summaryrefslogtreecommitdiff
path: root/common/mag_cal.c
diff options
context:
space:
mode:
authorYuval Peress <peress@chromium.org>2019-11-22 15:22:51 -0700
committerCommit Bot <commit-bot@chromium.org>2020-01-28 20:35:47 +0000
commit994af4a65fa7ece2f11f45038c75408d8166784a (patch)
treeecde395b031a499bb796542efa3e9c942eb6ce8b /common/mag_cal.c
parent1b4ce5849d520b67447bdc5b94e346432eac2126 (diff)
downloadchrome-ec-994af4a65fa7ece2f11f45038c75408d8166784a.tar.gz
common: mag_cal: update magnetometer to leverage kasa
Update magnetometer calibration algorithm to leverage the new kasa standalone code. BUG=b:138303429,chromium:1023858 TEST=added unit test BRANCH=None Change-Id: I5c0403b66d9fe7c2925b2ec6244cf9e32ad5ea5f Signed-off-by: Yuval Peress <peress@chromium.org> Reviewed-on: https://chromium-review.googlesource.com/c/chromiumos/platform/ec/+/1931464 Reviewed-by: Jack Rosenthal <jrosenth@chromium.org> Reviewed-by: Gwendal Grignou <gwendal@chromium.org>
Diffstat (limited to 'common/mag_cal.c')
-rw-r--r--common/mag_cal.c175
1 files changed, 50 insertions, 125 deletions
diff --git a/common/mag_cal.c b/common/mag_cal.c
index db09050007..1dc40e34db 100644
--- a/common/mag_cal.c
+++ b/common/mag_cal.c
@@ -26,6 +26,18 @@
#define CPRINTF(format, args...) cprintf(CC_ACCEL, format, ## args)
#define PRINTF_FLOAT(x) ((int)((x) * 100.0f))
+/**
+ * Compute the covariance element: (avg(ab) - avg(a)*avg(b))
+ *
+ * @param sq The accumulated sum of a*b
+ * @param a The accumulated sum of a
+ * @param b The accumulated sum of b
+ * @return (sq - ((a * b) * inv)) * inv
+ */
+static inline fp_t covariance_element(fp_t sq, fp_t a, fp_t b, fp_t inv)
+{
+ return fp_mul(sq - fp_mul(fp_mul(a, b), inv), inv);
+}
/*
* eigen value magnitude and ratio test
*
@@ -38,18 +50,35 @@ static int moc_eigen_test(struct mag_cal_t *moc)
fpv3_t eigenvals;
mat33_fp_t eigenvecs;
fp_t evmax, evmin, evmag;
+ fp_t inv = fp_div_dbz(FLOAT_TO_FP(1.0f),
+ INT_TO_FP((int) moc->kasa_fit.nsamples));
int eigen_pass;
/* covariance matrix */
- S[0][0] = moc->acc[0][0] - fp_sq(moc->acc[0][3]);
- S[0][1] = S[1][0] =
- moc->acc[0][1] - fp_mul(moc->acc[0][3], moc->acc[1][3]);
- S[0][2] = S[2][0] =
- moc->acc[0][2] - fp_mul(moc->acc[0][3], moc->acc[2][3]);
- S[1][1] = moc->acc[1][1] - fp_sq(moc->acc[1][3]);
- S[1][2] = S[2][1] =
- moc->acc[1][2] - fp_mul(moc->acc[1][3], moc->acc[2][3]);
- S[2][2] = moc->acc[2][2] - fp_sq(moc->acc[2][3]);
+ S[0][0] = covariance_element(moc->kasa_fit.acc_xx,
+ moc->kasa_fit.acc_x,
+ moc->kasa_fit.acc_x,
+ inv);
+ S[0][1] = S[1][0] = covariance_element(moc->kasa_fit.acc_xy,
