summaryrefslogtreecommitdiff
path: root/common/mag_cal.c
diff options
context:
space:
mode:
authorYilun Lin <yllin@google.com>2018-10-04 10:19:57 +0800
committerchrome-bot <chrome-bot@chromium.org>2018-10-04 12:55:53 -0700
commit315aaca9467f49bc432ef5f2de9c0e3bb56f0251 (patch)
tree3ea739aca1db340e93b9daee7958d5afc5c9f31f /common/mag_cal.c
parentece03ab4d09b157c5e6f3c4fe0446678c0d8684b (diff)
downloadchrome-ec-315aaca9467f49bc432ef5f2de9c0e3bb56f0251.tar.gz
mag_cal: Support fixed-point calculation.
Modified from floating point version. This includes changes to vec3, vec4, mat33, mat44, and mag_cal. Now fixed-point type (fp_*) functions is a function wrapper for both fixed-point and floating point version operations: * define CONFIG_FPU to use floating version mag_cal * undef CONFIG_FPU to use fixed-point version mag_cal Also, add tests for both float and fp types operations. TEST=define CONFIG_FPU; flash on reef; See ARC++ magnetmeter app moving. TEST=undef CONFIG_FPU; flash on reef; See ARC++ magnetmeter app moving. TEST=make runtests -j TEST=make buildalltests -j BUG=b:113364863 BRANCH=None Change-Id: Ie695945acb666912babb2a603e09c602a0624d44 Signed-off-by: Yilun Lin <yllin@google.com> Reviewed-on: https://chromium-review.googlesource.com/1260704 Commit-Ready: Yilun Lin <yllin@chromium.org> Tested-by: Yilun Lin <yllin@chromium.org> Reviewed-by: Nicolas Boichat <drinkcat@chromium.org>
Diffstat (limited to 'common/mag_cal.c')
-rw-r--r--common/mag_cal.c121
1 files changed, 62 insertions, 59 deletions
diff --git a/common/mag_cal.c b/common/mag_cal.c
index 6e5a48b6b1..1e71059921 100644
--- a/common/mag_cal.c
+++ b/common/mag_cal.c
@@ -16,9 +16,9 @@
/* Data from sensor is in 16th of uT */
#define MAG_CAL_RAW_UT 16
-#define MAX_EIGEN_RATIO 25.0f
-#define MAX_EIGEN_MAG (80.0f * MAG_CAL_RAW_UT)
-#define MIN_EIGEN_MAG (10.0f * MAG_CAL_RAW_UT)
+#define MAX_EIGEN_RATIO FLOAT_TO_FP(25.0f)
+#define MAX_EIGEN_MAG FLOAT_TO_FP(80.0f * MAG_CAL_RAW_UT)
+#define MIN_EIGEN_MAG FLOAT_TO_FP(10.0f * MAG_CAL_RAW_UT)
#define MAX_FIT_MAG MAX_EIGEN_MAG
#define MIN_FIT_MAG MIN_EIGEN_MAG
@@ -34,21 +34,24 @@
*/
static int moc_eigen_test(struct mag_cal_t *moc)
{
- mat33_float_t S;
- floatv3_t eigenvals;
- mat33_float_t eigenvecs;
- float evmax, evmin, evmag;
+ mat33_fp_t S;
+ fpv3_t eigenvals;
+ mat33_fp_t eigenvecs;
+ fp_t evmax, evmin, evmag;
int eigen_pass;
/* covariance matrix */
- S[0][0] = moc->acc[0][0] - moc->acc[0][3] * moc->acc[0][3];
- S[0][1] = S[1][0] = moc->acc[0][1] - moc->acc[0][3] * moc->acc[1][3];
- S[0][2] = S[2][0] = moc->acc[0][2] - moc->acc[0][3] * moc->acc[2][3];
- S[1][1] = moc->acc[1][1] - moc->acc[1][3] * moc->acc[1][3];
- S[1][2] = S[2][1] = moc->acc[1][2] - moc->acc[1][3] * moc->acc[2][3];
