summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorYuval Peress <peress@chromium.org>2020-07-14 18:44:20 -0600
committerCommit Bot <commit-bot@chromium.org>2020-08-18 22:04:40 +0000
commit474c6a5321de1a56c0751963d20843a5d4eaf7c1 (patch)
tree7a05135570fd3919df069767a8f0db3dda4a5b47
parentbc932aea929e058ab7561fc341fbea59d18240a0 (diff)
downloadchrome-ec-474c6a5321de1a56c0751963d20843a5d4eaf7c1.tar.gz
common: gyro_cal: Implement gyroscope calibration
Implement the calibration code for the gyroscope which is ported over from AOSP's https://android.googlesource.com/device/google/contexthub/+/refs/heads/master/firmware/os/algos/calibration/gyroscope/ BUG=b:138303429,b:137204366,chromium:1023858 TEST=Added unit tests BRANCH=None Signed-off-by: Yuval Peress <peress@chromium.org> Change-Id: Ic1ab2efb66565cda0a96c9c06722136fb184df77 Reviewed-on: https://chromium-review.googlesource.com/c/chromiumos/platform/ec/+/2244934 Reviewed-by: Jack Rosenthal <jrosenth@chromium.org>
-rw-r--r--common/build.mk2
-rw-r--r--common/gyro_cal.c630
-rw-r--r--common/gyro_still_det.c242
-rw-r--r--common/online_calibration.c156
-rw-r--r--include/gyro_cal.h163
-rw-r--r--include/gyro_still_det.h91
-rw-r--r--include/math_util.h7
-rw-r--r--test/build.mk2
-rw-r--r--test/gyro_cal.c611
-rw-r--r--test/gyro_cal.tasklist10
-rw-r--r--test/test_config.h8
11 files changed, 1904 insertions, 18 deletions
diff --git a/common/build.mk b/common/build.mk
index 0a7fbe86cc..21a268f507 100644
--- a/common/build.mk
+++ b/common/build.mk
@@ -120,7 +120,7 @@ common-$(CONFIG_RWSIG_TYPE_RWSIG)+=vboot/vb21_lib.o
common-$(CONFIG_MATH_UTIL)+=math_util.o
common-$(CONFIG_ONLINE_CALIB)+=stillness_detector.o kasa.o math_util.o \
mat44.o vec3.o newton_fit.o accel_cal.o online_calibration.o \
- mkbp_event.o mag_cal.o math_util.o mat33.o
+ mkbp_event.o mag_cal.o math_util.o mat33.o gyro_cal.o gyro_still_det.o
common-$(CONFIG_SHA1)+= sha1.o
common-$(CONFIG_SHA256)+=sha256.o
common-$(CONFIG_SOFTWARE_CLZ)+=clz.o
diff --git a/common/gyro_cal.c b/common/gyro_cal.c
new file mode 100644
index 0000000000..572e401b18
--- /dev/null
+++ b/common/gyro_cal.c
@@ -0,0 +1,630 @@
+/* Copyright 2020 The Chromium OS Authors. All rights reserved.
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "gyro_cal.h"
+#include "string.h"
+#include <stdbool.h>
+
+/*
+ * Maximum gyro bias correction (should be set based on expected max bias
+ * of the given sensor). [rad/sec]
+ */
+#define MAX_GYRO_BIAS FLOAT_TO_FP(0.2f)
+
+static void device_stillness_check(struct gyro_cal *gyro_cal,
+ uint32_t sample_time_us);
+
+static void compute_gyro_cal(struct gyro_cal *gyro_cal,
+ uint32_t calibration_time_us);
+
+static void check_window(struct gyro_cal *gyro_cal, uint32_t sample_time_us);
+
+/** Data tracker command enumeration. */
+enum gyro_cal_tracker_command {
+ /** Resets the local data used for data tracking. */
+ DO_RESET = 0,
+ /** Updates the local tracking data. */
+ DO_UPDATE_DATA,
+ /** Stores intermediate results for later recall. */
+ DO_STORE_DATA,
+ /** Computes and provides the results of the gate function. */
+ DO_EVALUATE
+};
+
+/**
+ * Reset the gyro_cal's temperature statistics.
+ *
+ * @param gyro_cal Pointer to the gyro_cal data structure.
+ */
+static void gyro_temperature_stats_tracker_reset(struct gyro_cal *gyro_cal);
+
+/**
+ * Updates the temperature min/max and mean during the stillness period.
+ *
+ * @param gyro_cal Pointer to the gyro_cal data structure.
+ * @param temperature_kelvin New temperature sample to include.
+ */
+static void gyro_temperature_stats_tracker_update(struct gyro_cal *gyro_cal,
+ int temperature_kelvin);
+
+/**
+ * Store the tracker data to be used for calculation.
+ *
+ * @param gyro_cal Pointer to the gyro_cal data structure.
+ */
+static void gyro_temperature_stats_tracker_store(struct gyro_cal *gyro_cal);
+
+/**
+ * Compute whether or not the temperature values are in range.
+ *
+ * @param gyro_cal Pointer to the gyro_cal data structure.
+ * @return 'true' if the min and max temperature values exceed the
+ * range set by 'temperature_delta_limit_kelvin'.
+ */
+static bool gyro_temperature_stats_tracker_eval(struct gyro_cal *gyro_cal);
+
+/**
+ * Tracks the minimum and maximum gyroscope stillness window means.
+ * Returns
+ *
+ * @param gyro_cal Pointer to the gyro_cal data structure.
+ * @param do_this Command enumerator that controls function behavior.
+ */
+static void gyro_still_mean_tracker_reset(struct gyro_cal *gyro_cal);
+
+/**
+ * Compute the min/max window mean values according to 'window_mean_tracker'.
+ *
+ * @param gyro_cal Pointer to the gyro_cal data structure.
+ */
+static void gyro_still_mean_tracker_update(struct gyro_cal *gyro_cal);
+
+/**
+ * Store the most recent "stillness" mean data to the gyro_cal data structure.
+ *
+ * @param gyro_cal Pointer to the gyro_cal data structure.
+ */
+static void gyro_still_mean_tracker_store(struct gyro_cal *gyro_cal);
+
+/**
+ * Compute whether or not the gyroscope window range is within the valid range.
+ *
+ * @param gyro_cal Pointer to the gyro_cal data structure.
+ * @return 'true' when the difference between gyroscope min and max
+ * window means are outside the range set by
+ * 'stillness_mean_delta_limit'.
+ */
+static bool gyro_still_mean_tracker_eval(struct gyro_cal *gyro_cal);
+
+void init_gyro_cal(struct gyro_cal *gyro_cal)
+{
+ gyro_still_mean_tracker_reset(gyro_cal);
+ gyro_temperature_stats_tracker_reset(gyro_cal);
+}
+
+void gyro_cal_get_bias(struct gyro_cal *gyro_cal, fpv3_t bias,
+ int *temperature_kelvin, uint32_t *calibration_time_us)
+{
+ bias[X] = gyro_cal->bias_x;
+ bias[Y] = gyro_cal->bias_y;
+ bias[Z] = gyro_cal->bias_z;
+ *calibration_time_us = gyro_cal->calibration_time_us;
+ *temperature_kelvin = gyro_cal->bias_temperature_kelvin;
+}
+
+void gyro_cal_set_bias(struct gyro_cal *gyro_cal, fpv3_t bias,
+ int temperature_kelvin, uint32_t calibration_time_us)
+{
+ gyro_cal->bias_x = bias[X];
+ gyro_cal->bias_y = bias[Y];
+ gyro_cal->bias_z = bias[Z];
+ gyro_cal->calibration_time_us = calibration_time_us;
+ gyro_cal->bias_temperature_kelvin = temperature_kelvin;
+}
+
+void gyro_cal_remove_bias(struct gyro_cal *gyro_cal, fpv3_t in, fpv3_t out)
+{
+ if (gyro_cal->gyro_calibration_enable) {
+ out[X] = in[X] - gyro_cal->bias_x;
+ out[Y] = in[Y] - gyro_cal->bias_y;
+ out[Z] = in[Z] - gyro_cal->bias_z;
+ }
+}
+
+bool gyro_cal_new_bias_available(struct gyro_cal *gyro_cal)
+{
+ bool new_gyro_cal_available = (gyro_cal->gyro_calibration_enable &&
+ gyro_cal->new_gyro_cal_available);
+
+ /* Clear the flag. */
+ gyro_cal->new_gyro_cal_available = false;
+
+ return new_gyro_cal_available;
+}
+
+void gyro_cal_update_gyro(struct gyro_cal *gyro_cal, uint32_t sample_time_us,
+ fp_t x, fp_t y, fp_t z, int temperature_kelvin)
+{
+ /*
+ * Make sure that a valid window end-time is set, and start the window
+ * timer.
+ */
+ if (gyro_cal->stillness_win_endtime_us <= 0) {
+ gyro_cal->stillness_win_endtime_us =
+ sample_time_us + gyro_cal->window_time_duration_us;
+
+ /* Start the window timer. */
+ gyro_cal->gyro_window_start_us = sample_time_us;
+ }
+
+ /* Update the temperature statistics. */
+ gyro_temperature_stats_tracker_update(gyro_cal, temperature_kelvin);
+
+ /* Pass gyro data to stillness detector */
+ gyro_still_det_update(&gyro_cal->gyro_stillness_detect,
+ gyro_cal->stillness_win_endtime_us,
+ sample_time_us, x, y, z);
+
+ /*
+ * Perform a device stillness check, set next window end-time, and
+ * possibly do a gyro bias calibration and stillness detector reset.
+ */
+ device_stillness_check(gyro_cal, sample_time_us);
+}
+
+void gyro_cal_update_mag(struct gyro_cal *gyro_cal, uint32_t sample_time_us,
+ fp_t x, fp_t y, fp_t z)
+{
+ /* Pass magnetometer data to stillness detector. */
+ gyro_still_det_update(&gyro_cal->mag_stillness_detect,
+ gyro_cal->stillness_win_endtime_us,
+ sample_time_us, x, y, z);
+
+ /* Received a magnetometer sample; incorporate it into detection. */
+ gyro_cal->using_mag_sensor = true;
+
+ /*
+ * Perform a device stillness check, set next window end-time, and
+ * possibly do a gyro bias calibration and stillness detector reset.
+ */
+ device_stillness_check(gyro_cal, sample_time_us);
+}
+
+void gyro_cal_update_accel(struct gyro_cal *gyro_cal, uint32_t sample_time_us,
+ fp_t x, fp_t y, fp_t z)
+{
+ /* Pass accelerometer data to stillnesss detector. */
+ gyro_still_det_update(&gyro_cal->accel_stillness_detect,
+ gyro_cal->stillness_win_endtime_us,
+ sample_time_us, x, y, z);
+
+ /*
+ * Perform a device stillness check, set next window end-time, and
+ * possibly do a gyro bias calibration and stillness detector reset.