+ moc->kasa_fit.acc_x,
+ moc->kasa_fit.acc_y,
+ inv);
+ S[0][2] = S[2][0] = covariance_element(moc->kasa_fit.acc_xz,
+ moc->kasa_fit.acc_x,
+ moc->kasa_fit.acc_z,
+ inv);
+ S[1][1] = covariance_element(moc->kasa_fit.acc_yy,
+ moc->kasa_fit.acc_y,
+ moc->kasa_fit.acc_y,
+ inv);
+ S[1][2] = S[2][1] = covariance_element(moc->kasa_fit.acc_yz,
+ moc->kasa_fit.acc_y,
+ moc->kasa_fit.acc_z,
+ inv);
+ S[2][2] = covariance_element(moc->kasa_fit.acc_zz,
+ moc->kasa_fit.acc_z,
+ moc->kasa_fit.acc_z,
+ inv);
mat33_fp_get_eigenbasis(S, eigenvals, eigenvecs);
@@ -66,88 +95,23 @@ static int moc_eigen_test(struct mag_cal_t *moc)
&& (evmag < MAX_EIGEN_MAG);
#if 0
- CPRINTF("mag eigenvalues: (%d %d %d), ",
+ CPRINTF("mag eigenvalues: (%.02d %.02d %.02d), ",
PRINTF_FLOAT(eigenvals[X]),
PRINTF_FLOAT(eigenvals[Y]),
PRINTF_FLOAT(eigenvals[Z]));
- CPRINTF("ratio %d, mag %d: pass %d\r\n",
+ CPRINTF("ratio %.02d, mag %.02d: pass %d\r\n",
PRINTF_FLOAT(evmax / evmin),
PRINTF_FLOAT(evmag),
- PRINTF_FLOAT(eigen_pass));
+ eigen_pass);
#endif
return eigen_pass;
}
-/*
- * Kasa sphere fitting with normal equation
- */
-static int moc_fit(struct mag_cal_t *moc, fpv3_t bias, fp_t *radius)
-{
- sizev4_t pivot;
- fpv4_t out;
- int success = 0;
-
- /*
- * To reduce stack size, moc->acc is A,
- * moc->acc_w is b: we are looking for out, where:
- *
- * A * out = b
- * (4 x 4) (4 x 1) (4 x 1)
- */
- /* complete the matrix: */
- moc->acc[1][0] = moc->acc[0][1];
- moc->acc[2][0] = moc->acc[0][2];
- moc->acc[2][1] = moc->acc[1][2];
- moc->acc[3][0] = moc->acc[0][3];
- moc->acc[3][1] = moc->acc[1][3];
- moc->acc[3][2] = moc->acc[2][3];
- moc->acc[3][3] = FLOAT_TO_FP(1.0f);
-
- moc->acc_w[X] = fp_mul(moc->acc_w[X], FLOAT_TO_FP(-1));
- moc->acc_w[Y] = fp_mul(moc->acc_w[Y], FLOAT_TO_FP(-1));
- moc->acc_w[Z] = fp_mul(moc->acc_w[Z], FLOAT_TO_FP(-1));
- moc->acc_w[W] = fp_mul(moc->acc_w[W], FLOAT_TO_FP(-1));
-
- mat44_fp_decompose_lup(moc->acc, pivot);
-
- mat44_fp_solve(moc->acc, out, moc->acc_w, pivot);
-
- /*
- * spherei is defined by:
- * (x - xc)^2 + (y - yc)^2 + (z - zc)^2 = r^2
- *
- * Where r is:
- * xc = -out[X] / 2, yc = -out[Y] / 2, zc = -out[Z] / 2
- * r = sqrt(xc^2 + yc^2 + zc^2 - out[W])
- */
-
- memcpy(bias, out, sizeof(fpv3_t));
- fpv3_scalar_mul(bias, FLOAT_TO_FP(-0.5f));
-
- *radius = fp_sqrtf(fpv3_dot(bias, bias) - out[W]);
-
-#if 0
- CPRINTF("mag cal: bias (%d, %d, %d), R %d uT\n",
- PRINTF_FLOAT(bias[X] / MAG_CAL_RAW_UT),
- PRINTF_FLOAT(bias[Y] / MAG_CAL_RAW_UT),
- PRINTF_FLOAT(bias[Z] / MAG_CAL_RAW_UT),
- PRINTF_FLOAT(*radius / MAG_CAL_RAW_UT));