- S[2][2] = moc->acc[2][2] - moc->acc[2][3] * moc->acc[2][3];
-
- mat33_float_get_eigenbasis(S, eigenvals, eigenvecs);
+ S[0][0] = moc->acc[0][0] - fp_sq(moc->acc[0][3]);
+ S[0][1] = S[1][0] =
+ moc->acc[0][1] - fp_mul(moc->acc[0][3], moc->acc[1][3]);
+ S[0][2] = S[2][0] =
+ moc->acc[0][2] - fp_mul(moc->acc[0][3], moc->acc[2][3]);
+ S[1][1] = moc->acc[1][1] - fp_sq(moc->acc[1][3]);
+ S[1][2] = S[2][1] =
+ moc->acc[1][2] - fp_mul(moc->acc[1][3], moc->acc[2][3]);
+ S[2][2] = moc->acc[2][2] - fp_sq(moc->acc[2][3]);
+
+ mat33_fp_get_eigenbasis(S, eigenvals, eigenvecs);
evmax = (eigenvals[X] > eigenvals[Y]) ? eigenvals[X] : eigenvals[Y];
evmax = (eigenvals[Z] > evmax) ? eigenvals[Z] : evmax;
@@ -56,9 +59,9 @@ static int moc_eigen_test(struct mag_cal_t *moc)
evmin = (eigenvals[X] < eigenvals[Y]) ? eigenvals[X] : eigenvals[Y];
evmin = (eigenvals[Z] < evmin) ? eigenvals[Z] : evmin;
- evmag = sqrtf(eigenvals[X] + eigenvals[Y] + eigenvals[Z]);
+ evmag = fp_sqrtf(eigenvals[X] + eigenvals[Y] + eigenvals[Z]);
- eigen_pass = (evmin * MAX_EIGEN_RATIO > evmax)
+ eigen_pass = (fp_mul(evmin, MAX_EIGEN_RATIO) > evmax)
&& (evmag > MIN_EIGEN_MAG)
&& (evmag < MAX_EIGEN_MAG);
@@ -80,10 +83,10 @@ static int moc_eigen_test(struct mag_cal_t *moc)
/*
* Kasa sphere fitting with normal equation
*/
-static int moc_fit(struct mag_cal_t *moc, floatv3_t bias, float *radius)
+static int moc_fit(struct mag_cal_t *moc, fpv3_t bias, fp_t *radius)
{
sizev4_t pivot;
- floatv4_t out;
+ fpv4_t out;
int success = 0;
/*
@@ -100,16 +103,16 @@ static int moc_fit(struct mag_cal_t *moc, floatv3_t bias, float *radius)
moc->acc[3][0] = moc->acc[0][3];
moc->acc[3][1] = moc->acc[1][3];
moc->acc[3][2] = moc->acc[2][3];
- moc->acc[3][3] = 1.0f;
+ moc->acc[3][3] = FLOAT_TO_FP(1.0f);
- moc->acc_w[X] *= -1;
- moc->acc_w[Y] *= -1;
- moc->acc_w[Z] *= -1;
- moc->acc_w[W] *= -1;
+ moc->acc_w[X] = fp_mul(moc->acc_w[X], FLOAT_TO_FP(-1));
+ moc->acc_w[Y] = fp_mul(moc->acc_w[Y], FLOAT_TO_FP(-1));
+ moc->acc_w[Z] = fp_mul(moc->acc_w[Z], FLOAT_TO_FP(-1));
+ moc->acc_w[W] = fp_mul(moc->acc_w[W], FLOAT_TO_FP(-1));
- mat44_float_decompose_lup(moc->acc, pivot);
+ mat44_fp_decompose_lup(moc->acc, pivot);
- mat44_float_solve(moc->acc, out, moc->acc_w, pivot);
+ mat44_fp_solve(moc->acc, out, moc->acc_w, pivot);
/*
* spherei is defined by:
@@ -120,10 +123,10 @@ static int moc_fit(struct mag_cal_t *moc, floatv3_t bias, float *radius)
* r = sqrt(xc^2 + yc^2 + zc^2 - out[W])
*/
- memcpy(bias, out, sizeof(floatv3_t));
- floatv3_scalar_mul(bias, -0.5f);
+ memcpy(bias, out, sizeof(fpv3_t));
+ fpv3_scalar_mul(bias, FLOAT_TO_FP(-0.5f));
- *radius = sqrtf(floatv3_dot(bias, bias) - out[W]);
+ *radius = fp_sqrtf(fpv3_dot(bias, bias) - out[W]);
#if 0