+ */
+ device_stillness_check(gyro_cal, sample_time_us);
+}
+
+/**
+ * Handle the case where the device is found to be still. This function should
+ * be called from device_stillness_check.
+ *
+ * @param gyro_cal Pointer to the gyroscope calibration struct.
+ */
+static void handle_device_is_still(struct gyro_cal *gyro_cal)
+{
+ /*
+ * Device is "still" logic:
+ * If not previously still, then record the start time.
+ * If stillness period is too long, then do a calibration.
+ * Otherwise, continue collecting stillness data.
+ */
+ bool stillness_duration_exceeded = false;
+
+ /*
+ * If device was not previously still, set new start timestamp.
+ */
+ if (!gyro_cal->prev_still) {
+ /*
+ * Record the starting timestamp of the current stillness
+ * window. This enables the calculation of total duration of
+ * the stillness period.
+ */
+ gyro_cal->start_still_time_us =
+ gyro_cal->gyro_stillness_detect.window_start_time;
+ }
+
+ /*
+ * Check to see if current stillness period exceeds the desired limit.
+ */
+ stillness_duration_exceeded =
+ gyro_cal->gyro_stillness_detect.last_sample_time >=
+ (gyro_cal->start_still_time_us +
+ gyro_cal->max_still_duration_us);
+
+ /* Track the new stillness mean and temperature data. */
+ gyro_still_mean_tracker_store(gyro_cal);
+ gyro_temperature_stats_tracker_store(gyro_cal);
+
+ if (stillness_duration_exceeded) {
+ /*
+ * The current stillness has gone too long. Do a calibration
+ * with the current data and reset.
+ */
+
+ /*
+ * Updates the gyro bias estimate with the current window data
+ * and resets the stats.
+ */
+ gyro_still_det_reset(&gyro_cal->accel_stillness_detect,
+ /*reset_stats=*/true);
+ gyro_still_det_reset(&gyro_cal->gyro_stillness_detect,
+ /*reset_stats=*/true);
+ gyro_still_det_reset(&gyro_cal->mag_stillness_detect,
+ /*reset_stats=*/true);
+
+ /*
+ * Resets the local calculations because the stillness
+ * period is over.
+ */
+ gyro_still_mean_tracker_reset(gyro_cal);
+ gyro_temperature_stats_tracker_reset(gyro_cal);
+
+ /* Computes a new gyro offset estimate. */
+ compute_gyro_cal(
+ gyro_cal,
+ gyro_cal->gyro_stillness_detect.last_sample_time);
+
+ /*
+ * Update stillness flag. Force the start of a new
+ * stillness period.
+ */
+ gyro_cal->prev_still = false;
+ } else {
+ /* Continue collecting stillness data. */
+
+ /* Extend the stillness period. */
+ gyro_still_det_reset(&gyro_cal->accel_stillness_detect,
+ /*reset_stats=*/false);
+ gyro_still_det_reset(&gyro_cal->gyro_stillness_detect,
+ /*reset_stats=*/false);
+ gyro_still_det_reset(&gyro_cal->mag_stillness_detect,
+ /*reset_stats=*/false);
+
+ /* Update the stillness flag. */
+ gyro_cal->prev_still = true;
+ }
+}
+
+static void handle_device_not_still(struct gyro_cal *gyro_cal)
+{
+ /* Device is NOT still; motion detected. */
+
+ /*
+ * If device was previously still and the total stillness
+ * duration is not "too short", then do a calibration with the
+ * data accumulated thus far.
+ */
+ bool stillness_duration_too_short =
+ gyro_cal->gyro_stillness_detect.window_start_time <
+ (gyro_cal->start_still_time_us +
+ gyro_cal->min_still_duration_us);
+
+ if (gyro_cal->prev_still && !stillness_duration_too_short)
+ compute_gyro_cal(
+ gyro_cal,
+ gyro_cal->gyro_stillness_detect.window_start_time);
+
+ /* Reset the stillness detectors and the stats. */
+ gyro_still_det_reset(&gyro_cal->accel_stillness_detect,
+ /*reset_stats=*/true);
+ gyro_still_det_reset(&gyro_cal->gyro_stillness_detect,
+ /*reset_stats=*/true);
+ gyro_still_det_reset(&gyro_cal->mag_stillness_detect,
+ /*reset_stats=*/true);
+
+ /* Resets the temperature and sensor mean data. */
+ gyro_temperature_stats_tracker_reset(gyro_cal);
+ gyro_still_mean_tracker_reset(gyro_cal);
+
+ /* Update stillness flag. */
+ gyro_cal->prev_still = false;
+}
+
+void device_stillness_check(struct gyro_cal *gyro_cal, uint32_t sample_time_us)
+{
+ bool min_max_temp_exceeded = false;
+ bool mean_not_stable = false;
+ bool device_is_still = false;
+ fp_t conf_not_rot = INT_TO_FP(0);
+ fp_t conf_not_accel = INT_TO_FP(0);
+ fp_t conf_still = INT_TO_FP(0);
+
+ /* Check the window timer. */
+ check_window(gyro_cal, sample_time_us);
+
+ /* Is there enough data to do a stillness calculation? */
+ if ((!gyro_cal->mag_stillness_detect.stillness_window_ready &&
+ gyro_cal->using_mag_sensor) ||
+ !gyro_cal->accel_stillness_detect.stillness_window_ready ||
+ !gyro_cal->gyro_stillness_detect.stillness_window_ready)
+ return; /* Not yet, wait for more data. */
+
+ /* Set the next window end-time for the stillness detectors. */
+ gyro_cal->stillness_win_endtime_us =
+ sample_time_us + gyro_cal->window_time_duration_us;
+
+ /* Update the confidence scores for all sensors. */
+ gyro_still_det_compute(&gyro_cal->accel_stillness_detect);
+ gyro_still_det_compute(&gyro_cal->gyro_stillness_detect);
+ if (gyro_cal->using_mag_sensor) {
+ gyro_still_det_compute(&gyro_cal->mag_stillness_detect);
+ } else {
+ /*
+ * Not using magnetometer, force stillness confidence to 100%.
+ */
+ gyro_cal->mag_stillness_detect.stillness_confidence =
+ INT_TO_FP(1);
+ }
+
+ /* Updates the mean tracker data. */
+ gyro_still_mean_tracker_update(gyro_cal);
+
+ /*
+ * Determine motion confidence scores (rotation, accelerating, and
+ * stillness).
+ */
+ conf_not_rot =
+ fp_mul(gyro_cal->gyro_stillness_detect.stillness_confidence,
+ gyro_cal->mag_stillness_detect.stillness_confidence);
+ conf_not_accel = gyro_cal->accel_stillness_detect.stillness_confidence;
+ conf_still = fp_mul(conf_not_rot, conf_not_accel);
+
+ /* Evaluate the mean and temperature gate functions. */
+ mean_not_stable = gyro_still_mean_tracker_eval(gyro_cal);
+ min_max_temp_exceeded = gyro_temperature_stats_tracker_eval(gyro_cal);
+
+ /* Determines if the device is currently still. */
+ device_is_still = (conf_still > gyro_cal->stillness_threshold) &&
+ !mean_not_stable && !min_max_temp_exceeded;
+
+ if (device_is_still)
+ handle_device_is_still(gyro_cal);
+ else
+ handle_device_not_still(gyro_cal);
+
+ /* Reset the window timer after we have processed data. */
+ gyro_cal->gyro_window_start_us = sample_time_us;
+}
+
+void compute_gyro_cal(struct gyro_cal *gyro_cal, uint32_t calibration_time_us)
+{
+ /* Check to see if new calibration values is within acceptable range. */
+ if (!(gyro_cal->gyro_stillness_detect.prev_mean[X] < MAX_GYRO_BIAS &&
+ gyro_cal->gyro_stillness_detect.prev_mean[X] > -MAX_GYRO_BIAS &&
+ gyro_cal->gyro_stillness_detect.prev_mean[Y] < MAX_GYRO_BIAS &&
+ gyro_cal->gyro_stillness_detect.prev_mean[Y] > -MAX_GYRO_BIAS &&
+ gyro_cal->gyro_stillness_detect.prev_mean[Z] < MAX_GYRO_BIAS &&
+ gyro_cal->gyro_stillness_detect.prev_mean[Z] > -MAX_GYRO_BIAS))
+ /* Outside of range. Ignore, reset, and continue. */
+ return;
+
+ /* Record the new gyro bias offset calibration. */
+ gyro_cal->bias_x = gyro_cal->gyro_stillness_detect.prev_mean[X];
+ gyro_cal->bias_y = gyro_cal->gyro_stillness_detect.prev_mean[Y];
+ gyro_cal->bias_z = gyro_cal->gyro_stillness_detect.prev_mean[Z];
+
+ /*
+ * Store the calibration temperature (using the mean temperature over
+ * the "stillness" period).
+ */
+ gyro_cal->bias_temperature_kelvin = gyro_cal->temperature_mean_kelvin;
+
+ /* Store the calibration time stamp. */
+ gyro_cal->calibration_time_us = calibration_time_us;
+
+ /* Record the final stillness confidence. */
+ gyro_cal->stillness_confidence = fp_mul(
+ gyro_cal->gyro_stillness_detect.prev_stillness_confidence,
+ gyro_cal->accel_stillness_detect.prev_stillness_confidence);
+ gyro_cal->stillness_confidence = fp_mul(
+ gyro_cal->stillness_confidence,
+ gyro_cal->mag_stillness_detect.prev_stillness_confidence);
+
+ /* Set flag to indicate a new gyro calibration value is available. */
+ gyro_cal->new_gyro_cal_available = true;
+}
+
+void check_window(struct gyro_cal *gyro_cal, uint32_t sample_time_us)
+{
+ bool window_timeout;
+
+ /* Check for initialization of the window time (=0). */
+ if (gyro_cal->gyro_window_start_us <= 0)
+ return;
+
+ /*
+ * Checks for the following window timeout conditions:
+ * i. The current timestamp has exceeded the allowed window duration.
+ * ii. A timestamp was received that has jumped backwards by more than
+ * the allowed window duration (e.g., timestamp clock roll-over).