-#endif
-
- /* TODO (menghsuan): bound on bias as well? */
- if (*radius > MIN_FIT_MAG && *radius < MAX_FIT_MAG)
- success = 1;
-
- return success;
-}
-
void init_mag_cal(struct mag_cal_t *moc)
{
- memset(moc->acc, 0, sizeof(moc->acc));
- memset(moc->acc_w, 0, sizeof(moc->acc_w));
- moc->nsamples = 0;
+ kasa_reset(&moc->kasa_fit);
}
int mag_cal_update(struct mag_cal_t *moc, const intv3_t v)
@@ -155,61 +119,22 @@ int mag_cal_update(struct mag_cal_t *moc, const intv3_t v)
int new_bias = 0;
/* 1. run accumulators */
- fp_t w = fp_sq(v[X]) + fp_sq(v[Y]) + fp_sq(v[Z]);
-
- moc->acc[0][3] += v[X];
- moc->acc[1][3] += v[Y];
- moc->acc[2][3] += v[Z];
- moc->acc_w[W] += w;
-
- moc->acc[0][0] += fp_sq(v[X]);
- moc->acc[0][1] += fp_mul(v[X], v[Y]);
- moc->acc[0][2] += fp_mul(v[X], v[Z]);
- moc->acc_w[X] += fp_mul(v[X], w);
-
- moc->acc[1][1] += fp_sq(v[Y]);
- moc->acc[1][2] += fp_mul(v[Y], v[Z]);
- moc->acc_w[Y] += fp_mul(v[Y], w);
-
- moc->acc[2][2] += fp_sq(v[Z]);
- moc->acc_w[Z] += fp_mul(v[Z], w);
-
- if (moc->nsamples < MAG_CAL_MAX_SAMPLES)
- moc->nsamples++;
+ kasa_accumulate(&moc->kasa_fit, INT_TO_FP(v[X]), INT_TO_FP(v[Y]),
+ INT_TO_FP(v[Z]));
/* 2. batch has enough samples? */
- if (moc->batch_size > 0 && moc->nsamples >= moc->batch_size) {
- fp_t inv = fp_div_dbz(FLOAT_TO_FP(1.0f),
- INT_TO_FP((int)moc->nsamples));
-
- moc->acc[0][3] = fp_mul(moc->acc[0][3], inv);
- moc->acc[1][3] = fp_mul(moc->acc[1][3], inv);
- moc->acc[2][3] = fp_mul(moc->acc[2][3], inv);
- moc->acc_w[W] = fp_mul(moc->acc_w[W], inv);
-
- moc->acc[0][0] = fp_mul(moc->acc[0][0], inv);
- moc->acc[0][1] = fp_mul(moc->acc[0][1], inv);
- moc->acc[0][2] = fp_mul(moc->acc[0][2], inv);
- moc->acc_w[X] = fp_mul(moc->acc_w[X], inv);
-
- moc->acc[1][1] = fp_mul(moc->acc[1][1], inv);
- moc->acc[1][2] = fp_mul(moc->acc[1][2], inv);
- moc->acc_w[Y] = fp_mul(moc->acc_w[Y], inv);
-
- moc->acc[2][2] = fp_mul(moc->acc[2][2], inv);
- moc->acc_w[Z] = fp_mul(moc->acc_w[Z], inv);
-
+ if (moc->batch_size > 0 && moc->kasa_fit.nsamples >= moc->batch_size) {
/* 3. eigen test */
if (moc_eigen_test(moc)) {
fpv3_t bias;
fp_t radius;
/* 4. Kasa sphere fitting */
- if (moc_fit(moc, bias, &radius)) {
-
- moc->bias[X] = fp_mul(bias[X], FLOAT_TO_FP(-1));
- moc->bias[Y] = fp_mul(bias[Y], FLOAT_TO_FP(-1));
- moc->bias[Z] = fp_mul(bias[Z], FLOAT_TO_FP(-1));
+ kasa_compute(&moc->kasa_fit, bias, &radius);
+ if (radius > MIN_FIT_MAG && radius < MAX_FIT_MAG) {
+ moc->bias[X] = FP_TO_INT(bias[X]);
+ moc->bias[Y] = FP_TO_INT(bias[Y]);
+ moc->bias[Z] = FP_TO_INT(bias[Z]);
moc->radius = radius;