CPRINTF("mag cal: bias (%d, %d, %d), R %d uT\n",
@@ -152,60 +155,61 @@ int mag_cal_update(struct mag_cal_t *moc, const intv3_t v)
int new_bias = 0;
/* 1. run accumulators */
- float w = v[X] * v[X] + v[Y] * v[Y] + v[Z] * v[Z];
+ fp_t w = fp_sq(v[X]) + fp_sq(v[Y]) + fp_sq(v[Z]);
moc->acc[0][3] += v[X];
moc->acc[1][3] += v[Y];
moc->acc[2][3] += v[Z];
moc->acc_w[W] += w;
- moc->acc[0][0] += v[X] * v[X];
- moc->acc[0][1] += v[X] * v[Y];
- moc->acc[0][2] += v[X] * v[Z];
- moc->acc_w[X] += v[X] * w;
+ moc->acc[0][0] += fp_sq(v[X]);
+ moc->acc[0][1] += fp_mul(v[X], v[Y]);
+ moc->acc[0][2] += fp_mul(v[X], v[Z]);
+ moc->acc_w[X] += fp_mul(v[X], w);
- moc->acc[1][1] += v[Y] * v[Y];
- moc->acc[1][2] += v[Y] * v[Z];
- moc->acc_w[Y] += v[Y] * w;
+ moc->acc[1][1] += fp_sq(v[Y]);
+ moc->acc[1][2] += fp_mul(v[Y], v[Z]);
+ moc->acc_w[Y] += fp_mul(v[Y], w);
- moc->acc[2][2] += v[Z] * v[Z];
- moc->acc_w[Z] += v[Z] * w;
+ moc->acc[2][2] += fp_sq(v[Z]);
+ moc->acc_w[Z] += fp_mul(v[Z], w);
if (moc->nsamples < MAG_CAL_MAX_SAMPLES)
moc->nsamples++;
/* 2. batch has enough samples? */
if (moc->batch_size > 0 && moc->nsamples >= moc->batch_size) {
- float inv = 1.0f / moc->nsamples;
+ fp_t inv = fp_div_dbz(FLOAT_TO_FP(1.0f),
+ INT_TO_FP((int)moc->nsamples));
- moc->acc[0][3] *= inv;
- moc->acc[1][3] *= inv;
- moc->acc[2][3] *= inv;
- moc->acc_w[W] *= inv;
+ moc->acc[0][3] = fp_mul(moc->acc[0][3], inv);
+ moc->acc[1][3] = fp_mul(moc->acc[1][3], inv);
+ moc->acc[2][3] = fp_mul(moc->acc[2][3], inv);
+ moc->acc_w[W] = fp_mul(moc->acc_w[W], inv);
- moc->acc[0][0] *= inv;
- moc->acc[0][1] *= inv;
- moc->acc[0][2] *= inv;
- moc->acc_w[X] *= inv;
+ moc->acc[0][0] = fp_mul(moc->acc[0][0], inv);
+ moc->acc[0][1] = fp_mul(moc->acc[0][1], inv);
+ moc->acc[0][2] = fp_mul(moc->acc[0][2], inv);
+ moc->acc_w[X] = fp_mul(moc->acc_w[X], inv);
- moc->acc[1][1] *= inv;
- moc->acc[1][2] *= inv;
- moc->acc_w[Y] *= inv;
+ moc->acc[1][1] = fp_mul(moc->acc[1][1], inv);
+ moc->acc[1][2] = fp_mul(moc->acc[1][2], inv);
+ moc->acc_w[Y] = fp_mul(moc->acc_w[Y], inv);
- moc->acc[2][2] *= inv;
- moc->acc_w[Z] *= inv;
+ moc->acc[2][2] = fp_mul(moc->acc[2][2], inv);
+ moc->acc_w[Z] = fp_mul(moc->acc_w[Z], inv);
/* 3. eigen test */
if (moc_eigen_test(moc)) {
- floatv3_t bias;
- float radius;
+ fpv3_t bias;
+ fp_t radius;
/* 4. Kasa sphere fitting */
if (moc_fit(moc, bias, &radius)) {
- moc->bias[X] = bias[X] * -1;
- moc->bias[Y] = bias[Y] * -1;
- moc->bias[Z] = bias[Z] * -1;
+ moc->bias[X] = fp_mul(bias[X], FLOAT_TO_FP(-1));
+ moc->bias[Y] = fp_mul(bias[Y], FLOAT_TO_FP(-1));
+ moc->bias[Z] = fp_mul(bias[Z], FLOAT_TO_FP(-1));
moc->radius = radius;
@@ -218,4 +222,3 @@ int mag_cal_update(struct mag_cal_t *moc, const intv3_t v)
return new_bias;
}
-