+ */
+ window_timeout =
+ (sample_time_us > gyro_cal->gyro_window_timeout_duration_us +
+ gyro_cal->gyro_window_start_us) ||
+ (sample_time_us + gyro_cal->gyro_window_timeout_duration_us <
+ gyro_cal->gyro_window_start_us);
+
+ /* If a timeout occurred then reset to known good state. */
+ if (window_timeout) {
+ /* Reset stillness detectors and restart data capture. */
+ gyro_still_det_reset(&gyro_cal->accel_stillness_detect,
+ /*reset_stats=*/true);
+ gyro_still_det_reset(&gyro_cal->gyro_stillness_detect,
+ /*reset_stats=*/true);
+ gyro_still_det_reset(&gyro_cal->mag_stillness_detect,
+ /*reset_stats=*/true);
+
+ /* Resets the temperature and sensor mean data. */
+ gyro_temperature_stats_tracker_reset(gyro_cal);
+ gyro_still_mean_tracker_reset(gyro_cal);
+
+ /* Resets the stillness window end-time. */
+ gyro_cal->stillness_win_endtime_us = 0;
+
+ /* Force stillness confidence to zero. */
+ gyro_cal->accel_stillness_detect.prev_stillness_confidence = 0;
+ gyro_cal->gyro_stillness_detect.prev_stillness_confidence = 0;
+ gyro_cal->mag_stillness_detect.prev_stillness_confidence = 0;
+ gyro_cal->stillness_confidence = 0;
+ gyro_cal->prev_still = false;
+
+ /*
+ * If there are no magnetometer samples being received then
+ * operate the calibration algorithm without this sensor.
+ */
+ if (!gyro_cal->mag_stillness_detect.stillness_window_ready &&
+ gyro_cal->using_mag_sensor) {
+ gyro_cal->using_mag_sensor = false;
+ }
+
+ /* Assert window timeout flags. */
+ gyro_cal->gyro_window_start_us = 0;
+ }
+}
+
+void gyro_temperature_stats_tracker_reset(struct gyro_cal *gyro_cal)
+{
+ /* Resets the mean accumulator. */
+ gyro_cal->temperature_mean_tracker.num_points = 0;
+ gyro_cal->temperature_mean_tracker.mean_accumulator = INT_TO_FP(0);
+
+ /* Initializes the min/max temperatures values. */
+ gyro_cal->temperature_mean_tracker.temperature_min_kelvin = 0x7fff;
+ gyro_cal->temperature_mean_tracker.temperature_max_kelvin = 0xffff;
+}
+
+void gyro_temperature_stats_tracker_update(struct gyro_cal *gyro_cal,
+ int temperature_kelvin)
+{
+ /* Does the mean accumulation. */
+ gyro_cal->temperature_mean_tracker.mean_accumulator +=
+ temperature_kelvin;
+ gyro_cal->temperature_mean_tracker.num_points++;
+
+ /* Tracks the min, max, and latest temperature values. */
+ gyro_cal->temperature_mean_tracker.latest_temperature_kelvin =
+ temperature_kelvin;
+ if (gyro_cal->temperature_mean_tracker.temperature_min_kelvin >
+ temperature_kelvin) {
+ gyro_cal->temperature_mean_tracker.temperature_min_kelvin =
+ temperature_kelvin;
+ }
+ if (gyro_cal->temperature_mean_tracker.temperature_max_kelvin <
+ temperature_kelvin) {
+ gyro_cal->temperature_mean_tracker.temperature_max_kelvin =
+ temperature_kelvin;
+ }
+}
+
+void gyro_temperature_stats_tracker_store(struct gyro_cal *gyro_cal)
+{
+ /*
+ * Store the most recent temperature statistics data to the
+ * gyro_cal data structure. This functionality allows previous
+ * results to be recalled when the device suddenly becomes "not
+ * still".
+ */
+ if (gyro_cal->temperature_mean_tracker.num_points > 0)
+ gyro_cal->temperature_mean_kelvin =
+ gyro_cal->temperature_mean_tracker.mean_accumulator /
+ gyro_cal->temperature_mean_tracker.num_points;
+ else
+ gyro_cal->temperature_mean_kelvin =
+ gyro_cal->temperature_mean_tracker
+ .latest_temperature_kelvin;
+}
+
+bool gyro_temperature_stats_tracker_eval(struct gyro_cal *gyro_cal)
+{
+ bool min_max_temp_exceeded = false;
+
+ /* Determines if the min/max delta exceeded the set limit. */
+ if (gyro_cal->temperature_mean_tracker.num_points > 0) {
+ min_max_temp_exceeded =
+ (gyro_cal->temperature_mean_tracker
+ .temperature_max_kelvin -
+ gyro_cal->temperature_mean_tracker
+ .temperature_min_kelvin) >
+ gyro_cal->temperature_delta_limit_kelvin;
+ }
+
+ return min_max_temp_exceeded;
+}
+
+void gyro_still_mean_tracker_reset(struct gyro_cal *gyro_cal)
+{
+ size_t i;
+
+ /* Resets the min/max window mean values to a default value. */
+ for (i = 0; i < 3; i++) {
+ gyro_cal->window_mean_tracker.gyro_winmean_min[i] = FLT_MAX;
+ gyro_cal->window_mean_tracker.gyro_winmean_max[i] = -FLT_MAX;
+ }
+}
+
+void gyro_still_mean_tracker_update(struct gyro_cal *gyro_cal)
+{
+ int i;
+
+ /* Computes the min/max window mean values. */
+ for (i = 0; i < 3; ++i) {
+ if (gyro_cal->window_mean_tracker.gyro_winmean_min[i] >
+ gyro_cal->gyro_stillness_detect.win_mean[i]) {
+ gyro_cal->window_mean_tracker.gyro_winmean_min[i] =
+ gyro_cal->gyro_stillness_detect.win_mean[i];
+ }
+ if (gyro_cal->window_mean_tracker.gyro_winmean_max[i] <
+ gyro_cal->gyro_stillness_detect.win_mean[i]) {
+ gyro_cal->window_mean_tracker.gyro_winmean_max[i] =
+ gyro_cal->gyro_stillness_detect.win_mean[i];
+ }
+ }
+}
+
+void gyro_still_mean_tracker_store(struct gyro_cal *gyro_cal)
+{
+ /*
+ * Store the most recent "stillness" mean data to the gyro_cal
+ * data structure. This functionality allows previous results to
+ * be recalled when the device suddenly becomes "not still".
+ */
+ memcpy(gyro_cal->gyro_winmean_min,
+ gyro_cal->window_mean_tracker.gyro_winmean_min,
+ sizeof(gyro_cal->window_mean_tracker.gyro_winmean_min));
+ memcpy(gyro_cal->gyro_winmean_max,
+ gyro_cal->window_mean_tracker.gyro_winmean_max,
+ sizeof(gyro_cal->window_mean_tracker.gyro_winmean_max));
+}
+
+bool gyro_still_mean_tracker_eval(struct gyro_cal *gyro_cal)
+{
+ bool mean_not_stable = false;
+ size_t i;
+
+ /*
+ * Performs the stability check and returns the 'true' if the
+ * difference between min/max window mean value is outside the
+ * stable range.
+ */
+ for (i = 0; i < 3 && !mean_not_stable; i++) {
+ mean_not_stable |=
+ (gyro_cal->window_mean_tracker.gyro_winmean_max[i] -
+ gyro_cal->window_mean_tracker.gyro_winmean_min[i]) >
+ gyro_cal->stillness_mean_delta_limit;
+ }
+
+ return mean_not_stable;
+}
diff --git a/common/gyro_still_det.c b/common/gyro_still_det.c
new file mode 100644
index 0000000000..4574e22e5f
--- /dev/null
+++ b/common/gyro_still_det.c
@@ -0,0 +1,242 @@
+/* Copyright 2020 The Chromium OS Authors. All rights reserved.
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "gyro_still_det.h"
+#include "vec3.h"
+
+/* Enforces the limits of an input value [0,1]. */
+static fp_t gyro_still_det_limit(fp_t value);
+
+void gyro_still_det_update(struct gyro_still_det *gyro_still_det,
+ uint32_t stillness_win_endtime, uint32_t sample_time,
+ fp_t x, fp_t y, fp_t z)
+{
+ fp_t delta = INT_TO_FP(0);
+
+ /*
+ * Using the method of the assumed mean to preserve some numerical
+ * stability while avoiding per-sample divisions that the more
+ * numerically stable Welford method would afford.
+ *
+ * Reference for the numerical method used below to compute the
+ * online mean and variance statistics:
+ * 1). en.wikipedia.org/wiki/assumed_mean
+ */
+
+ /* Increment the number of samples. */
+ gyro_still_det->num_acc_samples++;
+
+ /* Online computation of mean for the running stillness period. */
+ gyro_still_det->mean[X] += x;
+ gyro_still_det->mean[Y] += y;
+ gyro_still_det->mean[Z] += z;
+
+ /* Is this the first sample of a new window? */
+ if (gyro_still_det->start_new_window) {
+ /* Record the window start time. */
+ gyro_still_det->window_start_time = sample_time;
+ gyro_still_det->start_new_window = false;
+
+ /* Update assumed mean values. */
+ gyro_still_det->assumed_mean[X] = x;
+ gyro_still_det->assumed_mean[Y] = y;
+ gyro_still_det->assumed_mean[Z] = z;
+
+ /* Reset current window mean and variance. */
+ gyro_still_det->num_acc_win_samples = 0;
+ gyro_still_det->win_mean[X] = INT_TO_FP(0);
+ gyro_still_det->win_mean[Y] = INT_TO_FP(0);
+ gyro_still_det->win_mean[Z] = INT_TO_FP(0);
+ gyro_still_det->acc_var[X] = INT_TO_FP(0);
+ gyro_still_det->acc_var[Y] = INT_TO_FP(0);
+ gyro_still_det->acc_var[Z] = INT_TO_FP(0);
+ } else {
+ /*
+ * Check to see if we have enough samples to compute a stillness
+ * confidence score.
