exchange((atomic_uint8_t*)m, CHUNK_QUARANTINE,
                                       memory_order_acq_rel);

  if (old_chunk_state == CHUNK_QUARANTINE) {
    ReportDoubleFree((uptr)ptr, stack);
  } else if (old_chunk_state != CHUNK_ALLOCATED) {
    ReportFreeNotMalloced((uptr)ptr, stack);
  }
  CHECK(old_chunk_state == CHUNK_ALLOCATED);
  // With REDZONE==16 m->next is in the user area, otherwise it should be 0.
  CHECK(REDZONE <= 16 || !m->next);
  CHECK(m->free_tid == kInvalidTid);
  CHECK(m->alloc_tid >= 0);
  AsanThread *t = asanThreadRegistry().GetCurrent();
  m->free_tid = t ? t->tid() : 0;
  StackTrace::CompressStack(stack, m->compressed_free_stack(),
                                m->compressed_free_stack_size());
  uptr rounded_size = RoundUpTo(m->used_size, REDZONE);
  PoisonShadow((uptr)ptr, rounded_size, kAsanHeapFreeMagic);

  // Statistics.
  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
  thread_stats.frees++;
  thread_stats.freed += m->used_size;
  thread_stats.freed_by_size[m->SizeClass()]++;

  CHECK(m->chunk_state == CHUNK_QUARANTINE);

  if (t) {
    AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
    ms->quarantine_.Push(m);

    if (ms->quarantine_.size() > kMaxThreadLocalQuarantine) {
      malloc_info.SwallowThreadLocalMallocStorage(ms, false);
    }
  } else {
    malloc_info.BypassThreadLocalQuarantine(m);
  }
}

static u8 *Reallocate(u8 *old_ptr, uptr new_size,
                           StackTrace *stack) {
  CHECK(old_ptr && new_size);

  // Statistics.
  AsanStats &thread_stats = asanThreadRegistry().GetCurrentThreadStats();
  thread_stats.reallocs++;
  thread_stats.realloced += new_size;

  AsanChunk *m = PtrToChunk((uptr)old_ptr);
  CHECK(m->chunk_state == CHUNK_ALLOCATED);
  uptr old_size = m->used_size;
  uptr memcpy_size = Min(new_size, old_size);
  u8 *new_ptr = Allocate(0, new_size, stack);
  if (new_ptr) {
    CHECK(REAL(memcpy) != 0);
    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
    Deallocate(old_ptr, stack);
  }
  return new_ptr;
}

}  // namespace __asan

#if !SANITIZER_SUPPORTS_WEAK_HOOKS
// Provide default (no-op) implementation of malloc hooks.
extern "C" {
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
void __asan_malloc_hook(void *ptr, uptr size) {
  (void)ptr;
  (void)size;
}
SANITIZER_WEAK_ATTRIBUTE SANITIZER_INTERFACE_ATTRIBUTE
void __asan_free_hook(void *ptr) {
  (void)ptr;
}
}  // extern "C"
#endif

namespace __asan {

SANITIZER_INTERFACE_ATTRIBUTE
void *asan_memalign(uptr alignment, uptr size, StackTrace *stack) {
  void *ptr = (void*)Allocate(alignment, size, stack);
  ASAN_MALLOC_HOOK(ptr, size);
  return ptr;
}

SANITIZER_INTERFACE_ATTRIBUTE
void asan_free(void *ptr, StackTrace *stack) {
  ASAN_FREE_HOOK(ptr);
  Deallocate((u8*)ptr, stack);
}

SANITIZER_INTERFACE_ATTRIBUTE
void *asan_malloc(uptr size, StackTrace *stack) {
  void *ptr = (void*)Allocate(0, size, stack);
  ASAN_MALLOC_HOOK(ptr, size);
  return ptr;
}

void *asan_calloc(uptr nmemb, uptr size, StackTrace *stack) {
  void *ptr = (void*)Allocate(0, nmemb * size, stack);
  if (ptr)
    REAL(memset)(ptr, 0, nmemb * size);
  ASAN_MALLOC_HOOK(ptr, size);
  return ptr;
}

void *asan_realloc(void *p, uptr size, StackTrace *stack) {
  if (p == 0) {
    void *ptr = (void*)Allocate(0, size, stack);
    ASAN_MALLOC_HOOK(ptr, size);
    return ptr;
  } else if (size == 0) {
    ASAN_FREE_HOOK(p);
    Deallocate((u8*)p, stack);
    return 0;
  }
  return Reallocate((u8*)p, size, stack);
}

void *asan_valloc(uptr size, StackTrace *stack) {
  void *ptr = (void*)Allocate(GetPageSizeCached(), size, stack);
  ASAN_MALLOC_HOOK(ptr, size);
  return ptr;
}

void *asan_pvalloc(uptr size, StackTrace *stack) {
  uptr PageSize = GetPageSizeCached();
  size = RoundUpTo(size, PageSize);
  if (size == 0) {
    // pvalloc(0) should allocate one page.
    size = PageSize;
  }
  void *ptr = (void*)Allocate(PageSize, size, stack);
  ASAN_MALLOC_HOOK(ptr, size);
  return ptr;
}

int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
                          StackTrace *stack) {
  void *ptr = Allocate(alignment, size, stack);
  CHECK(IsAligned((uptr)ptr, alignment));
  ASAN_MALLOC_HOOK(ptr, size);
  *memptr = ptr;
  return 0;
}

uptr asan_malloc_usable_size(void *ptr, StackTrace *stack) {
  CHECK(stack);
  if (ptr == 0) return 0;
  uptr usable_size = malloc_info.AllocationSize((uptr)ptr);
  if (flags()->check_malloc_usable_size && (usable_size == 0)) {
    ReportMallocUsableSizeNotOwned((uptr)ptr, stack);
  }
  return usable_size;
}

uptr asan_mz_size(const void *ptr) {
  return malloc_info.AllocationSize((uptr)ptr);
}

void asan_mz_force_lock() {
  malloc_info.ForceLock();
}

void asan_mz_force_unlock() {
  malloc_info.ForceUnlock();
}

}  // namespace __asan

// ---------------------- Interface ---------------- {{{1
using namespace __asan;  // NOLINT

// ASan allocator doesn't reserve extra bytes, so normally we would
// just return "size".
uptr __asan_get_estimated_allocated_size(uptr size) {
  if (size == 0) return 1;
  return Min(size, kMaxAllowedMallocSize);
}

bool __asan_get_ownership(const void *p) {
  return malloc_info.AllocationSize((uptr)p) > 0;
}

uptr __asan_get_allocated_size(const void *p) {
  if (p == 0) return 0;
  uptr allocated_size = malloc_info.AllocationSize((uptr)p);
  // Die if p is not malloced or if it is already freed.
  if (allocated_size == 0) {
    GET_STACK_TRACE_FATAL_HERE;
    ReportAsanGetAllocatedSizeNotOwned((uptr)p, &stack);
  }
  return allocated_size;
}
#endif  // ASAN_ALLOCATOR_VERSION