+ */
+ gyro_still_det->stillness_window_ready =
+ (sample_time >= stillness_win_endtime) &&
+ (gyro_still_det->num_acc_samples > 1);
+ }
+
+ /* Record the most recent sample time stamp. */
+ gyro_still_det->last_sample_time = sample_time;
+
+ /* Online window mean and variance ("one-pass" accumulation). */
+ gyro_still_det->num_acc_win_samples++;
+
+ delta = (x - gyro_still_det->assumed_mean[X]);
+ gyro_still_det->win_mean[X] += delta;
+ gyro_still_det->acc_var[X] += fp_sq(delta);
+
+ delta = (y - gyro_still_det->assumed_mean[Y]);
+ gyro_still_det->win_mean[Y] += delta;
+ gyro_still_det->acc_var[Y] += fp_sq(delta);
+
+ delta = (z - gyro_still_det->assumed_mean[Z]);
+ gyro_still_det->win_mean[Z] += delta;
+ gyro_still_det->acc_var[Z] += fp_sq(delta);
+}
+
+fp_t gyro_still_det_compute(struct gyro_still_det *gyro_still_det)
+{
+ fp_t tmp_denom = INT_TO_FP(1);
+ fp_t tmp_denom_mean = INT_TO_FP(1);
+ fp_t tmp;
+ fp_t upper_var_thresh, lower_var_thresh;
+
+ /* Don't divide by zero (not likely, but a precaution). */
+ if (gyro_still_det->num_acc_win_samples > 1) {
+ tmp_denom = fp_div(
+ tmp_denom,
+ INT_TO_FP(gyro_still_det->num_acc_win_samples - 1));
+ tmp_denom_mean =
+ fp_div(tmp_denom_mean,
+ INT_TO_FP(gyro_still_det->num_acc_win_samples));
+ } else {
+ /* Return zero stillness confidence. */
+ gyro_still_det->stillness_confidence = 0;
+ return gyro_still_det->stillness_confidence;
+ }
+
+ /* Update the final calculation of window mean and variance. */
+ tmp = gyro_still_det->win_mean[X];
+ gyro_still_det->win_mean[X] =
+ fp_mul(gyro_still_det->win_mean[X], tmp_denom_mean);
+ gyro_still_det->win_var[X] =
+ fp_mul((gyro_still_det->acc_var[X] -
+ fp_mul(gyro_still_det->win_mean[X], tmp)),
+ tmp_denom);
+
+ tmp = gyro_still_det->win_mean[Y];
+ gyro_still_det->win_mean[Y] =
+ fp_mul(gyro_still_det->win_mean[Y], tmp_denom_mean);
+ gyro_still_det->win_var[Y] =
+ fp_mul((gyro_still_det->acc_var[Y] -
+ fp_mul(gyro_still_det->win_mean[Y], tmp)),
+ tmp_denom);
+
+ tmp = gyro_still_det->win_mean[Z];
+ gyro_still_det->win_mean[Z] =
+ fp_mul(gyro_still_det->win_mean[Z], tmp_denom_mean);
+ gyro_still_det->win_var[Z] =
+ fp_mul((gyro_still_det->acc_var[Z] -
+ fp_mul(gyro_still_det->win_mean[Z], tmp)),
+ tmp_denom);
+
+ /* Adds the assumed mean value back to the total mean calculation. */
+ gyro_still_det->win_mean[X] += gyro_still_det->assumed_mean[X];
+ gyro_still_det->win_mean[Y] += gyro_still_det->assumed_mean[Y];
+ gyro_still_det->win_mean[Z] += gyro_still_det->assumed_mean[Z];
+
+ /* Define the variance thresholds. */
+ upper_var_thresh = gyro_still_det->var_threshold +
+ gyro_still_det->confidence_delta;
+
+ lower_var_thresh = gyro_still_det->var_threshold -
+ gyro_still_det->confidence_delta;
+
+ /* Compute the stillness confidence score. */
+ if ((gyro_still_det->win_var[X] > upper_var_thresh) ||
+ (gyro_still_det->win_var[Y] > upper_var_thresh) ||
+ (gyro_still_det->win_var[Z] > upper_var_thresh)) {
+ /*
+ * Sensor variance exceeds the upper threshold (i.e., motion
+ * detected). Set stillness confidence equal to 0.
+ */
+ gyro_still_det->stillness_confidence = 0;
+ } else if ((gyro_still_det->win_var[X] <= lower_var_thresh) &&
+ (gyro_still_det->win_var[Y] <= lower_var_thresh) &&
+ (gyro_still_det->win_var[Z] <= lower_var_thresh)) {
+ /*
+ * Sensor variance is below the lower threshold (i.e.
+ * stillness detected).
+ * Set stillness confidence equal to 1.
+ */
+ gyro_still_det->stillness_confidence = INT_TO_FP(1);
+ } else {
+ /*
+ * Motion detection thresholds not exceeded. Compute the
+ * stillness confidence score.
+ */
+ fp_t var_thresh = gyro_still_det->var_threshold;
+ fpv3_t limit;
+
+ /*
+ * Compute the stillness confidence score.
+ * Each axis score is limited [0,1].
+ */
+ tmp_denom = fp_div(INT_TO_FP(1),
+ (upper_var_thresh - lower_var_thresh));
+ limit[X] = gyro_still_det_limit(
+ FLOAT_TO_FP(0.5f) -
+ fp_mul(gyro_still_det->win_var[X] - var_thresh,
+ tmp_denom));
+ limit[Y] = gyro_still_det_limit(
+ FLOAT_TO_FP(0.5f) -
+ fp_mul(gyro_still_det->win_var[Y] - var_thresh,
+ tmp_denom));
+ limit[Z] = gyro_still_det_limit(
+ FLOAT_TO_FP(0.5f) -
+ fp_mul(gyro_still_det->win_var[Z] - var_thresh,
+ tmp_denom));
+
+ gyro_still_det->stillness_confidence =
+ fp_mul(limit[X], fp_mul(limit[Y], limit[Z]));
+ }
+
+ /* Return the stillness confidence. */
+ return gyro_still_det->stillness_confidence;
+}
+
+void gyro_still_det_reset(struct gyro_still_det *gyro_still_det,
+ bool reset_stats)
+{
+ fp_t tmp_denom = INT_TO_FP(1);
+
+ /* Reset the stillness data ready flag. */
+ gyro_still_det->stillness_window_ready = false;
+
+ /* Signal to start capture of next stillness data window. */
+ gyro_still_det->start_new_window = true;
+
+ /* Track the stillness confidence (current->previous). */
+ gyro_still_det->prev_stillness_confidence =
+ gyro_still_det->stillness_confidence;
+
+ /* Track changes in the mean estimate. */
+ if (gyro_still_det->num_acc_samples > INT_TO_FP(1))
+ tmp_denom =
+ fp_div(INT_TO_FP(1), gyro_still_det->num_acc_samples);
+
+ gyro_still_det->prev_mean[X] =
+ fp_mul(gyro_still_det->mean[X], tmp_denom);
+ gyro_still_det->prev_mean[Y] =
+ fp_mul(gyro_still_det->mean[Y], tmp_denom);
+ gyro_still_det->prev_mean[Z] =
+ fp_mul(gyro_still_det->mean[Z], tmp_denom);
+
+ /* Reset the current statistics to zero. */
+ if (reset_stats) {
+ gyro_still_det->num_acc_samples = 0;
+ gyro_still_det->mean[X] = INT_TO_FP(0);
+ gyro_still_det->mean[Y] = INT_TO_FP(0);
+ gyro_still_det->mean[Z] = INT_TO_FP(0);
+ gyro_still_det->acc_var[X] = INT_TO_FP(0);
+ gyro_still_det->acc_var[Y] = INT_TO_FP(0);
+ gyro_still_det->acc_var[Z] = INT_TO_FP(0);
+ }
+}
+
+fp_t gyro_still_det_limit(fp_t value)
+{
+ if (value < INT_TO_FP(0))
+ value = INT_TO_FP(0);
+ else if (value > INT_TO_FP(1))
+ value = INT_TO_FP(1);
+
+ return value;
+}
diff --git a/common/online_calibration.c b/common/online_calibration.c
index 6c090a6abc..ca7a5a620d 100644
--- a/common/online_calibration.c
+++ b/common/online_calibration.c
@@ -15,8 +15,9 @@
#include "ec_commands.h"
#include "accel_cal.h"
#include "mkbp_event.h"
+#include "gyro_cal.h"
-#define CPRINTS(format, args...) cprints(CC_MOTION_SENSE, format, ## args)
+#define CPRINTS(format, args...) cprints(CC_MOTION_SENSE, format, ##args)
#ifndef CONFIG_MKBP_EVENT
#error "Must use CONFIG_MKBP_EVENT for online calibration"
@@ -40,7 +41,7 @@ static int get_temperature(struct motion_sensor_t *sensor, int *temp)
now = __hw_clock_source_read();
if (entry->last_temperature < 0 ||
time_until(entry->last_temperature_timestamp, now) >
- CONFIG_TEMP_CACHE_STALE_THRES) {
+ CONFIG_TEMP_CACHE_STALE_THRES) {
int t;
int rc = sensor->drv->read_temp(sensor, &t);
@@ -72,8 +73,8 @@ static void data_int16_to_fp(const struct motion_sensor_t *s,
}
}
-static void data_fp_to_int16(const struct motion_sensor_t *s,
- const fpv3_t data, int16_t *out)
+static void data_fp_to_int16(const struct motion_sensor_t *s, const fpv3_t data,
+ int16_t *out)
{
int i;
fp_t range = INT_TO_FP(s->drv->get_range(s));
@@ -82,14 +83,102 @@ static void data_fp_to_int16(const struct motion_sensor_t *s,
int32_t iv;
fp_t v = fp_div(data[i], range);
- v = fp_mul(v, INT_TO_FP(
- (data[i] >= INT_TO_FP(0)) ? 0x7fff : 0x8000));
+ v = fp_mul(v, INT_TO_FP((data[i] >= INT_TO_FP(0)) ? 0x7fff :
+ 0x8000));
iv = FP_TO_INT(v);
/* Check for overflow */
out[i] = CLAMP(iv, (int32_t)0xffff8000, (int32_t)0x00007fff);
}
}
+/**
+ * Check a gyroscope for new bias. This function checks a given sensor (must be
+ * a gyroscope) for new bias values. If found, it will update the appropriate
+ * caches and notify the AP.
+ *
+ * @param sensor Pointer to the gyroscope sensor to check.
+ */
+static void check_gyro_cal_new_bias(struct motion_sensor_t *sensor)
+{
+ struct online_calib_data *calib_data =
+ (struct online_calib_data *)sensor->online_calib_data;
+ struct gyro_cal_data *data =
+ (struct gyro_cal_data *)calib_data->type_specific_data;
+ size_t sensor_num = motion_sensors - sensor;
+ int temp_out;
+ fpv3_t bias_out;
+ uint32_t timestamp_out;
+
+ /* Check that we have a new bias. */
+ if (data == NULL || calib_data == NULL ||
+ !gyro_cal_new_bias_available(&data->gyro_cal))
+ return;
+
+ /* Read the calibration values. */
+ gyro_cal_get_bias(&data->gyro_cal, bias_out, &temp_out, &timestamp_out);
+
+ mutex_lock(&g_calib_cache_mutex);
+ /* Convert result to the right scale. */
+ data_fp_to_int16(sensor, bias_out, calib_data->cache);
+ /* Set valid and dirty. */
+ sensor_calib_cache_valid_map |= BIT(sensor_num);
+ sensor_calib_cache_dirty_map |= BIT(sensor_num);
+ mutex_unlock(&g_calib_cache_mutex);
+ /* Notify the AP. */
+ mkbp_send_event(EC_MKBP_EVENT_ONLINE_CALIBRATION);
+}
+
+/**
+ * Update the data stream (accel/mag) for a given sensor and data in all
+ * gyroscopes that are interested.
+ *
+ * @param sensor Pointer to the sensor that generated the data.
+ * @param data 3 floats/fixed point data points generated by the sensor.
+ * @param timestamp The timestamp at which the data was generated.
+ */
+static void update_gyro_cal(struct motion_sensor_t *sensor, fpv3_t data,
+ uint32_t timestamp)
+{
+ int i;
+
+ /*
+ * Find gyroscopes, while we don't currently have instance where more
+ * than one are present in a board, this loop will work with any number
+ * of them.
+ */
+ for (i = 0; i < SENSOR_COUNT; ++i) {
+ struct motion_sensor_t *s = motion_sensors + i;
+ struct gyro_cal_data *gyro_cal_data =
+ (struct gyro_cal_data *)
+ s->online_calib_data->type_specific_data;
+
+ /*
+ * If we're not looking at a gyroscope OR if the calibration
+ * data is NULL, skip this sensor.
+ */
+ if (s->type != MOTIONSENSE_TYPE_GYRO || gyro_cal_data == NULL)
+ continue;
+
+ /*
+ * Update the appropriate data stream (accel/mag) depending on
+ * which sensors the gyroscope is tracking.
+ */
+ if (sensor->type == MOTIONSENSE_TYPE_ACCEL &&
+ gyro_cal_data->accel_sensor_id == sensor - motion_sensors) {
+ gyro_cal_update_accel(&gyro_cal_data->gyro_cal,
+ timestamp, data[X], data[Y],
+ data[Z]);
+ check_gyro_cal_new_bias(s);
+ } else if (sensor->type == MOTIONSENSE_TYPE_MAG &&
+ gyro_cal_data->mag_sensor_id ==
+ sensor - motion_sensors) {
+ gyro_cal_update_mag(&gyro_cal_data->gyro_cal, timestamp,
+ data[X], data[Y], data[Z]);
+ check_gyro_cal_new_bias(s);
+ }
+ }
+}
+
void online_calibration_init(void)
{
size_t i;
@@ -116,6 +205,12 @@ void online_calibration_init(void)
init_mag_cal((struct mag_cal_t *)type_specific_data);
break;
}
+ case MOTIONSENSE_TYPE_GYRO: {
+ init_gyro_cal(
+ &((struct gyro_cal_data *)type_specific_data)
+ ->gyro_cal);
+ break;
+ }
default:
break;
}
@@ -141,8 +236,7 @@ bool online_calibration_read(int sensor_num, int16_t out[3])
has_valid = (sensor_calib_cache_valid_map & BIT(sensor_num)) != 0;
if (has_valid) {
/* Update data in out */
- memcpy(out,
- motion_sensors[sensor_num].online_calib_data->cache,
+ memcpy(out, motion_sensors[sensor_num].online_calib_data->cache,
sizeof(out));
/* Clear dirty bit */
sensor_calib_cache_dirty_map &= ~(1 << sensor_num);
@@ -152,10 +246,9 @@ bool online_calibration_read(int sensor_num, int16_t out[3])
return has_valid;
}
-int online_calibration_process_data(
- struct ec_response_motion_sensor_data *data,
- struct motion_sensor_t *sensor,
- uint32_t timestamp)
+int online_calibration_process_data(struct ec_response_motion_sensor_data *data,
+ struct motion_sensor_t *sensor,
+ uint32_t timestamp)
{
size_t sensor_num = motion_sensors - sensor;
int rc;
@@ -169,20 +262,25 @@ int online_calibration_process_data(
(struct accel_cal *)(calib_data->type_specific_data);
fpv3_t fdata;
+ /* Convert data to fp. */
+ data_int16_to_fp(sensor, data->data, fdata);
+
+ /* Possibly update the gyroscope calibration. */
+ update_gyro_cal(sensor, fdata, timestamp);
+
/* Temperature is required for accelerometer calibration. */
rc = get_temperature(sensor, &temperature);
if (rc != EC_SUCCESS)
return rc;
- data_int16_to_fp(sensor, data->data, fdata);
if (accel_cal_accumulate(cal, timestamp, fdata[X], fdata[Y],
fdata[Z], temperature)) {
mutex_lock(&g_calib_cache_mutex);
/* Convert result to the right scale. */
data_fp_to_int16(sensor, cal->bias, calib_data->cache);
/* Set valid and dirty. */
- sensor_calib_cache_valid_map |= BIT(sensor_num);
- sensor_calib_cache_dirty_map |= BIT(sensor_num);
+ sensor_calib_cache_valid_map |= BIT(sensor_num);
+ sensor_calib_cache_dirty_map |= BIT(sensor_num);
mutex_unlock(&g_calib_cache_mutex);
/* Notify the AP. */
mkbp_send_event(EC_MKBP_EVENT_ONLINE_CALIBRATION);
@@ -191,12 +289,19 @@ int online_calibration_process_data(
}
case MOTIONSENSE_TYPE_MAG: {
struct mag_cal_t *cal =
- (struct mag_cal_t *) (calib_data->type_specific_data);
+ (struct mag_cal_t *)(calib_data->type_specific_data);
int idata[] = {
(int)data->data[X],
(int)data->data[Y],
(int)data->data[Z],
};
+ fpv3_t fdata;
+
+ /* Convert data to fp. */
+ data_int16_to_fp(sensor, data->data, fdata);
+
+ /* Possibly update the gyroscope calibration. */
+ update_gyro_cal(sensor, fdata, timestamp);
if (mag_cal_update(cal, idata)) {
mutex_lock(&g_calib_cache_mutex);
@@ -213,10 +318,27 @@ int online_calibration_process_data(
}
break;
}
+ case MOTIONSENSE_TYPE_GYRO: {
+ fpv3_t fdata;
+
+ /* Temperature is required for gyro calibration. */
+ rc = get_temperature(sensor, &temperature);
+ if (rc != EC_SUCCESS)
+ return rc;
+
+ /* Convert data to fp. */
+ data_int16_to_fp(sensor, data->data, fdata);
+
+ /* Update gyroscope calibration. */
+ gyro_cal_update_gyro(
+ &((struct gyro_cal_data *)calib_data->type_specific_data)->gyro_cal,
+ timestamp, fdata[X], fdata[Y], fdata[Z], temperature);
+ check_gyro_cal_new_bias(sensor);
+ break;
+ }
default:
break;
}
return EC_SUCCESS;
}
-
diff --git a/include/gyro_cal.h b/include/gyro_cal.h
new file mode 100644
index 0000000000..fb69464aec
--- /dev/null
+++ b/include/gyro_cal.h
@@ -0,0 +1,163 @@
+/* Copyright 2020 The Chromium OS Authors. All rights reserved.
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef __CROS_EC_GYRO_CAL_H
+#define __CROS_EC_GYRO_CAL_H
+
+#include "common.h"
+#include "gyro_still_det.h"
+#include "math_util.h"
+#include "stdbool.h"
+#include "stddef.h"
+#include "vec3.h"
+
+struct temperature_mean_data {
+ int16_t temperature_min_kelvin;
+ int16_t temperature_max_kelvin;
+ int16_t latest_temperature_kelvin;
+ int mean_accumulator;
+ size_t num_points;
+};
+
+/** Data structure for tracking min/max window mean during device stillness. */
+struct min_max_window_mean_data {
+ fpv3_t gyro_winmean_min;
+ fpv3_t gyro_winmean_max;
+};
+
+struct gyro_cal {
+ /** Stillness detector for accelerometer. */
+ struct gyro_still_det accel_stillness_detect;
+ /** Stillness detector for magnetometer. */
+ struct gyro_still_det mag_stillness_detect;
+ /** Stillness detector for gyroscope. */
+ struct gyro_still_det gyro_stillness_detect;
+
+ /**
+ * Data for tracking temperature mean during periods of device
+ * stillness.
+ */
+ struct temperature_mean_data temperature_mean_tracker;
+
+ /** Data for tracking gyro mean during periods of device stillness. */
+ struct min_max_window_mean_data window_mean_tracker;
+
+ /**
+ * Aggregated sensor stillness threshold required for gyro bias
+ * calibration.
+ */
+ fp_t stillness_threshold;
+
+ /** Min and max durations for gyro bias calibration. */
+ uint32_t min_still_duration_us;
+ uint32_t max_still_duration_us;
+
+ /** Duration of the stillness processing windows. */
+ uint32_t window_time_duration_us;
+
+ /** Timestamp when device started a still period. */
+ uint64_t start_still_time_us;
+
+ /**
+ * Gyro offset estimate, and the associated calibration temperature,
+ * timestamp, and stillness confidence values.
+ * [rad/sec]
+ */
+ fp_t bias_x, bias_y, bias_z;
+ int bias_temperature_kelvin;
+ fp_t stillness_confidence;
+ uint32_t calibration_time_us;
+
+ /**
+ * Current window end-time for all sensors. Used to assist in keeping
+ * sensor data collection in sync. On initialization this will be set to
+ * zero indicating that sensor data will be dropped until a valid
+ * end-time is set from the first gyro timestamp received.
+ */
+ uint32_t stillness_win_endtime_us;
+
+ /**
+ * Watchdog timer to reset to a known good state when data capture
+ * stalls.
+ */
+ uint32_t gyro_window_start_us;
+ uint32_t gyro_window_timeout_duration_us;
+
+ /** Flag is "true" when the magnetometer is used. */
+ bool using_mag_sensor;
+
+ /** Flag set by user to control whether calibrations are used. */
+ bool gyro_calibration_enable;
+
+ /** Flag is 'true' when a new calibration update is ready. */
+ bool new_gyro_cal_available;
+
+ /** Flag to indicate if device was previously still. */
+ bool prev_still;
+
+ /**
+ * Min and maximum stillness window mean. This is used to check the
+ * stability of the mean values computed for the gyroscope (i.e.
+ * provides further validation for stillness).
+ */
+ fpv3_t gyro_winmean_min;
+ fpv3_t gyro_winmean_max;
+ fp_t stillness_mean_delta_limit;
+
+ /**
+ * The mean temperature over the stillness period. The limit is used to
+ * check for temperature stability and provide a gate for when
+ * temperature is rapidly changing.
+ */
+ fp_t temperature_mean_kelvin;
+ fp_t temperature_delta_limit_kelvin;
+};
+
+/**
+ * Data structure used to configure the gyroscope calibration in individual
+ * sensors.
+ */
+struct gyro_cal_data {
+ /** The gyro_cal struct to use. */
+ struct gyro_cal gyro_cal;
+ /** The sensor ID of the accelerometer to use. */
+ uint8_t accel_sensor_id;
+ /**
+ * The sensor ID of the accelerometer to use (use a number greater than
+ * SENSOR_COUNT to skip).
+ */
+ uint8_t mag_sensor_id;
+};
+
+/** Reset trackers. */
+void init_gyro_cal(struct gyro_cal *gyro_cal);
+
+/** Get the most recent bias calibration value. */
+void gyro_cal_get_bias(struct gyro_cal *gyro_cal, fpv3_t bias,
+ int *temperature_kelvin, uint32_t *calibration_time_us);
+
+/** Set an initial bias calibration value. */
+void gyro_cal_set_bias(struct gyro_cal *gyro_cal, fpv3_t bias,
+ int temperature_kelvin, uint32_t calibration_time_us);
+
+/** Remove gyro bias from the calibration [rad/sec]. */
+void gyro_cal_remove_bias(struct gyro_cal *gyro_cal, fpv3_t in, fpv3_t out);
+
+/** Returns true when a new gyro calibration is available. */
+bool gyro_cal_new_bias_available(struct gyro_cal *gyro_cal);
+
+/** Update the gyro calibration with gyro data [rad/sec]. */
+void gyro_cal_update_gyro(struct gyro_cal *gyro_cal, uint32_t sample_time_us,
+ fp_t x, fp_t y, fp_t z, int temperature_kelvin);
+
+/** Update the gyro calibration with mag data [micro Tesla]. */
+void gyro_cal_update_mag(struct gyro_cal *gyro_cal, uint32_t sample_time_us,
+ fp_t x, fp_t y, fp_t z);
+
+/** Update the gyro calibration with accel data [m/sec^2]. */
+void gyro_cal_update_accel(struct gyro_cal *gyro_cal, uint32_t sample_time_us,
+ fp_t x, fp_t y, fp_t z);
+
+#endif /* __CROS_EC_GYRO_CAL_H */
diff --git a/include/gyro_still_det.h b/include/gyro_still_det.h
new file mode 100644
index 0000000000..a776da7ae7
--- /dev/null
+++ b/include/gyro_still_det.h
@@ -0,0 +1,91 @@
+/* Copyright 2020 The Chromium OS Authors. All rights reserved.
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#ifndef __CROS_EC_GYRO_STILL_DET_H
+#define __CROS_EC_GYRO_STILL_DET_H
+
+#include "common.h"
+#include "math_util.h"
+#include "stdbool.h"
+#include "vec3.h"
+
+struct gyro_still_det {
+ /**
+ * Variance threshold for the stillness confidence score.
+ * [sensor units]^2
+ */
+ fp_t var_threshold;
+
+ /**
+ * Delta about the variance threshold for calculation of the stillness
+ * confidence score [0,1]. [sensor units]^2
+ */
+ fp_t confidence_delta;
+
+ /**
+ * Flag to indicate when enough samples have been collected for
+ * a complete stillness calculation.
+ */
+ bool stillness_window_ready;
+
+ /**
+ * Flag to signal the beginning of a new stillness detection window.
+ * This is used to keep track of the window start time.
+ */
+ bool start_new_window;
+
+ /** Starting time stamp for the current window. */
+ uint32_t window_start_time;
+
+ /**
+ * Accumulator variables for tracking the sample mean during
+ * the stillness period.
+ */
+ uint32_t num_acc_samples;
+ fpv3_t mean;
+
+ /**
+ * Accumulator variables for computing the window sample mean and
+ * variance for the current window (used for stillness detection).
+ */
+ uint32_t num_acc_win_samples;
+ fpv3_t win_mean;
+ fpv3_t assumed_mean;
+ fpv3_t acc_var;
+
+ /** Stillness period mean (used for look-ahead). */
+ fpv3_t prev_mean;
+
+ /** Latest computed variance. */
+ fpv3_t win_var;
+
+ /**
+ * Stillness confidence score for current and previous sample
+ * windows [0,1] (used for look-ahead).
+ */
+ fp_t stillness_confidence;
+ fp_t prev_stillness_confidence;
+
+ /** Timestamp of last sample recorded. */
+ uint32_t last_sample_time;
+};
+
+/** Update the stillness detector with a new sample. */
+void gyro_still_det_update(struct gyro_still_det *gyro_still_det,
+ uint32_t stillness_win_endtime, uint32_t sample_time,
+ fp_t x, fp_t y, fp_t z);
+
+/** Calculates and returns the stillness confidence score [0,1]. */
+fp_t gyro_still_det_compute(struct gyro_still_det *gyro_still_det);
+
+/**
+ * Resets the stillness detector and initiates a new detection window.
+ *
+ * @param reset_stats Determines whether the stillness statistics are reset.
+ */
+void gyro_still_det_reset(struct gyro_still_det *gyro_still_det,
+ bool reset_stats);
+
+#endif /* __CROS_EC_GYRO_STILL_DET_H */
diff --git a/include/math_util.h b/include/math_util.h
index a54eaf3618..6b60d4a1d6 100644
--- a/include/math_util.h
+++ b/include/math_util.h
@@ -22,6 +22,9 @@ typedef float fp_inter_t;
/* Fixed-point to float, for unit tests */
#define FP_TO_FLOAT(x) ((float)(x))
+#define FLT_MAX (3.4028234664e+38)
+#define FLT_MIN (1.1754943508e-38)
+
#else
/* Fixed-point type */
typedef int32_t fp_t;
@@ -39,6 +42,10 @@ typedef int64_t fp_inter_t;
#define FLOAT_TO_FP(x) ((fp_t)((x) * (float)(1<<FP_BITS)))
/* Fixed-point to float, for unit tests */
#define FP_TO_FLOAT(x) ((float)(x) / (float)(1<<FP_BITS))
+
+#define FLT_MAX INT32_MAX
+#define FLT_MIN INT32_MIN
+
#endif
/*
diff --git a/test/build.mk b/test/build.mk
index 8aa9059f23..6c69f639c1 100644
--- a/test/build.mk
+++ b/test/build.mk
@@ -35,6 +35,7 @@ test-list-host += fp
test-list-host += fpsensor
test-list-host += fpsensor_crypto
test-list-host += fpsensor_state
+test-list-host += gyro_cal
test-list-host += hooks
test-list-host += host_command
test-list-host += i2c_bitbang
@@ -139,6 +140,7 @@ flash_write_protect-y=flash_write_protect.o
fpsensor-y=fpsensor.o
fpsensor_crypto-y=fpsensor_crypto.o
fpsensor_state-y=fpsensor_state.o
+gyro_cal-y=gyro_cal.o
hooks-y=hooks.o
host_command-y=host_command.o
i2c_bitbang-y=i2c_bitbang.o
diff --git a/test/gyro_cal.c b/test/gyro_cal.c
new file mode 100644
index 0000000000..85d53789ef
--- /dev/null
+++ b/test/gyro_cal.c
@@ -0,0 +1,611 @@
+/* Copyright 2020 The Chromium OS Authors. All rights reserved.
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+#include "common.h"
+#include "gyro_cal.h"
+#include "gyro_still_det.h"
+#include "motion_sense.h"
+#include "test_util.h"
+#include <string.h>
+#include <stdlib.h>
+#include <math.h>
+#include <stdio.h>
+
+float kToleranceGyroRps = 1e-6f;
+float kDefaultGravityMps2 = 9.81f;
+int kDefaultTemperatureKelvin = 298;
+
+#define NANOS_TO_SEC (1.0e-9f)
+#define NANO_PI (3.14159265359f)
+/** Unit conversion: milli-degrees to radians. */
+#define MDEG_TO_RAD (NANO_PI / 180.0e3f)
+
+#define MSEC_TO_NANOS(x) ((uint64_t)((x) * (uint64_t)(1000000)))
+#define SEC_TO_NANOS(x) MSEC_TO_NANOS((x) * (uint64_t)(1000))
+#define HZ_TO_PERIOD_NANOS(hz) (SEC_TO_NANOS(1024) / ((uint64_t)((hz)*1024)))
+
+struct motion_sensor_t motion_sensors[] = {
+ [BASE] = {},
+ [LID] = {},
+};
+
+const unsigned int motion_sensor_count = ARRAY_SIZE(motion_sensors);
+
+/**
+ * This function will return a uniformly distributed random value in the range
+ * of (0,1). This is important that 0 and 1 are excluded because of how the
+ * value is used in normal_random. For references:
+ * - rand() / RAND_MAX yields the range [0,1]
+ * - rand() / (RAND_MAX + 1) yields the range [0,1)
+ * - (rand() + 1) / (RAND_MAX + 1) yields the range (0, 1)
+ *
+ * @return A uniformly distributed random value.
+ */
+static double rand_gen(void)
+{
+ return ((double)(rand()) + 1.0) / ((double)(RAND_MAX) + 1.0);
+}
+
+/**
+ * @return A normally distributed random value
+ */
+static float normal_random(void)
+{
+ double v1 = rand_gen();
+ double v2 = rand_gen();
+
+ return (float)(cos(2 * 3.14 * v2) * sqrt(-2.0 * log(v1)));
+}
+
+/**
+ * @param mean The mean to use for the normal distribution.
+ * @param stddev The standard deviation to use for the normal distribution.
+ * @return A normally distributed random value based on mean and stddev.
+ */
+static float normal_random2(float mean, float stddev)
+{
+ return normal_random() * stddev + mean;
+}
+
+/**
+ *
+ * @param det Pointer to the stillness detector
+ * @param var_threshold The variance threshold in units^2
+ * @param confidence_delta The confidence delta in units^2
+ */
+static void gyro_still_det_initialization_for_test(struct gyro_still_det *det,
+ float var_threshold,
+ float confidence_delta)
+{
+ /* Clear all data structure variables to 0. */
+ memset(det, 0, sizeof(struct gyro_still_det));
+
+ /*
+ * Set the delta about the variance threshold for calculation
+ * of the stillness confidence score.
+ */
+ if (confidence_delta < var_threshold)
+ det->confidence_delta = confidence_delta;
+ else
+ det->confidence_delta = var_threshold;
+
+ /*
+ * Set the variance threshold parameter for the stillness
+ * confidence score.
+ */
+ det->var_threshold = var_threshold;
+
+ /* Signal to start capture of next stillness data window. */
+ det->start_new_window = true;
+}
+
+static void gyro_cal_initialization_for_test(struct gyro_cal *gyro_cal)
+{
+ /* GyroCal initialization. */
+ memset(gyro_cal, 0, sizeof(struct gyro_cal));
+
+ /*
+ * Initialize the stillness detectors.
+ * Gyro parameter input units are [rad/sec].
+ * Accel parameter input units are [m/sec^2].
+ * Magnetometer parameter input units are [uT].
+ */
+ gyro_still_det_initialization_for_test(&gyro_cal->gyro_stillness_detect,
+ /* var_threshold */ 5e-5f,
+ /* confidence_delta */ 1e-5f);
+ gyro_still_det_initialization_for_test(
+ &gyro_cal->accel_stillness_detect,
+ /* var_threshold */ 8e-3f,
+ /* confidence_delta */ 1.6e-3f);
+ gyro_still_det_initialization_for_test(&gyro_cal->mag_stillness_detect,
+ /* var_threshold */ 1.4f,
+ /* confidence_delta */ 0.25f);
+
+ /* Reset stillness flag and start timestamp. */
+ gyro_cal->prev_still = false;
+ gyro_cal->start_still_time_us = 0;
+
+ /* Set the min and max window stillness duration. */
+ gyro_cal->min_still_duration_us = 5 * SECOND;
+ gyro_cal->max_still_duration_us = 6 * SECOND;
+
+ /* Sets the duration of the stillness processing windows. */
+ gyro_cal->window_time_duration_us = 1500000;
+
+ /* Set the window timeout duration. */
+ gyro_cal->gyro_window_timeout_duration_us = 5 * SECOND;
+
+ /* Load the last valid cal from system memory. */
+ gyro_cal->bias_x = 0.0f; /* [rad/sec] */
+ gyro_cal->bias_y = 0.0f; /* [rad/sec] */
+ gyro_cal->bias_z = 0.0f; /* [rad/sec] */
+ gyro_cal->calibration_time_us = 0;
+
+ /* Set the stillness threshold required for gyro bias calibration. */
+ gyro_cal->stillness_threshold = 0.95f;
+
+ /*
+ * Current window end-time used to assist in keeping sensor data
+ * collection in sync. Setting this to zero signals that sensor data
+ * will be dropped until a valid end-time is set from the first gyro
+ * timestamp received.
+ */
+ gyro_cal->stillness_win_endtime_us = 0;
+
+ /* Gyro calibrations will be applied (see, gyro_cal_remove_bias()). */
+ gyro_cal->gyro_calibration_enable = true;
+
+ /*
+ * Sets the stability limit for the stillness window mean acceptable
+ * delta.
+ */
+ gyro_cal->stillness_mean_delta_limit = 50.0f * MDEG_TO_RAD;
+
+ /* Sets the min/max temperature delta limit for the stillness period. */
+ gyro_cal->temperature_delta_limit_kelvin = 1.5f;
+
+ /* Ensures that the data tracking functionality is reset. */
+ init_gyro_cal(gyro_cal);
+}
+
+/**
+ * Tests that a calibration is updated after a period where the IMU device is
+ * stationary. Accelerometer and gyroscope measurements are simulated with data
+ * sheet specs for the BMI160 at their respective noise floors. A magnetometer
+ * sensor is also included in this test.
+ *
+ * @return EC_SUCCESS on success.
+ */
+static int test_gyro_cal_calibration(void)
+{
+ int i;
+ struct gyro_cal gyro_cal;
+
+ /*
+ * Statistics for simulated gyroscope data.
+ * RMS noise = 70mDPS, offset = 150mDPS.
+ */
+ /* [Hz] */
+ const float sample_rate = 400.0f;
+ /* [rad/sec] */
+ const float gyro_bias = MDEG_TO_RAD * 150.0f;
+ /* [rad/sec] */
+ const float gyro_rms_noise = MDEG_TO_RAD * 70.0f;
+ const uint64_t sample_interval_nanos = HZ_TO_PERIOD_NANOS(sample_rate);
+
+ /*
+ * Statistics for simulated accelerometer data.
+ * noise density = 200ug/rtHz, offset = 50mg.
+ */
+ /* [m/sec^2] */
+ const float accel_bias = 0.05f * kDefaultGravityMps2;
+ /* [m/sec^2] */
+ const float accel_rms_noise =
+ 0.0002f * kDefaultGravityMps2 * fp_sqrtf(0.5f * sample_rate);
+
+ /*
+ * Statistics for simulated magnetometer data.
+ * RMS noise = 0.4 micro Tesla (uT), offset = 0.2uT.
+ */
+ const float mag_bias = 0.2f; /* [uT] */
+ const float mag_rms_noise = 0.4f; /* [uT] */
+
+ float bias[3];
+ float bias_residual[3];
+ int temperature_kelvin;
+ uint32_t calibration_time_us = 0;
+
+ bool calibration_received = false;
+
+ gyro_cal_initialization_for_test(&gyro_cal);
+
+ /* No calibration should be available yet. */
+ TEST_EQ(gyro_cal_new_bias_available(&gyro_cal), false, "%d");
+
+ /*
+ * Simulate up to 20 seconds of sensor data (zero mean, additive white
+ * Gaussian noise).
+ */
+ for (i = 0; i < (int)(20.0f * sample_rate); ++i) {
+ const uint32_t timestamp_us =
+ (i * sample_interval_nanos) / 1000;
+
+ /* Generate and add an accelerometer sample. */
+ gyro_cal_update_accel(
+ &gyro_cal, timestamp_us,
+ normal_random2(accel_bias, accel_rms_noise),
+ normal_random2(accel_bias, accel_rms_noise),
+ normal_random2(accel_bias, accel_rms_noise));
+
+ /* Generate and add a gyroscrope sample. */
+ gyro_cal_update_gyro(&gyro_cal, timestamp_us,
+ normal_random2(gyro_bias, gyro_rms_noise),
+ normal_random2(gyro_bias, gyro_rms_noise),
+ normal_random2(gyro_bias, gyro_rms_noise),
+ kDefaultTemperatureKelvin);
+
+ /*
+ * The simulated magnetometer here has a sampling rate that is
+ * 4x slower than the accel/gyro
+ */
+ if (i % 4 == 0) {
+ gyro_cal_update_mag(
+ &gyro_cal, timestamp_us,
+ normal_random2(mag_bias, mag_rms_noise),
+ normal_random2(mag_bias, mag_rms_noise),
+ normal_random2(mag_bias, mag_rms_noise));
+ }
+ calibration_received = gyro_cal_new_bias_available(&gyro_cal);
+ if (calibration_received)
+ break;
+ }
+
+ TEST_EQ(calibration_received, true, "%d");
+
+ gyro_cal_get_bias(&gyro_cal, bias, &temperature_kelvin,
+ &calibration_time_us);
+ bias_residual[0] = gyro_bias - bias[0];
+ bias_residual[1] = gyro_bias - bias[1];
+ bias_residual[2] = gyro_bias - bias[2];
+
+ /*
+ * Make sure that the bias estimate is within 20 milli-degrees per
+ * second.
+ */
+ TEST_LT(bias_residual[0], 20.f * MDEG_TO_RAD, "%f");
+ TEST_LT(bias_residual[1], 20.f * MDEG_TO_RAD, "%f");
+ TEST_LT(bias_residual[2], 20.f * MDEG_TO_RAD, "%f");
+
+ TEST_NEAR(gyro_cal.stillness_confidence, 1.0f, 0.0001f, "%f");
+
+ TEST_EQ(temperature_kelvin, kDefaultTemperatureKelvin, "%d");
+
+ return EC_SUCCESS;
+}
+
+/**
+ * Tests that calibration does not falsely occur for low-level motion.
+ *
+ * @return EC_SUCCESS on success.
+ */
+static int test_gyro_cal_no_calibration(void)
+{
+ int i;
+ struct gyro_cal gyro_cal;
+
+ /* Statistics for simulated gyroscope data. */
+ /* RMS noise = 70mDPS, offset = 150mDPS. */
+ const float sample_rate = 400.0f; /* [Hz] */
+ const float gyro_bias = MDEG_TO_RAD * 150.0f; /* [rad/sec] */
+ const float gyro_rms_noise = MDEG_TO_RAD * 70.0f; /* [rad/sec] */
+ const uint64_t sample_interval_nanos = HZ_TO_PERIOD_NANOS(sample_rate);
+
+ /* Statistics for simulated accelerometer data. */
+ /* noise density = 200ug/rtHz, offset = 50mg. */
+ /* [m/sec^2] */
+ const float accel_bias = 0.05f * kDefaultGravityMps2;
+ /* [m/sec^2] */
+ const float accel_rms_noise =
+ 200.0e-6f * kDefaultGravityMps2 * fp_sqrtf(0.5f * sample_rate);
+
+ /* Define sinusoidal gyroscope motion parameters. */
+ const float omega_dt =
+ 2.0f * NANO_PI * sample_interval_nanos * NANOS_TO_SEC;
+ const float amplitude = MDEG_TO_RAD * 550.0f; /* [rad/sec] */
+
+ bool calibration_received = false;
+
+ gyro_cal_initialization_for_test(&gyro_cal);
+
+ for (i = 0; i < (int)(20.0f * sample_rate); ++i) {
+ const uint32_t timestamp_us =
+ (i * sample_interval_nanos) / 1000;
+
+ /* Generate and add an accelerometer sample. */
+ gyro_cal_update_accel(
+ &gyro_cal, timestamp_us,
+ normal_random2(accel_bias, accel_rms_noise),
+ normal_random2(accel_bias, accel_rms_noise),
+ normal_random2(accel_bias, accel_rms_noise));
+
+ /* Generate and add a gyroscope sample. */
+ gyro_cal_update_gyro(
+ &gyro_cal, timestamp_us,
+ normal_random2(gyro_bias, gyro_rms_noise) +
+ amplitude * sin(2.0f * omega_dt * i),
+ normal_random2(gyro_bias, gyro_rms_noise) -
+ amplitude * sin(2.1f * omega_dt * i),
+ normal_random2(gyro_bias, gyro_rms_noise) +
+ amplitude * cos(4.3f * omega_dt * i),
+ kDefaultTemperatureKelvin);
+
+ /* Check for calibration update. Break after first one. */
+ calibration_received = gyro_cal_new_bias_available(&gyro_cal);
+ if (calibration_received)
+ break;
+ }
+
+ /* Determine that NO calibration had occurred. */
+ TEST_EQ(calibration_received, false, "%d");
+
+ /* Make sure that the device was NOT classified as "still". */
+ TEST_GT(1.0f, gyro_cal.stillness_confidence, "%f");
+
+ return EC_SUCCESS;
+}
+
+/**
+ * Tests that a shift in a stillness window mean does not trigger a calibration.
+ *
+ * @return EC_SUCCESS on success.
+ */
+static int test_gyro_cal_win_mean_shift(void)
+{
+ struct gyro_cal gyro_cal;
+ int i;
+
+ /* Statistics for simulated gyroscope data. */
+ const float sample_rate = 400.0f; /* [Hz] */
+ const float gyro_bias = MDEG_TO_RAD * 150.0f; /* [rad/sec] */
+ const float gyro_bias_shift = MDEG_TO_RAD * 60.0f; /* [rad/sec] */
+ const uint64_t sample_interval_nanos = HZ_TO_PERIOD_NANOS(sample_rate);
+
+ /* Initialize the gyro calibration. */
+ gyro_cal_initialization_for_test(&gyro_cal);
+
+ /*
+ * Simulates 8 seconds of sensor data (no noise, just a gyro mean shift
+ * after 4 seconds).
+ * Assumptions: The max stillness period is 6 seconds, and the mean
+ * delta limit is 50mDPS. The mean shift should be detected and exceed
+ * the 50mDPS limit, and no calibration should be triggered. NOTE: This
+ * step is not large enough to trip the variance checking within the
+ * stillness detectors.
+ */
+ for (i = 0; i < (int)(8.0f * sample_rate); i++) {
+ const uint32_t timestamp_us =
+ (i * sample_interval_nanos) / 1000;
+
+ /* Generate and add a accelerometer sample. */
+ gyro_cal_update_accel(&gyro_cal, timestamp_us, 0.0f, 0.0f,
+ 9.81f);
+
+ /* Generate and add a gyroscope sample. */
+ if (timestamp_us > 4 * SECOND) {
+ gyro_cal_update_gyro(&gyro_cal, timestamp_us,
+ gyro_bias + gyro_bias_shift,
+ gyro_bias + gyro_bias_shift,
+ gyro_bias + gyro_bias_shift,
+ kDefaultTemperatureKelvin);
+ } else {
+ gyro_cal_update_gyro(&gyro_cal, timestamp_us, gyro_bias,
+ gyro_bias, gyro_bias,
+ kDefaultTemperatureKelvin);
+ }
+ }
+
+ /* Determine that NO calibration had occurred. */
+ TEST_EQ(gyro_cal_new_bias_available(&gyro_cal), false, "%d");
+
+ return EC_SUCCESS;
+}
+
+/**
+ * Tests that a temperature variation outside the acceptable range prevents a
+ * calibration.
+ *
+ * @return EC_SUCCESS on success.
+ */
+static int test_gyro_cal_temperature_shift(void)
+{
+ int i;
+ struct gyro_cal gyro_cal;
+
+ /* Statistics for simulated gyroscope data. */
+ const float sample_rate = 400.0f; /* [Hz] */
+ const float gyro_bias = MDEG_TO_RAD * 150.0f; /* [rad/sec] */
+ const float temperature_shift_kelvin = 2.6f;
+ const uint64_t sample_interval_nanos = HZ_TO_PERIOD_NANOS(sample_rate);
+
+ gyro_cal_initialization_for_test(&gyro_cal);
+
+ /*
+ * Simulates 8 seconds of sensor data (no noise, just a temperature
+ * shift after 4 seconds).
+ * Assumptions: The max stillness period is 6 seconds, and the
+ * temperature delta limit is 1.5C. The shift should be detected and
+ * exceed the limit, and no calibration should be triggered.
+ */
+ for (i = 0; i < (int)(8.0f * sample_rate); i++) {
+ const uint32_t timestamp_us =
+ (i * sample_interval_nanos) / 1000;
+ float temperature_kelvin = kDefaultTemperatureKelvin;
+
+ /* Generate and add a accelerometer sample. */
+ gyro_cal_update_accel(&gyro_cal, timestamp_us, 0.0f, 0.0f,
+ 9.81f);
+
+ /* Sets the temperature value. */
+ if (timestamp_us > 4 * SECOND)
+ temperature_kelvin += temperature_shift_kelvin;
+
+ /* Generate and add a gyroscope sample. */
+ gyro_cal_update_gyro(&gyro_cal, timestamp_us, gyro_bias,
+ gyro_bias, gyro_bias,
+ (int)temperature_kelvin);
+ }
+
+ /* Determine that NO calibration had occurred. */
+ TEST_EQ(gyro_cal_new_bias_available(&gyro_cal), false, "%d");
+
+ return EC_SUCCESS;
+}
+
+/**
+ * Verifies that complete sensor stillness results in the correct bias estimate
+ * and produces the correct timestamp.
+ *
+ * @return EC_SUCCESS on success;
+ */
+static int test_gyro_cal_stillness_timestamp(void)
+{
+ struct gyro_cal gyro_cal;
+ int64_t time_us;
+
+ /*
+ * 10Hz update rate for 11 seconds should trigger the in-situ
+ * algorithms.
+ */
+ const float gyro_bias_x = 0.09f;
+ const float gyro_bias_y = -0.04f;
+ const float gyro_bias_z = 0.05f;
+
+ float bias[3];
+ int temperature_kelvin = 273;
+ uint32_t calibration_time_us = 0;
+
+ gyro_cal_initialization_for_test(&gyro_cal);
+ for (time_us = 0; time_us < 11 * SECOND; time_us += 100 * MSEC) {
+ /* Generate and add a accelerometer sample. */
+ gyro_cal_update_accel(&gyro_cal, time_us, 0.0f, 0.0f, 9.81f);
+
+ /* Generate and add a gyroscope sample. */
+ gyro_cal_update_gyro(&gyro_cal, time_us, gyro_bias_x,
+ gyro_bias_y, gyro_bias_z,
+ kDefaultTemperatureKelvin);
+ }
+
+ /* Determine if there is a new calibration. Get the calibration value.
+ */
+ TEST_EQ(gyro_cal_new_bias_available(&gyro_cal), 1, "%d");
+
+ gyro_cal_get_bias(&gyro_cal, bias, &temperature_kelvin,
+ &calibration_time_us);
+
+ /* Make sure that the bias estimate is within kToleranceGyroRps. */
+ TEST_NEAR(gyro_bias_x - bias[0], 0.0f, 0.0001f, "%f");
+ TEST_NEAR(gyro_bias_y - bias[1], 0.0f, 0.0001f, "%f");
+ TEST_NEAR(gyro_bias_z - bias[2], 0.0f, 0.0001f, "%f");
+
+ /* Checks that the calibration occurred at the expected time. */
+ TEST_EQ(6 * SECOND, gyro_cal.calibration_time_us, "%u");
+
+ /* Make sure that the device was classified as 100% "still". */
+ TEST_NEAR(1.0f, gyro_cal.stillness_confidence, 0.0001f, "%f");
+
+ /* Make sure that the calibration temperature is correct. */
+ TEST_EQ(kDefaultTemperatureKelvin, temperature_kelvin, "%d");
+
+ return EC_SUCCESS;
+}
+
+/**
+ * Verifies that setting an initial bias works.
+ *
+ * @return EC_SUCCESS on success.
+ */
+static int test_gyro_cal_set_bias(void)
+{
+ struct gyro_cal gyro_cal;
+
+ /* Get the initialized bias value; should be zero. */
+ float bias[3] = { 0.0f, 0.0f, 0.0f };
+ int temperature_kelvin = 273;
+ uint32_t calibration_time_us = 10;
+
+ /* Initialize the gyro calibration. */
+ gyro_cal_initialization_for_test(&gyro_cal);
+ gyro_cal_get_bias(&gyro_cal, bias, &temperature_kelvin,
+ &calibration_time_us);
+ TEST_NEAR(0.0f, bias[0], 0.0001f, "%f");
+ TEST_NEAR(0.0f, bias[1], 0.0001f, "%f");
+ TEST_NEAR(0.0f, bias[2], 0.0001f, "%f");
+ TEST_EQ(0, temperature_kelvin, "%d");
+ TEST_EQ(0, calibration_time_us, "%d");
+
+ /* Set the calibration bias estimate. */
+ bias[0] = 1.0f;
+ bias[1] = 2.0f;
+ bias[2] = 3.0f;
+ gyro_cal_set_bias(&gyro_cal, bias, 31, 3 * 60 * SECOND);
+
+ bias[0] = 0.0f;
+ bias[1] = 0.0f;
+ bias[2] = 0.0f;
+ /* Check that it was set correctly. */
+ gyro_cal_get_bias(&gyro_cal, bias, &temperature_kelvin,
+ &calibration_time_us);
+ TEST_NEAR(1.0f, bias[0], 0.0001f, "%f");
+ TEST_NEAR(2.0f, bias[1], 0.0001f, "%f");
+ TEST_NEAR(3.0f, bias[2], 0.0001f, "%f");
+ TEST_EQ(31, temperature_kelvin, "%d");
+ TEST_EQ(3 * 60 * SECOND, calibration_time_us, "%u");
+
+ return EC_SUCCESS;
+}
+
+/**
+ * Verifies that the gyroCalRemoveBias function works as intended.
+ *
+ * @return EC_SUCCESS on success
+ */
+static int test_gyro_cal_remove_bias(void)
+{
+ struct gyro_cal gyro_cal;
+ float bias[3] = { 1.0f, 2.0f, 3.0f };
+ float bias_out[3];
+
+ /* Initialize the gyro calibration. */
+ gyro_cal_initialization_for_test(&gyro_cal);
+
+ /* Set an calibration bias estimate. */
+ gyro_cal_set_bias(&gyro_cal, bias, kDefaultTemperatureKelvin,
+ 5 * 60 * SECOND);
+
+ /* Correct the bias, and check that it has been adequately removed. */
+ gyro_cal_remove_bias(&gyro_cal, bias, bias_out);
+
+ /* Make sure that the bias estimate is within kToleranceGyroRps. */
+ TEST_NEAR(0.0f, bias_out[0], 0.0001f, "%f");
+ TEST_NEAR(0.0f, bias_out[1], 0.0001f, "%f");
+ TEST_NEAR(0.0f, bias_out[2], 0.0001f, "%f");
+
+ return EC_SUCCESS;
+}
+
+void run_test(int argc, char **argv)
+{
+ test_reset();
+
+ RUN_TEST(test_gyro_cal_calibration);
+ RUN_TEST(test_gyro_cal_no_calibration);
+ RUN_TEST(test_gyro_cal_win_mean_shift);
+ RUN_TEST(test_gyro_cal_temperature_shift);
+ RUN_TEST(test_gyro_cal_stillness_timestamp);
+ RUN_TEST(test_gyro_cal_set_bias);
+ RUN_TEST(test_gyro_cal_remove_bias);
+
+ test_print_result();
+}
diff --git a/test/gyro_cal.tasklist b/test/gyro_cal.tasklist
new file mode 100644
index 0000000000..7d28eb5b64
--- /dev/null
+++ b/test/gyro_cal.tasklist
@@ -0,0 +1,10 @@
+/* Copyright 2020 The Chromium OS Authors. All rights reserved.
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+
+/**
+ * See CONFIG_TASK_LIST in config.h for details.
+ */
+#define CONFIG_TEST_TASK_LIST \
+ TASK_TEST(MOTIONSENSE, motion_sense_task, NULL, TASK_STACK_SIZE)
diff --git a/test/test_config.h b/test/test_config.h
index 97a8c3e951..ed07f73983 100644
--- a/test/test_config.h
+++ b/test/test_config.h
@@ -132,6 +132,14 @@
#endif
#ifdef TEST_ONLINE_CALIBRATION
+#define CONFIG_FPU
+#define CONFIG_ONLINE_CALIB
+#define CONFIG_MKBP_EVENT
+#define CONFIG_MKBP_USE_GPIO
+#endif
+
+#ifdef TEST_GYRO_CAL
+#define CONFIG_FPU
#define CONFIG_ONLINE_CALIB
#define CONFIG_MKBP_EVENT
#define CONFIG_MKBP_USE_GPIO